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Abstract In this paper we present a method for group-
ing relevant object contours in edge maps by taking ad-
vantage of contour-skeleton duality. Regularizing contours
and skeletons simultaneously allows us to combine both low
level perceptual constraints as well as higher level model
constraints in a very effective way. The models are repre-
sented using paths in symmetry sets. Skeletons are treated
as trajectories of an imaginary virtual robot in a discrete
space of “symmetric points” obtained from pairs of edge
segments. Boundaries are then defined as the maps obtained
by grouping the associated pairs of edge segments along the
trajectories. Casting the grouping problem in this manner
makes it similar to the problem of Simultaneous Localiza-
tion and Mapping (SLAM). Hence we adapt the state-of-the-
art probabilistic framework namely Rao-Blackwellized par-
ticle filtering that has been successfully applied to SLAM.
We use the framework to maximize the joint posterior over
skeletons and contours.

Keywords Contour grouping · Skeletons · Shape models ·
Rao-Blackwellized particle filters · SLAM

1 Background

Object boundaries, also known as contours, are very useful
descriptors for object recognition. Extracting contours us-
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ing only edge-detection algorithms without any regulariza-
tion is an ill-posed problem due to ambiguities in the gradi-
ent space of real-world images. Hence grouping edge pix-
els into contours also known as contour grouping is a very
popular approach. The problem even after decades of work
still remains to be open and a very active research field as
documented by recent papers (Zhu et al. 2007; Trinh and
Kimia 2007; Tamrakar and Kimia 2007; Hoiem et al. 2007;
Stein et al. 2007; Galun et al. 2007). Different percep-
tual grouping constraints motivated by Gestalt psychology
(Wertheimer 1923) and cues like closure, good-continuity
(Mohan and Nevatia 1992), minimal model theory (Feldman
1999, 2003) have been used to regularize contour growth.
All such low-level grouping constraints can be used in ex-
tracting “smooth and compact” contours but not necessar-
ily those useful for object recognition problem. Hence re-
searchers started using higher level constraints which when
used appropriately can result in “relevant contours”. This is
possible because high level constraints can capture both lo-
cal and global characteristics of an image similar to how
humans process images. For example Hoiem et al. (2007)
uses “depth cues” to recover occluding contours. Stein et al.
(2007) uses motion cues where the central idea is based on
the fact that if the “object of interest” moves around in a se-
quence of image frames, its contours can be detected by cap-
turing the dynamics of the occluding contours. Their system
is based on the belief that the situation of having a sequence
of frames is more natural than using a static image for object
recognition. But it is clear that even though humans might
exploit the motion cues they do not depend on those to de-
tect objects. Also it is not always possible to have a sequence
of frames for the task of recognition.

The use of symmetry as a key contour grouping cue
has been studied in both human vision and computer vi-
sion. Among others, the results in Lowe (1985), Witkin and
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Tenenbaum (1983), Leyton (1992), Zhu and Yuille (1995),
Kimia and Tamrakar (2002) show that symmetry is non-
accidental. Therefore symmetry can be expected to be use-
ful in not only distinguishing salient contour structures from
noisy background in the low-level processing but also in ex-
tracting more relevant contours for the task of object recog-
nition. Relevant contours are closely related to shape of an
object. Shapes of objects and their symmetries have several
dual geometric properties (Giblin and Kimia 2003b; Kuijper
and Olsen 2004). Shapes can be represented using signa-
tures defined using locally symmetric curves (Kuijper et al.
2006b) and shapes can be reconstructed from symmetries
(Giblin and Kimia 2003a). Symmetry for rigid and non-rigid
objects can be captured in several ways: for example us-
ing ribbons (Mohan and Nevatia 1992), using planar reflec-
tions (Podolak et al. 2006), using intrinsic self-similarities
(Raviv et al. 2007) or more classically using medial axes
(Blum 1967, 1973) and symmetry sets (Bruce et al. 1985;
Giblin 2000). A lot of work has been done in using sym-
metry for object recognition (Siddiqi et al. 1999; Sebastian
et al. 2004; Kuijper and Olsen 2006; Kuijper et al. 2006a;
Bai and Latecki 2008). Symmetry principle expressed as
global contour symmetry has been used in contour grouping
in various approaches. One of the more recent approaches
that is based on global contour symmetry is presented in
Stahl and Wang (2006). It is related to the grouping method
developed in Mohan and Nevatia (1992), where symmetry
is considered along with closure and proximity. Symmetry
is applied as a cue to pair the extracted curves by produc-
ing a set of ribbons. These ribbons are then grouped into
structures using heuristic algorithms. While different repre-
sentations of symmetry have different advantages based on
the context of application, those that can capture local sym-
metry play more important role in grouping contours, since
global symmetry is usually not present in 2D images due to
perspective distortion and nonrigid deformation.

Probabilistic reasoning is popular in processing noisy im-
ages. For e.g., a popular set of edge detectors, pb, is built
using probabilistic representation of boundary (Martin et al.
2001). In contrast, our approach represents a joint-posterior
of both contours and skeletons. Also a probabilistic method
for tracking of motion boundaries for motion estimation is
presented in Black and Fleet (2000). Bayesian reasoning is
gaining popularity even in psychophysical theory of vision.
For example, Feldman (2001) presents a Bayesian frame-
work to probabilistically judge grouping hypotheses used by
humans.

Bayesian approach for grouping contours using multi-
ple hypotheses tracking was introduced in the seminal paper
Cox et al. (1993) which is heavily based on another seminal
work in Reid (1979). More recently, a particle filter based
system called JetStream was applied to contour grouping in
Perez et al. (2001). This work treats the grouping process as

a dynamic process and the detection is performed on edge
pixels with particles following the contour directly. In this
paper a simple ribbon geometry is also used for road extrac-
tion. They introduced a novel and an unconventional ver-
sion of a particle filter tracking algorithm, where temporal
sequence is replaced with a sequence of growing contour
points. JetStream often fails to track contours in complex
images, since only low level features (image gradient and
corner detection) are used as the basis for particle observa-
tions. Therefore, it requires user interaction during the track-
ing process.

Since particle filtering (also known as sequential Monte
Carlo estimation) provides a strong framework with Bayesian
reasoning to capture complex (non-linear and non-Gaussian)
dynamics of probability density functions it has been ex-
tensively applied for robust object tracking. One of the
best known approaches in computer vision is the Con-
densation algorithm (Isard and Blake 1998), which al-
lows tracking object contours in the presence of back-
ground clutter. Particle filtering has become the standard
approach for mobile-robot localization with the main appli-
cation being SLAM (Thrun et al. 2005; Grisetti et al. 2007;
Eliazar and Parr 2003), where probability distributions for
the robot poses (position plus heading direction) and the
possible maps are approximated and propagated by a set of
particles. We first cast contour grouping as SLAM problem
in Adluru et al. (2007). The presented work extends this
idea in several ways as summarized in Sect. 2. Since we use
a strong statistical framework with constraints that are not
entirely low-level, our work has advantage of capturing rel-
evant contours even in the presence of significant distractors
and inner structures. While the techniques like Perez et al.
(2001) use good statistical framework they do not exploit
geometric information. The methods like Liu et al. (1998b),
Ren et al. (2005) exploit geometry but are limited in noisy
conditions.

