
A Moving Grid Framework for Geometric Deformable Models

Xiao Han1, Chenyang Xu2, and Jerry L. Prince3
1 CMS Software, Elekta Inc., St. Louis, MO 63043
2 Siemens Corporate Research, Princeton, NJ 08540
3 Center for Imaging Science, Department of Electrical and Computer Engineering, Johns Hopkins
University, Baltimore, MD 21218

Abstract
Geometric deformable models based on the level set method have become very popular in the last
decade. To overcome an inherent limitation in accuracy while maintaining computational efficiency,
adaptive grid techniques using local grid refinement have been developed for use with these models.
This strategy, however, requires a very complex data structure, yields large numbers of contour
points, and is inconsistent with the implementation of topology-preserving geometric deformable
models (TGDMs). In this paper, we investigate the use of an alternative adaptive grid technique
called the moving grid method with geometric deformable models. In addition to the development
of a consistent moving grid geometric deformable model framework, our main contributions include
the introduction of a new grid nondegeneracy constraint, the design of a new grid adaptation criterion,
and the development of novel numerical methods and an efficient implementation scheme. The
overall method is simpler to implement than using grid refinement, requiring no large, complex,
hierarchical data structures. It also offers an extra benefit of automatically reducing the number of
contour vertices in the final results. After presenting the algorithm, we demonstrate its performance
using both simulated and real images.

Keywords
Adaptive grid method; Geometric deformable model; Deformation moving grid; Topology
preservation; Level set method

1 Introduction
Active contour and surface models, also called deformable models, have become one of the
most widely used tools in image segmentation and shape modeling since their introduction by
Kass et al. [1]. Deformable models are classified as either parametric deformable models
(PDMs) (cf., [1–3]) or geometric deformable models (GDMs) (cf., [4–8]) according to their
representation and implementation. In particular, PDMs are represented explicitly as
parameterized curves or surfaces in a Lagrangian formulation. GDMs, on the other hand, are
represented implicitly as level sets of higher-dimensional level set functions which evolve
according to an Eulerian formulation [9].

Advantages of GDMs over PDMs include computational stability, straightforward application
in higher dimensions, and topological flexibility. The last property, however, is not always
desirable. In particular, when a specific object (target) is sought and its composition — i.e.,

Corresponding Author: J.L. Prince, Prince@jhu.edu.

NIH Public Access
Author Manuscript
Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

Published in final edited form as:
Int J Comput Vis. 2009 August 1; 84(1): 63–79. doi:10.1007/s11263-009-0231-3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the number of components and the homology of each component — is known, then it is most
natural to seek the target in a way that yields the correct composition or topology. For example,
in the analysis of 3D brain images, it is desirable that a construction of the cortical surface has
a topology that is consistent with brain anatomy [10]. In this application and others like it, the
topology flexibility is considered as a liability rather than an advantage. To address this
problem, a topology-preserving geometric deformable model (TGDM) method was proposed
in [11] that guarantees the topology correctness of the final segmentation results. Recently,
several extensions of the original TGDM method have also been proposed in the literature
[12–14].

A major remaining drawback of GDMs (both standard and topology preserving ones), however,
is their computational cost. Although powerful techniques to improve the computational
efficiency of GDMs have been developed (cf. [5,15,16]), the resolution of the final result is
still dependent on the resolution of the computational grid used to solve the GDM partial
differential equations (PDEs). In addition, the resolution of the computational grid also limits
the level of details of the embedded implicit contour that the model can reliably represent. For
example, the contour shown in Fig. 1(a) cannot be represented by a conventional GDM because
different parts of the curve pass through the same edge, as indicated by the two arrows. With
implicit contour embedding, the level set function will have the same sign at both ends of the
edge, indicating that there are no contour intersections on the edge. Thus, if we apply a standard
GDM (SGDM) to recover the truth contour, the result would most likely resemble Fig. 1(b),
which has a totally different topology than that of the truth. The TGDM method introduced
previously [11] would shift one of the two curves in order to keep a grid point between them,
as shown in Fig. 1(c). Although the topology is maintained, the accuracy is adversely affected.
For some applications – on very large images or with real-time requirements – relatively coarse
grids may be necessary, and these kind of problems may have a significant impact on the
accuracy of the active contour model.

Similar problems have been faced in the solution of general PDEs. Higher accuracy typically
requires a highly refined grid, which leads to intolerably high computational cost. An elegant
solution to address this dilemma is the use of adaptive grid techniques [17], which locally
refine or redistribute grid points according to salient features of the PDE solution. Such
techniques achieve high accuracy with a small increase in computational cost. There are two
competing adaptive grid techniques, the local refinement method and the moving grid
method. In the local refinement method, additional grid nodes are inserted when and where
they are needed; in the moving grid method, a fixed number of grid points are repositioned
according to an adaptivity criterion. The local refinement method has been used previously in
solving level set PDEs [18,19]; and a local refinement adaptive grid method has also been
proposed for geometric deformable models [20]. Another related work is the use of locally
refined trianglular mesh in a 2D GDM in [21]. The multiresolution approach in [5] can also be
viewed as a special case of local refinement, where the grid is uniformly refined within the
narrow band region. The moving grid technique has been applied previously in the computer
vision literature for adaptive image reconstruction [22,23]. However, this method has been
largely overlooked by the level set community, especially in application to image segmentation
with GDMs.

In our research on topology-preserving geometric deformable models (TGDMs), we have
found local refinement methods to be incompatible with the digital topology principles needed
to implement TGDM. This is because the refined grid no longer has a uniform structure and
the conventional digital topology principles no longer apply. In contrast, the uniform reference
grid maintained by a moving grid method allows the same topology preserving principle to be
applied as in the uniform grid case. In this work, we adapt a particular moving grid method,
the deformation moving grid method, which was developed by Liao et al. [24–28], to solve the

Han et al. Page 2

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

level set PDEs required in GDMs. In particular, we develop the methods necessary to compute
signed distance functions, to handle topology preservation, and to adapt the grid in an image-
driven fashion, which improves the results in many applications. We show that the proposed
approach resolves the resolution problem identified in Fig. 1(a) by moving the grid, as shown
in Fig. 1(d). 1 We also show that the resulting method has an additional advantage, that of
reducing the number of vertices produced in the final model. Thus, this overall approach
automatically implements a kind of mesh simplification by putting more vertices in regions of
high curvature and fewer where the boundaries are relatively flat.

The paper is organized as follows. In Section 2, we give a brief overview of geometric
deformable model methods, both the standard and the topology preserving ones. In Section 3,
we summarize the deformation moving grid method and discuss its practical implementation,
including the introduction of a new non-degeneracy constraint that ensures the validity of the
generated adaptive grid. We then describe the moving grid geometric deformable model
(MGGDM) framework in Section 4, where the focus is placed on the design of grid adaptation
criteria and the design of suitable numerical methods and an efficient implementation scheme.
The non-degeneracy criterion of Section 3 and the methods described in Section 4 constitute
the major contribution of this paper. Experimental results on both simulated and real images
are presented in Section 5 to demonstrate the advantages of using moving adaptive grid with
geometric deformable models. Finally, we conclude the paper in Section 6.

In the following presentation of the method, we focus mainly on the 2D case for the sake of
clarity and notation convenience. Additional comments will be added where necessary to help
clarify the 3D implementation. A preliminary report of this work, which studies solely the 2D
formulation, can be found in a conference proceedings [29].

2 SGDM and TGDM
In this section, we first give a brief overview of SGDM. Then we will summarize the TGDM,
which was developed in [11] as a topology preserving variant of a GDM.

Let I: Ω → R+ be a given image, where Ω ⊂ R2 for a 2D image and Ω ⊂ R3 for 3D. In GDMs,
the evolving contours are first embedded as the zero level set of a signed distance function (the
level set function) φ(x⃗, t): Ω × R+ → R, and propagate implicitly through the temporal evolution
of φ.

There are various forms of GDMs proposed in the literature. We can, however, summarize
their level set evolution equation in the following general form (cf., [9,30]):

(1)

where Fprop, Fcurv, and F⃗adv are user-designed force (or speed) terms. Fcurv, the curvature force,
controls the regularity (smoothness) of the implicit contour. Fprop and F⃗adv are two forms of
images forces (scalar and vector respectively) that drive the contour to the desired object
boundary.

