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Abstract In a recent paper Boykov et al. (LNCS, Vol. 3953,
pp. 409-422, 2006) propose an approach for computing
curve and surface evolution using a variational approach and
the geo-cuts method of Boykov and Kolmogorov (Interna-
tional conference on computer vision, pp. 26-33, 2003). We
recall in this paper how this is related to well-known ap-
proaches for mean curvature motion, introduced by Alm-
gren et al. (SIAM Journal on Control and Optimization
31(2):387-438, 1993) and Luckhaus and Sturzenhecker
(Calculus of Variations and Partial Differential Equations
3(2):253-271, 1995), and show how the corresponding
problems can be solved with sub-pixel accuracy using Para-
metric Maximum Flow techniques. This provides interesting
algorithms for computing crystalline curvature motion, pos-
sibly with a forcing term.

Keywords Crystalline and anisotropic mean curvature
flow - Variational approaches - Total variation - Submodular
functions - Max-flow/min-cut - Parametric max-flow
algorithms

1 Introduction

Boykov et al. (2006) discuss the possibility of evolving
curves and surfaces by their mean curvature by solving
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a discrete minimal surface problem, using a maximum
flow/graph-cut algorithm (Ahuja et al. 1993). This kind of
technique has become very popular in the past year in im-
age processing, for segmentation problems but also stereo
correspondence, etc., in particular since the apparition of
quite efficient algorithms (Boykov and Kolmogorov 2004)
for graphs with low-connectivity, typically in use in this kind
of applications.

The idea of Boykov et al. consists of evolving a contour
C; by finding C; 4, through the minimization of the follow-
ing variational problem

1
in F(C) + —dist (C, C;), 1
min F(C) + - -dist(C, C;) (D

where F(C) is an energy (in general, the length or surface
of C) and dist(C, C;) is (approximately) the L2-distance,
given by

dist (C, Cy) = 2/ dist (p, C)dp,
AC

where AC is the region between the two curves or sur-
faces C and C;. They conjecture that if for instance F is
the Euclidean length or surface of C, then this process will
approximate the Mean Curvature Flow, which is in this case
the gradient flow of F.

It turns out that this approach to the mean curvature flow
has been proposed in the early 90’s by Almgren et al. (1993)
and simultaneously by Luckhaus and Sturzenhecker (1995),
in the following way: we consider ¢ a convex, one homo-
geneous function in RV (with (1/¢)|x| < ¢(x) < c|x| for
some ¢ > 0) and the corresponding anisotropic perimeter of
ECRV

Per ¢ (E) :/ ¢(ve(x))ds,
IE
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where v(x) is the inner normal to E at x and ds the surface
integral on dE (more generally, ds = dHN ™!, the (N — 1)-
dimensional Hausdorff measure). Given a set E, let

dp(x) =dist (x, E) —dist (x, RN \ E)

be the signed distance to the boundary of E (negative inside,
and positive outside). Then, for £ C RN (bounded, or of
bounded complement, so that d E is bounded), and given a
time-step & > 0, we define Tj, E as a solution of

min Perq;(F)—i—l/ lde(x)]dx, )
FCRY h JraE
where FAE is the symmetric difference between the sets F'
and E: this is exactly another way of writing (1). Then the
above-mentioned authors define a discrete-in-time evolution
Ej () starting from E by letting Ej (1) = T}Et/h]E where [-]
denotes the integer part. It is shown in Almgren et al. (1993)
that if £ and ¢ are smooth enough, then as h — 0, d E, (1)
converges (in the Hausdorff sense) to d E(¢) where E(¢) is
the Mean ¢-Curvature Flow starting from E, which is in
some sense, as expected, the gradient flow of the perimeter
Per 4(E) (this is defined as the motion where dE evolves
along its normal by the opposite of its “anisotropic mean
curvature” k%, see for instance Almgren et al. (1993), Bel-
lettini and Paolini (1996) for a complete definition). Conver-
gence results for generalized evolutions are found in Cham-
bolle (2004), Chambolle and Novaga (2007).

The idea, here, is that the Euler-Lagrange equation for
Problem (2) is

hic? (x) + dg(x) =0 (3)

and since dg(x) measures exactly how far the point x has
moved away from d E along its (outer) normal, this may be
seen as a implicit time-discrete scheme for the mean curva-
ture motion.

Remark 1.1 Since

/ |de(x)|dx =f dp(x)dx —/ dp(x)dx
FAE F\E E\F

=/ dE(x)dx—/ deg(x)dx,
F E

we observe that, whenever E is bounded, it is equivalent to
minimize (2) and to solve

1
min Per¢,(F)+—/ dp(x)dx. “4)
FCRN hJrp

It can be shown (see Chambolle 2004) that this algo-
rithm enjoys a monotonicity property, in the sense that if
E C E’ then the minimal (respectively maximal) solution
Ty E is contained in the minimal (resp., maximal) solution

T, E'. This yields the convergence of Ej(¢) to the general-
ized flow, in the sense of viscosity solutions, at least when
this is unique. See also Chambolle and Novaga (2007).

Adding an external force (forcing term along the normal)
in this formulation is quite easy: if dg is replaced in (4) with
a term of the form dg (x) — hg(¢, x), then (3) turns into

dp(x) = —hlc?(x) + hg(x,t)

which means that now, x moves along the normal of / times
the opposite of the curvature plus the forcing term g.

This approach has been widely studied in the past years,
mostly as a tool for the theoretical study of the anisotropic
and “crystalline” mean curvature motion (the crystalline
case is the case where ¢ is non smooth, and is of particular
importance here since the discrete approaches we consider
will only work in such cases). See in particular Bellettini
et al. (2006), Caselles and Chambolle (2006), Chambolle
(2004), Chambolle and Novaga (2008).

In this paper, we provide a framework for computing
such evolutions by maxflow/mincut algorithms. The idea
in Boykov et al. (2000) is to solve a discrete version of (1)
using such combinatorial optimization techniques. However,
such an approach produces a discrete set C defined on a dis-
crete grid, and this has then to be refined a lot to capture the
motion with a good precision. We show that problems (1)
or (2) are related to a convex minimization problem known
in image processing as the “Rudin-Osher-Fatemi” (ROF)
problem (Total Variation minimization with a quadratic pe-
nalization). This connection, exploited both in the contin-
uous and discrete setting, allows simultaneously to (i) use
maxflow/mincut approaches, in a “parametric” way (Gallo
et al. 1989; Hochbaum 2001), to solve efficiently the dis-
crete ROF problem; (ii) solve a discretized (ROF) problem
to derive with a good (sub-pixel) precision an approxima-
tion of the set F which minimizes (2). In her seminal work,
Hochbaum (2001) proposes an approach to solve the ROF
model using parametric maximum-flow. This approach has
been considered in Goldfarb and Yin (2007) and we also re-
fer the reader to Juan and Boykov (2006), Kholi and Torr
(2005) for similar ideas used in computer vision.

In the next section, we recall some results that link Prob-
lem (4) to the celebrated “Rudin-Osher-Fatemi” problem
in computer vision, and provide an approach for its reso-
lution. Then, in Sect. 3, we introduce our discrete setting,
“discrete total variation” functionals, and basically state the
same results as in Sect. 2 in this new setting. These prop-
erties lead to an efficient algorithm for the ROF problem,
which we describe in Sect. 4. It is essentially a variant of the
parametric max-flow algorithm (Gallo et al. 1989) and has
been first proposed by Hochbaum (2001). Its most salient
features are that it solves the problem in polynomial time
and up to an arbitrary precision. Eventually, we propose our
technique for solving surface evolution problems in Sect. 5
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and show numerical examples in Sect. 6. Various appendices
complete the paper. A modified version of the Boykov and
Kolmogorov’s (2004) maximum flow code, that implements
the parametric approach to solves the ROF problem, is avail-
able through the authors’ personal web page.

Let us point out that while a first version of this paper was
under complete rewritting, very similar ideas were published
by Kolmogorov et al. (2007), with applications to the precise
computation of energy-minimizing contours.