2 Overview of Our Approach

Skeletons capture local symmetry in a very useful way. Ac-
cording to Blum’s definition a skeleton S of a set of object
boundaries D, is the locus of the centers of maximal disks.
A maximal disk in D is a closed disk contained in D that
is interiorly tangent to the boundary of D and that is not
contained in any other disk in D. Each maximal disc must
be tangent to the boundary in at least two different points.
A set of skeleton points s ∈ S and the radii r(s) of their
maximal disks can be used for reconstructing the boundary
without any ambiguity. An important property is that skele-
tons can be computed for every planar shape, but computa-
tion of skeletons without boundary information is not possi-
ble. Thus, there is cyclic dependency between contours and
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Fig. 1 Overview of our
algorithm: (1) Edge extraction.
(2) Edge linking.
(3) Approximation by scale
adaptive edge segments.
(4) Grouping boundary and
skeleton simultaneously using
Rao-Blackwellized particle filter
with symmetry based model
constraints

skeletons, which is called contour-skeleton duality. The key
idea of our approach is to exploit this dependency for group-
ing relevant contours by simultaneous estimation of skele-
tons and the contours in edge images. Thus we regularize
both contours and skeletons. A detailed analysis of medial
axis properties and algorithms is presented in a recent book,
Siddiqi and Pizer (2007). A good mathematical introduction
about medial axis transform can also be found in Choi et al.
(1997). Skeletons can be used to represents shape models ef-
fectively (Trinh and Kimia 2007). This allows us to incorpo-
rate higher level model information effectively in a sequen-
tial way which significantly reduces the risk of accidental
groupings of edge pixels. Since grouping is inherently a se-
quential process, we maximize a joint-posterior of contours
and skeletons using Bayesian filtering. We adapt a practi-
cally very successful approach Rao-Blackwellized particle
filtering which is used for the problem of Simultaneous Lo-
calization and Mapping (SLAM) in the field of robot map-
ping. We treat skeletons as trajectories of a virtual robot and
the maps of associated edge segments as boundaries. The
odometric and range constraints are replaced by perceptual
grouping and model constraints. Perceptual constraints can
be viewed as practical realization of Gestalt grouping prin-
ciples (Wertheimer 1923).

Our work is related to the grouping method developed
in Liu et al. (1998b) in that local symmetry axes are used.
They identify segments along local symmetry-axis and ap-
ply a shortest-path algorithm to connect some of them into a
complete symmetry axis. The grouping cost function is de-
fined as the sum of local costs along the symmetry axis. In
addition to using different measures, we have a more pow-
erful computational framework in the proposed approach.
However, the main difference is the usage of flexible shape

models based on symmetry sets to guide contour grouping
in our approach. Integer Quadratic Programming is used in
Ren et al. (2005) to group contour segments based on con-
strained Delaunay triangulation. In contrast to our proposed
approach, this approach fails in the presence of distractor
edges induced by object inner structures. Moreover, group-
ing of only parts of contours is possible in our framework.
This is also in contrast to active contour based methods
(Blake and Isard 1997).

Figure 1 shows the algorithmic overview of the pro-
posed approach. (1) For a given input image, an edge im-
age is computed. (2) The edge pixels are then linked to
form chains which are approximated as edge segments. We
currently use publicly available code (Kovesi 2008). Other
sophisticated linking algorithms like Tamrakar and Kimia
(2007), Zhu et al. (2007) could also be used. (3) The edge
chains produced by low-level linking algorithms are often
too long and run into noise and boundaries of different ob-
jects. Hence the edge chains are split into “scale adaptive
edge segments”. (4) Boundary and skeleton of the object of
interest are grouped using the scale adaptive edge segments
in a probabilistic framework. A reference shape model and
perceptual grouping constraints from contour-skeleton du-
ality are used as constraints. The grouping process is based
on Rao-Blackwellized particle filtering framework. The first
three steps can be considered as low-level preprocessing
steps. The last step, which is our main contribution, ex-
ploits mid-level (contour-skeleton properties) and high-level
(shape properties) of model objects.

This work is an extension of Adluru et al. (2007). We
made several improvements that make our system more ro-
bust and also work on even small scale images. The im-
provements are summarized below.
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1. Design of proposal and importance weights are very
crucial in using the particle filtering framework. A complex
optimal proposal as introduced in Zaritskii et al. (1975) and
presented in Grisetti et al. (2007) was used in our previous
work (Adluru et al. 2007). Using optimal proposal gives us
advantage when observation sensors are more accurate than
motion sensors. More specifically when the modes in pro-
posal function are very different from the modes in the like-
lihood function. Since we want to keep our models flexible,
we do not treat the model sensor to be accurate. Therefore,
in this paper we use “prior proposal” following Handschin
and Mayne (1969), Handschin (1970), Tanizaki (1997). The
prior proposal captures the dynamic of our system namely
contour and skeleton growth. The growth is regularized
using constraints from contour-skeleton duality. Thus the
proposal chooses smooth extensions for both contours and
skeletons. While the model helps us distinguish smooth
contours and skeletons from those of interest, we are not
forced to follow the model constraints closely, thus improv-
ing model deformability. Also to handle the multiple modes
in our proposal we use prior boosting (Gordon et al. 1993;
Carpenter et al. 1999). The details of simulating this pro-
posal are explained in Sect. 4.2.

2. We extend our shape model to be based on symmetry
sets (Bruce et al. 1985) instead of medial axes paths since
symmetry sets capture local symmetry of even partial con-
tours. We choose the longest path in the symmetry set that
represents the significant pair of boundaries in the model
shape. The model constraints encode not only the shape of
the boundary pair but also the shape of the symmetric path
itself. The details of these improvements are explained in
Sect. 5.

3. Orientations of edge pixels play an important role in
our framework. In Adluru et al. (2007), we used line fitting
based on EM (Latecki et al. 2006) and sampled equidistant
pixels from the segments with the orientations of the seg-
ments. These equidistantly sampled pixels formed the set
of edgels (edge pixels with orientations) which were then
grouped. In the current system we exploit the low-level edge
linking code of Kovesi (2008) and obtain “scale adaptive
edge segments” which are then grouped. The scale adaptive
edge segmenting is similar in spirit to breaking of chains into
linear segments as in Ren et al. (2008). In Ren et al. (2008)
chains are broken at the sharp curvatures. Here in addition
to breaking at the sharp curvatures we break them based on
surrounding edge distribution as explained in Sect. 6. We
would like to note that our framework does not depend on
edge-linking. It uses the low-level information if available.
If no linking is available, we can just group edge pixels with
orientations for example those given by third order gradient
introduced in Tamrakar and Kimia (2007). The better the
low level edge linker is, the faster the virtual robot marches

in the grouping process, because it groups longer edge seg-
ments. Thus, this is a system level improvement that is prac-
tically very relevant especially since lot of progress has been
made in low-level linking, for example Tamrakar and Kimia
(2007), Zhu et al. (2007). The details of these implementa-
tions are explained in Sect. 6.

The rest of the paper is organized based on the algorith-
mic flow in our system. Section 3 describes our main frame-
work in which the virtual robot groups the contours and
skeletons using Rao-Blackwellized particle filtering. Sec-
tion 4 describes the details related to simulation of our pro-
posal based on perceptual constraints from contour-skeleton
duality. Section 5 describes the evaluation of importance
weights for the particles based on reference shape model
constraints. The implementation details are presented in
Sect. 6. Section 7 presents our experimental results and then
finally conclusions and discussions are presented. We would
like to note that a lot more experimental results and demon-
strative videos are presented in our supplementary material
submitted with this paper. Also we use the terms skeletons
and symmetry axes interchangeably and our skeletons do not
necessarily mean traditional medial axes.