The numerical solution of (1) is traditionally obtained by approximating the time derivative
by a forward difference and the spatial derivatives on the right-hand side by upwind finite-

1We note that in all cases, the resulting curves will be approximated by line segments.

Han et al. Page 3

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

difference numerical schemes on a rectilinear computational lattice (for details see [9]), which
gives:

(2)

where ξ ⃗ denotes a grid point, Δt is the time step-size, and Δφ represents an appropriate discrete
approximation to the right-hand side of (1) at the grid point. Then, at the time step tm+1 = (m
+ 1) Δt, we update the value of the level set function φ at each grid point ξ ⃗ = (ξ, η) from its
previous value φ (ξ ⃗, tm), until convergence or after a user specified number of time steps.

In this framework, the updating of the level set function φ is performed on fixed grid points;
thus, no parameterization of the deforming contour is needed. The explicit parametric
representation is computed after the evolution is completed by taking the zero level set of φ at
the last time step, which requires an isocontour algorithm [11,31]. It is well known that the
topology of the embedded contour can change during the evolution of the level set function
φ. This means that the topology of the final contour is unpredictable, which can be an undesired
drawback in some applications [10,12–14,32].

TGDM was originally introduced in [11] to provide a simple mechanism to impose a topology
constraint during the evolution of the level set function. It is based on the observation that the
implicit contour is homeomorphic to the boundary of the digital object delineated by the level
set function on the computational lattice (the digital object simply consists of all grid nodes
with a non-positive signed distance value). The topology of the implicit contour can thus be
maintained by controlling the topology of the digital object. This is achieved by applying the
simple point criterion from the theory of digital topology [33], and preventing the level set
function from changing sign at non-simple points. Later on, the simple point criterion was
generalized in [13] to allow more flexible control of the model topology. In [12,14], self-
repelling forces derived from global topology constraints were introduced to further improve
the performance of TGDM and make it less sensitive to contour initialization. TGDM has found
important applications in brain image analysis [10].

3 Deformation Moving Grid Method
In this section, we summarize the adaptive moving grid by deformation method of Liao et al.
[24–28] and discuss its practical implementation. The advantage of this particular moving grid
method as compared with many others is that it allows a much simpler construction of the grid
mapping and can be easily extended to higher dimensions. The description in this subsection
mainly follows the presentation of the cited references [24–28], but is rewritten for clarity and
consistency with later adaptation to the GDM framework.

3.1 Basic principles
Like other moving grid methods, this deformation method maintains a fixed reference (logical)
grid, but moves the actual physical grid points according to the desired salient features to be
sought. This grid reallocation can be described as a grid mapping x = x(ξ, t) from the reference
domain Ωr to the actual physical or image domain Ω as demonstrated in Fig. 2, where ξ = (ξ,
η) ((ξ, η, ζ) in 3D) denotes a point in Ωr, and x = (x, y) ((x, y, z) in 3D) is its image in the physical
domain Ω. Typically, the reference domain Ωr is simply a replica of the physical domain Ω
itself, but covered with a fixed uniform grid {(ξ, η) | ξ = 0, Δξ, …, Nξ Δξ, η = 0, Δη, …,
NηΔη}, where Nξ and Nη denote the grid size, and Δξ and Δη are the uniform grid spacing in
the coordinate directions. The time variable t simply indicates that the grid can be dynamically
adapted, for example, to follow the evolution of the time-dependent level set PDE.

Han et al. Page 4

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Different moving grid methods differ in how to construct the grid mapping x(ξ, t), and thus to
control the adaptivity of the physical grid. The deformation moving grid method [24–28]
controls the grid adaptivity by specifying the Jacobian determinant J(x) of the grid mapping:

(3)

where f (x, t) is called the monitor function. Since the Jacobian determinant of the grid mapping
is simply the ratio of the size of an area (volume in 3D) element in Ω and the size of its inverse
image in Ωr, (3) says that the size of a physical grid cell is inversely proportional to f. Therefore,
the grid will be condensed in regions of high f values and coarsened where f is small. In addition,
by restricting f (x, t) to be positive and finite, J(x) will be positive over Ω, and the grid is
theoretically guaranteed not to fold onto itself.

Directly solving for the grid mapping x(ξ, t) from the Jacobian condition (3) is difficult and
impractical. Instead, the deformation moving grid method [24–28] constructs the grid map
through a simple deformation scheme. We first assume that the grid map has been computed
at time tk−1, and we are to find the mapping at time tk. tk−1 and tk can be two consecutive time
steps in discretizing (1), or can be just two dummy time instants when new adaptive grids are
generated. The latter is the case we usually encounter when applying this method to the GDM
framework. The monitor function f (x, t) is also assumed to be known at the two time instants
tk−1 and tk. Typically, at k = 0, the grid mapping x(ξ, t0) is assumed to be the identity map, i.e.,
x(ξ, t0) = ξ, and the monitor function is simply a constant function f (x, t0) = 1.

The deformation scheme generates the grid mapping at tk by deforming the grid at tk−1. It
essentially consists of three major steps:

1. Solve for a scalar potential function P (x, tk) from the following Poisson equation:

(4)

with the Neumann boundary condition. Here, τ ∈ [tk−1, tk] denotes the
parameterization of the deformation process, and the monitor function f (x, τ) is
assumed to be a linear function of τ for τ ∈ [tk−1, tk].

2. Compute the deformation velocity υ⃗(x, τ) by

(5)

3. At each grid node indexed by the reference coordinates ξ = (ξ, η) ((ξ, η, ζ) in 3D),
solve the following initial valued ordinary differential equation (ODE) over τ by a
proper numerical integration method:

(8)

The deformation velocity υ⃗(x, τ) defined in Step 2 above guarantees that f (x, τ) · J(x, τ) be a
constant for all τ as proved in [24,25,27,28]; especially, J(x, tk) · f (x, tk) = J (x, tk−1) · f (x,

Han et al. Page 5

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

tk−1). Since J(x, 0) · f (x, 0) = 1 by construction, J(x, tk) · f (x, tk) = 1, and hence x(ξ, tk) is the
desired grid transformation for every tk.

3.2 Practical Considerations
There are several technical considerations in implementing the above algorithm that must be
explained. First, in order for the Poisson equations to be solvable with the Neumann boundary
condition, the integral of the source term in (4) must be zero (cf. [34]):

With the specification that f (x, t0) = 1, we must have

(7)

Therefore, any chosen monitor function must be normalized according to (7).

The second issue concerns the numerical solution of the Poisson equation in Step 1. The authors
in [27] solve (4) using the successive over-relaxation (SOR) iterative method. The speed of
SOR method is unsatisfactory when repeated grid generation is necessary. We previously
proposed in [29] to use a spectral solver to accelerate the solution process, but later switched
to the multigrid method [35]. Both the spectral and the multigrid methods are several times
faster than the SOR method. No matter which solver is used, the Poisson equation is first
discretized on a uniform rectilinear grid, which should be a finer grid, in general, than the
uniform reference grid.

The third issue is related to the numerical integration of the grid equation, (6). Both explicit
and implicit methods can be used to solve this ODE. For example, Liao et al. [27] suggested
solving (6) using an implicit level set method. The advantage of using a level set method is not
clear; besides, the implicit method produces the inverse mapping x−1, while the direct mapping
x is needed for solving the original PDE. Thus, in our implementation, we apply the explicit
Euler method to do the integration [35]. Note that although the deformation method guarantees
the bijectivity of the grid mapping in the continuous case, numerical errors in the computation
can easily ruin this property. This is especially a problem for the implicit grid-generation
method of [27] since the level set method it applies for the grid generation is known to lack
topology control. We thus impose an explicit non-degeneracy check during the numerical
integration to ensure a proper final grid mapping, as will be detailed in the next sub-section.

3.3 Additional constraint for non-degenerate grid generation
As mentioned above, although the deformation method guarantees that in the continuous case
no grid overlapping or folding can happen since the grid Jacobian is specified to be positive
everywhere [24–27], in practice, discretization and numerical errors during the integration of
(6) can easily ruin this property and lead to degenerate grid maps (we note that most other
moving grid methods do not even guarantee the grid non-degeneracy in the continuous case).
To ensure a proper grid mapping, we have to add an additional constraint to limit the grid node
motion during the deformation based grid construction.