2 Minimal Surface Problems and Total Variation
Minimization

The total variation | Du|(§2) of a function u € L' (€2) (in this
section, € is an open subset of RY, N > 1—and typically
N =2, 3), is classically defined by duality as follows (Giusti
1984)

IDMI(Q)Zf [Dul
Q
::sup{/ udive : £ e CLQRY),
Q

IIE(X)IISIVxeﬁ}, (&)

while the perimeter of a set in 2 is the total variation of
its characteristic function. It is well known that level sets of
function which minimize the total variation are themselves
minimal surfaces (that is, sets with minimal perimeter, at
least up to compactly supported perturbations), and this fact
is a main tool for the study of these surfaces and their reg-
ularity (Federer 1969; Giusti 1984). However, the relation-
ship between surfaces with prescribed curvature (minimiz-
ing their perimeter plus an external field) and total variation
minimization with an additional penalization of the func-
tion seems to have been less often noticed, though it relies
on the same celebrated “co-area formula” (Federer 1969;
Giusti 1984):

+o00
|Du|(2) = / Per ({u >z}, Q) dz (6)

—00

Let us just state the main equivalence:

Proposition 2.1 Let u be the (unique) solution of

min ,\/ |Du|+lf lu(x) — g(x)|* dx. @)
Q 2 Ja

ueBV(SQ)

Then, for all 7 > 0, the super-level sets E, = {u > z} and
E! = {u > z} are both minimizers of

min APer (E, Q) + / z—gx)dx. 8)
ECQ E

@ Springer

Conversely, any minimizer E of (8) is between E] and E;:
E; C E C E,. In particular, for all z but a countable set
in R, {u = z} has zero measure and the solution of (8) is
unique up to a negligible set.

The proof of this proposition is relatively easy, and quite
classical, but is out of the scope of this paper. The first part
(the super-level sets are minimizing) is shown for instance
in Chambolle (2004), while the second (the converse) comes
from a comparison principle for the minimizers of (8) which
appears in Alter et al. (2005):

Lemma 2.2 (Alter et al. 2005, Lemma 4, (1)) Let z > z’ and
E,, E, minimize (8) for the respective values z and 7': then
E.CE.

An observation which is clear from the proofs is that
these properties remain true if the term

! 2
5/ lu(x) — g(x)|”dx
Q

in (7) is replaced with a term of the kind [, W (x, u(x))dx
where W is uniformly convex and C! with respect to u(x),
and [,z — g(x)dx is replaced with [, 9W/dz(x,z)dx
in (8). The cases where W is simply convex, or lacks reg-
ularity, are also interesting, and partial results still hold in
these cases: see Chan and Esedoglu (2005), Darbon (2005)
where similar ideas are developed. We mention that theses
principles have also been used in a series of recent papers
for studying the properties of minimizers of (7), see Allard
(2007), Caselles et al. (2007).

Also, in a more general setting, one may replace the total
variation (5) with an anisotropic total variation

/ ¢(Du) := sup{/ udivé : £ € Cg(Q; ]RN),
Q Q

P°(E(x)) =1Vx € Q}

where ¢° is the polar of ¢, defined by ¢°(§) = supy )< v -
& (and @ (v) = supye(z)<; v - §). Then the perimeter in (8) is
replaced by the corresponding anisotropic perimeter

Per¢(E)=/ ¢(DxE>=f ¢ (vp)do,
Q oE

where the last expression holds if E is smooth enough and
vg is then the inner normal to 0 E. This will be useful in
the sequel, since the total variations and perimeters that are
approximated by discrete methods in this paper are strongly
anisotropic.

The equivalence in Proposition 2.1 is interesting for both
studies of problems (7) and (8), since it extends the knowl-
edge of some properties of solutions of one to the other, see
for instance Caselles et al. (2007).
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It also gives a practical way to solve (4). Indeed, we de-
duce that a solution is given by F' = {u < 0} where u is the
minimizer of

min f $(Du) + - / (u(x) — dg(x))*dx )
ueBV(Q) Jqo 2h Jo
at least as soon as 2 is “large enough” (with respect
to E). Problem (9) is the classical convex problem in image
processing known as the “Rudin-Osher-Fatemi” denoising
problem, and can be solved in many ways. Although it does
not seem that standard ways for solving (9) yield very effi-
cient algorithms for the mean curvature flow, we will intro-
duce now a discrete setting in which the resolution of such
problems is very fast using combinatorial optimization ap-
proaches, and leads to efficient algorithms for the crystalline
mean curvature flow (and probably many other applications
in shape computation/optimization).

We now introduce the discrete setting and what can
be seen as the discrete analogs of Proposition 2.1 and
Lemma 2.2.

3 Discrete Perimeters and Discrete Total Variation

Most of the results in these section are well known in
combinatorial optimization, we present them for complete-
ness (Lee 2004; Murota 2003), and, also, to stress the sim-
ilarities with the continuous setting (in the continuous set-
ting, a general overview of these topics is found in Bouchitté
1998). By analogy with this setting, we define a discrete to-
tal variation as a convex, nonnegative function J : RN —
[0, +oc] satisfying a discrete co-area formula:

“+o00
J(u) = / J(x =) dz (10)

where x =2 ¢ {0,1}¥ denotes the vector such that
=9 —0ifu; < zand "9 = 1ifu; <z
By analogy, given E C {1, ..., N} we also define a dis-
crete perimeter as Py (E) := J (x ) where the characteristic
vector x ¥ is defined by X,-E =1ifi € E and X,-E =0 else.
We assume that J is not identically 4+-oco. Under these as-
sumptions, it is easy to derive from (10) the following prop-
erties:

Proposition 3.1 Let J be a discrete total variation. Then:

1. J is positively homogeneous: J(Au) = AJ(u) for any
ueRY and ) > 0.

2. J is invariant by addition of a constant: J(cl + u) =
J(u) for any u eRN andce R, where1=(1,...,1) €
RY is a constant vector. In particular, J(1) = 0.

3. J is lower-semicontinuous.

4. pedJu) e (VzeR, pedl(xluzdy.

5. J is submodular: for any u,u’ € {0, 1}V,
JuvuY+Jwuru)<Jw)+JW). (11)

More generally, this will hold for any u,u’ € RV .

Conversely, if J : {0, I}N — [0, +00] is a submodular func-
tion with J(0) = J(1) = 0, then the co-area formula (10)
extends it to RN into a convex function, hence a discrete to-
tal variation.

In the 4th point, the subgradient 3J (v) of J at v is de-
fined as the set of vectors p such that J(v') > J(v) + p -
(v' — v) for any v'. Equivalently, in this case, it is the set
of p € 3J(0) with J(v) = p - v. See Ekeland and Témam
(1999), Rockafellar (1997) for details.

Remark 3.2 If J is a general real-valued submodular func-
tion with J(0) = 0, then it can be extended in a similar way
to a convex functions of non-negative vectors u € R_’X , by the
same formula as (10) but where the integral on R is replaced
with an integral on R} = [0, 4-00). This is well-known in
optimization theory as the Lovasz’ extension of J (Lovasz
1983), or the Choquet integral (see for instance Lee 2004,
Chap. 8 and Murota 2003).

We prove the proposition in Appendix A. A typical ex-
ample of discrete total variation (and associated perimeters)
is (for u = u; j a2D image in RM*M hence N = M? here)

J(w) = E ltiqg1,j —uijl+ E lui j+1 —uij| (12)
1<i<M 1<i<M
1<j<M 1<j<M

but infinitely many other examples can be built, involving
interaction between neighboring pixels further and further
apart. Also, less standard convex functions enter this frame-
work, such as the “oscillation”

J(u) = Z max{u; j, Uit1,j, Ui j+1, Uit1,j+1)
l<i<M

1<j<M

- Z min{u; j, wit1,j, Ui j+1, Wit+1,j+1}  (13)

1<i<M
1<j<M

which is also, in some sense, an approximation of an
anisotropic total variation. See Appendix B for how the min-
imization of this example can be implemented.

Another particular example is a pairwise circulant os-
cillation involving three pixels (which might be useful for
images defined on 2D hexagons lattice endowed with the
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6-connectivity) defined as follows:

Jwy= Y max{lu;; —uit1jl,
1<i<M
1<j<M
luij — i j1l, i1, j — i j+1l} (14)

The latter reduces to pairwise interactions of the form given
by (12) by considering the following: without loss of gen-
erality we can assume that we have u; j <wujt1,; < u;j11
and by noticing that |u;; — u; jr1| = |u;; — wiyr, | +
|u;y1,j — ui j+1| we get that (14) amounts to

1
Ty =7 Z (i, j —wipr,jl + i j — ui j41l
1<i<M
1=j<M
+ uigr1,j — i j+10).

Using similar arguments, one can show that any circulant
oscillations involving any odd number (greater than 1) of
pixels can be casted into a pairwise interactions form.