3 Probabilistic Grouping of Contours and Skeletons

In this section we relate simultaneous grouping of contour
segments and skeleton points to the problem of simultane-
ous localization and mapping (SLAM). Then we describe
the probabilistic framework used for our grouping task.

3.1 Mapping and Localizing Simultaneously

A robot needs to localize itself in an environment for au-
tonomous navigation. For a robot to localize using local sen-
sors, it is important to have a map of the environment. Typi-
cally the maps are not available up front and might be quite
inaccurate so the robot has to build the map of the environ-
ment by itself. There is a cyclic dependency between the
tasks of mapping and localizing: mapping requires know-
ing the position of the robot, and robot’s position can only
be recorded in a map. Since the sensors are usually noisy,
probabilistic approaches are needed and have been success-
fully applied for the problem. For a comprehensive survey
see Thrun et al. (2005). In such probabilistic approaches a
joint-posterior representing trajectory, x1:t , of the robot and
map, mt , of the environment is maximized. A sequence of
sensor measurements namely range measurements, z1:t , and
odometry readings, u1:t , are used as constraints. The goal is
to find:

argmax
x1:t ,mt

p(x1:t ,mt |z1:t , u1:t ) (1)
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Fig. 2 The longest symmetric
paths in the images form the
bases of our shape models. The
paths are subsets of the
symmetry sets of the respective
shapes. We choose the longest
ones, since they capture the
most significant boundary parts

Since both the trajectory and map are estimated simultane-
ously the problem is called Simultaneous Localization and
Mapping (SLAM). To allow for online optimization, sequen-
tial Monte Carlo estimation called particle filters have been
successfully applied. The posterior is represented using a
set of particles (random samples drawn from the posterior).
Each particle, i, represents a trajectory x

(i)
1:t up to time t and

an associated map m
(i)
t constructed up to time t . The dimen-

sionality of the state being estimated plays a crucial role in
efficient application of particle filters. Rao-Blackwellization
allows to reduce the dimensionality by factorizing the states
that are conditionally independent and can be estimated an-
alytically. Since a map mt can be analytically constructed
for a given sequence of poses x1:t and observations z1:t
(Moravec 1988), Rao-Blackwellization of the joint posterior
results in

p(x1:t ,mt |z1:t , u1:t ) = p(mt |x1:t , z1:t )p(x1:t |z1:t , u1:t ) (2)

Once the state is decomposed any standard particle filter can
be used, the most popular being Sampling Importance Re-
sampling (SIR) filter (Grisetti et al. 2007). At every time
step t , usually the most likely particle, i.e., the ith particle
that maximizes p(x

(i)
1:t ,m

(i)
t |z1:t , u1:t ) is used for localiza-

tion and navigation.

3.2 Grouping Contours and Skeletons Simultaneously

Our key idea is to maximize a joint posterior representing
contours and skeletons. Intuitively we are trying to find the
MAP (Maximum A Posteriori) estimate of:

p(SKELETON, CONTOUR | MODEL,

GROUPING CONSTRAINTS) (3)

Bayesian estimation of skeletons given a complete contour
i.e. p(SKELETON|CONTOUR) was presented in Feldman
and Singh (2006). In our case we estimate both skeleton
and contour simultaneously based on model and perceptual
constraints from contour-skeleton duality. The model con-
straints are the high level constraints that actually help our

robot distinguish the contours of object of interest from dis-
tractor contours that are “perceptually smooth” but do not
belong to the boundary of object of interest. Our framework
permits effective way of using model constraints for con-
tour grouping. Our shape model is based on the symmetry
set (Bruce et al. 1985) which can capture symmetry of even
partial contours. Since the space of our symmetric points is
a superset of the symmetry set (Sect. 4.1), by extending the
model to be based on symmetry sets we can capture objects
with partial contours. To keep our model simple we choose
the longest path in symmetry set that captures the significant
boundary parts of the model, see Fig. 2. Thus, we replace the
set of medial axes paths used in Adluru et al. (2007) with a
single path in the symmetry set. The details of the path in-
formation are explained in Sect. 5.

For ease of understanding the optimization problem, we
cast the grouping problem as the mapping problem of an
imaginary virtual robot. The virtual robot walks in the space
of locally symmetric points (SPs) induced by pairs of edge
segments. The construction of SPs, which generalizes me-
dial axis points, is described in Sect. 4.1. The robot’s tra-
jectory composed of SPs represents a path in the space
of locally symmetric points, x1:t (SKELETON). The edge
segments associated with the SPs form the contour map,
ct (CONTOUR). The robot’s sensor information, Zm,Ug

(MODEL AND GROUPING CONSTRAINTS), is obtained
from the reference shape model and grouping constraints
based on contour-skeleton duality (Sect. 4.2). The goal is to
maximize the joint posterior over the symmetric paths and
contour maps:

argmax
x1:t ,ct

p(x1:t , ct |Zm,Ug) (4)

Even though there are no explicit underlying dynamics
based on real time, the grouping process is dynamic in the
sense that the contours and skeletons grow in each step. Thus
the dynamic system underlying the process is the “explo-
ration”. By inducing such virtual temporal information us-
ing the order of skeleton points (x1:t ), we can produce par-
tial skeletons and partial contours in case of occlusions of
the objects of interest. The idea of inducing virtual temporal
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information for the grouping task is introduced in the semi-
nal papers (Perez et al. 2001; Cox et al. 1993) which laid the
foundation for Bayesian reasoning in the task of grouping.
Since the contour ct is conditionally independent and can be
analytically computed given the sequence of skeleton points,
x1:t , by grouping the corresponding contour segments of the
symmetric point (Blum 1973), Rao-Blackwellization gives
us the following equation in our case:

p(x1:t , ct |Zm,Ug) = p(ct |x1:t )p(x1:t |Zm,Ug) (5)

In the remainder of this section we provide the details of the
Sampling Importance Resampling (SIR) particle filter for
maximizing this posterior. Our goal is to find MAP estimate
of the posterior p(x(i)

1:t , c
(i)
t |Zm,Ug). Thus a contour group-

ing decision is possible at every time step t . The contour
c
(i)
t and the skeleton x(i)

1:t are determined by the most likely

particles in the modes of the posterior p(x(i)
1:t , c

(i)
t |Zm,Ug).

Clearly, at early grouping stages (for small t), we obtain only
part of the contour and part of the skeleton of the object of
interest. In each iteration, i.e., at every time step t , the fol-
lowing four steps are executed:

(1) Sampling/Proposal: The next generation of particles
{x(i)

1:t } is obtained from the current generation {x(i)
1:t−1} by

sampling from a proposal distribution π(x1:t |Zm,Ug) which
is assumed to satisfy the following recursion:

π(x1:t |Zm,Ug)

= π(xt |x1:t−1,Zm,Ug)π(x1:t−1|Zm,Ug) (6)

Therefore, each particle is extended as x(i)
1:t = 〈xt ,x(i)

1:t−1〉
where xt ∼ π(xt |x(i)

1:t−1,Zm,Ug).
(2) Importance weighting/Evaluation: Since it is usually

hard to design π(x1:t |Zm,Ug) that exactly simulates the true
posterior p(x1:t |Zm,Ug). An individual importance weight

w(x(i)
1:t ) is assigned to each particle, according to:

w(x(i)
1:t ) = p(x(i)

1:t |Zm,Ug)

π(x(i)
1:t |Zm,Ug)

(7)