The design of this constraint is based on a nondegeneracy criterion developed in [36] and
[37], which presents a sufficient condition for a deformed hexahedral grid to remain non-
degenerate (similar criteria were proposed later in [38] to ensure correct topology of image

Han et al. Page 6

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

displacement fields in deformable image registration). This nondegeneracy criterion is better
explained by looking at Fig. 3 and Fig. 4, which illustrate a uniform reference grid and the
corresponding physical grid in 2D and 3D, respectively. The criterion basically requires that
a complete set of “discrete” Jacobians of the grid mapping evaluated at every grid node should
be all positive. Each discrete Jacobian corresponds to the signed area (signed volume in 3D)
of a triangle (a tetrahedron in 3D) formed by the current grid point and two (three in 3D) other
neighbors from the same grid cell. To make the explanation easier, let us call the grid
triangle a triangle formed by three grid points from the same 2D grid cell (e.g., triangles
AOD and OAF in Fig. 3), and the grid tetrahedron a tetrahedron formed by four grid points
(non-coplanar in the reference domain) of a 3D grid cell (e.g., tetrahedra AODE and DOBE in
Fig. 4). The non-degeneracy criterion then requires that every grid triangle (grid tetrahedron
in 3D) keeps the same orientation (i.e., their signed area or volume keeps the same sign) in the
physical grid as in the reference grid. Intuitively, this condition makes sure that each reference
grid cell remains convex after mapping to the physical domain, and thus grid overlapping or
folding can never happen. We note that in 2D the signed areas of the grid triangles correspond
exactly to evaluating the Jacobian using standard finite difference operators. In the 3D case,
however, extra Jacobian approximations other than the standard finite differences also need be
considered.

To impose the non-degeneracy criterion, during the numerical integration of (6) that
corresponds to the sequential deformation of each grid node we restrict the grid node movement
to ensure that none of the grid triangles (tetrahedra in 3D) affected by it ever changes
orientation. The restriction is achieved by truncating the integration time step size (denoted by
Δτ in the following). Consider for example that the grid mapping at the central point O in Fig.
3 is to be updated and consider one associated grid triangle AOD. The orientation of AOD
changes if and only if the point O moves to the other side of line AD after the update. Given
the deformation velocity, vO, at point O, the time of intersection, denoted by tOAD, for O to
move to the line AD can be simply computed using two vector products and a division as
follows

(8)

where N⃗AD denotes a vector normal to the line AD. If tOAD > 0 (negative means O moves away
from AD) and smaller than the integration time-step Δτ, we must limit the deformation of O
by truncating Δτ to be a value smaller than tOAD. In 2D, each grid node (except for the boundary
ones) is shared by 12 grid triangles (3 from each quadrant). The above computation and
truncation need to be performed for all 12 triangles. Since only positive intersection time
matters, the computational cost can be reduced by taking into account the direction of the
deformation velocity at the point.

In 3D, instead of checking when a moving point hits a line, we need to check when the point
moves to the plane formed by the other three points of a grid tetrahedron. The formula is the
same as (8) except that N⃗AD is now the normal of the plane under consideration. In 3D, it can
be checked that each interior grid point is shared by 232 grid tetrahedra (29 from each octant).
To avoid grid folding, we compute 232 times-of-intersection, find the minimum tmin of all
positive values, and then truncate Δτ to be smaller than tmin if initially Δτ ≥ tmin.

With the restriction on the grid node deformation, the generated physical grid is guaranteed to
have no folding or cell overlapping. The bilinearly (trilinearly in 3D) interpolated continuous
grid mapping x(ξ, t) is thus guaranteed to be a homeomorphism from the reference domain to

Han et al. Page 7

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the physical domain, which then enables us to study the topology of the implicit contour(s) on
the reference grid.

4 Moving Grid Geometric Deformable Model
In this section, we discuss the adaptation of the deformation moving grid method to the GDM
framework. We focus on the design of the monitor function, and the development of new
numerical schemes to compute the signed distance function and to solve the level set PDEs on
an adaptive grid. We also discuss the design of a suitable isosurface algorithm when the
adaptive grid method is applied. Our discussion generally applies to both the standard GDMs
without the topology constraint and the topology-preserving ones. The differences in their
implementation will be explicitly stated when necessary. We start with a discussion about the
solution of level set PDEs with the moving grid technique. The moving grid SGDM/TGDM
algorithm and its implementation details will then be presented.

4.1 Solving level set PDEs with the moving grid method
The original level set PDE, (1), is defined on the image domain Ω (i.e., the physical domain
in a moving grid method). We can rewrite it in the following compact form to emphasize its
dependency on the spatial derivatives of the level set function:

(9)

where L(·) summarizes the right-hand side of (1) as a function of the various spatial derivatives
of the unknown level set function φ.

When a moving adaptive grid is used, the computational grid in the image domain is no longer
uniform and conventional finite-difference based numerical schemes for GDMs cannot be
directly applied. In order to simplify the numerical solution of the differential equation, the
original equation must be first transformed to the reference domain Ωr through the grid
mapping; and finite-difference numerical methods can then be applied to solve the transformed
equation on the uniform reference grid.

We first consider the transformation of the spatial derivatives (we use the 2D case as an
example, the derivation for the 3D case is similar and can be found in [39]). Let Φ(ξ, η, t) = φ
(x(ξ, η, t), y(ξ, η, t), t). Applying the chain rule yields

(10)

From (10), we can solve for φx and φy in terms of Φξ and Φη as

(11)

where J = xξyη − xηyξ > 0 is the Jacobian determinant of the grid mapping. Higher order
derivatives such as φxx, φyy, and φxy can be obtained similarly [17].

Han et al. Page 8

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

The time derivative must also be transformed, since φt in (9) assumes that the physical
coordinates (x, y) is fixed, not the reference grid (ξ, η). This transformation is found by applying
the chain rule as follows

(12)

Substituting (12) into (9) yields

We can then substitute all the partial derivatives with respect to the physical coordinates by
partial derivatives with respect to the reference coordinates using relationships similar to (11),
and arrive at a new PDE defined on the reference grid:

(13)

This PDE can be solved using finite-difference numerical schemes (to be presented later) since
the reference grid is a uniform rectilinear grid.

In the above derivations, the grid is assumed to deform continuously together with the temporal
advancement of the time-dependent PDE. This pairwise solution is not necessary when solving
the level set PDEs associated with GDMs, and the grid adaptation may be done sporadically.
At times when the grid is held fixed, i.e., when xt = 0, the second term of the right-hand side
of (12) and (13) disappears, and we need only solve

(14)

When grid adaptation is performed, we can assume that the physical evolution of the level set
function φ (x, y, t) is stopped, i.e., L ̃(Φξ, Φη, Φξξ, Φηη, Φξη) = 0, and only solve

(15)

That is, we separate the temporal evolution of the original PDE from the sporadic grid
adaptation.

To further illustrate this idea and for clarity, we change the time variable t in (15) to a dummy
variable τ, which is consistent with the previous use of τ in describing the computation of the
adaptive grid:

(16)

Han et al. Page 9

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Equation (16) updates the physical function value associated with each reference grid node to
reflect the change in the physical coordinates of the grid node. Another approach is to compute
the functional value at the new grid locations using some interpolation procedure after the new
grid is generated. By using (16) and solving it together with the grid generation equation, (6),
we can avoid artifacts that might arise when applying a simple interpolation procedure. In
addition, the topology-preserving constraint can be easily applied when solving (16) since it
is in the form of a simple level set PDE, as will become clear below.

4.2 Moving grid SGDM/TGDM algorithm
With a proper framework to solve the level set evolution equation on a moving adaptive grid,
we can now present the new moving grid SGDM/TGDM algorithm. The TGDM version is
almost identical to the SGDM one except for an additional topology check as described in Step
6 of the following algorithm. The deformation moving grid algorithm described in the previous
section guarantees that the generated grid mapping has no folding or overlapping cells and thus
constitutes a homeomorphism from the reference grid to the physical grid. As a result, the
topology preservation constraint can be enforced on the uniform reference grid, allowing us to
borrow the techniques from the original TGDM method.