If J is a discrete total variation, then the discrete counter-
part of Proposition 2.1 holds:

Proposition 3.3 Let g € RN and let u € RN be the (unique)
solution of

min AJ (u) + l||u — gl (15)
ueRN 2

Then, for all 7 > 0, the characteristic functions of the super-
level sets E, = {u > z} and E| = {u > z} (which are differ-
entonlyifz €e{u;,i =1, ..., N}) are respectively the largest
and smallest minimizer of

N

min AJ(@)+ ) 6;(z— gi). 16
in 1J(0) §< g) (16)

Observe that a consequence of this proposition is that prob-
lems (16) have at most N different solutions, as z runs from
—o00 to 400, however in practice this number can be much
smaller, since the level sets {u = z}, when nonempty, often
contain more than just one vertex (up to containing all ver-
tices when A is large enough). This proposition is shown
in Chambolle (2005), Darbon and Sigelle (2006), but is also
a consequence of the representation we will introduce in the
next section for problems (15) and (16). Again, here, the
quadratic term ||u — g||> can be replaced with any term of
the form Zi W; (u;), with W; strictly convex and C 1 replac-
ing then 6; (z — g;) in (16) with \Ill/ (z). We postpone the proof
of this result to the Appendix C. Let us just mention here that
it relies on the following discrete counterpart of Lemma 2.2
which is a consequence of the submodularity of J:

@ Springer

Lemma 3.4 Let 7 > 7' and 0, 0’ solve (8) for the respec-
tive values z and 7' of the parameter. Then 0 < 0’ (in other
words, {0 =1} C {8’ =1}).

This key property is proved, at least for a particular case
of submodular functions, in Gallo et al. 1989, Lemma 2.4)
(see also the references therein and in particular Eisner and
Severance 1976). We also refer the reader to McCormick
(1996) for further extensions of this approach. A proof based
on stochastic arguments is found in Darbon and Sigelle
(2006), while we present in Appendix C the elementary
proof given in Chambolle (2005).

Quantized Total Variation Minimization Problem We will
discuss in the next section how Problem (15) can be (effi-
ciently) solved by successive minimizations of (16). It seems
that efficiently solving the successive minimizations has
been first proposed in the seminal work of Eisner and Sev-
erance (1976) in the context of augmenting-path maximum-
flow algorithms. It was then developed, analyzed and im-
proved by Gallo et al. (1989) for preflow-based algorithms.
Successive improvements were also proposed by Hochbaum
(2001), specifically for the application in view in this pa-
per, that is, the minimization of (15). We also refer to
the work of Kolmogorov et al. (2007) for detailed dis-
cussions about this approach. (The authors of the present
note rediscovered the latter algorithm (Chambolle 2005;
Darbon and Sigelle 2006), following quite different paths.)

Following Eisner and Severance (1976), and assuming
that one can perform exact floating point operations, one
could solve (16) for all values of z. We will follow a differ-
ent approach and introduce the following quantized version
of Problem (15):

1
min{u(v) + 5l —gl*:veR",
vie{lo...,ln}Vizl,...,N} 17)

where the real levels (lk)Z:O are given. That is, we mini-
mize (15) only among functions that take values in a pre-
scribed, finite set. Without loss of generality, we assume
that o <[y < --- < I, and for simplicity that for all k =
1,....n, Iy — lx—1 = 8 > 0 (adaption to other cases is
straightforward).

Our approach is therefore suboptimal. In fact, the prob-
lem which is solved (exactly) by (17) can also be interpreted
as an approximate problem where the quadratic potential
lv; — gil?/2 is replaced for each node i with a piecewise
affine potential, taking the same values for v; € {lp, ..., [,}.
It is a very general approach, in the sense that if |[v — g||?/2
is replaced with an arbitrary convex (C!, otherwise some
(simple) adaption is required) potential » _, W; (v;), then (17)
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can be tackled in the same way with obvious modifica-
tion (and this is, in general, optimal). However, for some
“simple” potentials and in particular the one in (17), the
method described in Eisner and Severance (1976), Gallo et
al. (1989), Hochbaum (2001) computes the exact solution
(of course, in practice, up to machine precision) and is there-
fore optimal. We will return to this later on, when discussing
the practical implementation, see Sect. 4.3.2.
Concerning (17), the following result is true:

Proposition 3.5 Let v be a solution of (17), and u be the
solution of (15). Then foreachi =1,...,N,iflyo <u; <I,,
lu; —vi| <8/2.

In particular, if lp <m and [,, > M, max; |u; — v;| <§/2.
This means that the quantized problem (17) produces ex-
actly a quantization of the solution of (15). We note that this
approach leads to algorithms which solve our problem with
an L°° a priori error bound. This is quite different from more
standard (PDE-based) techniques (see for instance Cham-
bolle 2005, Sect. 4) which typically will produce a solution
up to some L error. Again, the proof of this proposition is
given in Appendix C.

In the next section, we describe well-known algorithms
for solving (16) and how to use them to solve (15).

4 Parametric and Dyadic-Parametric Maximum Flow
4.1 Graph Representation of Binary Energies

It was first observed by Picard and Ratliff (1975) that binary
Ising-like energies, that is, of the form

Zai’j|0i —9j| —Z,Bieis
) i

could be represented on a graph and minimized by stan-
dard optimization techniques, and more precisely using
maximum flow algorithms. Kolmogorov and Zabih (2004)
showed that submodularity is a necessary condition, while,
up to sums of ternary submodular interactions, it is also a
sufficient condition in order to be representable on a graph.
Sufficient conditions for higher order interactions are given
in Freedman and Drineas (2005). In general, it does not
seem to be known whether any submodular J can be repre-
sented on a graph in the way proposed in Picard and Ratliff
(1975), Kolmogorov and Zabih (2004). For instance, it is
easy for the particular example (13), although it may in-
volve much more than three variables, see Appendix B. Note
that other efficient algorithms exist for minimizing submod-
ular functions (Cunningham 1985; Grotschel et al. 1981;
Iwata et al. 2000; Schrijver 2000).

Let us apply this to (16), in the simpler case where J has
only pairwise interactions, hence:

J(u) = Za[“/(ui - ”j)+~

i,j

The construction we will describe has been presented
in Boykov et al. (2001), Greig et al. (1989), Kolmogorov
and Zabih (2004), Picard and Ratliff (1975).

We consider problem (16), for a given value of . We
build a graph as follows: we consider £ = {1,..., N} U
{s} U {r} where the two special nodes s and ¢ are respec-
tively called the “source” and the “sink”. We consider then
oriented edges (s,i) and (i,7), i =1,...,N, and (i, j),
1 <i,j <N, and to each edge we associate a capacity de-
fined as follows:

C(s,i)=(z—gi)7, i=19~--9N7
ci,)=(—-g)*, i=1,...,N, (18)
c(i, j) = nai ). 1<i,j<N.

By convention, we consider there is no edge between two
nodes if the capacity is zero. Let us denote by £ the set of
edges with nonzero capacity and by G = (V, &) the resulting
oriented graph.

We then define a “cut” in the graph as a partition of &
into two sets S and 7, with s € S and ¢ € 7. The cost of a
cut is then defined as the total sum of the capacities of the
edges that start on the source-side of the cut and land on the
sink-side:

CS,T)=

Z c(u,v).

(n,v)e€
neS,vel

Then, if we let 6 € {0, I}N be the characteristic function of
SN{l,..., N}, we clearly have

N
CS.T)=) (1-0)z—g) +0i—g)?
i=1

N
+ D a0 — 6"
i,j=1

N N
=00 +) 0iz—g)+ ) (2—g)

i=1 i=1

Hence, up to a constant, it is nothing else than the energy
in (16).

So far, the problem has just been reformulated. The inter-
esting part is that very efficient algorithms are available for
finding a minimum cut, based on a duality result of Ahuja
et al. (1993). The idea is to find the maximum flow in the
graph, in the following sense: starting from s, we “push”
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a quantity along the oriented edges of graph, with the con-
straint that the flow along each edge (u, v) should remain
between 0 and ¢(u, v), and that each “interior” node i must
get as much as it sends (while the source s only sends flow
to the network, and the sink 7 only receives). It is clear
that the total flow which can be such sent is bounded from
above, less clear, but not hard to show, that this bound is
given my a minimal-cost cut (S, 7). The duality theorem of
Ford and Fulkerson expresses the fact that this bound is ac-
tually reached, and the partition (S, 7) is obtained by cut-
ting along the saturated edges, where the flow is equal to
the capacity while the possible reverse flow is zero. More
precisely, we can find starting from s the first saturated
edge along the graph, and cut there, or do the same start-
ing from ¢ and scanning the reverse graph, this will usu-
ally give the same solution except for a finite number of
levels z. Several efficient algorithms are available to com-
pute a maximum flow in polynomial time (Ahuja et al.
1993). Although the time complexity of the Boykov and
Kolmogorov’s maximum flow described in Boykov and Kol-
mogorov (2004) is not polynomial, this algorithm outper-
forms others in terms in time computations. We now de-
scribe how these techniques can be adapted to solve effi-
ciently a series of problems, corresponding to varying levels
z=21,...,2n, with the global complexity of a single one.
These approaches follow from the seminal work of Eisner
and Severance (1976) and Gallo et al. (1989), with an im-
provement due to Hochbaum (2001).