The weights w(x(i)
1:t ) account for the fact that the proposal

distribution π in general is not equal to the true distribution
of successor states. Under 1st order Markovian assumption
and conditional independence the weights can be recursively
estimated as:

w(x(i)
1:t ) =

p(xt |x(i)
1:t−1,Zm,Ug) p(x(i)

1:t−1|Zm,Ug)

π(xt |x(i)
1:t−1,Zm,Ug) π(x(i)

1:t−1|Zm,Ug)

= w(x(i)
1:t−1)

p(xt |x(i)
1:t−1,Zm,Ug)

π(xt |x(i)
1:t−1,Zm,Ug)

∝ w(x(i)
1:t−1)

p(Zm|x(i)
1:t−1,xt )p(xt |x(i)

1:t−1,Ug)

π(xt |x(i)
1:t−1,Zm,Ug)

(using Bayes rule) (8)

The proportionality in (8) is from normalization constant in
Bayesian decomposition of p(xt |x(i)

1:t−1,Zm,Ug).
The choice of proposal π is a very important design

criterion for successful implementation of a particle filter.
The closer it is to true posterior the better the filter con-
verges, with finite number of particles. In Adluru et al.
(2007) we used a complex optimal proposal according to
Doucet (1998). This was originally introduced in Zaritskii
et al. (1975). The basic idea of the optimal proposal is to use
the model constraints (in our case Zm) in designing π . We
simulated the optimal proposal by approximating it with a
Gaussian similar to the technique described in Grisetti et al.
(2007). However, integrating Zm into the proposal restricts
the model deformability, because the particles are forced
to closely represent the model. Therefore, we no longer
use Zm in the proposal. Instead we use the prior distribu-
tion, p(xt |x(i)

1:t−1,Ug) as our proposal, following Handschin
and Mayne (1969), Handschin (1970), Tanizaki (1997). This
proposal captures the virtual dynamic underlying our sys-
tem i.e. “growth” of contours and skeletons. Since we pre-
fer smooth contours and skeletons the prior distribution
is simulated using grouping constraints, Ug from contour-

skeleton duality. Hence in our case π(xt |x(i)
1:t−1,Zm,Ug) =

p(xt |x(i)
1:t−1,Ug). Using this simple exploration based pro-

posal the weight recursion in (8) becomes:

w(x(i)
1:t ) ∝ w(x(i)

1:t−1)
p(Zm|x(i)

1:t−1,xt )�������
p(xt |x(i)

1:t−1,Ug)

�������
p(xt |x(i)

1:t−1,Ug)

= w(x(i)
1:t−1)p(Zm|x(i)

1:t−1,xt ) (9)

p(Zm|x(i)
1:t−1,xt ) represents particle evaluation with respect

to the shape model. The details of computing this likeli-
hood are explained in Sect. 5. The details of simulating the
proposal are explained in Sect. 4. Intuitively, our proposal
is “exploration based” and we explore all SPs in a certain
region of interest around x(i)

t−1 and assign them probability
masses based on the “quality of continuation” determined
using contour-skeleton duality constraints.

One important point to note is that all the posteriors in
our case are discrete since the space of SPs is discrete.

(3) Resampling: For the particle filter to converge the
variance of the weights has to be low since ideally the par-
ticles are supposed to represent random samples. To avoid
the problem of “weight degeneracy” (Kong et al. 1994) par-
ticles with low importance weights are replaced by those
with higher weights. This step is necessary since only a finite
number of particles are used. Resampling is a key step that
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Fig. 3 (a) Construction and
components of a symmetric
point. (b) An SP with circle
touching tangentially to the
edgels. (c) To tolerate the
inaccuracies in the edge
orientations and the effects of
discretization we allow SPs with
approximately tangential circles

allows application of a particle filter in situations in which
the true distribution differs from the proposal. We employ
residual resampling (Liu et al. 1998a). Since resampling du-
plicates particles with higher weights there is a risk of “parti-
cle depletion”. This occurs when all particles become iden-
tical which again means they are not random samples. To
mitigate this effect an adaptive resampling schedule as pro-
posed in Adluru et al. (2007) is used. The schedule is based
on the measure

Neff

(
= 1∑Np

1=1(w
(i))2

)

introduced in Liu (1996), where Np is the number of par-
ticles. This measure is related to the dispersion of weights
and following Doucet et al. (2001), Grisetti et al. (2007), we
resample only if Neff < Np/2.

(4) Updating contour: This step involves computing
p(c

(i)
t |x(i)

1:t ). The contour is represented as a discrete prob-
ability distribution of edge segments similar to occupancy
maps (Moravec 1988). If an edge segment belongs to the
contour its probability is one, otherwise it is zero. This is an-
alytically computed because a contour can be reconstructed
given a skeleton (Blum 1973). At each step it essentially in-
volves connecting the edge segments in the image closest
to those that are involved in generating x(i)

1:t . Since we store
ct per particle it essentially involves just appending the new
edge segments to c

(i)
t−1. The edge segments grouped upto

time t will have the probability one, while all other edge seg-
ments will have a zero probability of belonging to the con-
tour. This is the step that allows us to “Rao-Blackwellize”
the joint posterior.

4 Proposal Based on Regions of Interest

In this section we explain the details of simulating our pro-
posal which we selected to be equal to the prior distribu-
tion, p(xt |x(i)

1:t−1,Ug). Simulation of the prior distribution is
based on the virtual dynamic of our system namely contour
and skeleton growth. We first explain the space of locally
symmetric points in which our robot walks and then explain
the region of interest based simulation of the prior distribu-
tion.

4.1 Symmetric Points

Given a pair of edge pixels (̂e, ẽ) with orientations, called
edgels, a symmetric point (SP) x = (x, y) is computed as
the center of the projections of the edge normals onto the
bisector as shown in Fig. 3(a). The SP is a generalization of
the center of maximal disk in the definition of medial axis.
By this construction an SP x is characterized by

1. Distances r̂ = ‖̂e − x‖ and r̃ = ‖̃e − x‖. Since we want
the SP, x to remain a center of a disk, we require that
r̂ = r̃ (with some very small tolerance).

2. Deviation angles δ̂ and δ̃ are defined as the angles be-
tween the normal at ê and vector

−→̂
ex and that between the

normal at ẽ and
−→̃
ex respectively.

If the deviation angles δ̂ = δ̃ = 0°, the disk with center
(x, y) and radius r = r̂ = r̃ is tangential to both edgels, see
Fig. 3(b). However, we cannot require the deviation angles
to be zero due to inaccuracies in the directions of edgels and
the effects of discretization. Hence we must tolerate SPs for
which δ̂, δ̃ > 0°, see Fig. 3(c). The smaller the angles the
more tangential is the disk. Hence we measure the quality of
an SP by the tangentiality of the disk. It is computed as:

N (δ,0, Sσ ), where δ = δ̂ + δ̃

2
(10)

where N (x,μ,σ ) is the Gaussian function with mean μ and
standard deviation σ evaluated at x and Sσ is the tolerance
parameter for skeleton regularization.