In the following algorithm, we assume that the grid adaptation is performed each time the level
set function is re-initialized as a signed distance function. For clarity, we present the algorithm
in 2D, so that ξ = (ξ, η) denotes the fixed reference coordinates of a grid node and x(ξ, tk) =
(x(ξ, η, tk), y(ξ, η, tk)) denotes the actual physical coordinates of the grid node at the k-th adaptive
grid. tk is a pseudo time variable used to denote the time instant when the k-th adaptive grid is
generated. We adopt the narrow band framework for the implementation of the new moving
grid GDMs, with or without the topology constraint.

Algorithm 1 (Moving Grid Narrow Band Algorithm)
1. Set k = 0, tk=0 = 0, f (x, t0) = 1, and x(ξ, η, t0) = (ξ, η) (the identity map). Initialize Φ

(ξ, η, t0) to be the signed distance function of the initial contour. Note that Φ (ξ, η,
t0) is the level set function evaluated at the physical location (x(ξ, η, t0), y(ξ, η, t0)).

2. If k > 0, re-initialize the level set function Φ (ξ, η, tk) to be a signed distance function
using the Fast Sweeping Method [40,41] (see Section 4.4 for details).

3. Assume that the grid deformation is parameterized by τ, where τ ∈ (tk, tk+1].

a. Construct a new monitor function f (x, tk+1) from the signed distance function
Φ(ξ, η, tk) or the underlying image (see Section 4.3 for details).

b. Solve the moving grid Poisson equation, (4).

c. Compute the grid deformation velocity field υ⃗ (x, τ) using (5).

d. Integrate the moving grid ODE, (6), for each grid node from τ = tk until τ =
tk+1 to get the new physical grid x(ξ, η, tk+1).

4. Advect the level set function to follow the grid motion. This is achieved by solving
(16) and using Φ (ξ, η, tk), i.e., Φ (x(ξ, η, tk), tk), as initialization. The solution at τ =
tk+1, Φ(ξ, η, tk+1), gives the level set function sampled at the new physical grid x(ξ,
η, tk+1). Note that (16) can be solved together with the integration of (6) in Step 3(d)
to avoid the extra storage of the grid velocity (xτ, yτ).

5. Build the narrow band on the new grid x(ξ, η, tk+1) by finding all the reference grid
nodes (ξ, η) such that Φ (ξ, η, tk+1) is within the narrow band range.

Han et al. Page 10

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

6. Transform (1) to the reference grid using the mapping x(ξ, η, tk+1). Advance the level
set function Φ (ξ, η, tk+1) on the new grid x(ξ, η, tk+1) until re-initialization is required.
If TGDM, the topology-preserving constraint is applied during every level set
function update. Since (1) is first transformed to and then solved on the uniform
reference grid (ξ, η), the simple point criterion check described in [11] for applying
the topology constraint can be directly performed on the reference grid without any
modification.

7. If the solution has not converged, set k = k + 1, and go to Step 2. Otherwise, stop.

4.3 Construction of the monitor function
We present two different schemes to define the monitor function for the moving grid GDMs.
The first one makes the grid to follow the motion of the implicit contour, and the second one
defines the monitor function directly based on the image to be segmented. The first scheme is
more general and has been proposed in Liao et al.’s work [27]. When the second scheme is
applicable, however, the adaptive grid need only be generated once beforehand, which
drastically improves the efficiency of the overall moving grid GDM method. We assumed the
first scheme when presenting the moving grid narrow band algorithm, Algorithm 1. The
algorithm can be easily modified to accomodate the second scheme by performing the adaptive
grid generation step only once at k = 0.

Monitor Function Design Based on the Level Set Function—When solving the level
set PDE for GDMs, one only cares about the accuracy of the zero level set. Thus, a natural
definition of the monitor function is [27],

(17)

where f1 > f2, W > 0 are user-defined constants that control the concentration of physical grid
nodes around the zero level set. Since φ(x) is the signed distance function of its zero level set,
this monitor function creates fine grid cells around the zero level set and coarse cells otherwise.
We note that f (x) must be normalized according to (7).

This definition of the monitor function makes the grid nodes concentrate around the zero level
set of the signed distance function. Since the zero level set keeps deforming, the grid has to be
updated frequently to follow the evolution of the zero level set, as seen in Algorithm 1. Thus,
this moving grid GDM scheme is not efficient in practice.

Image-based Monitor Function Design—This second monitor function design provides
a more efficient moving grid GDM algorithm. In image segmentation problems, GDMs are
often designed to be attracted to salient image features such as locations of high image gradient.
Thus, a proper computational grid should be condensed at desired image feature locations and
coarsened otherwise. It may not be easy to come up with a construction that is suitable for all
applications. However, for applications that rely on object boundary information, e.g.,
applications where the geodesic deformable model [6] is applicable, one can define the monitor
function in a way similar to the definition of the metric term in the geodesic deformable model,
for example,

Han et al. Page 11

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(18)

where |∇Iσ| is the gradient magnitude of the image (smoothed by a Gaussian filter with standard
deviation σ), and K is a normalization factor. This monitor function provides fine grid cells at
regions of high image intensity gradient, and coarse grids at homogeneous regions. The
advantage of this monitor function design is that the adaptive grid is only generated once,
significantly reducing the computation time of the method. Again, f (x) must be normalized
according to (7).

4.4 Distance transform on adaptive grids
Efficient computation of the signed distance function is an important part of GDM
implementation. In a traditional uniform grid, the fast marching method (FMM) provides a
very efficient approach to build the signed distance function from a given contour during both
initialization and re-initialization steps. As introduced before, FMM is an O(N log N) algorithm
which solves the following Eikonal Equation

(19)

where Γ is the given contour.

When the moving grid is used, the above equation must be first transformed to the uniform
reference grid so that finite difference numerical methods can be used. By applying the
transformation of (11), we get the transformed equation on the reference grid as (using the 2D
case for illustration)

(20)

where g12 = xξxη + yξyη, and J is the Jacobian determinant as in (11).
Unfortunately, (20) is no longer an Eikonal equation, and the FMM is no longer applicable.

There exist two methods proposed in the literature that can be used to solve the type of
Hamilton-Jacobi equation appearing in (20): the ordered-upwind method by Sethian et al.
[42] and the fast sweeping method by Tsai et al. [40,41]. We chose to use the fast sweeping
method to compute the signed distance function T in (20). Note that the fast sweeping method
requires that the Hamiltonian is strictly convex, which in our case requires that g11, g22 > 0
and . It can be proved that this condition is satisfied if and only if J > 0, which is
guaranteed in our implementation of the deformation moving grid method.

The fast sweeping method uses an upwind and monotonic Godunov flux to approximate the
Hamiltonian, and solves the equation by a Gauss-Seidel-type iterative algorithm with
alternating sweeping directions. The computational complexity of the algorithm is O(N), where
N is the number of grid points at which the distance values are to be found. The details can be
found in [40,41].

Han et al. Page 12

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

4.5 Numerical schemes to solve the Level Set PDEs on adaptive grids
We now discuss the numerical schemes to approximate the transformed level set PDE on the
reference grid. As in the case of a fixed uniform grid, different schemes are required to
approximate the different types of force terms. Consider the general level set PDE of (1). The
first term is the curvature force term. After transforming this term to the reference grid, we can
approximate it using the centered finite difference scheme as in the traditional level set method,
which involves the use of centered finite difference approximations to both the spatial
derivatives of the level set function, Φξ, Φη, Φξξ, etc., and the derivatives of the grid mapping,
xξ, xη, yξ, and yη.

The propagation force term Fprop|∇Φ| requires entropy-satisfying numerical schemes to avoid
numerical instability such as oscillations. In a previous paper [29], we suggested the use of a
local Lax-Friedrichs (LLF) scheme [43] to approximate ∇Φ in this term. As known in the
literature, the LLF scheme can be over-diffusive and often smoothes out fine details of the
implicit contour. It is also tedious to generalize to the 3D case. We therefore designed an
alternative method to approximate this propagation force term. The new scheme has been
shown to work well through our experiments, but its convergence properties have not been
rigorously analyzed. For clarity, we present the method in 2D here; the generalization to 3D
is straightforward, which can be found in [39].