4.2 Parametric Max-Flow Algorithm

The main idea of a parametric max-flow is to reuse the flow
found for a given problem for the next one. It works for a
series of problem where the capacities from the sink to the
source are nondecreasing while those from the source to the
sink are non-increasing and all other capacities remain un-
changed. Gallo et al. (1989) show that under these assump-
tions the monotony of the solutions given by Lemma 3.4
hold. In terms of graph it means the set of nodes connected
to the source is growing as the level z is decreasing. They
take benefit from this property by modifying the preflow-
push algorithm of Goldberg and Tarjan (1986) using the
“residual” preflow obtained at the previous stage as a start-
ing point for the next one. Using this strategy, they show
that the total time complexity of solving these series of max
flows is exactly the one for solving a single one.

Of course, the same idea can also be embedded in aug-
mented path-based algorithms, such as the one of Boykov
and Kolmogorov (2004). Let us describe quickly how it
works. A convenient way to describe a flow f ina graph G =
(V, €) is the notion of the residual network G = (V, & ). It
has the same set of nodes as G, but the set of edges with pos-
itive capacity may be different. For each arc the flow sent
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along an edge is deduced from its capacity while it is added
to the capacity of the opposite arc. More precisely, for all
arcs (i, v) we have ¢(u, v) =c(u,v) — f(u,v) + fv, 1)
and ¢(v, u) =c(v, ) — f(v, ) + f(v, u). After one run
of an augmented path-based max-flow algorithm, the initial
graph is usually replaced with a residual network whose sat-
urated arcs (u, v) have been removed (i.e., their capacity has
been set to zero, while ¢(v, u) = c(v, u) + c(u, v) is maxi-
mal).

The implementation of the parametric algorithm is based
on this representation. We start with a minimal level z = 73
in (18) (assuming we want to solve our problem for z1, zo =
721+8,...,2, =21 + (n — 1)), and compute a first resid-
ual network. Then, in this new network, we increase by § all
residual capacities ¢(i,t), i = 1,..., N, and start again the
augmented path algorithm. If ; was in 7, it can not get any
new flow from any node (since all path from s are still sat-
urated at some point), hence nothing will happen there (and
actually, the real implementation of the algorithm does not
even increase the corresponding capacity c(i, t)). In partic-
ular, edges from i to some node of S (which need not be
saturated) do not get any new flow, and the output would re-
main the same if these edges had been deleted before starting
again the algorithm. This remark is crucial for the variant of
this algorithm we will discuss in the next section. On the
other hand, if i was in S, then it gets connected to the sink
t again and flow may pass through. This flow will saturate
some edge closer to the source, so that i may either stay
connected to the source or become connected to the sink af-
ter the next run. This shows again why as z increases, the
corresponding set S decreases.

This procedure is iterated until the last level is reached.

For simple cases (Ahuja et al. 1993 for instance, when
the complexity is deduced from the properties of a nonde-
creasing distance function) one can verify that the global
complexity of the parametric max-flow algorithm is the one
of a maximum flow plus O(Nn). The latter corresponds to
the number of operations required to update the capacities
and retrieve the solution.

To our knowledge, the general case remains unknown.
Considering this scheme applied with the algorithm of
Boykov and Kolmogorov (2004), we do not know the com-
plexity. However, we observe a much faster convergence,
compared to a naive approach that consists in re-creating a
new graph for each z; (we take into account the monotonic-
ity property by deleting from this new graph the nodes where
the solution is already found to be below the level zx_1 < zk,
see Darbon and Sigelle 2006).

This approach provides a first, fast method for solv-
ing (17). See Sect. 4.4 for some experiments. Note that Kholi
and Torr (2005) describes an efficient approach to recom-
pute a maximum-flow that handles arbitrary changes in the
graph. The next section describes a slightly faster approach
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which can even be modified to produce solutions with high
precision (up to machine precision), see Sect. 4.3.2.

4.3 Dyadic-Parametric Max-Flow Algorithm
4.3.1 A Fast Algorithm for (17)

It was first observed by Hochbaum (2001) that this paramet-
ric approach could be improved according to the following
observation: a pixel only needs to be involved in O (log,(n))
computations (by a dichotomy approach) instead of O (n).
this fact has also been noted and used in Chambolle (2005),
Darbon and Sigelle (2006). For the sake of clarity we adopt
a dyadic scheme to implement this dichotomic approach and
we assume n = 2< — 1 for some Q > 1.

The algorithm works as follows. Instead of starting with
z1 we begin with z(,41)/2, and we compute the max-flow.
We find a set Sy \ {s} of pixels i with value u; > z(u41)/2
and a complement 77 \ {r} of pixels i with u; < zZ(u41)/2-
On the first one, we solve now for the level z3(,+1)/2, while
on the second one we solve for the level z(;41)/4. This can
be done in many ways: in Chambolle (2005), a new (dis-
connected) graph with N nodes was built to implement the
corresponding energy, while in Darbon and Sigelle (2006)
a more clever (and faster) approach, separating the various
connected components of these two sets, was implemented.
It is more efficient, however, to try to “continue” the pre-
vious graph-cut, as described in Hochbaum (2001) in the
framework of a preflow-push implementation. In an aug-
mented path algorithm, we are left with a residual graph,
such that no arc from Sy to 77 has positive capacity.

We then continue as follow: we first set to zero the ca-
pacities of the residual edges from 7 to & which means,
we eliminate the corresponding edge, ending up with a to-
tally disconnected graph. Then, for i € S; we increase by
A = Z3(u+1)/2 — Zn+1)/2 = Zm+1)/2 — Z(n+1)/4 the capacity
c(i, t) while if i € 7] we increase by A the capacity c(s, i).
We continue the augmented path algorithm, to find a new cut
(82, 77). The discussion in the previous section shows that
ifi e §1NSy, then u; > Z3(n+1)/2» ifi e S1N7y, Zn+1))2 =
uj <2312, i i € TH NSy, Zua1y/2 = Ui > Z(na1)/4 and
ifi e Ty N, uj < 2(nt1)/4-

After the gth step, we are left with a new cut (S,, 7).
Again we disconnect this partition, setting to 0 the capaci-
ties c(i, j) fori € 7, and j € §,), replace A with A /2 and
update the capacities c(i, t) and c(s, i) as before: if i € S,
c(i, t) is increased by A, while if i € ’]:1, c(s, i) is increased
by A. We repeat this until ¢ = Q: in the end, we have parti-
tioned the nodes into sets where u; is between two consecu-
tive values of zi.

Our modified version of the maximum flow code of
Boykov and Kolmogorov (2004) that has been adapted for
solving efficiently problem (17) is available through the au-
thors” web site.

Again, Hochbaum shows that this procedure, imple-
mented upon the preflow-push algorithm, has a complexity
which is roughly the same as one of a max-flow computa-
tion, plus O (N Q) (that is, O(N log, n)), leading to a glob-
ally polynomial algorithm for (17). We do not know if this is
still true for the variant we have implemented upon Boykov
and Kolmogorov’s algorithm, but it clearly outperforms the
previous implementations presented in Chambolle (2005),
Darbon and Sigelle (2006) in which new graphs were re-
built at each step (see the next subsection).

