Skip to main content
Log in

Linear Quasi-Parallax SfM Using Laterally-Placed Eyes

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A large class of visual systems in the biological world often has multiple eyes in simultaneous motion and yet has little or no overlap in the visual fields between the eyes. These systems include the lateral eyes found in many vertebrates and the compound eyes in insects. Instead of computing feature correspondences between the eyes, which might not even be possible due to the lack of overlap in the visual fields, we exploit the organizational possibility offered by the eye topography. In particular, we leverage on the pair of visual rays that are parallel to each other but opposite in direction, and compute what we call the quasi-parallax for translation recovery. Besides resulting in parsimonious visual processing, the quasi-parallax term also enhances the information pick-up for the translation, as it is almost rotation-free. The rotation is subsequently recovered from a pencil of visual rays using the individual epipolar constraints of each camera. As a result of using these different and appropriate aspects of visual rays for motion recovery, our method is numerically more effective in disambiguating the translation and rotation. In comparison to the gold standard solution obtained by the bundle adjustment (BA) technique, our method has a better Fisher information matrix for a lateral eye pair, as well as a superior experimental performance under the case of narrow field of view. For other eye configurations, the two methods achieve comparable performances, with our linear method slightly edging the nonlinear BA method when there exists imperfection in the calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anandan, P., & Irani, M. (2002). Factorization with uncertainty. International Journal of Computer Vision, 49(2–3), 101–116.

    Article  MATH  Google Scholar 

  • Baker, P., Ogale, A. S., & Fermüller, C. (2004). The Argus eye, a new tool for robotics. IEEE Robotics and Automation Magazine, 11(4), 31–38.

    Article  Google Scholar 

  • Blanke, H., Nalbach, H.-O., & Varju, D. (1997). Whole-field integration, not detailed analysis, is used by the crab optokinetic system to separate rotation and translation in optic flow. Journal of Comparative Physiology A, 181, 383–392.

    Article  Google Scholar 

  • Chahl, J. S., & Srinivasan, M. V. (1997). Reflective surfaces for panoramic imaging. Applied Optics, 36(31), 8275–8285.

    Article  Google Scholar 

  • Clark, J., & Yuille, A. (1994). Data fusion for sensory information processing. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Coombs, D., & Roberts, K. (1993). Centering behavior using peripheral vision. In CVPR (pp. 440–451).

  • Davies, M. N. O., & Green, P. R. (1994). Multiple sources of depth information: an ecological approach. In Perception and motor control in birds: an ecological approach (pp. 339–356). Berlin: Springer.

    Google Scholar 

  • Franz, M. O. (1998a). Learning view graphs for robot navigation. Autonomous Robots, 5, 111–125.

    Article  Google Scholar 

  • Franz, M. O. (1998b). Where did I take that snapshot? Scene-based homing by image matching. Biological Cybernetics, 79, 191–202.

    Article  MATH  Google Scholar 

  • Haag, J., & Borst, A. (2001). Recurrent network interactions underlying flow-field selectivity of visual interneurons. Journal of Neuroscience, 21, 5685–5692.

    Google Scholar 

  • Hartley, R. (1997). In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(6), 580–593.

    Article  Google Scholar 

  • Hartley, R., & Zisserman, A. (2000). Multiple view geometry in computer vision. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Heeger, D. J., & Jepson, A. D. (1992). Subspace methods for recovering rigid motion: I. algorithm and implementation. International Journal of Computer Vision, 7(2), 95–117.

    Article  Google Scholar 

  • Hornsey, R. et al. (2004). Electronic compound eye image sensor: construction and calibration. In Proc. SPIE (pp. 13–24).

  • Huber, S. A., & Bülthoff, H. H. (1998). Simulation and robot implementation of visual orientation behaviors of flies. In From animals to animats 5, Proc. of SAB’98 (pp. 77–85).

  • Ibbotson, M. R. (1991). Wide-field motion sensitive neurons tuned to horizontal movement in the honeybee Apis mellifera. Journal of Comparative Physiology A, 168, 91–102.

    Article  Google Scholar 

  • Jeong, K., Kim, J., & Lee, L. P. (2006). Biologically inspired artificial compound eyes. Science, 312, 557–561.

