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Abstract In this paper we present a hierarchical and contex-
tual model for aerial image understanding. Our model orga-
nizes objects (cars, roofs, roads, trees, parking lots) in aer-
ial scenes into hierarchical groups whose appearances and
configurations are determined by statistical constraints (e.g.
relative position, relative scale, etc.). Our hierarchy is a non-
recursive grammar for objects in aerial images comprised
of layers of nodes that can each decompose into a num-
ber of different configurations. This allows us to generate
and recognize a vast number of scenes with relatively few
rules. We present a minimax entropy framework for learn-
ing the statistical constraints between objects and show that
this learned context allows us to rule out unlikely scene con-
figurations and hallucinate undetected objects during infer-
ence. A similar algorithm was proposed for texture synthe-
sis (Zhu et al. in Int. J. Comput. Vis. 2:107-126, 1998) but
didn’t incorporate hierarchical information. We use a range
of different bottom-up detectors (AdaBoost, TextonBoost,
Compositional Boosting (Freund and Schapire in J. Com-
put. Syst. Sci. 55, 1997; Shotton et al. in Proceedings of the
European Conference on Computer Vision, pp. 1-15, 2006;
Wau et al. in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1-8, 2007)) to pro-
pose locations of objects in new aerial images and employ
a cluster sampling algorithm (C4 (Porway and Zhu, 2009))
to choose the subset of detections that best explains the im-
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age according to our learned prior model. The C4 algorithm
can quickly and efficiently switch between alternate com-
peting sub-solutions, for example whether an image patch
is better explained by a parking lot with cars or by a build-
ing with vents. We also show that our model can predict
the locations of objects our detectors missed. We conclude
by presenting parsed aerial images and experimental results
showing that our cluster sampling and top-down prediction
algorithms use the learned contextual cues from our model
to improve detection results over traditional bottom-up de-
tectors alone.
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1 Introduction
1.1 Objectives and Motivation

Aerial image understanding is an important field of research
for tackling the problems of automated navigation, large
scale 3D scene construction, and object tracking for use in
event detection. Most of the tasks using aerial images need
or would benefit from a full explanation of the scene, con-
sisting of the locations and scales of detected objects and
their relationships to one another. Being able to identify ob-
jects of many different types and understand their relation-
ships to one another gives a deeper understanding of the data
and allows subsequent algorithms to make smarter decisions
faster.

There are difficulties in aerial image parsing that do not
arise in more restricted recognition tasks. Three major ob-
stacles to modeling aerial images are,
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Fig.1 Anexample of a hierarchically parsed aerial image. (a) The original image. (b) A flat configuration of objects in the scene. (¢) A hierarchical
parse graph of the scene. (d) Three typical contextual relationships and the objects related by them

1. Highly Variant Configurations: Objects in aerial im-
ages can appear at many different locations, scales, and ori-
entations in the image, creating a vast number of possi-
ble configurations. There may also be hundreds of objects
present, making it infeasible to create a rigid model that can
enumerate every possible spatial layout.

2. Multi-resolution: Objects in aerial images appear at a
number of resolutions, from small cars about 10 pixels wide
to massive roofs more than 800 pixels long. There is no sin-
gle feature or detector that is likely to perform well across
all categories and all sizes of object.

3. Coupling Constraints: Certain objects frequently ap-
pear together under certain constraints, for example cars of-
ten appear in parking lots. When performing inference to
find the best explanation of the scene, one must make sure
the explanation adheres to this strong coupling. If an image
patch is explained by a roof with vents on top of it, chang-
ing that explanation to a parking lot with cars in it requires
updating all of the objects involved at once. Single site sam-
pling methods are insufficient for this task, as they would
add/subtract single objects to and from the current expla-
nation one at a time, each of which would be a very low-
probability state on its own. We need some way to switch
all the involved objects at once, removing the roof from the
explanation while at the same time adding the cars and park-
ing lot to the explanation together.