4.3.2 Towards the Exact Solution of (15)

In fact, it is observed by Eisner and Severance (1976) and
Hochbaum (2001) that a variant of the parametric algorithm
can produce the exact solution of the problem. We now ex-
plain how the code can be modified (as well as the stan-
dard parametric approach, see Eisner and Severance 1976)
in order to produce (still in polynomial time in its preflow-
push version, Hochbaum 2001) the exact solution of (15),
up to machine precision. The idea is to update the capac-
ities, not with a constant factor A, but in a way to detect
the “breakpoints”, that is, the values of z for which the so-
lution to (16) is multiple (or, equivalently, changes), which
are nothing else as the values {u; :i € 1,..., N} of the exact
solution to (15). To be more specific, assume 7 > 7/, and 0,
6’ are solutions to (16) with the values 7 and 7’ respectively.
From Lemma 3.4, we know that 8 < 8’. If § and 8’ are dif-
ferent, there must a breakpoint in [, Z]. Then, there are two
closed sets [z1,22] 22, [2],25]1 22/, with 2} <2}, <z1 <22
such that for z € [z1, z2], 0 solves (16) while if z € [z}, 25,
6’ solves (16). In particular, the minimal energy in [z}, z}]
is given by

N
e(z)= (AJ(O_’) - Zé,-’gi> +zt{i €{l,...,N}:0/ =1}

i=1

while if z € [z1, z2], it is

N
e(z) = (AJ(O_) — Zéig,') +z{ie{l,...,N}:0; =1}

i=1

which has a strictly lower slope, since & < 6’ and they are
different. Let 2 € [Z/, Z] be the value for which ¢’ = e, and
let us solve (16) for this new value: then, either the energy
is strictly below e(Z) = ¢€/(Z), meaning that the solution 0
is neither & nor §’, and there are two breakpoints, one in
[Z/, 2) and the other in (Z, Z]: then we will divide again these
intervals. Or, the new energy is equal to the common value
e(2) = €/(2), which means that 6 and 6’ are respectively the
minimal and maximal solution of (16) for z =7z and Z is a
breakpoint.
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In practice, it seems that implementing this dichotomic
search will be expensive (although still polynomial), since
one needs to compute the values of the energy (and more
precisely, of (AJ(6) — Zf-v:léigi) and #{i € {1,...,N}:
0; = 1}), for each new minimizer 6 of (16) which is com-
puted. However, the residual graph makes it easier. Assume
we start at a first stage with 7’ < min; g; and Z > max; g;.
Then, §; = 0 while 6 = 1, for all i, and one easily checks
that the new value Z for which e(Z) = ¢/(Z) is simply the
average (ZlNz 1 &)/ N. In the graph representation, it means
that one updates the capacities c(s, i) and c(i, t), by adding
a value A to either all c¢(s, i) or all ¢(i, ¢) in such a way that
the new values satisfy  ; ¢(s,i) = D _; ¢(i, 7). One can eas-
ily show that this is the correct update to perform, also at the
subsequent steps. We now describe two ways to implement
this version.

A first variant of the dyadic algorithm described in
Sect. 4.3.1 is as follows. Recall that each time a maximum-
flow is computed, the solution is refined. This means that
the level sets that are not yet within the given precision are
divided into two subsets (one connected to the source, one
connected to the sink), in which a new value will be com-
puted. If one of these subsets is empty, this means that a
breakpoint has been discovered (i.e., the value on the level
set was the exact value of the solution). The corresponding
level set should not be considered for further optimization
and is thus removed from the graph.

For each level set that is actually divided into two non-
empty new sets, the value in each new set is updated as fol-
lows: we average the values of the residual capacities from
the source minus the residual capacities to the sink, and we
add this average to the old value in the level set, while updat-
ing the residual capacities accordingly (as explained above).
After this update, we can compute the largest residual ca-
pacity from the source or to the sink: if this is less that the
given precision, then we know that the value of this level is
correct up to the precision. Then, again, this set should not
be considered for further optimization. It is thus removed
from the graph.

The latter procedure can be further improved using ideas
similar to the ones described in Darbon and Sigelle (2006).
Note that the way the above process adjusts the levels of the
next cuts does not take into account the geometry. Indeed,
only the current gray-level values, and the associated level
sets, are considered for the update. However, following Dar-
bon and Sigelle (2006), one sees that once a maximum-flow
is computed it separates the problem into smaller problems
that involve the connected components of the level sets of
the current solution. More precisely, after a cut, the solu-
tion restricted to a connected component can be computed
independently from any other connected components. This
means that the update of the residual capacities can be per-
formed independently on each connected component of the
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level sets rather than on each level set. One can expect that
less iterations are needed to reach a solution with the desired
precision since the refinement is performed in a finer way.

4.4 Comparisons

We now compare these different approaches for solving the
discrete ROF model (7). Two kinds of discrete total varia-
tions are considered: the first one is given by example (12),
i.e., the image is defined on a regular lattice endowed with
the 4-connectivity while the second one assumes the 8-
connectivity. For the latter, the interactions terms involving
the 4-nearest neighbors are weighted by 1 while diagonal
interaction terms are weighted by ﬁ

Two parametric maximum-flows algorithm have been
implemented. The first one relies on the push-relabel (PR)
approach with the highest label strategy, a gap strategy and
a global relabeling heuristics (that we implemented, see
for instance Cormen et al. 2001 and Ahuja et al. 1993,
p- 233 for more details), while the second is our adap-
tation of the maximum-flow implementation of Boykov-
Kolmogorov (BK) (2004). We have considered the fol-
lowing versions of the parametric approach: the standard
parametric one, the dyadic-parametric version (Sect. 4.3.1),
the Eisner-Severance/Hochbaum one (referred to as ESH)
and its connected component variation (referred to as ESH
CC). Note that the ESH versions have only been imple-
mented upon the BK maximum-flow algorithm, which ex-
perimentally appears to be much faster that the standard
push-relabel algorithm, as already observed in Boykov
and Kolmogorov (2004). We also compare with the previ-
ous approach of Darbon and Sigelle (2006). Time results
for these seven different algorithms are given for an Intel
Core2 Q9650 processor running at 3 GHz. Figure 1 de-
picts two images, cows (400 x 600 and 800 x 1200) and
girl (256% and 5122) used for our experiments. The orig-
inal grey-level values are integer values ranging from 0
to 255. Minimizers with the 8-connectivity for the girl and
cows images are respectively depicted in Fig. 2 and Fig. 3
for several regularization parameters used for our experi-
ments.

Time results with different regularization parameters for
4- and 8-connectivity, and with a precision of 1 on the re-
sult, are respectively given in Table 1 and Table 2. Results
show that the dyadic and ESH-based approaches clearly out-
performs the pure parametric one by an order of magnitude.
We note that the Push-Relabel-based version of the para-
metric approach is much more dependent on the regulariza-
tion parameter A than BK’s. We also observe that the per-
formance order depends on the content of the image and on
the value of the regularization parameter. Indeed, for small
regularization (A = 10), PR performs better for cows but
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Fig. 1 Two original images:
(a) cows, (b) girl

(a) (b) ()

Fig. 2 Regularized gir/ (2562) images: (a) A = 10, (b) A =20, (¢) A =60

Fig. 3 Regularized cows (400 x 600) images: (a) A = 10, (b) 1 =20, (¢c) . =60
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Table 1 Time results for

several regularization parameter Images (size) Approach =10 A=20 A =60
A using 4-connectivity and
a precision of 1. Time results are Cows (400 x 600) Darbon-Sigelle 0.57 0.69 1.03
in seconds Parametric PR 3.08 4.63 8.34
Dyadic parametric PR 1.05 1.65 3.81
Parametric BK 3.74 3.94 4.41
Dyadic parametric BK 0.34 0.43 0.59
ESH parametric BK 0.38 0.45 0.73
ESH CC parametric BK 0.41 0.50 0.83
Cows (800 x 1200) Darbon-Sigelle 2.4 291 4.55
Parametric PR 14.81 24.65 111.35
Dyadic parametric PR 5.58 9.36 23.21
Parametric BK 16.25 17.03 19.02
Dyadic parametric BK 1.42 1.81 2.75
ESH parametric BK 1.76 2.04 3.00
ESH CC parametric BK 1.85 2.31 3.61
Girl (256%) Darbon-Sigelle 0.16 0.19 0.27
Parametric PR 0.95 1.06 1.3
Dyadic parametric PR 0.34 0.54 0.86
Parametric BK 0.83 0.88 1.03
Dyadic parametric BK 0.08 0.10 0.14
ESH parametric BK 0.08 0.10 0.16
ESH CC parametric BK 0.09 0.13 0.18
Girl (512%) Darbon-Sigelle 0.63 0.79 1.25
Parametric PR 8.65 20.01 21.26
Dyadic parametric PR 2.07 3.58 5.03
Parametric BK 4.09 4.27 4.87
Dyadic parametric BK 0.41 0.51 0.81
ESH parametric BK 0.44 0.56 0.94
ESH CC parametric BK 0.50 0.65 1.11

worse on girl. This order is reversed for larger regulariza-
tion. The overall performance of these two versions are com-
parable.