    Article  Google Scholar 

  • Kern, R. (1998). Visual position stabilization in the hummingbird hawk moth. Macroglossum stellatarum L. II. Electrophysiological analysis of neurons sensitive to wide-field image motion. Journal of Comparative Physiology A, 182, 239–249.

    Article  Google Scholar 

  • Kim, J., Jeong, K., & Lee, L. P. (2005). Artificial ommatidia by self-aligned microlenses and waveguides. Optical Letter, 30, 5–7.

    Article  Google Scholar 

  • Lee, A. B., & Huang, J. (2000). Brown range image database. http://www.dam.brown.edu/ptg/brid/index.html.

  • Leedan, Y., & Meer, P. (2000). Heteroscedastic regression in computer vision: Problems with bilinear constraint. International Journal of Computer Vision, 37(2), 127–150.

    Article  MATH  Google Scholar 

  • Leonard, C. S., Simpson, J. I., & Graf, W. (1988). Spatial organization of visual messages of the rabbit’s cerebellar flocculus. Journal of Neurophysiology, 60, 2073–2090.

    Google Scholar 

  • Lim, J., & Barnes, N. (2007). Estimation of the epipole using optical flow at antipodal points. In OMNIVIS (pp. 1–6).

  • Lim, J., & Barnes, N. (2008). Directions of egomotion from antipodal points. In CVPR.

  • Longuet-Higgins, H. C., & Prazdny, K. (1980). The interpretation of a moving retinal image. Proceedings of the Royal Society of London, Series B, 208, 385–397.

    Article  Google Scholar 

  • Neumann, J. et al. (2004). Compound eye sensor for 3D ego-motion estimation. In IEEE international conference on intelligent robots and automation (pp. 3712–3717).

  • Pless, R. (2004). Camera cluster in motion: Motion estimation for generalized camera designs. IEEE Robotics and Automation Magazine, 11(4), 39–44.

    Article  Google Scholar 

  • Srinivasan, M. V. (1991). Range perception through apparent image speed in freely-flying honeybees. Visual Neuroscience, 6, 519–535.

    Article  Google Scholar 

  • Srinivasan, M. V. (1996). Honeybee navigation en route to the goal: Visual flight control and odometry. Journal of Experimental Biology, 199, 237–244.

    Google Scholar 

  • Srinivasan, M. V., Zhang, S., & Chahl, J. S. (2001). Landing strategies in honeybees, and possible applications to autonomous airborne vehicles. Biological Bulletin, 200, 216–221.

    Article  Google Scholar 

  • Stewenius, H., & Astrom, K. (2004). Structure and motion problems for multiple rigidly moving cameras. In ECCV (pp. 252–263).

  • Sturm, P. (2005). Multi-view geometry for general camera models. In CVPR, (Vol. 1, pp. 206–212).

  • Thomas, I., & Simoncelli, E. (1994). Linear structure from motion (Technical Report). University of Pennsylvania, IRCS.

  • Triggs, B. (2000). Bundle adjustment—a modern synthesis. In Vision algorithms: theory and practice (pp. 298–375). Berlin: Springer.

    Chapter  Google Scholar 

  • Tsao, A. T. et al. (1997). Ego-motion estimation using optical flow fields observed from multiple cameras. In CVPR.

  • Wylie, D. R. W., & Frost, B. J. (1999). Responses of neurons in the nucleus of the basal optic root to translational and rotational flowfields. Journal of Neurophysiology, 81(2), 267–276.

    Google Scholar 

  • Xiang, T., & Cheong, L. F. (2003). Understanding the behavior of SFM algorithms: a geometric approach. International Journal of Computer Vision, 51(2), 113–117.

    Article  Google Scholar 

  • Zhang, Z. Y. (1995). Motion and structure of four points from one motion of a stereo rig with unknown extrinsic parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(12), 1222–1227.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanxin Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Cheong, L.F. Linear Quasi-Parallax SfM Using Laterally-Placed Eyes. Int J Comput Vis 84, 21–39 (2009). https://doi.org/10.1007/s11263-009-0226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0226-0

Keywords

Navigation