Skip to main content
Log in

Issues About Retinex Theory and Contrast Enhancement

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present an interpretation of Land’s Retinex theory that we show to be consistent with the original formulation. The proposed model relies on the computation of the expectation value of a suitable random variable weighted with a kernel function, thus the name Kernel-Based Retinex (KBR) for the corresponding algorithm. KBR shares the same intrinsic characteristics of the original Retinex: it can reduce the effect of a color cast and enhance details in low-key images but, since it can only increase pixel intensities, it is not able to enhance over-exposed pictures. Comparing the analytical structure of KBR with that of a recent variational model of color image enhancement, we are able to perform an analysis of the action of KBR on contrast, showing the need to anti-symmetrize its equation in order to produce a two-sided contrast modification, able to enhance both under and over-exposed pictures. The anti-symmetrized KBR equations show clear correspondences with other existing color correction models, in particular ACE, whose relationship with Retinex has always been difficult to clarify. Finally, from an image processing point of view, we mention that both KBR and its antisymmetric version are free from the chromatic noise due to the use of paths in the original Retinex implementation and that they can be suitably approximated in order to reduce their computational complexity from \(\mathcal{O}(N^{2})\) to \(\mathcal{O}(N\log N)\) , being N the number of input pixels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ambrosio, L., Gigli, N., & Savaré, G. (2005). Gradient flows in metric spaces and in the space of probability measures. In Lectures in mathematics, Basel: Birkhäuser.

  • Barash, D. (2002). A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 844–847.

    Article  Google Scholar 

  • Bertalmío, M., & Cowan, J. (2009). Implementing the Retinex algorithm with Wilson-Cowan equations, Journal of Physiology, Paris (to appear).

  • Bertalmío, M., Caselles, V., Provenzi, E., & Rizzi, A. (2007). Perceptual color correction through variational techniques. IEEE Transactions on Image Processing, 16, 1058–1072.

    Article  MathSciNet  Google Scholar 

  • Blake, A. (1985). Boundary conditions of lightness computation in Mondrian world. Computer Vision, Graphics and Image Processing, 32, 314–327.

    Article  Google Scholar 

  • Bressloff, P., Cowan, J., Golubitsky, M., Thomas, P., & Wiener, M. (2002). What geometric visual hallucinations tell us about the visual cortex. Neural Computation, 14(3), 473–491.

    Article  MATH  Google Scholar 

  • Cooper, T. J., & Baqai, F. A. (2004). Analysis and extensions of the Frankle-McCann Retinex algorithm. Journal of Electronic Imaging, 13, 85–92.

    Article  Google Scholar 

  • Frankle, J., & McCann, J. J. (1983). Method and apparatus for lightness imaging. U.S. Patent, 4, 348,336, 1983.

  • Funt, B., Ciurea, F., & McCann, J. J. (2004). Retinex in MATLAB. Journal of Electronic Imaging, 13(1), 48–57.

    Article  Google Scholar 

  • Glasser, L., McKinney, A., Reilly, C., & Schnelle, P. (1958). Cube-root color coordinate system. Journal of the Optical Society of America, 48, 736–740.

    Article  Google Scholar 

  • Horn, B. (1974). Determining lightness from an image. Computer Graphics and Image Processing, 3, 277–299.

    Article  Google Scholar 

  • Hurlbert, A. (1986). Formal connections between lightness algorithms. Journal of the Optical Society of America A, 3, 1684–1693.

    Article  Google Scholar 

  • Jobson, D., Rahman, Z., & Woodell, G. (1997a). A multiscale Retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 6(7), 965–976.

    Article  Google Scholar 

  • Jobson, D., Rahman, Z., & Woodell, G. (1997b). Properties and performance of a center/surround Retinex. IEEE Transactions on Image Processing, 6(3), 451–462.

    Article  Google Scholar 

  • Kimmel, R., Elad, M., Shaked, D., Keshet, R., & Sobel, I. (2003). A variational framework for Retinex. International Journal of Computer Vision, 52, 7–23.

    Article  MATH  Google Scholar 

  • Land, E. (1977). The Retinex theory of color vision. Scientific American, 237, 108–128.

    Article  MathSciNet  Google Scholar 

  • Land, E. (1983). Recent advances in Retinex theory and some implications for cortical computations: Color vision and the natural image. Proceedings of the National Academy Science of the United State of America, 80, 5163–5169.

    Article  Google Scholar 

  • Land, E. (1986). An alternative technique for the computation of the designator in the Retinex theory of color vision. Proceedings of the National Academy Science of the United State of America, 83, 3078–3080.

    Article  Google Scholar 

  • Land, E., McCann, J. (1971). Lightness and Retinex theory. Journal of the Optical Society of America, 61(1), 1–11.

    Article  Google Scholar 

  • Marini, D., & Rizzi, A. (2000). A computational approach to color adaptation effects. Image and Vision Computing, 18, 1005–1014.

    Article  Google Scholar 

  • Marr, D. (1974). The computation of lightness by the primate retina. Vision Research, 14(12), 1377–1388.

    Article  Google Scholar 

  • McCann, J., McKee, S., & Taylor, T. (1976). Quantitative studies in Retinex theory: a comparison between theoretical predictions and observer responses to the ‘color mondrian’ experiments. Journal of Vision Research, 16, 445–458.

    Article  Google Scholar 

  • McCann, J. J. (2004). Capturing a black cat in shade: past and present of Retinex color appearance models. Journal of Electronic Imaging, 13(1), 36–47.

    Article  Google Scholar 

  • Palma-Amestoy, R., Provenzi, E., Caselles, V., & Bertalmío, M. (2009). A perceptually inspired variational framework for color enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(3), 458–474.

    Article  Google Scholar 

  • Provenzi, E., De Carli, L., Rizzi, A., & Marini, D. (2005). Mathematical definition and analysis of the Retinex algorithm. Journal of the Optical Society of America A, 22(12), 2613–2621.

    Article  MathSciNet  Google Scholar 

  • Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D. (2007). Random spray Retinex: a new Retinex implementation to investigate the local properties of the model. IEEE Transactions on Image Processing, 16, 162–171.

    Article  MathSciNet  Google Scholar 

  • Provenzi, E., Gatta, C., Fierro, M., & Rizzi, A. (2008). A spatially variant white patch and gray world method for color image enhancement driven by local contrast. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(10), 1757–1770.

    Article  Google Scholar 

  • Rizzi, A., Gatta, C., & Marini, D. (2003). A new algorithm for unsupervised global and local color correction. Pattern Recognition Letters, 24, 1663–1677.

    Article  Google Scholar 

  • Rizzi, A., Gatta, C., & Marini, D. (2004). From Retinex to automatic color equalization: issues in developing a new algorithm for unsupervised color equalization. Journal of Electronic Imaging, 13(1), 75–84.

    Article  Google Scholar 

  • Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In ICCV ’98: Proceedings of the sixth international conference on computer vision, Washington, DC, USA, 1998 (pp. 839–846). IEEE Computer Society, Los Alamitos.

    Google Scholar 

  • Wilson, H., & Cowan, J. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.

    Article  Google Scholar 

  • Wilson, H., & Cowan, J. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biological Cybernetics, 13(2), 55–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Provenzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertalmío, M., Caselles, V. & Provenzi, E. Issues About Retinex Theory and Contrast Enhancement. Int J Comput Vis 83, 101–119 (2009). https://doi.org/10.1007/s11263-009-0221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0221-5

Keywords

Navigation