To motivate our solution to the problems above, let us
look at an example of parsing an aerial image. Our goal is to

simultaneously detect objects in images and organize them
into a hierarchical contextual representation for the scene,
i.e. which objects are grouped together and how they’re re-
lated to one another. Figure 1 shows an example of what a
parsed scene looks like. Figure 1(b) shows a flat configura-
tion of detected objects in a typical aerial image. In Fig. 1(c)
these objects have been grouped hierarchically - nearby cars
are aligned in rows, trees form treelines, and proximal build-
ings form city blocks, for example. This hierarchical rep-
resentation explains the image at many resolutions and ab-
stracts the objects into loosely related groups. It also models
the number of groups we see in each image and the num-
ber of objects we observe in each group. Figure 2 shows a
visualization of this representation.

Even though objects in groups don’t appear in rigid for-
mations the way the parts of a single object might, we recog-
nize certain spatial and appearance constraints that they
must obey. For example, we would never expect to see two
cars on top of one another or a building smaller than a
tree. These constraints between objects and groups are rep-
resented as horizontal lines between nodes in Fig. 1(c). Fig-
ure 1(d) shows examples of which objects could be related
by certain constraints. The first panel shows which cars and
trees are aligned in a straight line. The second panel shows
which objects contain other objects, and the last panel shows
that almost all objects in this example are related by their
relative position. We want our model to automatically learn
which constraints between which objects are sufficient to
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Fig. 2 The 3-level contextual
hierarchy. The scene is broken
down into groups of objects of
one of five categories, which are
in turn broken down into
individual objects of the same
type. The thick vertical arrows
between the scene and groups
and between the groups and
objects indicate that these nodes
can decompose into a variable
number of children. Objects are
represented by detectors, some
of which (roofs, roads) are
hierarchical themselves. The
horizontal lines between nodes
at the same level represent
statistical constraints on the
nodes’ appearance
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represent the scene. If objects in a scene violate constraints
that we expect to see or don’t meet enough of them, then that
interpretation of the scene will have a low probability. Such
constraints would also rule out invalid object detections (e.g.
cars on top of trees).

1.2 Major Contributions

We present a 3-layer hierarchy with embedded contextual
constraints along with a 3-stage inference algorithm to solve
the problems above and capture the natural hierarchical and
contextual nature of aerial images.

1. Hierarchical and Contextual Model: To handle the
large structural variations of aerial images we model scenes
as groups of like objects, such as cars aligned in rows or
roofs clustered into city blocks (see Fig. 2). This abstracts
the scene into loosely related neighborhoods. We then add
statistical constraints within and between these groups to
constrain their relative appearances, such as how close to-
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gether they are or what size they are. We achieve this by em-
bedding Markov random fields (MRFs) into a hierarchical
grammar model. Our grammar model begins at a root scene
node that then probabilistically decomposes into a number
of group nodes, such as n groups of cars or m groups of
roofs. Each of these groups can in turn decompose into a
number of single nodes, such as j cars in one group, k cars
in another. Alone this hierarchy only captures the frequency
of objects, however, so we add contextual relationships via
MRFs on the neighborhoods within each group and between
groups. In this way we create a statistical model that uses a
small set of decomposition rules to generate variable number
of objects whose appearances are constrained by statistical
relationships.

2. Automatic Learning of Context by Relationship Selec-
tion: Creating the constraints for our model by hand is in-
feasible due to the huge number of potential constraints that
could exist, so we present an algorithm to automatically add
statistical constraints to the hierarchy in a minimax entropy
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framework. This minimax entropy technique was used pre-
viously in texture modeling (Zhu et al. 1998) and on more
general graphical models (Wainwright and Jordan 2008) but
we are now applying it to a hierarchical model. We seek
to model the true distribution of aerial images, f, with our
learned distribution, p, by iteratively matching feature sta-
tistics between f and p. This matching entails extracting
features from a set of observed data (which follows f) and
adjusting our model p such that it reproduces the statistics
of these features. This learning method automatically selects
the most important feature statistics to match and ignores
low-information features. This allows us to add only relevant
relationships from a large dictionary of potential constraints.
By the end of this process, samples from p appear similar to
true samples from f along the learned dimensions.