Considering the dyadic approaches, the order is stable
over regularization parameters and image contents: the best
one is the dyadic parametric BK algorithm followed by the
Darbon-Sigelle approach while the dyadic parametric PR
comes third. Finally note that our implementation of PR
parametric maximum-flow with the highest label approach
has not been fully tuned. We refer the reader to Goldfarb
and Yin (2007) where an efficient implementation of a Push-
Relabel approach is described for TV minimization.

At precision 1, we observe that the dyadic parametric ap-
proach relying on BK is also faster the ESH versions. This
is probably explained by the fact the speed up that we get by
computing more cleverly the capacities does not compensate
the computational cost of these updates. We shall check that
this is not true anymore for higher precisions.

Tables 3 and 4 present the time results with 4- and
8-connectivity for minimizers that have a precision of
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278 using the three fastest approaches: namely the dyadic
parametric version using BK, the ESH and the connected
component-based ESH ones. These experiments show that,
at this level of precision, the ESH parametric version run-
ning BK performs similarly as the simpler dyadic approach.
We also note that the connected component-based ESH ver-
sion turns out to be faster the standard ESH approach. This
behavior is amplified when using a 27'© precision (which,
for these experiments, roughly corresponds to the machine
precision) as can be seen in Tables 5 and 6. At this precision
level, spending time to perform better updates clearly im-
proves the performances, compared to the direct dyadic ap-
proach. This is further improved when using the connected
component version.

Concerning the actual results, results with a precision
of 1 for the dyadic or parametric approaches are excellent
and cannot be distinguished visually from the solutions with
very high precision (this is also true for the shape evolution
examples shown later in the paper, although it is less obvious
in this case). However, note that the possibility of computing
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Table 2 Time results for

several regularization parameter Images (size) Approach =10 A=20 A =60
A using 8-connectivity and
a precision of 1. Time results are Cows (400 x 600) Darbon-Sigelle 1.06 1.34 2.18
in seconds Parametric PR 5.24 11.89 14.10
Dyadic parametric PR 2.68 4.45 9.16
Parametric BK 7.99 8.45 9.67
Dyadic parametric BK 0.71 0.98 1.43
ESH parametric BK 0.72 1.08 1.69
ESH CC parametric BK 0.77 1.19 1.93
Cows (800 x 1200) Darbon-Sigelle 4.41 5.84 10.06
Parametric PR 83.67 157.72 174.13
Dyadic parametric PR 14.80 29.40 63.46
Parametric BK 30.24 32.17 37.49
Dyadic parametric BK 3.33 4.32 7.15
ESH parametric BK 3.47 4.47 8.74
ESH CC parametric BK 4.01 5.01 10.93
Girl (2562) Darbon-Sigelle 0.29 0.37 0.57
Parametric PR 2.90 5.03 6.83
Dyadic parametric PR 0.82 1.10 1.84
Parametric BK 1.65 1.80 2.24
Dyadic parametric BK 0.21 0.27 0.40
ESH parametric BK 0.21 0.23 0.36
ESH CC parametric BK 0.23 0.30 0.47
Girl (5122) Darbon-Sigelle 1.24 1.63 2.67
Parametric PR 23.50 40.12 78.48
Dyadic parametric PR 5.74 7.36 12.51
Parametric BK 7.05 7.77 9.87
Dyadic parametric BK 0.97 1.34 2.25
ESH parametric BK 0.94 1.34 2.24
ESH CC parametric BK 1.13 1.54 2.92
Table 3 Time results for )
several regularization parameter Images (size) Approach A=10 A=20 A =60
A using 4-connectivity and
a precision of 2-8 Time results Cows (400 x 600) Dyadic parametric BK 0.79 0.97 1.37
are in seconds ESH parametric BK 0.85 1.22 1.66
ESH CC parametric BK 0.79 1.01 1.25
Cows (800 x 1200) Dyadic parametric BK 3.89 4.86 7.74
ESH parametric BK 4.77 9.64 15.60
ESH CC parametric BK 3.79 9.21 15.26
Girl (2562) Dyadic parametric BK 0.18 0.23 0.34
ESH parametric BK 0.16 0.20 0.31
ESH CC parametric BK 0.14 0.17 0.28
Girl (5122) Dyadic parametric BK 0.96 1.26 1.95
ESH parametric BK 0.91 1.24 2.09
ESH CC parametric BK 0.71 1.06 1.83
solutions of the TV — L? problem with a very high preci- TV regularization through proximal algorithms (forward-

sion may be of particular interest for solving some image  backwards splitting, see Combettes and Wajs 2005 or Beck
restoration (deconvolution, reconstruction) problems with and Teboulle 2009 and Nesterov 2004, 2007).
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Table 4 Time results for
several regularization parameter
A using 8-connectivity and

a precision of 28, Time results
are in seconds

Table S Time results for
several regularization parameter
A using 4-connectivity and

a precision of 271, Time results
are in seconds

Table 6 Time results for
several regularization parameter
A using 8-connectivity and

a precision of 271°. Time results
are in seconds

5 Surface Evolution Using Parametric Maximum Flows

We now show how all this can be used to approximate the
mean curvature flow of an hypersurface (in some anisotropic
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Images (size) Approach A=10 A =20 A =60
Cows (400 x 600) Dyadic parametric BK 1.62 1.98 2.98
ESH parametric BK 1.64 2.37 3.34
ESH CC parametric BK 1.33 1.90 3.21
Cows (800 x 1200) Dyadic parametric BK 7.85 9.61 15.85
ESH parametric BK 8.14 9.67 16.61
ESH CC parametric BK 8.13 8.50 15.81
Girl (2562) Dyadic parametric BK 0.42 0.51 0.75
ESH parametric BK 0.39 0.47 0.62
ESH CC parametric BK 0.34 0.42 0.60
Girl (5122) Dyadic parametric BK 2.00 2.64 4.64
ESH parametric BK 2.02 2.56 4.77
ESH CC parametric BK 1.83 2.54 5.29
Images (size) Approach A=10 A=20 A=60
Cows (400 x 600) Dyadic parametric BK 1.61 1.88 2.62
ESH parametric BK 0.85 1.22 1.66
ESH CC parametric BK 0.79 1.02 1.26
Cows (800 x 1200) Dyadic parametric BK 10.10 12.43 17.84
ESH parametric BK 5.17 10.49 16.80
ESH CC parametric BK 3.79 9.38 16.09
Girl (256%) Dyadic parametric BK 0.48 10.54 0.84
ESH parametric BK 0.17 0.22 0.33
ESH CC parametric BK 0.15 0.18 0.28
Girl (5122%) Dyadic parametric BK 1.69 2.24 3.65
ESH parametric BK 0.93 1.29 2.18
ESH CC parametric BK 0.74 1.07 1.90
Images (size) Approach A=10 A=20 L =60
Cows (400 x 600) Dyadic parametric BK 2.92 391 5.88
ESH parametric BK 1.79 2.51 3.47
ESH CC parametric BK 1.40 2.44 3.26
Cows (800 x 1200) Dyadic parametric BK 16.19 21.76 31.31
ESH parametric BK 9.19 11.27 19.67
ESH CC parametric BK 12.86 11.00 18.31
Girl (256%) Dyadic parametric BK 0.82 0.98 1.60
ESH parametric BK 0.40 0.50 0.64
ESH CC parametric BK 0.34 0.42 0.63
Girl (512?) Dyadic parametric BK 3.36 4.72 8.58
ESH parametric BK 2.12 3.04 5.10
ESH CC parametric BK 1.90 2.82 4.93

geometry). Boykov et al. (2006) simply solve (1) by a sim-

ple graph cut (one run of the maxflow algorithm), so that the

output is a discrete set. In this way, subpixel motion cannot
be grasped (and in particular surfaces of very low curvature
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Fig. 4 Evolutions with a square
anisotropy (thick line: original
curve, left: iterations 10, 20, 30,
right: iterations 50, 100, 150,
200, 228)

NS

may remain stuck). We propose to use (15) as a discretiza-
tion of the continuous problem (7) (for an anisotropy ¢ re-
lated to J) and then to estimate (by a linear interpolation)
the position of the new hypersurface with a subpixel preci-
sion. In particular, it means that we estimate, for the next
step, the new distance function to the zero level set of the
function obtained at the previous step. Hence our algorithm
is as follows: the initial surface is given as the zero level
set of a function u°, defined on our discrete grid. We fix a
time-step & > 0, and assume for the sake of clarity that our
discrete grid has a spatial resolution of 1. Given a discrete
perimeter J, we alternatively, for n > 0;

e Compute the signed distance function d” to the bound-
ary of {u”" < 0}, by (for instance) a fast-marching algo-
rithm (Sethian 1999; Tsitsiklis 1995).

e Solve the discrete version of (9):

min J @) + — lu — " | (19)
u 2h
by the dyadic-parametric max flow algorithm, and call

1"t the solution.

