Skip to main content
Log in

Wavelet-Texture Method: Appearance Compression by Polarization, Parametric Reflection Model, and Daubechies Wavelet

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In order to create a photorealistic Virtual Reality model, we have to record the appearance of the object from different directions under different illuminations. In this paper, we propose a method that renders photorealistic images from a small amount of data. First, we separate the images of the object into a diffuse reflection component and a specular reflection component by using linear polarizers. Then, we estimate the parameters of the reflection model for each component. Finally, we compress the difference between the input images and the rendered images by using wavelet transform. At the rendering stage, we first calculate the diffuse and specular reflection images from the reflection parameters, then add the difference decompressed by inverse wavelet transform into the calculated reflection images, and finally obtain the photorealistic image of the object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson, G. A., & Hancock, E. R. (2005). Multi-view surface reconstruction using polarization. In Proceedings of IEEE international conference on computer vision (pp. 309–316).

  • Atkinson, G. A., & Hancock, E. R. (2006). Polarization-based surface reconstruction via patch matching. In Proceedings of IEEE computer society conference on computer vision and pattern recognition (pp. 495–503).

  • Baribeau, R., Rioux, M., & Godin, G. (1992). Color reflectance modeling using a polychromatic laser range sensor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 263–269.

    Article  Google Scholar 

  • Chen, S. E. (1995). QuickTime VR: an image-based approach to virtual environment navigation. In Proceedings of international conference on computer graphics and interactive techniques (pp. 29–38).

  • Cheng, L., Bossi, S., Mohapatra, S., Zarki, M. E., Venkatasubramanian, N., & Dutt, N. (2005). Quality adapted backlight scaling (QABS) for video streaming to mobile handheld devices. In Lecture notes in computer science (Vol. 3420, pp. 662–671).

  • Cula, O. G., Dana, K. J., Pai, D. K., & Wang, D. (2005). Polarization multiplexing for bidirectional imaging. In Proceedings of IEEE computer society conference on computer vision and pattern recognition (pp. 1116–1123).

  • Daubechies, I. (1992). Ten lectures on wavelets (p. 357). Philadelphia: Society for Industrial and Applied Mathematics.

    MATH  Google Scholar 

  • Debevec, P., Hawkins, T., Tchou, C., Duiker, H. P., & Sarokin, W. (2000). Acquiring the reflectance field of a human face. In Proceedings of SIGGRAPH 2000 (pp. 145–156).

  • Hawkins, T., Cohen, J., & Debevec, P. (2001). A photometric approach to digitizing cultural artifacts. In Proceedings of the conference on virtual reality, archeology, and cultural heritage (pp. 333–342).

  • Fuchs, M., Blanz, V., Lensch, H. P. A., & Seidel, H. P. (2005). Reflectance from images: a model-based approach for human faces. IEEE Transactions on Visualization and Computer Graphics, 11(3), 296–305.

    Article  Google Scholar 

  • Furukawa, R., Kawasaki, H., Ikeuchi, K., & Sakauchi, M. (2002). Appearance based object modeling using texture database: acquisition compression and rendering. In Proceedings of Eurographics workshop on rendering (pp. 257–266).

  • Georghiades, A. S. (2003). Recovering 3-D shape and reflectance from a small number of photographs. In Proceedings of Eurographics workshop on rendering (pp. 230–240).

  • Goldman, D., Curless, B., Hertzmann, A., & Seitz, S. M. (2005). Shape and spatially-varying BRDFs from photometric stereo. In Proceedings of IEEE international conference on computer vision (pp. 341–348).

  • Gortler, S. J., Grzeszczuk, R., Szeliski, R., & Cohen, M. F. (1996). The lumigraph. In Proceedings of SIGGRAPH 96 (pp. 43–54).

  • Hara, K., Nishino, K., & Ikeuchi, K. (2005a). Light source position and reflectance estimation from a single view without the distant illumination assumption. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4), 493–505.

    Article  Google Scholar 

  • Hara, K., Nishino, K., & Ikeuchi, K. (2005b). Multiple light sources and reflectance property estimation based on a mixture of spherical distributions. In Proceedings of IEEE international conference on computer vision (pp. 1627–1634).

  • Ikeuchi, K., & Sato, K. (1991). Determining reflectance properties of an object using range and brightness images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(11), 1139–1153.

