Skip to main content
Log in

New Possibilities with Sobolev Active Contours

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Recently, the Sobolev metric was introduced to define gradient flows of various geometric active contour energies. It was shown that the Sobolev metric outperforms the traditional metric for the same energy in many cases such as for tracking where the coarse scale changes of the contour are important. Some interesting properties of Sobolev gradient flows include that they stabilize certain unstable traditional flows, and the order of the evolution PDEs are reduced when compared with traditional gradient flows of the same energies. In this paper, we explore new possibilities for active contours made possible by Sobolev metrics. The Sobolev method allows one to implement new energy-based active contour models that were not otherwise considered because the traditional minimizing method render them ill-posed or numerically infeasible. In particular, we exploit the stabilizing and the order reducing properties of Sobolev gradients to implement the gradient descent of these new energies. We give examples of this class of energies, which include some simple geometric priors and new edge-based energies. We also show that these energies can be quite useful for segmentation and tracking. We also show that the gradient flows using the traditional metric are either ill-posed or numerically difficult to implement, and then show that the flows can be implemented in a stable and numerically feasible manner using the Sobolev gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boykov, Y., & Jolly, M.-P. (2001). Interactive graph cuts for optimal boundary and region segmentation of objects in N–D images. In ICCV (pp. 105–112).

  • Brook, A., Bruckstein, A. M., & Kimmel, R. (2005). On similarity-invariant fairness measures. In Scale-Space (pp. 456–467).

  • Bruckstein, A. M., & Netravali, A. N. (1990). On minimal energy trajectories. Computer Vision, Graphics, and Image Processing, 49(3), 283–296.

    Article  Google Scholar 

  • Caselles, V., Catte, F., Coll, T., & Dibos, F. (1993). A geometric model for edge detection. Numerische Mathematik, 66, 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  • Caselles, V., Kimmel, R., & Sapiro, G. (1995). Geodesic active contours. In Proceedings of the IEEE int. conf. on computer vision (pp. 694–699). Cambridge, MA, USA.

  • Chan, T., & Vese, L. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Charpiat, G., Keriven, R., Pons, J., & Faugeras, O. (2005). Designing spatially coherent minimizing flows for variational problems based on active contours. In ICCV.

  • Charpiat, G., Maurel, P., Keriven, R., Pons, J.-P., & Faugeras, O. D. (2007). Generalized gradients: priors on minimization flows. International Journal of Computer Vision, 73(3), 325–344.

    Article  Google Scholar 

  • Chen, Y., Tagare, H., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K., Briggs, R., & Geiser, E. (2002). Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vision, 50(3), 315–328.

    Article  MATH  Google Scholar 

  • Cohen, L. D., & Kimmel, R. (1996). Global minimum for active contour models: a minimal path approach. In CVPR (pp. 666–673).

  • Cremers, D., & Schnörr, C. (2001). Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework. In Proc. IEEE workshop on variational, geometric, level set methods in computer vision (pp. 137–144).

  • Cremers, D., & Soatto, S. (2003). A pseudo distance for shape priors in level set segmentation. In IEEE int. workshop on variational, geometric and level set methods (pp. 169–176).

  • Delingette, H. (2001). On smoothness measures of active contours and surfaces. In VLSM ’01: Proceedings of the IEEE workshop on variational and level set methods (VLSM’01) (p. 43). Washington, DC, USA.

  • Droske, M., & Rumpf, M. (2004). A level set formulation for the willmore flow. Interfaces and Boundaries, 6(3), 361–378.

    Article  MATH  MathSciNet  Google Scholar 

  • Eckstein, I., Pons, J., Tong, Y., Kuo, C., & Desbrun, M. (2007). Generalized surface flows for mesh processing. In Symposium on geometry processing (pp. 183–192).

  • Foulonneau, A., Charbonnier, P., & Heitz, F. (2006). Affine-invariant geometric shape priors for region-based active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8), 1352–1357.

    Article  Google Scholar 

  • Fua, P., & Leclerc, Y. G. (1990). Model driven edge detection. Machine Vision and Applications, 3(1), 45–56.

    Article  Google Scholar 

  • Guyader, C. L., & Vese, L. (2007). Self-repelling snakes for topology segmentation models (Technical Report). UCLA.

  • Horn, B. K. P. (1983). The curve of least energy. ACM Transactions on Mathematical Software, 9(4), 441–460.

    Article  MATH  MathSciNet  Google Scholar 

  • Jackson, J., Yezzi, A., & Soatto, S. (2004). Tracking deformable moving objects under severe occulsions. In IEEE conference on decision and control.

  • Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: active contour models. International Journal of Computer Vision, 1, 321–331.

    Article  Google Scholar 

  • Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., & Yezzi, A. (1995). Gradient flows and geometric active contour models. In Proceedings of the IEEE int. conf. on computer vision (pp. 810–815).

  • Kim, J., Fisher, J., Yezzi, A., Cetin, M., & Willsky, A. (2002). Nonparametric methods for image processing using information theory and curve evolution. In IEEE international conference on image processing (Vol. 3, pp. 797–800).

  • Kolmogorov, V., & Boykov, Y. (2005). What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In ICCV (pp. 564–571).

  • Leventon, M., Grimson, E., & Faugeras, O. (2000). Statistical shape influence in geodesic active contours. In IEEE conf. on comp. vision and patt. recog. (Vol. 1, pp. 316–323).

  • Ma, T., & Tagare, H. (1999). Consistency and stability of active contours with Euclidean and non-Euclidean arc lengths. IEEE Transactions on Image Processing, 8(11), 1549–1559.