The space of SPs is related to the space of symmetry set
(SS) and evolute of the object of a given contour. We obtain
that the set of SPs is equal to SS if δ̂ = δ̃ = 0°, since SS is
the locus of centers of disks that are tangential in at least
two distinct points on the contour (Bruce et al. 1985) i.e.,
the requirement of maximal disks is dropped. If we allow
both δ̂, δ̃ to be larger than 0°, the set of SPs is a superset
of the union of SS and the evolute. For example in Fig. 4(c)
we show SPs where the average of δ̂ and δ̃ is ≤1°. Evolute is
the locus of the centers of curvature, i.e. centers of disks that
osculate the object boundary (Lockwood 2007). Figure 4(b)
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Fig. 4 (Color online) (a) Medial axis (green line), symmetry set
(green and yellow) for a rectangle (red). The evolute for the rectan-
gle is just at the corners since the boundary has curvature only at the
corners. (b) Medial axis (green line), symmetry set (green and yellow
lines) and evolute (blue curve) for an ellipse (red). (c) The space of
symmetric points for an ellipse with the deviation angle threshold of 1°

shows the MA, SS and evolute of an ellipse1 and Fig. 4(a)
shows MA and SS of a rectangle.

Even though MA completely represents a shape it cannot
be used to capture symmetries of partial shapes. SS forms
a superset of MA because it is similar to MA except that
it does not require the circles to be maximally inscribing.
The main difference between the space of SPs and SS and
evolute is that we do not need the knowledge of true ob-
ject boundary in the construction of SPs. Kuijper and Olsen
(2005) presents a technique for extracting skeletons using
the symmetry set when boundaries are clearly defined. In
contrast we try to extract skeletons and boundary simultane-
ously using the set of SPs.

4.2 Simulation of Prior Distribution

Now we explain the details of simulating our proposal distri-
bution, p(xt |x(i)

1:t−1,Ug). There are two main steps in simu-
lating our proposal namely defining the region of interest for
xt and assigning probability masses to the symmetric points
in that region of interest. The region of interest is based on
x(i)

1:t−1 and the probability masses are computed according to
the grouping constraints from contour-skeleton duality, Ug .
Thus we obtain a discrete probability distribution approxi-
mating p(xt |x(i)

1:t−1,Ug) from which we sample the follow-
ers. Note that this discrete distribution is computed per par-
ticle.

The first step of designing region of interest is motivated
by the recent work in active SLAM (Stachniss et al. 2005;
Chang et al. 2007). The basic idea in active SLAM is to plan
robot’s action to optimize its exploration of the environment
by choosing from a set of actions weighed by the informa-
tion gain. Since the goal of our virtual robot is to group the

1Figure taken from Wikipedia: http://en.wikipedia.org/wiki/.

Fig. 5 (Color online) (a) The circular look ahead regions for possible
contour extensions are shown as cyan circles. The possible extending
edge segments in these regions are shown as red dots along with di-
rections shown with short lines. All possible pairings of these edge
segments generate the discrete space of xt s. (b) The contour grouped
up to time t − 1 i.e. c

(i)
t−1, is shown in blue. The region enclosed by

this contour is designated as explored region for the virtual robot. We
do not allow the look ahead segments to be in the explored region.
The discrete space of xt s is shown with magenta points. The size of
the dots is proportional to the probability mass computed according to
p(xt |x(i)

t−1,Ug)

contour and skeleton of the object of interest we distinguish
explored and unexplored regions and make the robot move
into unexplored regions of interest.

Using x(i)
1:t−1 we can compute the explored region which

is the interior of the contour, c
(i)
t−1 grouped up to time t − 1.

Since we group pairs of contours along with skeleton points
the interior of the boundary is known. We use a circular
neighborhood of the endpoints of edge segments in unex-
plored regions (i.e., regions that are not enclosed by c

(i)
t−1)

for possible extensions to the boundary. This can be seen
in Fig. 5(a). The edge segments in the look ahead region
are paired and then some pairs are culled in similar spirit
to the culling used in DP-SLAM (Eliazar and Parr 2004).
We cull the pairs that extend boundary or skeleton with self-
intersections, those that can not be used for inducing an SP,
and those that induce an SP with radius out of range of the
model radii. After culling, each pair of edge segments in-
duces a possible follower SP, xt . Thus, at each step the vir-
tual robot tries to extend the skeleton by expanding the con-
tour. The process of looking ahead and the discrete space of
xt s are shown in Fig. 5. The xt s in the region of interest are
assigned probability masses according to p(xt |x(i)

t−1,Ug).
Intuitively this means computing the likelihood of xt be-
ing a follower of x(i)

t−1 given the perceptual grouping con-
straints Ug . The perceptual grouping constraints, Ug can be
understood as a practical realization of the Gestalt psychol-
ogy principles in perception (Wertheimer 1958). In compari-
son to typical grouping approaches where a single contour is
grown, we grow a pair of contours and their symmetry axis

http://en.wikipedia.org/wiki/
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Fig. 6 The average gap gt = (ĝ + g̃)/2 introduced by appending edge
segments of SP xt to those of SP x(i)

t−1

simultaneously. Hence our perceptual grouping constraints
are motivated from contour-skeleton duality.

The skeleton growth constraint prefers robot’s trajectory
along good symmetric points (SPs). The quality of a sym-
metric point, x is measured as the average of its deviation
angles, δ̂, δ̃ as shown in Fig. 3(a). The smaller the average
deviation the higher the quality of the SP. Figure 3(b, c)
show examples of a tangential (good) and a nearly tangential
(not so good) SP. Both SPs are allowed but the SP in (c) is
of lower quality than that in (b). It is not possible for the ro-
bot to always be able to walk along good symmetric points
because of noise in the boundary orientations and gaps in
the boundary. The gaps are present because of discretization
and missing parts of true edges. Hence we need a tolerance
measure that restricts the drop in quality of SP. Since we
regularize the skeleton growth the likelihood is computed
based on the change in deviation angles of consecutive SPs.
Therefore, we only penalize the drop in the quality of SP,
xt from that of the previous SP, x(i)

t−1. The likelihood of xt

as a follower SP according to this constraint is computed as
N (st ,0, Sσ ) which is a function of st = max(δt − δ

(i)
t−1,0).

δt and δ
(i)
t−1 are the average deviation angles of xt and x(i)

t−1
respectively. Sσ represents the tolerance for the constraint
violation.

The contour growth constraint favors boundaries with
smaller gaps. Let gt = (ĝ + g̃)/2 be the average gap be-
tween the edge segments of x(i)

t−1 and those of xt as shown
in Fig. 6. We use Gaussian N (gt ,0,Gσ ) to express the like-
lihood of xt according to this constraint. Since contour gaps
are unavoidable in real images because of missing gradient
information, we have a certain tolerance of Gσ units in terms
of pixels or sub-pixels.

Using the above perceptually motivated constraints, we
compute the probability mass of xt as:

p(xt |x(i)
1:t−1,Ug) = N (gt ,0,Gσ ) · N (st ,0, Sσ ). (11)

Usually, the discrete distribution of p(xt |x(i)
1:t−1,Ug) is

multi-modal because of distractor segments and interior

structures. It is important to have particles representing all
meaningful regions of the posterior to be able to recover
from distractions by noise. We use “prior boosting” (Gordon
et al. 1993; Carpenter et al. 1999) so as to capture multi-
modal likelihood regions. In prior boosting more than one
follower is sampled from p(xt |x(i)

1:t−1,Ug), for each parti-
cle so that different followers can capture different modes
of the likelihood of the posterior. The number of followers
sampled typically depends on the number of modes which in
turn depends on the local geometric conditions: if there are
many distractor segments, then lot of followers are sampled
and if there are less distractor segments then fewer follow-
ers are sampled. Thus after each iteration of Sampling Im-
portance Resampling we might have more number of par-
ticles N ′

p > Np but we retain only Np with their weights.
An important difference between resampling a fixed num-
ber of particles from large number of particles is that we
retain their weights while after the adaptive resampling step
the weights of all the particles are set to be equal.

