Skip to main content
Log in

Four-Color Theorem and Level Set Methods for Watershed Segmentation

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A marker-controlled and regularized watershed segmentation is proposed for cell segmentation. Only a few previous studies address the task of regularizing the obtained watershed lines from the traditional marker-controlled watershed segmentation. In the present formulation, the topographical distance function is applied in a level set formulation to perform the segmentation, and the regularization is easily accomplished by regularizing the level set functions. Based on the well-known Four-Color theorem, a mathematical model is developed for the proposed ideas. With this model, it is possible to segment any 2D image with arbitrary number of phases with as few as one or two level set functions. The algorithm has been tested on real 2D fluorescence microscopy images displaying rat cancer cells, and the algorithm has also been compared to a standard watershed segmentation as it is implemented in MATLAB. For a fixed set of markers and a set of challenging images, the comparison of these two methods shows that the present level set formulation performs better than a standard watershed segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adiga, P. S. U. (2003). Integrated approach for segmentation of 3-D confocal images of a tissue specimen. Microscopy Research and Technique, 54(4), 260–270.

    Article  Google Scholar 

  • Adiga, P. S. U., & Chaudhuri, B. B. (1999). Efficient cell segmentation tool for confocal microscopy tissue images and quantitative evaluation of fish signals. Microscopy Research and Technique, 44(1), 49–68.

    Article  Google Scholar 

  • Adiga, U., Malladi, R., Fernandez-Gonzalez, R., & Ortiz de Solorzano, C. (2006). High-throughput analysis of multispectral images of breast cancer tissue. IEEE Transactions on Image Processing, 15(8), 2259–2268.

    Article  Google Scholar 

  • Appel, K. I., & Haken, W. (1977). Every planar map is four colorable. Illinois Journal of Mathematics, 21, 429–567.

    MATH  MathSciNet  Google Scholar 

  • Arbeléz, P. A., & Cohen, L. D. (2004). Energy partitions and image segmentation. Journal of Mathematical Imaging and Vision, 20(1–2), 43–57.

    Article  MathSciNet  Google Scholar 

  • Baggett, D., Nakaya, M., McAuliffe, M., Yamaguchi, T. P., & Lockett, S. (2005). Whole cell segmentation in solid tissue sections. Cytometry Part A, 67A, 137–143.

    Article  Google Scholar 

  • Bamford, P., & Lovell, B. (1998). Unsupervised cell nucleus segmentation with active contours. Signal Processing, 71(2), 203–213.

    Article  MATH  Google Scholar 

  • Bengtsson, E., Wählby, C., & Lindblad, J. (2004). Robust cell image segmentation methods. Pattern Recognition and Image Analysis, 14, 157–167.

    Google Scholar 

  • Caselles, V., Catté, F., Coll, T., & Dibos, F. (1993). A geometric model for active contours in image processing. Numerical Mathematics, 66(1), 1–31.

    Article  MATH  Google Scholar 

  • Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1–2), 89–97. Special issue on mathematics and image analysis.

    MathSciNet  Google Scholar 

  • Chan, T., & Vese, L. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10, 266–277.

    Article  MATH  Google Scholar 

  • Chan, T. F., Moelich, M., & Sandberg, B. (2006). Some recent developments in variational image segmentation. In X.-C. Tai, K. A. Lie, T. Chan & S. Osher (Eds.), Image processing based on partial differential equations (pp. 175–201). Heidelberg: Springer.

    Google Scholar 

  • Chan, T. F., & Tai, X.-C. (2004). Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. Journal of Computational Physics, 193(1), 40–66.

    Article  MATH  MathSciNet  Google Scholar 

  • Chang, S. G., Yu, B., & Vetterli, M. (2000). Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Transactions on Image Processing, 9(9), 1522–1531.

    Article  MATH  MathSciNet  Google Scholar 

  • Chien, S. Y., Huang, Y. W., & Chen, L. G. (2003). Predictive watershed: a fast watershed algorithm for video segmentation. CirSysVideo, 13(5), 453–461.

    Google Scholar 

  • Christiansen, O., & Tai, X.-C. (2006). Fast implementation of piecewise constant level set methods. In X.-C. Tai, K. A. Lie, T. Chan & S. Osher (Eds.), Image processing based on partial differential equations (pp. 289–308). Heidelberg: Springer.

    Google Scholar 

  • Chung, G., & Vese, L. A. (2005). Energy minimization based segmentation and denoising using a multilayer level set approach. In Energy minimization methods in computer vision and pattern recognition (Vol. 3757, pp. 439–455). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Cremers, D., Tischhäuser, F., Weickert, J., & Schnörr, C. (2002). Diffusion snakes: introducing statistical shape knowledge into the Mumford–Shah functional. International Journal of Computer Vision, 50, 295–313.

    Article  MATH  Google Scholar 

  • Darbon, J., & Sigelle, M. (2006). Image restoration with discrete constrained total variation. I. Fast and exact optimization. Journal of Mathematical Imaging and Vision, 26(3), 261–276.