    Article  MATH  MathSciNet  Google Scholar 

  • Malladi, R., Sethian, J., & Vemuri, B. (1995). Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2), 158–175.

    Article  Google Scholar 

  • Mansouri, A.-R., Mukherjee, D. P., & Acton, S. T. (2004). Constraining active contour evolution via Lie Groups of transformation. IEEE Transactions on Image Processing, 13(6), 853–863.

    Article  MathSciNet  Google Scholar 

  • Michor, P. W., & Mumford, D. (2006). Riemannian geometries of space of plane curves. Journal of the European Mathematical Society, 8, 1–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Mio, W., Srivastava, A., & Klassen, E. (2004). Interpolations with elasticae in Euclidean spaces. Quaterly of Applied Mathematics, LXII(3), 359–378.

    MathSciNet  Google Scholar 

  • Mumford, D., & Shah, J. (1985). Boundary detection by minimizing functionals. In Proc. IEEE conf. computer vision pattern recognition.

  • Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42, 577–685.

    Article  MATH  MathSciNet  Google Scholar 

  • Nain, D., Yezzi, A. J., & Turk, G. (2004). Vessel segmentation using a shape driven flow. In MICCAI (1) (pp. 51–59).

  • Neuberger, J. W. (1997). Sobolev gradients and differential equations. Lecture notes in mathematics, Vol. 1670. Berlin: Springer.

    MATH  Google Scholar 

  • Paragios, N., & Deriche, R. (2000). Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 266–280.

    Article  Google Scholar 

  • Paragios, N., & Deriche, R. (2002). Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision, 46(3), 223.

    Article  MATH  Google Scholar 

  • Polden, A. (1996). Curves and surfaces of least total curvature and fourth-order flows. Ph.D. thesis, Mathematisches Institut Unversitat Tubingen, Germany.

  • Raviv, T. R., Kiryati, N., & Sochen, N. (2004). Unlevel-set: geometry and prior-based segmentation. In Proc. European conf. on computer vision.

  • Rochery, M., Jermyn, I., & Zerubia, J. (2003). Higher order active contours and their application to the detection of line networks in satellite imagery. In IEEE Workshop on VLSM.

  • Ronfard, R. (1994). Region based strategies for active contour models. International Journal of Computer Vision, 13(2), 229–251.

    Article  Google Scholar 

  • Rousson, M., & Paragios, N. (2002). Shape priors for level set representations. In Proc. European conf. computer vision (Vol. 2, pp. 78–93).

  • Rudin, W. (1973). Functional analysis. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Sapiro, G., & Tannenbaum, A. (1995). Area and length preserving geometric invariant scale-spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(1), 67–72.

    Article  Google Scholar 

  • Schoenemann, T., & Cremers, D. (2007a). Globally optimal image segmentation with an elastic shape prior. In IEEE international conference on computer vision (ICCV). Rio de Janeiro, Brazil.

  • Schoenemann, T., & Cremers, D. (2007b). Introducing curvature into globally optimimal image segmentation: minimum ratio cycles on product graphs. In IEEE international conference on computer vision (ICCV). Rio de Janeiro, Brazil.

  • Sundaramoorthi, G., & Yezzi, A. J. (2005). More-than-topology-preserving flows for active contours and polygons. In ICCV (pp. 1276–1283).

  • Sundaramoorthi, G., Yezzi, A., & Mennucci, A. (2005). Sobolev active contours. In VLSM (pp. 109–120).

  • Sundaramoorthi, G., Jackson, J. D., Yezzi, A. J., & Mennucci, A. (2006). Tracking with Sobolev active contours. In CVPR (1) (pp. 674–680).

  • Sundaramoorthi, G., Yezzi, A., & Mennucci, A. (2007). Sobolev active contours. International Journal of Computer Vision, 73(3), 345–366.

    Article  Google Scholar 

  • Sundaramoorthi, G., Yezzi, A., & Mennucci, A. (2008). Coarse-to-fine segmentation and tracking with Sobolev active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(5), 851–864.

    Article  Google Scholar 

  • Tsai, A., Yezzi, A. J., Tempany, W. M. W. C., III, Tucker, D., Fan, A., Grimson, W. E. L., & Willsky, A. S. (2001). Model-based curve evolution technique for image segmentation. In CVPR (1) (pp. 463–468).

  • Yezzi, A., & Mennucci, A. (2005a). Metrics in the space of curves. Preprint, arXiv:math.DG/0412454.

  • Yezzi, A. J., & Mennucci, A. (2005b). Conformal metrics and true “gradient flows” for curves. In ICCV (pp. 913–919).

  • Yezzi, A., Tsai, A., & Willsky, A. (1999). A statistical approach to snakes for bimodal and trimodal imagery. In Int. conf. on computer vision (pp. 898–903).

  • Zhu, S. C., Lee, T. S., & Yuille, A. L. (1995). Region competition: unifying snakes, region growing, energy/bayes/MDL for multi-band image segmentation. In ICCV (pp. 416).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Sundaramoorthi.

Additional information

Sundaramoorthi and Yezzi were supported by NSF CCR-0133736, NIH/NINDS R01-NS-037747, and Airforce MURI; Sapiro was partially supported by NSF, ONR, NGA, ARO, DARPA, and the McKnight Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundaramoorthi, G., Yezzi, A., Mennucci, A.C. et al. New Possibilities with Sobolev Active Contours. Int J Comput Vis 84, 113–129 (2009). https://doi.org/10.1007/s11263-008-0133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0133-9

Keywords

Navigation