An important parameter in the proposal is the size of the
circular neighborhood L, which decides how far the virtual
robot can “look ahead” to define the region of interest that
can capture the likelihood regions of the posterior. If the ro-
bot looks too far ahead, then it will be less sure if the bound-
ary and skeleton extensions are true. On the other hand if it
does not look far enough it might be distracted by noise and
gaps in the true contour. The details of choosing the value of
this and other parameters are explained in Sect. 6.

5 Evaluation Based on Shape Model Constraints

The importance weights for the particles are computed re-
cursively according to (9), where p(Zm|x(i)

1:t−1,xt ) measures

how likely the particle x(i)
1:t is according to the sensor infor-

mation Zm. In this section we explain the sensor modeling
for our virtual robot, which is based on the constraints from
shape model.

As described in Sect. 3.2 our shape model is composed
of the longest path in its symmetry set. The path is repre-
sented using a sequence of radii of the disks and displace-
ment vectors of sample points on the path. The sequence
of radii captures the shape of the contour generating the
skeleton path, while the sequence of displacement vectors
captures the shape of the skeleton path. Thus Zm captures
the shapes of both contour and major symmetric axis of
the model image. Formally, if there are N sample points,
Zm = 〈{−→D1,R1}, {−→D2,R2}, . . . , {−→DN,RN }〉, where

−→
Dk,Rk

are the displacement vector and the radius of the kth sam-
ple point respectively. A sample swan model is illustrated in
Fig. 7.

Even though we have the sequence information for the
path, the robot has all the information in each iteration.
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Fig. 7 (Color online) The swan model has one symmetric path: from
tail to the beak. The path is shown in blue. The sample points are shown
as red circles. Displacement vectors of two sample points are shown as
blue arrows and the radius of one of the sample points is shown using
the maximal disk

Hence this model is “static”. At every time step (iteration),
the robot computes its displacement vector since it knows its
starting pose. Then it finds the closest displacement vector
in the model and uses the expected radius associated with
that sample point. Thus, the robot uses global information
of the shape model to make a local decision in the grouping
process. Formally, if the robot’s current displacement vec-

tor is
−−−−→
(x1,xt ) which is a function of xt and x1 (the starting

pose), we first obtain:

k̂ = argmin
k

ds(
−→
Dk − −−−−→

(x1,xt )), k = {1 . . .N} (12)

where ds measures the dissimilarity between two vectors,
i.e., the distance between their orientations and magni-
tudes. Then using the index k̂ we obtain the expected ra-
dius, R(x1,xt ) = R

k̂
and the deviation from the closest dis-

placement vector, D(x1,xt ) = ds(
−→
D

k̂
−−−−−→

(x1,xt )). The values
R(x1,xt ) and D(x1,xt ) constitute the sensor readings from
the shape model for the robot at xt , whose trajectory started
at x1. Using these sensor readings we compute

p(Zm|x(i)
1:t−1,xt ) = 0.5 · N (D(x(i)

1 ,xt ),0,Dσ )

+ 0.5 · N (r(xt ), R(x(i)
1 ,xt ),Rσ ) (13)

where Dσ and Rσ are the tolerance parameters for deforma-
bility in shape of the skeleton path and shape of the contour
from model, respectively. r(xt ) is the radius of the SP, xt .
The use of displacement vectors to obtain the expected ra-
dius at each step requires that one of the ends of the shape is
present in the image. This is not a serious limitation because
we can have two-way path for each model. The intuition
behind this reasoning is that if neither ends of the path is
present then the shape itself might be not be recognizable.
Different parts of the object have different saliencies. Usu-
ally the more salient parts can be expected to be associated
with the ends of symmetric paths.

The main advantages from the model proposed in this
paper over the model in Adluru et al. (2007) are:

Fig. 8 (a, c) Chains of edge pixels extracted using Kovesi (2008).
(b, d) The edge segments obtained by adaptively segmenting the
chains. The chains and segments are shown in different random col-
ors using the visualization tool of Kovesi (2008)

– By using the longest symmetric path as the model, we
can capture the most significant pair of contours even if
the complete contour is not available.

– By using the path information in a static way the robot
uses global information from the model to make local
decisions. This allows us to ignore minor shape details
which can be easily confused with noise in real images.

– By using displacement vectors to obtain the expected ra-
dius at a time step (instead of using a sequence of radii),
we have decoupled the parameters for controlling model
deformability in terms of contour and skeleton. The de-
formability is captured by the deformability in the tra-
jectory of the robot. The larger the tolerance, Dσ for
D(x(i)

1 ,xt ) is, the more deformable the trajectory (shape
of skeleton) can be. The larger the Rσ i.e. tolerance for de-
viation from R(x(i)

1 ,xt ) is, the more deformable the con-
tour can be.

– The use of displacement vectors allows us to group larger
pieces of contour segments by exploiting low-level link-
ing algorithms without loosening model constraints.

6 Implementation Details

In this section we explain the details of using the low-level
edge linking to reduce the space of SPs for faster grouping
and the values of the parameters used. To take advantage of
the progress made in low-level linking of edge pixels we first
obtain edge chains. We use publicly available code (Kovesi
2008) but any other low-level linker can be used, for e.g. Zhu
et al. (2007). The edge linking process generally produces
smooth chains of edge pixels as shown in Fig. 8(a), but the
edge chains often are too long and run into noise. Hence
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Fig. 9 (Color online) Process
of splitting edge links based on
spatial distribution of chains.
The chains are approximated by
line segments. Each segment is
then broken by the projections
of the end points of the
neighboring segments. In the
sample, the long blue segment is
broken by the projections from
its neighboring segments. The
projections are shown as dotted
lines and the break points in
cyan

we split these chains into small linear segments adaptively
based on the distribution of surrounding chains and then per-
form grouping on these small linear segments which we call
scale adaptive edge segments. The scale adaptive edge seg-
menting is similar in spirit to the curvature based splitting
of curves into linear segments used in Ren et al. (2008).
A sample set of scale adaptive edge segments can be seen in
Fig. 8(b). The higher the noise the shorter the edge segments
are. In the worst case the chains are broken down all the way
to edgels (edge pixels with orientations). The smaller the
number of surrounding chains, the longer the resulting edge
segments are. For example the neck of the giraffe in Fig. 8(a)
is surrounded by more chains compared to that in (c). Hence
the scale adaptive edge segments of neck of the giraffe in (b)
are shorter than those of the giraffe in (d).

Scale adaptive edge segments are generated as follows:
First, the chains are approximated by polylines using the
publicly available code (Kovesi 2008). Then each segment is
split into smaller segments using the projections of the end
points of neighboring segments. Only the end points within
twice the range of the look ahead parameter, L (used in sim-
ulating prior (Sect. 4.2)) are used. Thus the number of pieces
a segment is split into depends on the spatial distribution of
segments around it. Figure 9 demonstrates these steps.

To mitigate the effect of discretization on the turn angles
at the junction points, we introduce virtual edge segments
at those points. They are used to generate a set of SPs that
can captures symmetries involving junctions in a better way.
The orientation of a virtual segment at a junction is set equal
to the mean of the orientations of the segments incident at
the junction point. A sample set of virtual segments can be
seen in Fig. 10.