    Article  Google Scholar 

  • Ju, D. Y., Yoo, J.-H., Seo, K. C., Sharp, G., & Lee, S. W. (2002). Image-based illumination for electronic display of artistic paintings. In SIGGRAPH 2002 sketches (p. 199).

  • Kay, G., & Caelli, T. (1994). Inverting an illumination model from range and intensity maps. CVGIP: Image Understanding, 59(2), 183–201.

    Article  Google Scholar 

  • Kim, T., & Hong, K. S. (2005). A practical single image based approach for estimating illumination distribution from shadows. In Proceedings of IEEE international conference on computer vision (pp. 266–271).

  • Kim, C. Y., Petrov, A. P., Choh, H. K., Seo, Y. S., & Kweon, I. S. (1998). Illuminant direction and shape of a bump. Journal of the Optical Society of America A, 15(9), 2341–2350.

    Article  Google Scholar 

  • Klinker, G. J., Shafer, S. A., & Kanade, T. (1988). The measurement of highlights in color images. International Journal of Computer Vision, 2(1), 7–32.

    Article  Google Scholar 

  • Lalonde, P., & Fournier, A. (1999). Interactive rendering of wavelet projected light fields. In Proceedings of graphics interface 99 (pp. 107–114).

  • Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., & Seidel, H. P. (2003). Image-based reconstruction of spatial appearance and geometric detail. ACM Transactions on Graphics, 22(2), 234–257.

    Article  Google Scholar 

  • Levoy, M., & Hanrahan, P. (1996). Light field rendering. In Proceedings of SIGGRAPH 96 (pp. 31–42).

  • Li, J., Shum, H. Y., & Zhang, Y. Q. (2001). On the compression of image based rendering scene: a comparison among block, reference and wavelet coders. International Journal of Image and Graphics, 1(1), 45–61.

    Article  Google Scholar 

  • Liu, C. (2004). Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5), 572–581.

    Article  Google Scholar 

  • Lin, S., & Lee, S. W. (1997). Detection of specularity using stereo in color and polarization space. Computer Vision and Image Understanding, 65(2), 336–346.

    Article  Google Scholar 

  • Lu, J., & Little, J. J. (1995). Reflectance function estimation and shape recovery from image sequence of a rotating object. In Proceedings of IEEE international conference on computer vision (pp. 80–87).

  • Ma, W. C., Chao, S. H., Tseng, Y. T., Chuang, Y. Y., Chang, C. F., Chen, B. Y., & Ouhyoung, M. (2005). Level-of-detail representation of bidirectional texture functions for real-time rendering. In Proceedings of ACM symposium on interactive 3D graphics and games (pp. 187–194).

  • Machida, T., Yokoya, N., & Takemura, H. (2003). Surface reflectance modeling of real objects with interreflections, In Proceedings of IEEE international conference on computer vision (pp. 170–177).

  • Magnor, M., & Girod, B. (2000). Data compression for light-field rendering. IEEE Transactions on Circuits and Systems for Video Technology, 10(3), 338–343.

    Article  Google Scholar 

  • Magnor, M., Ramanathan, P., & Girod, B. (2003). Multi-view coding for image-based rendering using 3-D scene geometry. IEEE Transactions on Circuits and Systems for Video Technology, 13(11), 1092–1106.

    Article  Google Scholar 

  • Mallat, S. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.

    Article  MATH  Google Scholar 

  • Mallick, S. P., Zickler, T. E., Kriegman, D. J., & Belhumeur, P. N. (2005). Beyond Lambert: reconstructing specular surfaces using color. In Proceedings of IEEE computer society conference on computer vision and pattern recognition (pp. 619–626).

  • Marschner, S. R., Guenter, B., & Raghupathy, S. (2000a). Modeling and rendering for realistic facial animation. In Proceedings of Eurographics workshop on rendering (pp. 231–242).

  • Marschner, S. R., Westin, S. H., Lafortune, E. P. F., & Torrance, K. E. (2000b). Image-based bidirectional reflectance distribution function measurement. Applied Optics, 39(16), 2592–2600.

    Article  Google Scholar 

  • Masselus, V., Peers, P., Dutré, P., & Willems, Y. D. (2004). Smooth reconstruction and compact representation of reflectance functions for image-based relighting. In Proceedings of Eurographics symposium on rendering (pp. 287–298).