We note that on the reference grid, |∇Φ| has the following expression:

(21)

where g11, g22, g12, g21, and J come from the coordinate transformation, and are the same as
in (20). We approximate the coordinate transformation terms by centered finite difference
operators. To satisfy the entropy condition and ensure stability, the key is to choose suitable
approximation to the partial derivatives of Φ with respect to the reference grid coordinates.
We first denote the forward, backward, and centered difference operators in the two coordinate
directions by D+ξ (D+η), D−ξ (D−η), and D0ξ (D0η), respectively, and construct four upwind
finite difference operators by taking into consideration the sign of Fprop, which is similar to
what is proposed in the standard level set method [9]:

(22)

where sign(·) is 1 if the argument is positive and −1 otherwise, and x+ = max(x, 0), x− = min
(x, 0).

Substituting Φξ with either D′+ξΦ or D′−ξΦ and Φη with either D′+ηΦ or D′−ηΦ into (21) will
give us four different evaluations of |∇Φ|. We can also compute a fifth value of |∇Φ| by
substituting into (21) Φξ with D0ξΦ and Φη with D0ηΦ. We finally take the maximum of all
the five values as the value of |∇Φ| used in the computation of Fprop|∇Φ|. This is the numerical
scheme we currently applied to evaluate the propagation force term. In the 3D case, the
computation of this force term involves the comparison of nine different evaluations of |∇Φ|,
as detailed in [39].

Han et al. Page 13

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

The next force term to approximate is the advection force termF⃗adv · ∇Φ. Since this force term
is a linear term, a simple upwind approximation suffices. Again, consider the 2D case, and
denoteF⃗adv = (F1, F2). This term has the following form in the reference grid:

Denote a = (F1yη − F2xη)/J and b = (F2xξ − F1yξ)/J. The upwind approximation to this term
can then be obtained as

(23)

where a+ = max(a, 0), and a− = min(a, 0) as in (22). We use the forward difference to compute
the grid derivatives in a+ and b+, and the backward difference to compute a− and b−.

The transformed level set PDE is in general much more complicated than the original due to
the involvement of the grid mapping terms. Its solution is thus also more time-consuming,
especially in 3D. There is, however, an important simplification that we can make, especially
during early stages of the model deformation. Again, unlike a traditional PDE, what is
important in the level set PDE for a GDM is actually the image forces, which drive the contour
to its optimal location. As a result, we can initially ignore the non-uniformity of the physical
grid, i.e., we solve the original level set PDE directly on the reference grid but with the image
forces being pulled from the corresponding physical grid locations. After this simplified
computation is converged, we solve the full version of the transformed level set PDE for a few
more iterations in order to fine tune the location of the final contour(s). Our experiences have
shown that this computational scheme does not degrade the accuracy of the overall method but
largely improves the efficiency. In particular, it normally improves the computational speed
to two to three times the original for both 2D and 3D cases. This more efficient scheme is used
in all the experiments presented later.

4.6 Final contour extraction on an adaptive grid
The design of a proper isocontour or isosurface algorithm is a necessary step for the moving
grid GDM as well, but it is actually very easy. The uniform rectilinear reference grid allows
the direct adoption of the connectivity consistent isocontour algorithm [11] to extract the final
contour(s) from the level set function after convergence. In particular, the isocontour algorithm
is performed on the reference grid, which is followed by an additional linear interpolation step
to find the physical coordinates of each contour node. Again, in the case of TGDM, since the
topology constraint is enforced on the reference grid, the topology of the contour on the
reference grid is guaranteed to be correct. In addition, since the grid mapping is guaranteed to
be a homeomorphism, the physical contour is then homeomorphic to the reference-grid
contour, and thus will also have the correct topology and have no self-intersections.

5 Results
In this section, we present several experiments to demonstrate the benefits of applying the
moving grid method to GDMs. The results are mainly in 2D, but a preliminary result on 3D
cortical surface reconstruction is also presented. The experiments were run on a 2.2 GHz Intel
Pentium4 PC equipped with a Linux operating system.

Han et al. Page 14

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

5.1 2D experiments
Fig. 5(a) shows a phantom image comprising two circular cells. The initial contours for the
deformable model are also shown as two dark curves. The image is of size 128 × 188. Using
a computational grid of the same size, a TGDM with a signed pressure force and a curvature
force produces the final boundary segmentation in Fig. 5(b). The topology constraint has no
effect in this case since the two boundaries are well separated. The segmentation of Fig. 5(b)
is used as the “ground truth” when comparing the results of later coarse grid segmentations.

We now choose a coarse computational grid of size 33 × 45 and apply both SGDM (i.e., GDM
without the topology-preservation constraint) and TGDM with the same forces as before. The
results of SGDM and TGDM segmentations are shown as dark curves in Fig. 5(c) and Fig. 5
(d), respectively. The “ground truth” contours are also shown in the two figures as the white
curves. Obviously, without the topology constraint, the two cells are wrongly merged. Both
results have large errors as compared to the truth (the largest distance from the truth contour
to either of the two coarse grid results is greater than 3 pixels). Figs. 5(e)–(g) illustrate the
results when applying the moving adaptive grid. Figs. 5(e) and (f) show the deformed grid at
an intermediate and the final stage together with its corresponding zero level set. The accuracy
is improved, as shown in Fig. 5(g), where the final contours (dark curves) coincide well with
the truth (white curves). The largest distance from the truth to the moving grid result is reduced
to about 0.7 pixels. We note that the final contour in Fig. 5(g) comprises 146 vertices, which
is comparable to the contours in Figs. 5(c) and 5(d), which have 130 and 136 vertices,
respectively. In contrast, the “ground truth” contour in Fig. 5(b) has 542 vertices. In fact, the
vertex reduction is roughly proportional to the reduction in grid lines in each direction. We
note that if a local refinement adaptive grid or a multiresolution GDM implementation is used,
the final contour will have similar size as the ground truth (if similar accuracy is maintained)
since the effective computational grid in these methods are identical to a uniform grid as far
as the deformable contour is concerned. Thus, in many applications, the moving grid GDM or
TGDM implementation can have a strong advantage over the local grid refinement or
multiresolution level set methods by yielding much smaller final contour size.

Fig. 5(h) shows the grid produced using the image derived monitor function [cf., (18)], which
is created once before the contour evolution. Fig. 5(i) shows the final contours produced by
this grid. The contours have only 142 vertices but are almost indistinguishable from the truth.
The image derived grid adaptation requires solving the grid deformation equations only once,
which improves the overall computational efficiency by another large factor.

In terms of computational speed, the time for generating the truth contour takes about 1.3s.
SGDM or TGDM running on the uniform coarse grid takes about 0.2s. When the moving grid
is applied, the computation for each adaptive grid generation takes about 0.26s, which is almost
equal to the time needed for the implicit contour propagation part (0.28s). Thus, the moving
grid is more efficient if the grid generation only need be computed a very few number of times,
as in the case of image-based grid generation.

To get a more complete quantitative evaluation, we tested the algorithms using a phantom
image shown in Fig. 6(a). This image has a size of 512 × 512 pixels and consists of a hand-
shaped object. We applied the geodesic active contour model on several grids of different types
and sizes, and compared the accuracy and contour size of the final results, and also compared
the computation time. To evaluate the accuracy of the results, we first ran SGDM with a uniform
grid of size 512 ×512 and took the resulting contour as the truth; this is shown as the red curve
overlaid on the image in Fig. 6(a). We then measured the errors of other results by computing
the distance from each vertex of the truth contour to the other contours. All the models were
initialized using a small circle inside the object, as shown by the blue curve in Fig. 6(a). When

Han et al. Page 15

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

a moving grid GDM is applied, the adaptive grid was generated only once using the monitor
function definition of (18).

The results are summarized in Table I, which is categorized into four groups: uniform grid
SGDM, uniform grid TGDM, moving adaptive grid SGDM (MG-SGDM), and moving
adaptive grid TGDM (MG-TGDM). Three different grid sizes are used in each of the 4 groups.
The columns show the grid size, the total computation time, the numbers of final contours and
contour vertices, and the maximum and mean errors of each result as compared to the truth.
The computation time reported in Column 3 includes the time for the grid generation when an
adaptive grid is used. The errors in Columns 6 and 7 are measured in the unit of the original
image pixel size. The topology correctness of the final results is indicated by the number of
final contour pieces shown in Column 4. In particular, the truth contour has the topology of a
circle that contains one single connected piece. But as shown in Fig. 6(d) where a uniform grid
SGDM is applied, the initial single contour will get split into two disjoint parts at the place
where the two middle fingers are closely adjacent to each other, which results in a contour
count of two.