    Article  MathSciNet  Google Scholar 

  • Dow, A. I., Shafer, S. A., Kirkwood, J. M., Mascari, R. A., & Waggoner, A. S. (1996). Automatic multiparameter fluorescence imaging for determining lymphocyte phenotype and activation status in melanoma tissue sections. Cytometry, 25, 71–81.

    Article  Google Scholar 

  • Dufour, A., Shinin, V., Tajbakhsh, S., Guillen-Aghion, N., Olivo-Marin, J.-C., & Zimmer, C. (2005). Segmenting and tracking fluorescent cells in dynamic 3-d microscopy with coupled active surfaces. IEEE Transactions on Image Processing, 14(9), 1396–1410.

    Article  Google Scholar 

  • Felkel, P., Bruckschwaiger, M., & Wegenkittl, R. (2002). Implementation and complexity of the watershed-from-markers algorithm computed as a minimal cost forest. Computer Graphics Forum, 20, 2001.

    Google Scholar 

  • Fok, Y.-L., Chan, J. C. K., & Chin, R. T. (1996). Automated analysis of nerve-cell images using active contour models. IEEE Transactions on Medical Imaging, 15(3).

  • Gautama, S., Goeman, W., & D’Haeyer, J. (2004). Robust detection of road junctions in vhr images using an improved ridge detector. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 34.

  • Gebhard, M., Mattes, J., & Eils, R. (2001). An active contour model for segmentation based on cubic b-splines and gradient vector flow. In MICCAI ’01: Proceedings of the 4th international conference on medical image computing and computer-assisted intervention, London, UK, 2001 (pp. 1373–1375). Berlin: Springer.

    Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (1992). Digital image processing. Reading: Addison-Wesley.

    Google Scholar 

  • Grau, V., Mewes, A. J. U., Alca-iz Raya, M., Kikinis, R., & Warfield, S. K. (2004). Improved watershed transform for medical image segmentation using prior information. IEEE Transactions on Medical Imaging, 23(4), 447–458.

    Article  Google Scholar 

  • Jung, Y. M., Kang, S. H., & Shen, J. (2006). Multiphase image segmentation via modica-mortola phase transition. SIAM Journal on Applied Mathematics, 67(5), 1213–1232.

    Article  MathSciNet  Google Scholar 

  • Hodneland, E., Lundervold, A., Gurke, S., Tai, X.-C., Rustom, A., & Gerdes, H.-H. (2006). Automated detection of tunneling nanotubes in 3d images. Cytometry Part A, 69A, 961–972.

    Article  Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, V1(4), 321–331.

    Article  Google Scholar 

  • Li, H., & Tai, X.-C. (2007a). Piecewise constant level set method for interface problems. In Internat. ser. numer. math. : Vol. 154. Free boundary problems (pp. 307–316). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Li, H., & Tai, X.-C. (2007b). Piecewise constant level set method for multiphase motion. International Journal of Numerical Analysis and Modeling, 4(2), 291–305.

    MATH  MathSciNet  Google Scholar 

  • Lie, J., Lysaker, M., & Tai, X.-C. (2005). A piecewise constant level set framework. International Journal of Numerical Analysis and Modeling, 2(4), 422–438.

    MATH  MathSciNet  Google Scholar 

  • Lie, J., Lysaker, M., & Tai, X.-C. (2006a). A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Transactions on Image Processing, 15(5), 1171–1181.

    Article  Google Scholar 

  • Lie, J., Lysaker, M., & Tai, X.-C. (2006b). A variant of the level set method and applications to image segmentation. Mathematics of Computation, 75(255), 1155–1174.

    Article  MATH  MathSciNet  Google Scholar 

  • Lindblad, L. (2002). Development of algorithms for digital image cytometry. Ph.D. thesis. Acta Universitatis Upsaliensis, 2002.

  • Lu, T., Neittaanmäki, P., & Tai, X.-C. (1991). A parallel splitting up method and its application to Navier-Stokes equations. Applied Mathematics Letters, 4(2), 25–29.

    Article  MATH  MathSciNet  Google Scholar 

  • Lu, T., Neittaanmäki, P., & Tai, X.-C. (1992). A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations. RAIRO Modélisation Mathématique et Analyse Numérique, 26(6), 673–708.

    MATH  Google Scholar 

  • Malpica, N., Ortiz de Solórzano, C., Vaquero, J. J., Santos, A., Vallcorba, I., Garcia-Sagredo, J. M., & Francisco del, P. (1997). Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry, 28, 289–297.

    Article  Google Scholar 

  • Meyer, F. (1994). Topographic distance and watershed lines. Signal Processing, 38(1), 113–125.

    Article  MATH  Google Scholar 

  • Mumford, D., & Shah, J. (1989). Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure Applied Mathematics, 42, 577–685.

    Article  MATH  MathSciNet  Google Scholar 

  • Najman, L., & Schmitt, M. (1994). Watershed of a continuous function. Signal Processing, 38(1), 99–112.

    Article  Google Scholar 

  • Nath, S. K., Palaniappan, K., & Bunyak, F. (2006). Cell segmentation using coupled level sets and graph-vertex coloring. In MICCAI (1) (pp. 101–108).