  • Miyazaki, D., & Ikeuchi, K. (2007). Shape estimation of transparent objects by using inverse polarization raytracing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11), 2018–2030.

    Article  Google Scholar 

  • Miyazaki, D., Tan, R. T., Hara, K., & Ikeuchi, K. (2003). Polarization-based inverse rendering from a single view. In Proceedings of IEEE international conference on computer vision (pp. 982–987).

  • Miyazaki, D., Kagesawa, M., & Ikeuchi, K. (2004). Transparent surface modeling from a pair of polarization images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1), 73–82.

    Article  Google Scholar 

  • Mukaigawa, Y., Miyaki, H., Mihashi, S., & Shakunaga, T. (2001). Photometric image-based rendering for image generation in arbitrary illumination. In Proceedings of IEEE international conference on computer vision (pp. 652–659).

  • Nakano, H., Yamamoto, S., & Yoshida, Y. (1999). ISBN4-320-08549-3 (p. 174). Tokyo: Kyoritsu Shuppan (in Japanese).

    Google Scholar 

  • Nayar, S. K., Ikeuchi, K., & Kanade, T. (1990). Extracting shape and reflectance of hybrid surfaces by photometric sampling. IEEE Transactions on Robotics and Automation, 6(4), 418–431.

    Article  Google Scholar 

  • Nayar, S. K., Fang, X. S., & Boult, T. (1996). Separation of reflection components using color and polarization. International Journal of Computer Vision, 21(3), 163–186.

    Article  Google Scholar 

  • Ng, R., Ramamoorthi, R., & Hanrahan, P. (2003). All-frequency shadows using non-linear wavelet lighting approximation. ACM Transactions on Graphics, 22(3), 376–381.

    Article  Google Scholar 

  • Nishino, K., Sato, Y., & Ikeuchi, K. (2001a). Eigen-texture method: appearance compression and synthesis based on a 3D model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(23), 1257–1265.

    Article  Google Scholar 

  • Nishino, K., Zhang, Z., & Ikeuchi, K. (2001b). Determining reflectance parameters and illumination distribution from a sparse set of images for view-dependent image synthesis. In Proceedings of IEEE international conference on computer vision (pp. 599–606).

  • Oishi, T., Nakazawa, A., Kurazume, R., & Ikeuchi, K. (2005). Fast simultaneous alignment of multiple range images using index images. In Proceedings of international conference on 3-D digital imaging and modeling (pp. 476–483).

  • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.

    Article  Google Scholar 

  • Oren, M., & Nayar, S. K. (1995). Generalization of the Lambertian model and implications for machine vision. International Journal of Computer Vision, 14(3), 227–251.

    Article  Google Scholar 

  • Peter, I., & Staßer, W. (2001). The wavelet stream: interactive multi resolution light field rendering. In Proceedings of Eurographics workshop on rendering techniques (pp. 127–138).

  • Ramamoorthi, R., & Hanrahan, P. (2001). A signal processing framework for inverse rendering. In Proceedings of SIGGRAPH 2001 (pp. 379–387).

  • Sagawa, R., Nishino, K., & Ikeuchi, K. (2005). Adaptively merging large-scale range data with reflectance properties. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3), 392–405.

    Article  Google Scholar 

  • Sato, Y., & Ikeuchi, K. (1994). Temporal-color space analysis of reflection. Journal of the Optical Society of America A, 11(11), 2990–3002.

    Article  Google Scholar 

  • Sato, Y., Wheeler, M. D., & Ikeuchi, K. (1997). Object shape and reflectance modeling from observation. In Proceedings of SIGGRAPH 97 (pp. 379–387).

  • Sato, I., Sato, Y., & Ikeuchi, K. (1999). Illumination distribution from brightness in shadows: adaptive estimation of illumination distribution with unknown reflectance properties in shadow regions. In Proceedings of IEEE international conference on computer vision (pp. 875–882).

  • Sato, I., Okabe, T., & Sato, Y. (2007). Appearance sampling of real objects for variable illumination. International Journal of Computer Vision, 75(1), 29–48.

    Article  Google Scholar 

  • Seeling, P., Reisslein, M., & Fitzek, F. H. P. (2005). Offset distortion traces for trace-based evaluation of video quality after network transport. In Proceedings of 14th international conference on computer communications and networks (pp. 375–380).