From Table I, it is seen that the uniform grid SGDM results all have the wrong topology, even
when a fine 256 × 256 grid is used. The topology problem does not exist in the TGDM results
due to the topology preservation constraint of TGDM. On the other hand, the correct topology
is observed in all the adaptive grid SGDM results as well. This is due to the high grid resolution
along the object boundary as achieved by the grid adaptation, which can be seen in Fig. 6(b).
In terms of accuracy, Table I shows that with the same grid type a finer grid results in better
accuracy, but also requires longer computation time. The more important comparison is
between the uniform grid and the adaptive grid. For example, if we compare Row 8 with Row
1 or Row 11 with Row 4, we can see that the moving grid method allows the use of a much
smaller grid size while achieving a much better accuracy in a comparable computation time.
The resulting contour also has a smaller size when using the moving grid than using the uniform
grid. If we use an even smaller grid as in Row 9 (or Row 12) of the table, the MG-SGDM (or
MG-TGDM) still achieves a comparable accuracy in average as the fine uniform grid. At the
same time, the computation time is significantly reduced, and the final contour is further
simplified. Comparing the performance between TGDM and SGDM, it is seen that TGDM
gives slightly better accuracy than SGDM on the same uniform grid due to the preserved
contour topology, but the computation time for TGDM is slightly longer. For the adaptive grid
cases, MG-TGDM gives the same results as MG-SGDM since the MG-SGDM already gives
the correct topology thus the topology constraint has no effect in these cases.

To demonstrate the performance of the adaptive grid GDM method under the condition of
image noise, we generated a noise-contaminated phantom image by adding Gaussian white
noise (with zero mean and with variance equal to 30% of the maximum image intensity value)
to the image in the previous experiment. The resulting noisy image is shown in Fig. 7(a). We
repeated the previous experiment on this new noisy image, and the results for the TGDM cases
are summarized in Table II. From Table II, it is seen that MG-TGDM with a much smaller grid
size (64 × 64) still achieves comparable accuracy as the uniform grid TGDM on a much larger
grid (256 × 256), although the accuracy is degraded for both as comparing to the corresponding
results in Table I. It is also noticed that increasing grid size for the MG-TGDM no longer leads
to accuracy improvement as significant as in the previous experiment. This result is expected
since the accuracy in this case is inherently limited by the added image noise. Comparing Fig.
7(b) with Fig. 6(b), it is clear that image noise also degraded the quality of the generated
adaptive grid and made it less regular. But since the final grid density is controlled by the
relative magnitudes of the monitor function across the computational domain instead of the
absolute values, the grid is still mostly condensed around the true object boundary. The spatial
Gaussian smoothing inside (18) also helped regularize the monitor function (σ = 1.0 was used

Han et al. Page 16

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

in this experiment). On the other hand, in practice it can be expected that pre-processing a noisy
image with more advanced image restoration or noise reduction filters may further improve
the accuracy of TGDM (on both uniform and adaptive grids), but the investigation of which is
beyond the scope of this paper.

In the last 2D experiment, we applied the moving grid GDMs to segment a real CT image of
carpal bones. Fig. 8(a) shows the original image with the initial contours overlaid. The image
is of size 151 × 220 pixels. We used a binary-flow GDM, which tries to separate the mean
intensity of the region inside the evolving contour from the mean of the outside. On a uniform
grid of the same size as that of the image, SGDM produced the result in Fig. 8(b) and TGDM
gave the result of Fig. 8(c). Due to the close adjacency of the two bones, SGDM created the
wrong topology even at the finest grid. We then applied the moving grid TGDM with a
reference grid of size 50 × 65. Fig. 8(d) shows the final physical grid together with the final
contour segmentation. Fig. 8(e) displays this segmentation on the original image (dark curves),
together with the “true” contours as in Fig. 8(c) (white curves). Fig. 8(f) is a magnified view
at the gap between the two bone cells. Again, the two sets of contours are almost
indistinguishable (the average distance is only 0.17 pixels in the unit of the original image),
but the moving grid contours have only 290 vertices while the original grid contours have 838
vertices.

5.2 Moving grid TGDM for cortical surface reconstruction
In this 3D experiment, we apply a moving grid topology-preserving geometric deformable
surface model to the brain cortical surface reconstruction problem [10,32] and compare its
performance against the uniform grid TGDM. We show that applying the moving grid
framework to TGDM can potentially yield a better cortical surface reconstruction method in
terms of better computational efficacy and simultaneous surface mesh size reduction, which
is an important advantage especially for the processing of high resolution brain images of large
sizes.

Details about the overall cortical surface reconstruction method can be found in [10]. In this
experiment, we focus on the reconstruction of the central cortical surface only, the procedures
of which can be briefly explained with the help of Fig. 9. First, a given 3D brain image is
preprocessed to remove the skull, skin, and other non-brain tissues (a 2D cross-section of the
image after the preprocessing is shown in Fig. 9(a)). A fuzzy segmentation method is then
applied to generate a soft segmentation of the brain tissues, which produces three membership
functions corresponding to the three major tissue classes: white matter, gray matter, and
cerebrospinal fluid (the corresponding 2D cross-section of the gray matter (GM) segmentation
is shown in Fig. 9(b)). Image forces are then derived from the membership functions and used
to drive a TGDM model to find the central surface of the brain cortex as shown in Fig. 9(d).
A key image force is a vector valued gradient-vector-flow (GVF) force [3] that is derived from
the GM membership function and points to the central layer of the GM. This image force
corresponds to the advection force F⃗adv in (1).

In this experiment we chose six brain images with manually picked central surface landmarks
as the test data sets, but upsampled the original images by a factor of two in each coordinate
direction in order to simulate high-resolution brain images. Such an upsampling step is also
desirable in practice in order to improve the accuracy of cortical segmentation. The original
images all have a size of 256 × 256 × 198, and after upsampling, the new images have size 512
× 512 × 396. This large image size causes a huge increase in computation time and memory
usage if the uniform grid TGDM implementation is used, as will be shown later. The resulting
surface mesh also has a huge number of vertices, which can cause problem for post-processing
steps, such as cortical unfolding or flattening, and surface-based data processing.

Han et al. Page 17

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

After upsampling, we apply the same cortical surface reconstruction procedure on the new
images until the deformable surface reconstruction step. We then apply TGDM on three
different computational grids to extract the central cortical surfaces. The first one uses a fine
computational grid (the same size as the upsampled image). The second one uses a coarse
computational grid of the original image size (a uniform grid of size 256 × 256 × 198). The
third one applies the moving grid TGDM method, where the reference grid is chosen to be the
same as the coarse uniform grid (also with size 256 × 256 × 198). The adaptive grid is computed
only once before the surface deformation, where the GM membership function is used as the
monitor function so that the grid is condensed inside GM and coarsened otherwise. The image
derived forces are computed initially from the upsampled image (i.e., on the fine uniform grid),
and interpolated to the coarse uniform grid and the adaptive grid in the latter two TGDM
implementations. After the central surfaces are reconstructed from all six studies using the
three TGDM implementations, distances from the pre-picked landmark points to the
reconstructed surfaces are then computed and used as a measurement of surface accuracy (i.e.,
the landmark error).

The overall average landmark error, computation time, memory usage, and resulting surface
mesh size (also an average of the six brains) from using the three different grids are summarized
in Table III. As we can see from Table III, the fine uniform grid provides the best accuracy,
that is, the smallest average landmark error. The computation time and memory usage is greatly
increased, however. The resulting surface mesh is also huge, over four times the size of the
coarse grid result. The coarse uniform grid gives the fastest computation and the smallest
surface mesh, but the landmark error is much worse. As further demonstrated in Fig. 10, the
coarse grid surfaces differ quite largely from the fine grid (and the adaptive grid) results and
have obvious large errors within narrow sulcal regions. The adaptive grid produces comparable
accuracy as the fine uniform grid, as can be seen both from the landmark error in Table III and
from the visual comparison in Fig. 10. The computation time is also largely reduced compared
with the fine uniform grid and the resulting surface mesh size is only slightly larger than that
of using the coarse uniform grid. These results clearly demonstrated the potential advantages
of applying the moving grid TGDM to the cortical reconstruction problem. Note that in this
experiment, the moving grid slows down the TGDM computation by a factor of 3 comparing
to the uniform grid of the same size, This factor is consistent across all the 6 brains used in this
experiment, which is mainly due to the increased grid point density around the target surface
location as the adaptive grid is designed to achieve. It is also due to the fact that in this
experiment, the initial surface (the WM boundary surface) is very close to the final surface
location; hence most of the computation for the non-uniform grid TGDM is computed inside
a dense grid region. This factor would become smaller if the initial surface is further away from
the final surface.