Now we explain the state space of symmetric points (SPs)
which captures local symmetries of our scale adaptive edge

Fig. 10 (Color online) Virtual segments are introduced at the junction
points to mitigate the effect of discretization in generation of symmet-
ric points. The junction points are identified by intersections of the line
segments within certain range. The orientation of a virtual segment at a
junction is the average of the orientations of the segments inducing the
junction point. The virtual segments are shown in blue. Their lengths
are magnified for visualization

segments. Since the number of such edge segments is much
smaller than the edge pixels, the number of SPs is signifi-
cantly reduced in comparison to the full space of SPs gen-
erated by all edgel pairs. This reduced space of SPs forms
the locally symmetric space for our virtual robot, and hence
our robot marches faster, which improves the computation
speed. For each pair of the edge segments we compute an SP
as follows. We first sample equidistant points on each of the
edge segment. Orientations of the points are set to the orien-
tations of the respective edge segments. Then we compute
the SPs between all pairs of the sampled points. Only the
best SP according to the quality measure in (10) is selected
as the SP induced by the two edge segments. The reduced
and the full space of SPs are shown in Fig. 11. The reduced
space is shown as red dots while the full space is shown as
black dots.
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Now we explain the values of the parameters used in our
system. Gσ ,Sσ ,L are used in simulating the prior based
proposal distribution, and Dσ ,Rσ are used in computing the
importance weights of the particles. We set Dσ = 0.7,Rσ =
0.2 since the readings from the model are normalized using
scale factor. That is we are more tolerant to the deformability
in the shape of the skeleton but stricter with the deviation in
the radii. The heuristic behind such choice is that under non-
rigid transformations the shape of a skeleton path changes
but the radii along the path do not. Hence we can be more
tolerant to the skeleton paths. Gσ is set equal to the average
length of the scale adaptive edge segments. The heuristic be-
hind this is that the longer the scale adaptive segments the
less noisy the image is and hence we can be more tolerant
to gaps in the boundary. We set Sσ = 45° in order to tolerate
possible large inaccuracies in the directions of edges. L is
set to be equal to eμ + 0.5eσ where eμ is the average length

Fig. 11 (Color online) SPs
(black dots) are computed
between pairs of sampled points
from different segments. The
best SPs according to the quality
measure based on the deviation
angles are shown as red dots and
the corresponding intending
lines are shown in cyan

of the edge segments approximating the edge chains before
being split into scale adaptive segments. eσ is the standard
deviation of the lengths of the segments. The heuristic is that
the longer the edge segments are the further the robot should
look ahead to have meaningful followers.

7 Experimental Results

We demonstrate the results of our technique using ETHZ
dataset (Ferrari et al. 2006). We selected this data-set since
it includes pre-computed edge images and model shapes
for each class. The edge chains are obtained using Kovesi
(2008). For initialization a threshold on the gradient strength
is applied. The robot is initialized around end points of all
strong chains. An example initial set of poses for the robot
can be seen in Fig. 12(a). After several iterations the robot
localizes itself on to the object of interest because of model
constraints. The process can be seen in the Fig. 12(a)–(c).
Also a video showing the process is attached as a supple-
mentary material to this paper. This is similar to global local-
ization in robot mapping domain where the initial position
of the robot is unknown (Fox 2003). The difference between
localization and global localization is that in localization,
the robot’s initial pose is known while in global localiza-
tion its initial pose is unknown. We would like to note that
a threshold on gradient strength is used only for initializa-
tion of particles not when the filtering is in progress. The

Fig. 12 (a) The initial set of

particles, {x(i)
1 }Np

i=1 sampled
around the end points of
thresholded edge chains. (b) and
(c) The distribution of xt s at
t = 5 and 10. As the filter
progresses the particles are
concentrated around the object
of interest, because of the model
constraints

Fig. 13 (Color online) The
evolution of the particle filter.
The multiple hypotheses for the
skeletons are shown in green.
The most likely skeleton is
shown in red and the most likely
boundary is shown in blue. The
space of SPs is shown as gray
points



24 Int J Comput Vis (2009) 83: 12–29

Fig. 14 Grouping results on
swan images. Top row: original
images; middle row: edge
images; bottom row: grouping
results

filtering process can be viewed as multi-hypotheses track-
ing where several hypotheses for skeletons and contours
are maintained to avoid getting stuck in local optima of the
grouping process. A sample evolution of the filtering process
can be seen in Fig. 13. The green curves are the multiple hy-
potheses for the skeletons while the most likely one is shown
in red. The most likely boundary is shown in blue. A sample
recovery from local optima can be seen from Fig. 13(c), (d)
and (e).

The filtering stops when the MAP estimate of the poste-
rior p(x1:t , ct |Zm,Ug) drops below a certain threshold �p.
This stop criterion is needed so as to make partial group-
ing possible. Also it is important to note that this posterior is
different from the prior probabilities, p(xt |x1:t−1,Ug) of the
follower symmetric points (xt s). With enough particles this
allows for both grouping “non-smooth” contours that con-
firm the model and distinguishing smooth contours that do
not confirm the model. The best particles in all the modes of
the posterior are selected as the skeletons, which induce the
target contours. Typically the number of modes in the poste-
rior is equal to the number of objects satisfying the model.

We present results on three classes of objects swans, bot-
tles and giraffes whose model shapes are shown in Fig. 2.
A sample of our results can be seen in Figs. 14, 15 and 16.
Many more results are included in the supplementary mate-
rial submitted with this paper. The large number of edges in
the test images that do not belong to target contours demon-
strates that we are able to group contour segments in the
presence of distractor segments between locally symmetric
contour pieces. Thus the proposed approach has strong po-
tential for applications on real images.

The shape variability of grouped contours in Fig. 14,
which were all obtain with a single shape model of a swan,
demonstrates the flexibility of the proposed shape model.
The second column of Fig. 15 shows an example of group-
ing multiple objects, while the fourth column shows an ex-
ample of grouping partial contours when occluded by other
objects. The generality of our symmetry set based model can
be seen in Fig. 16, where we are able to ignore the shape de-

tails of legs of the giraffes and capture the significant parts
of the giraffes namely the neck and the body.

It is important to note we are not able to find objects
whose orientation is very different from the orientation of
the model image. For example, in the third column of Fig. 14
we are able to group only one swan. Since we normalize the
model readings to the size of the model shape we expect a
scaling factor to be known for the object we are trying to
group. The scaling factor is currently set manually.

Our framework seems similar to shape-based object de-
tection. But there is a key fundamental difference to the
other object detection techniques (like Zhu et al. 2008;
Ferrari et al. 2008): we build matching tokens and perform
matching simultaneously. For e.g. our grouping tokens can
be edgels while the other approaches require a preprocessing
step of grouping contour pieces using low-level techniques.
Hence our experimental set-up is quite different and is simi-
lar to that in shape-prior based segmentation in Kumar et al.
(2005), for example, we run the swan images with swan
model. Further the detection success is usually measured us-
ing bounding-box overlap. In our case success is measured
by object boundary overlap which tends to be more precise
detection. Therefore an exact and fair comparative evalua-
tion of our system is arguably not possible. However we per-
form quantitative and comparative evaluation of our system
as described below.