  • Shashua, A. (1997). On photometric issues in 3D visual recognition from a single 2D image. International Journal of Computer Vision, 21(1–2), 99–122.

    Article  Google Scholar 

  • Shen, L., Machida, T., & Takemura, H. (2005). Efficient photometric stereo technique for three-dimensional surfaces with unknown BRDF. In Proceedings of international conference on 3-D digital imaging and modeling (pp. 326–333).

  • Shibata, T., Takahashi, T., Miyazaki, D., Sato, Y., & Ikeuchi, K. (2005). Creating photorealistic virtual model with polarization based vision system. In Proceedings of SPIE (Vol. 5888, pp. 25–35).

  • Shum, H. Y., Kang, S. B., & Chan, S. C. (2003). Survey of image-based representations and compression techniques. IEEE Transactions on Circuits and Systems for Video Technology, 13(11), 1020–1037.

    Article  Google Scholar 

  • Shum, H. Y., Ng, K. T., & Chan, S. C. (2005). A virtual reality system using the concentric mosaic: construction, rendering, and data compression. IEEE Transactions on Multimedia, 7(1), 85–95.

    Article  Google Scholar 

  • Skodras, A., Christopoulos, C., & Ebrahimi, T. (2001). The JPEG 2000 still image compression standard. IEEE Signal Processing Magazine, 18(5), 36–58.

    Article  Google Scholar 

  • Sun, B., Sunkavalli, K., Ramamoorthi, R., Belhumeur, P., & Nayar, S. (2007). Time-varying BRDFs. IEEE Transactions on Visualization and Computer Graphics, 13(3), 595–609.

    Article  Google Scholar 

  • Tan, R. T., & Ikeuchi, K. (2005). Separating reflection components of textured surfaces using a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(2), 179–193.

    Article  Google Scholar 

  • Tominaga, S., & Tanaka, N. (2000). Estimating reflection parameters from a single color image. IEEE Computer Graphics and Applications, 20(5), 58–66.

    Article  Google Scholar 

  • Torrance, K. E., & Sparrow, E. M. (1967). Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America, 57(9), 1105–1114.

    Article  Google Scholar 

  • Tsai, R. Y. (1986). An efficient and accurate camer a calibration technique for 3D machine vision. In Proceedings of IEEE computer society conference on computer vision and pattern recognition (pp. 364–374).

  • Umeyama, S., & Godin, G. (2004). Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5), 639–647.

    Article  Google Scholar 

  • Vasilescu, M. A. O., & Terzopoulos, D. (2004). Tensortextures: multilinear image-based rendering. ACM Transactions on Graphics, 23(3), 336–342.

    Article  Google Scholar 

  • Wang, H., Wu, Q., Shi, L., Yu, Y., & Ahuja, N. (2005). Out-of-core tensor approximation of multi-dimensional matrices of visual data. ACM Transactions on Graphics, 24(3), 527–535.

    Article  MATH  Google Scholar 

  • Ward, G. J. (1992). Measuring and modeling anisotropic reflection. Computer Graphics, 26(2), 265–272.

    Article  Google Scholar 

  • Wood, D. N., Azuma, D. I., Aldinger, K., Curless, B., Duchamp, T., Salesin, D. H., & Stuetzle, W. (2000). Surface light fields for 3D photography. In Proceedings of SIGGRAPH 2000 (pp. 287–296).

  • Wu, J. (2002). Photex Photometric Image Database. PhD thesis (supervisor: Chantler, M.), http://www.macs.hw.ac.uk/texturelab/resources/databases/Photex/index.htm.

  • Zheng, Q., & Chellapa, R. (1991). Estimation of illuminant direction, albedo, and shape from shading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7), 680–702.

    Article  Google Scholar 

  • Zheng, B., Takamatsu, J., & Ikeuchi, K. (2007). Adaptively determining degrees of implicit polynomial curves and surfaces. In Lecture notes in computer science: Vol. 4844. Computer vision–ACCV 2007 (pp. 289–300).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Miyazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, D., Shibata, T. & Ikeuchi, K. Wavelet-Texture Method: Appearance Compression by Polarization, Parametric Reflection Model, and Daubechies Wavelet. Int J Comput Vis 86, 171–191 (2010). https://doi.org/10.1007/s11263-009-0244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0244-y

Keywords

Navigation