6 Discussion and Conclusion
In this work, we adapted the deformation moving grid method to the framework of both
standard and topology preserving geometric deformable models. We designed new numerical
methods both for the implementation of the adaptive grid method and for solving level set
PDEs on an adaptive grid. We also introduced a grid nondegeneracy constraint to make sure
that the computed grid map has no folding or overlapping; and proposed an image based grid
monitor function design, which further increases the efficiency of the overall method. As
demonstrated by the experimental results, the grid adaptation increases the accuracy and
efficiency of solving the level set PDEs associated with the geometric deformable models.
Compared with the local refinement or multiresolution techniques, the moving grid method
also provides an additional advantage of producing contours or surface meshes with fewer
vertices, which can be a very significant advantage in 3D applications.

Han et al. Page 18

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

One limitation of the current method is that the computational speed is not yet satisfactory
when applying the moving grid geometric deformable model in 3D. The time spent for
generating the adaptive grid is almost comparable to that for solving the level set PDE. Thus
the adaptive grid generation procedure need be further optimized. As another shortcoming, the
deformation moving grid method that we currently apply does not have direct control over the
grid quality, such as grid orthogonality and smoothness. It is known that poor grid quality —
for example, the departure from orthogonality or grid skewness — can limit the accuracy that
can be gained when applying the moving grid method. A recent improvement in order to
address the grid skewness problem was proposed by Cao et al. [44]. This new moving grid
method, however, is extremely time-consuming in computation, which prohibits its use for 3D
applications. Thus, the deign of a better and faster moving grid generation algorithm still need
further investigation. Fortunately, the proposed MGGDM framework separates the adaptive
grid generation step from the implementation of the model deformation, and should thus allow
other alternative moving adaptive method to be easily incorporated.

Last, it is worth noting that other implicit surface representation methods such as radial basis
function (RBF) and algebraic models may offer the potential of improved computational
efficiency than the conventional level set method [45–47], but such methods have not yet been
widely used in deformable model based image segmentation. On the other hand, we expect
that many existing GDM image segmentation methods may benefit from the proposed moving
grid framework due to its simplicity over other adaptive grid techniques, its natural handling
of both standard and topology-preserving GDMs, and its ability to produce more accurate
contours or surfaces with significantly reduced number of contour or surface nodes.

Acknowledgments
This work was supported in part by NSF/ERC Grant CISST#9731748 and by NIH/NINDS Grant R01NS37747.

References
1. Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Intl J Comp Vision 1988;1:312–

333.
2. Cohen LD. On active contour models and balloons. CVGIP: Image Understanding 1991;53:211–218.
3. Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans Imag Proc 1998;7(3):359–369.
4. Caselles V, Catte F, Coll T, Dibos F. A geometric model for active contours in image processing.

Numerische Mathematik 1993;66:1–31.
5. Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: A level set approach.

IEEE Trans PAMI 1995;17:158–175.
6. Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision

1997;22:61–79.
7. Yezzi A, Kichenassamy S, Olver P, Tannenbaum A. A geometric snake models for segmentation of

medical imagery. IEEE Trans Med Imag 1997;16:199–209.
8. Siddiqi K, Lauziere YB, Tannenbaum A, Zucker SW. Area and length minimizing flow for shape

segmentation. IEEE Trans Image Proc 1998;7:433–443.
9. Sethian, JA. Level Set Methods and Fast Marching Methods. Vol. 2. Cambridge University Press;

Cambridge, UK: 1999.
10. Han X, Pham D, Tosun D, Rettmann M, Xu C, Prince JL. CRUISE: Cortical reconstruction using

implicit surface evolution. NeuroImage 2004;23:997–1012. [PubMed: 15528100]
11. Han X, Xu C, Prince JL. A topology preserving level set method for geometric deformable models.

IEEE Trans Patt Anal Machine Intell 2003;25:755–768.
12. Sundaramoorthi G, Yezzi A. Global regularizing flows with topology preservation for active contours

and polygons. IEEE Trans Imag Proc 2007;16:803–812.

Han et al. Page 19

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

13. Ségonne F. Active contours under topology control – genus preserving level sets. Intl J Comput Vision
2008;79(2):107–117.

14. Le Guyader C, Vese LA. Self-repelling snakes for topology-preserving segmentation models. IEEE
Trans Imag Proc 2008;17:767–779.

15. Adalsteinsson D, Sethian JA. A fast level set method for propagating interfaces. J Comput Phys
1995;118:269–277.

16. Peng D, Merriman B, Osher S, Zhao H, Kang M. A PDE-based fast local level set method. J Comput
Phys 1999;155:410–438.

17. Knupp, P.; Steinberg, S. Fundamentals of Grid Generation. CRC Press; Boca Raton, FL: 1994.
18. Milne, B. PhD dissertation. Dept. of Math; UC Berkeley: 1995. Adaptive Level Set Methods

Interfaces.
19. Sussman M, Almgren AS, Bell JB, Colella P, Howell LH, Welcome ML. An adaptive level set

approach for incompressible two-phase flow. J Comput Phys 1999;148:81–124.
20. Droske, M.; Meyer, B.; Schaller, C.; Rumpf, M. An adaptive level set method for medical image

segmentation. In: Insana, MF.; Leahy, RM., editors. Proc IPMI 2001. Springer Verlag; 2001. p.
416-422.LNCS 2082

21. Xu M, Thompson PM, Toga AW. An adaptive level set segmentation on a triangulated mesh. IEEE
Tran Med Imag 2004;23:191–201.

22. Terzopoulos, D.; Vasilescu, M. Proc CVPR’91. Lahaina, HI: 1991. Sampling and reconstruction with
adaptive meshes; p. 70-75.

23. Vasilescu, M.; Terzopoulos, D. Proc CVPR’92. Champaign, IL: 1992. Adaptive meshes and shells;
p. 829-832.

24. Liao G, Pan T, Shu J. Numerical grid generator based on Moser’s deformation method. Numer Meth
Part Diff Eq 1994;10:21–31.

25. Bochev P, Liao G, dela Pena G. Analysis and computation of adaptive moving grids by deformation.
Numer Meth Part Diff Eq 1996;12:489–506.

26. Liao, G.; de la Pena, G.; Liao, G. A deformation method for moving mesh generation. Proc. 8th Intl.
Meshing Roundtable; South Lake Tahoe, CA. 1999. p. 155-162.

27. Liao G, Liu F, de la Pena G, Peng D, Osher S. Level-set-based deformation methods for adaptive
grids. J Comput Phys 2000;159:103–122.

28. Liao G, Xue J. Moving meshes by the deformation method. J Comput Appl Math 2006;195:83–92.
29. Han, X.; Xu, C.; Prince, JL. A 2D moving grid geometric deformable model. Proc. of CVPR

(CVPR’03); Madison, Wisconsin. June 2003; p. 153-160.
30. Xu, C.; Yezzi, A.; Prince, JL. On the relationship between parametric and geometric active contours.

The 34th Asilomar Conference on Signals, Systems, and Computers; Pacific Grove, USA. 2001. p.
483-489.

31. Lorensen WE, Cline HE. Marching cubes: A high-resolution 3D surface construction algorithm. ACM
Computer Graphics 1987;21(4):163–170.

32. Han, X.; Xu, C.; Prince, JL. Topology preserving geometric deformable models for brain
reconstruction. In: Osher, S.; Paragios, N., editors. Geometric Level Set Methods in Imaging, Vision
and Graphics. Springer-Verlag; New York: 2003.

33. Kong TY, Rosenfeld A. Digital topology: Introduction and survey. CVGIP: Image Understanding
1989;48:357–393.

34. Strang, G. Introduction to Applied Mathematics. Wellesley Cambridge Press; 1986.
35. Press, WA.; Teukolsky, SA.; Vetterling, WT.; Flannery, BP. Numerical Recipes in C. Vol. 2.