Then, the surfaces I'" = {u” = 0} will be approximation
of the anisotropic curvature flow with normal velocity x?
if J is an approximation, in some variational sense, of the
perimeter Per .

For instance, the two-dimensional function

Ty = "luirrj — uij|+ luijr1 = uij| (20)
iJj

is an approximation (as the grid step goes to zero), of the

anisotropic perimeter

Per ¢ (E) =/BEIV1|(X)+ [v2|(x) dx

corresponding to the anisotropy ¢ (v) = |vi| + |v2|. Less
anisotropic examples are easily built by considering more

interactions (in other directions) in the definition of J (but
this is not the only way).

The crystalline curvature motion in the sense of Bellettini
and Paolini (1996) is obtained by computing in the first step
a non-euclidean distance function, and more precisely, the
signed distance function given by the polar of ¢

d?(x) = inf ¢ = ) — inf §°(y — ) Q1)

with ¢°(§) = supy ()< v - § (see Bellettini and Paolini 1996
for details). In the case of ¢(v) = |vi| + |v2|, one has
¢°(v) = max{|vi], 2|} and the fast marching algorithm has
to be modified accordingly to compute the appropriate dis-
tance (see Fig. 4 for an example of this crystalline flow).

Numerous improvements to the algorithms can be done:
for instance, one may compute the distance function up to
some given threshold (that might be adapted to the cur-
rent shape), and solve the Total Variation problem only in
a neighborhood of the surface (where |d"| is small).

Also, an additional normal force g (depending on the
space and the time) is implemented by replacing (19) with

1
minJ(u)+E||u—d”+hg”||2. (22)
u

6 Numerical Examples
6.1 (Anisotropic) Curvature Flow

We have computed several 2D and 3D evolutions with
this technique. The simplest cases correspond to the square
(in 2D) or cubic (in 3D) anisotropy, that is, with ¢ (v) =
> i lvil. Indeed, these cases are discretized on graphs with
only nearest-neighbour interaction, for instance, in 2D, the
discrete energy is given by (20). The two examples illus-
trated by Figs. 4 and 5 follow the definition of the crystalline
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Fig.5 3D evolutions with a
cubic anisotropy: original shape
and shape at times 1, 4, 7, 10

Fig. 6 Detail of the “facet
breaking” at time 1

motion in Bellettini and Paolini (1996); in each case, the dis-
tance function is computed using the polar ¢°: in practice, a
fast-marching algorithm is implemented with a local solver
implementing the discretization of ¢ (Vd?) = 1, taking into
account the direction of the incoming characteristics just as
in the isotropic case (Rouy and Tourin 1992).

In the 3D example of Fig. 5, one observes the celebrated
“facet-breaking” phenomenon: a L-shaped facet of the orig-
inal shape breaks into two rectangular facets which evolve
at different speed, as predicted, and observed, in Bellettini
et al. (1999), Paolini and Pasquarelli (2000), see Fig. 6.

It is possible, now, to compute “more isotropic”” motions,
or motion with more complex anisotropies (see Boykov and
Kolmogorov 2003 for a general discussion on this topic).
For instance, a hexagonal anisotropy can be implemented
using nearest-neighbour interaction on a triangular lattice:
see Fig. 7, left. Nearly-isotropic evolutions are computed us-
ing more complex interactions, for instance, involving next-
nearest neighbours and even further neighbours: see Fig. 7,
right. However, in this last case, one still sees that the evolu-
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Fig. 7 Evolution with a hexagonal anisotropy (left), and
nearly-isotropic curvature motion (right), both at times 0, 20,
40, 60, 80, 100

tion looks crystalline, with a shape presenting a small num-
ber of facets after some time.

6.2 Flows with Forcing Term

The mean curvature flow with constant volume is the sim-
plest flow with a forcing term that can be implemented us-
ing this approach with little extra cost. In this case, a normal
force is added (following (22)) which keeps the volume of
the shape equal to the volume of the initial shape. In this
particular case, this is simply done by thresholding the solu-
tion u of (19) not at the level u = 0, but at the level s such
that |{u < s}| = |{d" < 0}| =V, V being the initial volume.
Such an evolution (with a square anisotropy) is depicted in
Fig. 8.

We briefly show, without entering into the details, two
other flows with forcing term computed with this technique.
The first one is a basic 2D implementation of a crystal
growth problem (Stefan’s system of equations). We have fol-
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lowed the variational numerical method described in Alm-
gren (1993), where it is implemented in a more standard
way. At each step, we solve problem (22) where the external
forcing field g" depends on the temperature and is recom-
puted at each iteration. Results are shown in Fig. 9.

Our last example is an implementation of an active con-
tour (snake) model, more precisely a “balloon”, firstly intro-
duced in Cohen (1991). Here, the curve follows the gradi-
ent flow of a modified perimeter which takes into account
the intensities of the original image (and is cheaper when
the curve goes through higher gradients). An internal (here,
constant) inflating force is added in order to try to invade
a whole region of interest. Figure 10 depicts an image of a
heart in which we wish to segment a vein. We initialize the
process with a little circle in the middle of the image. As is,
this implementation is probably not very efficient with re-
spect to more standard snake models, but this very simple
approach gives good results.
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Fig. 8 Evolution of a volume
preserving crystalline curvature
motion

Fig. 9 Two examples of 2D
crystal growths

Fig. 10 An image of the heart
(left) and the segmentation of a
vein using an active “balloon”
(right, final state)

(2007) and Eisner and Severance (1976). We were unaware of the first
one, and had missed the particular relevance of the second.
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Appendix A: Proof of Proposition 3.1

In this appendix, we prove shortly Proposition 3.1. Let us
prove the lower-semicontinuity and the last assertion: first
of all, J is lower semicontinuous because if u" — u, then
forall z ¢ {u;,i=1,..., N}, y =2} = =2} 45 soon as n
is large enough. Hence, J(x tu'>z}y J (x> for ae. z,
so that (Fatou’s lemma)

+00
J(u) :/

+00
< liminf/ J(x ">y gz =liminf J (u").
N n— 00

T dz

n—oo

(If J is everywhere finite, then it follows from the convexity
that it is locally Lipschitz-continuous.)

Let us now show the submodularity: assume first u and u’
are binary. Then, u; +u; = u; Vu, +u; nu; =0ifu; vu, =
0, 1if u; Vu; =0but u; Auj =1, and 2 if u; Auj = 1.
Hence, by (10),

2
T —I—u/) =/ J(X{uvu’+u/\u’zz}) dz
0

=Jwuvu)+JuAru).
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On the other hand, since J is 1-homogeneous and convex,

Tu—+u) =2J(“ J;” ) < 2<%J(u) + %J(u’))

=Jw) +JW).

Hence (11) holds. If now u, u’ are not binary, we still have

Juvu)+Jwunu)

+00
:/ J(X{uvu/zz})+J(X{Lmu’2z})dz

—00

+o00
:/ J(X{“ZS} \/X{M/ES})+J(X{MZZ} /\X{M’Zz})dz

—00

+00
< / T(x "=+ I (x =) dz = T ) + J ().
—0oQ

We now want to consider the converse assertion, that is,
the convexity of the extension through (10) of a nonnegative
submodular function. We consider J : {0, l}N — [0, +o0] a
submodular function, i.e., such that (11) holds for any pair
of binary vectors u, u’. We assume moreover that J(0) =
J(1) =0, and we still denote by J its extension to RN by the
co-area formula (10). (We observe that thanks to J(1) =0,
if u € {0, 1}V then (10) is already true.)

Then J is convex: hence it is a “discrete total variation”.
This extends quite easily to the continuous case. In the dis-
crete case, however, this result is well known and usually
proved in the framework of the linear optimization theory,
using duality (Murota 2003; Lee 2004). We propose here a
very elementary proof.

First of all, points 1-3 of the thesis of Proposition 3.1 are
deduced only from (10) and therefore hold for J even if it
were not convex.