  • Nguyen, H. T., Worring, M., & van den Boomgaard, R. (2003). Watersnakes: Energy-driven watershed segmentation. IEEE Transactions on PAMI, 25(3), 330–342.

    Google Scholar 

  • Nielsen, L. K., Tai, X.-C., Aanonsen, S. I., & Espedal, M. (2006). Reservoir description using a binary level set model. In X.-C. Tai, K. A. Lie, T. Chan & S. Osher (Eds.), Image processing based on partial differential equations (pp. 403–426). Heidelberg: Springer.

    Google Scholar 

  • Nielsen, L. K., Tai, X.-C., Aanonsen, S. I., & Espedal, M. (2007). A binary level set model for elliptic inverse problems with discontinuous coefficients. International Journal of Numerical Analysis and Modeling, 4(1), 74–99.

    MATH  MathSciNet  Google Scholar 

  • Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79, 12–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Osma-Ruiz, V., Godino-Llorente, J. I., Sáenz-Lechón, N., & Gómez-Vilda, P. (2007). An improved watershed algorithm based on efficient computation of shortest paths. Pattern Recognition, 40(3), 1078–1090.

    Article  MATH  Google Scholar 

  • Rambabu, C., & Chakrabarti, I. (2007). An efficient immersion-based watershed transform method and its prototype architecture. Journal of Systems Architecture, 53(4), 210–226.

    Article  Google Scholar 

  • Robertson, N., Sanders, D., Seymour, P., & Thomas, R. (1996). A new proof of the four colour theorem. Electronic Research Announcements of the American Mathematical Society, 2(1), 17–25.

    Article  MathSciNet  Google Scholar 

  • Roerdink, J., & Meijster, A. (1999). The watershed transform: Definitions, algorithms and parallelization strategies. Institute for Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands, IWI 99–9-06.

  • Ortiz De Solorzano, C., Malladi, R., Lelièvre, S. A., & Lockett, S. J. (2001). Segmentation of nuclei and cells using membrane related protein markers. Journal of Microscopy, 201, 404–415.

    Article  MathSciNet  Google Scholar 

  • Song, B., & Chan, T. (2002). Fast algorithm for level set based optimization (UCLA CAM Report, CAM-02-68).

  • Tai, X.-C., & Chan, T. F. (2004). A survey on multiple level set methods with applications for identifying piecewise constant functions. International Journal of Numerical Analysis and Modeling, 1(1), 25–47.

    MATH  MathSciNet  Google Scholar 

  • Tai, X.-C., Hodneland, E., Weickert, J., Buroresthliev, N. V., Lundervold, A., & Gerdes, H.-H. (2007). Level set methods for watershed image segmentation. In LNCS : Vol. 4485. Scale space and variational methods in computer vision (pp. 178–190). Berlin: Springer.

    Chapter  Google Scholar 

  • Tai, X.-C., & Li, H. (2007). A piecewise constant level set method for elliptic inverse problems. Applied Numerical Mathematics, 57(5–7), 686–696.

    Article  MATH  MathSciNet  Google Scholar 

  • Tai, X.-C., & Yao, C.-H. (2006). Image segmentation by piecewise constant Mumford-Shah model without estimating the constants. Journal of Computational Mathematics, 24(3), 435–443.

    MATH  MathSciNet  Google Scholar 

  • Vese, L. A., & Chan, T. F. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50(3), 271–293.

    Article  MATH  Google Scholar 

  • Vincent, L., & Dougherty, E. R. (1994). Morphological segmentation for textures and particles. In E. Dougherty (Ed.), Digital image processing methods (pp. 43–102). New York: Dekker.

    Google Scholar 

  • Vincent, L., & Soille, P. (1991). Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6), 583–598.

    Article  Google Scholar 

  • Wählby, C., Sintorn, I.-M., Erlandsson, F., Borgefors, G., & Bengtsson, E. (2004). Combining intensity, edge and shape information for 2d and 3d segmentation of cell nuclei in tissue sections. Journal of Microscopy, 215, 67–76.

    Article  MathSciNet  Google Scholar 

  • Wei, P., & Wang, M. Y. (2007). A piecewise constant level set method for structural shape and topology optimization. In 7th World congress of structural and multidisciplinary optimization, Seoul, Korea, 2007.

  • Weickert, J., Romeny, B., & Viergever, M. (1998). Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing, 7(3), 398–410.

    Article  Google Scholar 

  • Xu, C., & Prince, J. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359–369.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Cheng Tai.

Additional information

The authors wish to thank Steffen Gurke and Nickolay Bukhoresthliev for providing the majority of pictures in this work. Erlend Hodneland was supported by the Norwegian Cancer Society, project number A05103/004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodneland, E., Tai, XC. & Gerdes, HH. Four-Color Theorem and Level Set Methods for Watershed Segmentation. Int J Comput Vis 82, 264–283 (2009). https://doi.org/10.1007/s11263-008-0199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0199-4

Keywords

Navigation