Cambridge University Press; New York, NY: 1995.
36. Ivanenko, SA. Harmonic mappings. In: Thompson, JF.; Soni, BK.; Weatherill, NP., editors.

Handbook of grid generation. Vol. 8. CRC Press; Boca Raton: 1999. p. 1-43.
37. Ushakova OV. Conditions of nondegeneracy of three-dimensional cells. A formula of a volume of

cells. SIAM J Sci Comput 2001;23:1274–1290.
38. Karaçali B, Davatzikos C. Simulation of tissue atrophy using a topology preserving transformation

model. IEEE Trans Med Imag 2006;25:649–652.

Han et al. Page 20

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

39. Han, X.; Xu, C.; Prince, JL. ECE technical report. Johns Hopkins University; Baltimore, MD: 2006.
A moving grid framework for geometric deformable models. available at
http://iacl.ece.jhu.edu/~xhan/MMGDM.pdf

40. Tsai, YR.; Cheng, L.; Osher, S.; Zhao, H. Technical Report UCLA-CAM-01-27. Institute for Pure
and Applied Mathematics (IPAM), UCLA; 2001. Fast sweeping algorithms for a class of Hamilton-
Jacobi equations.

41. Kao, CY.; Osher, S.; Tsai, YR. Technical Report UCLA-CAM-02-66. Institute for Pure and Applied
Mathematics (IPAM), UCLA; 2002. Fast sweeping methods for a class of static Hamilton-Jacobi
equations.

42. Sethian JA, Vladimirsky A. Ordered upwind methods for static Hamilton-Jacobi equations. Proc Natl
Acad Sci 2001;98(20):11069–11074. [PubMed: 11572970]

43. Osher S, Shu C. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II.
J Comput Phys 1989;83:32–78.

44. Cao W, Huang W, Russell RD. A moving mesh method based on the geometric conservation law.
SIAM J Sci Comput 2002;24:118–142.

45. Khoo B, Wang S, Lim K, Wang M. An extended level set method for shape and topology optimization.
J Comput Phys 2007;221:395–421.

46. Xie, X.; Mirmehdi, M. Implicit active model using radial basis function interpolated level sets. Proc.
17th British Machine Vision Conf.; 2007. p. 1040-1049.

47. Oishi, T.; Takamatsu, J.; Zheng, B.; Ishikawa, R.; Ikeuchi, K. 6-DOF pose estimation from single
ultrasound image using 3D IP models. Proc. IEEE Comput. Vision Patt. Recog. Workshop 2008;
2008. p. 1-8.

Han et al. Page 21

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://iacl.ece.jhu.edu/~xhan/MMGDM.pdf

Figure 1.
Resolution problem of level set methods. (a) Contours irrepresentable due to implicit
embedding; (b) GDM changes topology; (c) TGDM keeps the contours separated by grid
nodes; (d) An adaptive grid correctly resolves the desired contours.

Han et al. Page 22

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
Adaptive grid generation with moving grid methods: the adaptive grid in the physical domain
can be described as a mapping of the uniform reference grid.

Han et al. Page 23

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
2D reference and physical grid cells.

Han et al. Page 24

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
3D reference and physical grid cells.

Han et al. Page 25

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
Segmentation of a phantom image. See text for details.

Han et al. Page 26

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 6.
(a) A phantom image with a hand-shaped object. Red contour shows the true object boundary
and the blue circle is the initial contour for the GDMs. (b) The final adaptive grid of size 64×64
generated using (18). The overlaid blue curve is the final result of the adaptive grid GDM (both
MG-SGDM and MG-TGDM give same results on this grid). (c) Magnified view of the result
in (b) around the touching-finger area. The underlying red contour is the truth. (d),(e) Magnified
views of the corresponding results of the 256 × 256 uniform grid SGDM and TGDM
respectively.

Han et al. Page 27

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 7.
(a) The hand phantom image contaminated by white Gaussian noise. (b) The final adaptive
grid of size 64 × 64 generated using (18); the overlaid blue curve shows the adaptive grid
TGDM result. (c) Magnified view of the result in (b). The underlying red contour indicates the
truth. (d) Magnified view of the corresponding result of the 256 × 256 uniform grid TGDM.

Han et al. Page 28

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 8.
Segmentation of a carpal bone CT image. See text for details.

Han et al. Page 29

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 9.
(a) 2D cross-section of a 3D MR brain image (the overlaid white curve is the extracted cortical
surface); (b) 2D cross-section of the GM membership function; (c) the GVF image force
projected on the same 2D slice (zoomed view); and (d) the reconstructed central cortical surface
using the method described in [10].

Han et al. Page 30

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 10.
Magnified views of the central surface reconstruction results from three different TGDM
implementations. Red: TGDM with fine uniform grid; yellow: TGDM with coarse uniform
grid; blue: TGDM with adaptive grid.

Han et al. Page 31

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Han et al. Page 32
Ta

bl
e

I

C
om

pa
ris

on
 o

f S
G

D
M

 a
nd

 T
G

D
M

 o
n

gr
id

s o
f d

iff
er

en
t t

yp
e

an
d

si
ze

. E
nt

rie
s w

ith
 m

ax
im

um
 e

rr
or

 <
 2

 o
r m

ea
n

er
ro

r ≤
 0

.3
 a

re
 h

ig
hl

ig
ht

ed
 in

 b
ol

d.
G

ri
d

Si
ze

T
im

e
(s

ec
)#

 C
on

to
ur

s#
 V

er
tic

es
M

ax
im

um
 E

rr
or

M
ea

n
E

rr
or

U
ni

fo
rm

 G
rid

 S
G

D
M

25
6

×
25

6
7.

72
2

13
44

2.
13

0.
27

12
8

×
12

8
3.

62
2

66
8

4.
33

0.
61

64
 ×

 6
4

1.
47

2
33

0
10

.9
9

1.
50

U
ni

fo
rm

 G
rid

 T
G

D
M

25
6

×
25

6
9.

04
1

13
49

1.
28

0.
27

12
8

×
12

8
4.

26
1

67
3

2.
06

0.
60

64
 ×

 6
4

1.
72

1
33

7
6.

44
1.

41
A

da
pt

iv
e

G
rid

 S
G

D
M

25
6

×
25

6
11

.6
6

1
17

37
0.

61
0.

06
12

8
×

12
8

5.
12

1
89

4
1.

10
0.

12
64

 ×
 6

4
2.

11
1

47
7

1.
87

0.
30

A
da

pt
iv

e
G

rid
 T

G
D

M
25

6
×

25
6

13
.6

2
1

17
37

0.
61

0.
06

12
8

×
12

8
5.

93
1

89
4

1.
10

0.
12

64
 ×

 6
4

2.
40

1
47

7
1.

87
0.

30

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Han et al. Page 33
Ta

bl
e

II

C
om

pa
ris

on
 o

f u
ni

fo
rm

 a
nd

 a
da

pt
iv

e
gr

id
 T

G
D

M
 o

n
a

no
is

y
im

ag
e.

G
ri

d
Si

ze
T

im
e

(s
ec

)#
 C

on
to

ur
s#

 V
er

tic
es

M
ax

im
um

 E
rr

or
M

ea
n

E
rr

or
U

ni
fo

rm
 G

rid
 T

G
D

M
25

6
×

25
6

9.
04

1
13

59
1.

62
0.

28
12

8
×

12
8

4.
26

1
67

5
3.

53
0.

77
64

 ×
 6

4
1.

72
1

34
7

8.
51

1.
46

A
da

pt
iv

e
G

rid
 T

G
D

M
25

6
×

25
6

13
.6

2
1

16
69

1.
37

0.
24

12
8

×
12

8
5.

93
1

83
7

1.
54

0.
26

64
 ×

 6
4

2.
40

1
41

9
2.

20
0.

34

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Han et al. Page 34

Table III

Performance comparison of TGDM with three different computational grids.
Fine Uniform Grid Coarse Uniform Grid Moving Grid

Average Landmark Error 0.62 mm 0.94 mm 0.71 mm
Computation Time 45 minutes 4 minutes 26 minutes (14 for grid)

Memory Usage 1.2 GB 0.2 GB 0.5 GB
Mesh Size (vertices) 1,416,000 338,000 437,000

Int J Comput Vis. Author manuscript; available in PMC 2009 November 27.