For each class we run our system with the class specific
model. We report the retrieval rates based on the number of
instances whose contours were grouped successfully. Even
though a fundamentally different paradigm we ran the pub-
licly available system of Ferrari et al. (2008) in a similar
fashion i.e. each class with the specific class model. The key
and fundamental differences between our system and Ferrari
et al. (2008) are:

– We consider the object is successfully retrieved if we
group at least 80% of the boundary of the target object
present in the edge image. The detection success in Fer-
rari et al. (2008) is determined by a bounding box overlap
percentage. We report the results for overlap percentages
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Fig. 15 Grouping results on
bottle images. Top row: original
images; middle row: edge
images; bottom row: grouping
results

Fig. 16 Grouping results on
giraffe images. Top row: original
images; middle row: edge
images; bottom row: grouping
results

of 50%,60%,70% and 80%. The bounding box overlap
of 80% appears to be most comparable to our definition
of successful retrieval.

– In our system we use the single hand-drawn models
(shown in Fig. 2) for each class. In Ferrari et al. (2008)
each class has multiple models learnt from a training sub-
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Table 1 Comparison between
Ferrari et al. (2008) and our
method. F-x% denotes the
retrieval result of Ferrari et al.
(2008) using x% of
bounding-box overlap. See text
for details

Class Total instances F-50% F-60% F-70% F-80% Our method

Swans 16 93.75% 93.75% 81.25% 62.5% 87.5%

Bottles 30 91.667% 87.5% 83.333% 54.84% 80%

Giraffes 44 82.222% 75% 59.09% 15.91% 45.45%

Table 2 Retrieval results using our method on the ETHZ dataset

Class Total instances % Retrieved

Swans 33 81.82%

Bottles 55 85.45%

Giraffes 91 51.65%

set of the instances. Therefore, we report only the retrieval
rate of the best performing model for their system. This
gives their system a clear advantage.

In Table 1 we report comparisons of the two methods on
the same test images and test instances of target objects. We
would also like to note that the bounding box accuracy does
not necessarily imply accuracy in boundary detection. In
Ferrari et al. (2008) they use a subset of the dataset to learn
the model and hence their test instances are only a subset of
the dataset. Since we do not learn any model we can test our
system on all instances. In Table 2 we present quantitative
evaluation of our system on all instances for each class.

The number of particles needed for our experiments are
determined empirically. On average we need about 200 to
500 particles. In general the number of particles required de-
pends on the amount of clutter in an image. This is because
particles can be viewed as multiple hypotheses needed to
make delayed decisions after enough evidence has been ac-
cumulated.

The most computational burden of our system in simulat-
ing the prior distribution (described in Sect. 4.2). Prior has to
be simulated for every unique particle. The average group-
ing time for noisy images is 5–8 minutes while for less noisy
images it is about 2–4 minutes on a computer with Intel(R)
Pentium(R) D CPU with 3.40 GHz and 0.99 GB of RAM.
We would like to note that our system combines local in-
formation sequentially to make global optimal decisions so
the speed of our system is quite independent of the resolu-
tion of the image unlike some methods where they build the
global information of the image and then optimize it using
graph-based techniques (for e.g. Stahl and Wang 2006).

8 Conclusion and Discussions

Object detection and recognition by shape has a long history
in computer vision. The basic idea is to extract some shape

features and define distances between shapes using those
features. Many heuristics are used in designing the features
and distances so that the distances can be used to label or
classify objects in accord with human perception. Some ex-
amples include Siddiqi et al. (1999), Belongie et al. (2002),
Ling and Jacobs (2007), Bai and Latecki (2008), Yang et al.
(2008). Though such methods have some invariance capabil-
ities to handle some deformations they cannot handle clutter
and artifacts which commonly occur in real images. It is im-
portant to note that this is not their limitation per se because
they are designed assuming the objects are already separated
from the clutter or background. Separating objects from
background has been a low-level vision problem for many
years but for fully automatic segmentation it has to be com-
bined with a recognition process. Hence researchers have
been focussing on unified approaches for object recogni-
tion and segmentation (Borenstein and Ullman 2002; Leibe
and Schiele 2003; Kumar et al. 2005; Tu et al. 2005;
Wang et al. 2007). Unifying object detection/recognition
and segmentation/grouping typically involves adding high-
level prior about shapes of objects to the low-level dis-
criminative approaches used for segmentation and/or group-
ing (Kumar et al. 2005; Wang and Oliensis 2006; Vek-
sler 2008). It may also involve quantifying low-level tasks
for improved detection/recognition (Tu and Yuille 2004;
Meilǎ 2005; Wang and Oliensis 2008).

Detecting objects can be at various precision levels start-
ing from roughly detecting bounding boxes around the ob-
jects to finding the boundaries of the objects and even to
finding the full interior contours of the objects. Object de-
tection involving contours can provide a basis for better
high-level applications which require more precision like
medical imaging, human robot interactions etc. The first
step in detecting object boundaries is extracting contour
parts from images. Contour parts are then grouped to form
object boundaries using methods that are essentially try-
ing to perform shape matching in real images. For exam-
ple, Shotton et al. (2005), Opelt et al. (2006) use Cham-
fer distance (Borgefors 1988) to match fragments of con-
tours learnt from training images to edge images, but their
results are typically grassy contours. Ferrari et al. (2008)
uses a network of nearly straight contour fragments and slid-
ing window search. More recently Zhu et al. (2008) for-
mulated the shape matching of contours (identified using
Zhu et al. (2007)) in clutter as a set-set matching problem.
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They present an approximate solution to the hard combina-
torial problem by using a voting scheme (Wang et al. 2007;
Leibe et al. 2005) and a relaxed context selection scheme us-
ing linear programming. They use shape context (Belongie
et al. 2002) as shape descriptor.

Our direction of research is to group more primitive to-
kens (very small linear segments) instead of parts (chains
of pixels encoding some shape) using local symmetry based
shape constraints sequentially to group object boundaries di-
rectly. The main reasoning underlying such approach is that
parts produced using low-level cues alone are prone to unre-
coverable errors. It is similar to the reasoning behind incor-
porating shape prior in segmentation (Kumar et al. 2005).
We map the problem of contour grouping to a SLAM prob-
lem as it is stated in the field of robot mapping. We extend
the particle filter based approach used in SLAM so that sta-
tistical inference based on a reference model is possible. In
comparison to previous approaches our work has at least two
serious advantages that are demonstrated in our experimen-
tal results. We are able to group contour segments in the
presence of distractor segments between locally symmetric
contour pieces. Even if we our shape models are derived
from complete contours, grouping of only parts of contours
is possible.

Contour grouping is a very hard problem that requires
low-level, mid-level and high-level constraints. The pro-
posed approach provides a versatile and robust framework
for integrating all the three types of constraints. The shape
constraints currently are based on single paths in symmetry
sets that capture major parts of the object. For some complex
objects shape constraints cannot be represented using single
paths. Multiple paths in a symmetry set can be viewed as a
collection of single paths in a “shape-tree”. Different paths
capture different parts of the shape. These parts can be con-
nected using a tree structure. Our system can be extended to
accommodate multiple paths in at least two different ways:

– Our system can be run for each path separately to iden-
tify all major parts and then part-matching can be per-
formed using techniques like Zhu et al. (2008), Latecki
et al. (2008). This requires integration of tree-based shape
matching systems on top of our system.

– Perform multi-robot mapping: different virtual robots can
explore different single paths and can collaboratively
combine the parts together. This requires new implemen-
tation for joint posterior for different paths and contour
maps of parts.

The former approach can also be viewed as map merging
problem studied in multi-robot mapping as in Carpin et al.
(2005), Adluru et al. (2008) while the later approach as tradi-
tional collaborative mapping as in Howard (2005), Fox et al.
(1999). We intend to develop a system that can handle mul-
tiple path based representation as part of our future work.
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