Let us now show the convexity of J. Since it is
1-homogeneous it is equivalent to show that

Ju+v)<Jw)+ J(@) (23)

for any u, v € RY. We first consider nonnegative, integer-
valued vectors u, v. We observe that if u is integer-valued,
then J can be defined by the following inf-convolution for-
mula:

J(u) =min{ZJ(9’) n=0.0' {0, )V, 0 =uy.
=1 =1
(24)

Indeed, denote by H (1) the right-hand side of (24). Since

J(u) = /OO ](X{u>z})dz — Z J(X{uzl}),
0

=1

@ Springer

where n = max; u;, we have H(u) < J(u). The reverse in-
equality will hold if we show that the minimum in (24) is
reached precisely for n = max; u; and 6 = x =} (and, of
course, any permutation of these), or, equivalently, if we
show that it is reached for a monotone sequence of binary
vectors 6'.

This follows from the submodularity of J. If J is strictly
submodular (that is, if the inequality in (11) is strict when-
ever the vectors are not ordered), then it is obvious: indeed,
if the minimum in (24) is reached for (91)?:1 and there are
1,1 such that 6! £ 6" nor 6! # 6", then, replacing 6/ with
6! A6" and 6" with 6! v 6! we see that we strictly decrease
the value of the minimum, a contradiction. Hence the mini-
mum is reached for 0/ = x =l [ =1, ... n = max; u;.

If J is not strictly submodular, we choose a strictly
submodular function J (for instance, J ) = g(Z,N:1 6;),
where g is a strictly concave function with g(0) = g
(N)=0), and for ¢ > O small we let J, = J + ed. Then, the
minimal value in (24) for J, will be attained for ! = y #=1},
l=1,...,n =max; u;. Passing to the limit, we still get that
H (u) = J(u) so that (24) is true.

Let us now show (23) for a general pair of vectors
u,v. We may obviously assume that J(u) < +oo and
J(v) < +o00. In particular (since u and v take at most N
value) we have J(x®>%) < 400 and J(x1">%) < 400
for any z € R. Let m < min{u;,v;,i =1,...,N} and M >
max{u;,vj,i =1,...,N}. We have u =m1+fniw x>z
and the same holds for v. Now, for ¢ > 0 small, we let

u® =ml+e Z x#=kehand

keZ
m<ke<M

vv=ml+e Z X{U>k€}»
keZ
m<ke<M
clearly, u® — u and v®* — v as ¢ = 0, and J (u®) — J(u),
J(®) — J(v). Now, letting uj, = (u® —ml)/e and vy =
(v® —m1)/e, we have two non-negative integer-valued vec-
tors to which we can apply (23), and we find

JW® +v%) =eJug+vy) <e(Jwg) + J(v§))
=Jw®) + J(°).

Since the right-hand side converges to J(u) 4+ J(v) as
& — 0, and J is Ls.c., we deduce (23). Hence J is convex.

Remark A.1 By standard convex analysis (see e.g. Ekeland
and Témam 1999; Rockafellar 1997), we deduce that

J(u)=supq-u
qgek
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where
N

K={qeRN:> g6 <J®). V0e{0. 1}V t =0J(0).
i=1

the subgradient of J at 0. Then, it is standard that for any u,
0J(u)={q € K :q-u=J(u)} and using (10) one shows
easily that ¢ € 3J(u) = q € 3J(x"*>*}) for any s € R
(point 4 of Proposition 3.1).

Appendix B: Representation of Submodular Functions
on Graphs

Following Kolmogorov and Zabih (2002, 2004), we say that
the (necessarily submodular) J (61, ...,6y) can be repre-
sented on a graph if there exists M additional nodes i €
{N+1,...,N+ M} and weights o; ; >0, B; e R (i, j €
{1,..., N + M}) such that for any 6 € {0, 1},

J(©O1,...,0n)

N+M N+M

= Zal/(9_9)++zﬂll

ON41sms 0N+M)E{0 M

(25)

The energy in the right-hand side of (25) is clearly rep-
resentable on a graph, following the standard construction
in Sect. 4.1: hence (25) shows that J can be represented on
a graph involving M additional nodes. Of course, this is re-
ally interesting only if M remains small, at most of the order
of N. In Kolmogorov and Zabih (2002, 2004), it is shown
that this is possible if N < 3 (and, of course, for total ener-
gies that are the sum of representable energies), at the cost
of adding M = 2 additional nodes. See also Freedman and
Drineas (2005), Boros and Hammer (2002).

Note, however, that it is not difficult to build many other
examples, involving more than 3 variables, which still enter
this category. For instance, the energy in (13) is a sum of
terms of the following type:

Jo(B1,...,0N)

=max{0;,i=1,...,N} —min{0;,i =1,..., N}.

Such energies are representable: it is enough to add two ad-
ditional nodes, corresponding to two additional variables w
and w, and observe that

Jo(O1, ..., Jo(O1, ...,

On) = mil(l)l On, W, w)

w,we

where

j0(017"'7QN7w7w)

N
=w-wT+ Z (G —wT+w—0)7).
i=1

It is clear that if 6 is a constant vector, then taking w =
w = 6; give the value 0, while if 6 is not constant, then the
only way to make both terms in the sum less than 1 is by
letting w = 1 and w = 0, but then the first term is 1.

Other examples are easily built, for instance if g is a con-
cave function with g(0) = g(N) =0, then

N
J1(01,...,9N):g<29i)
i=1

is also representable.

Appendix C: Proofs of Propositions 3.3 and 3.5

We give in this appendix short proofs of Propositions 3.3
and 3.5. As mentioned before, the first relies on the compar-
ison Lemma 3.4.

Proof of Lemma 3.4 We have

N N
MO+ 0z =) SATO NN+ Y (6 A0 —g)
i=1 i=1

and

N N
MO+ 0/ —g) AT OVEI)+D (O vI)(E —gi).
i=1 i=1
Summing both inequality and using the submodularity of J,
we end up with

N
Y 0z — )+ 6] —gi)

i=1
N
<Y A0 —g) + 6V ONE — &)
i=1

This is nothing else than

N N
2y 0 —0i A0 <Y O vo -0,
i=1 i=1

but since 6; — 6; A 0] =6; v 0/ — 0/ = (6; — )T, we find
that if z > z/, (§; —6))T =0 forall i =1,..., N, that is,
0<0. O
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Proof of Proposition 3.3 We easily derive Proposition 3.3:
indeed, if 6¢ solve (16) for all values of z, and if we define
u € RN by

u; =sup{z:6; =1}

then clearly x>} < 9% < x {22} for all z, as a consequence
of Lemma 2.2. Also, m =min; g; <u; <max; g; = M for
all i (since 1 is the unique solution of (16) if z < m, while
0 is the solution if z > M). Hence, if v € RY and m' <
m A (min; v;), we have (using (10) and the minimality of
each 6%)

! 2
A )+ 2 llu—gli

+oo Y X' —g)?
:/ AJ(92)+ZOf(z—gi)dz+Zil

2
m i=1 i=1
+o00
=<
m/

5’ —gi)? 1 )
)5 =M+l =gl

i=1

N
AJ(X{sz}) + in{sz}(Z — g dz
i=1

which shows our claim. O

We give now the proof that the quantized ROF prob-
lem actually produces a solution which is exact (in the sup-
norm), up to the quantification.

Proof of Proposition 3.5 In fact, For an admissible v in (17),
we can write

n n
v=lo+ Y (k—h-oF=lo+8) 0
k=1 k=1

where for each k > 1, 6% is the binary vector defined by
91." =1 iff v; > I;. Then, the fact ok < 9% for any k > 2,
and the co-area formula (10), yield J(z) =Y ;_,8J 6%).
On the other hand,

2 al 5 n XY Ie +l—1 k
le—vlP =) (si—l0)*+28) ) (—5— —i ) of"

i=1 k=1i=1
hence, up to a constant, problem (17) is the same as
n N
. Ik + k-1
k o ) gk
n;;n]; PG )+;(—2 8 )6 ),
= 1=

where the min is taken on all binary fields CA )i_;» with the
constraint that 0% < %=1 for any k = 2,...,n. Each term
in the sum is the energy that appears in problem (16), for
7z =2z = (lx + lx—1)/2. Now, by Lemma 3.4, if for each

@ Springer

k=1,...,n,6%is a minimizer of the corresponding energy,
then, z; > zx—1 yields 0k < 0k—1: hence the minimum prob-
lem above is in fact unconstrained. In particular, by Propo-
sition 3.3 each 6% is the between the characteristic functions
of {u > z;} and {u > z;}. This shows that Proposition 3.5 is
true. ([
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