3. Flexible Detectors for Multiple Object Categories: The
3-level hierarchy terminates at object nodes, below which
we may plug in any detectors that we like for each object
type. Large textured regions, such as grass, trees, parking
lots, water, and dirt, are detected using a Bag-of-Textons
classifier. In this work, small patch-like objects, like cars,
are detected using Haar features and AdaBoost. Roofs and
roads, which have many different colors and shapes, are de-
tected using edges as features and a compositional algo-
rithm called Compositional Boosting (Wu et al. 2007) for
detection. Compositional Boosting is itself a hierarchical
detector and groups edges into larger and larger structures
if they meet certain appearance constraints. In our work,
edges detected in the image are grouped into corners, T-
junctions, long lines, etc. that are then grouped into poly-
gons. These polygonal boundaries are stronger indicators of
a roof’s presence than color or texture are and can model
many different roof shapes.

4. Top-Down Bayesian Inference with Cluster Sampling
and Prediction: To handle the coupling constraints that ap-
pear in aerial images we use a sampling algorithm in-
spired by Swendsen-Wang clustering (Barbu and Zhu 2005;
Swendsen and Wang 1987). Swendsen-Wang cluster sam-
pling was introduced to sample the Potts model more effec-
tively by updating a cluster of sites at once instead of just
a single site. Our variant of this algorithm, named Cluster-
ing via Cooperative and Competitive Constraints (C4)
(Porway and Zhu 2009), updates multiple clusters at once,
allowing us to move very rapidly in the solution space. The
clusters represent competing explanations of the scene. For
example, a patch explained by a parking lot with cars may
be better explained by a single roof. To swap these explana-
tions, we couple the cars with the parking lot and switch the
whole cluster with the roof in a single step. This process re-
sults in an explanation of the scene with very few false pos-
itives. We also use the hierarchical nature of our top-down
model to propose new objects our object detectors may have
missed, thus increasing the number of true positives in our
final result.

It bears noting that our training process uses hand-labeled
images as input. This requires having a human identify ob-
jects of interest in images and label their boundaries. Thank-
fully only the boundaries of the objects need to be labeled,
regardless of the number of contextual relationships being
learned by the algorithm.

1.3 Related Work

Our work is related to two subfields of computer vision: aer-
ial image parsing and hierarchical object recognition. In the
aerial image parsing literature it is very rare to find work
that detects multiple types of objects simultaneously. Most
work focuses on detecting just one type of object, rarely us-
ing context or hierarchy to model the whole scene. In the
object recognition category we often see complex hierarchi-
cal and contextual models. However, these models are often
designed for rigid objects where appearance constraints are
fairly constant between instances of the object.

Much work has been done on identifying single ob-
jects in aerial images, such as rooftops (Maloof et al. 2003;
Vestri and Devernay 2001; Wei and Prinet 2005), cars (Li et
al. 2005; Zhao and Nevatia 2001), or roads (Nicolas et al.
2000). In these cases context plays little role, as single ob-
jects are detected without taking the support of surrounding
objects into consideration. These works use similar object
detectors to those we use, though they almost exclusively
use one detector without considering the support from mul-
tiple detectors. These detectors include AdaBoost (Freund
and Schapire 1997; Viola and Jones 2001), Bag of Words
(Berg et al. 2007; Sivic et al. 2005) and TextonBoost (Shot-
ton et al. 2006).

Some aerial imaging works incorporate context and/or
multiple object category detection into the same framework.
SIGMA (Matsuyama and Hang 1990), a knowledge-based
“expert system” for aerial images, was an attempt to model
rule-based spatial relationships between objects. Unfortu-
nately, as in much of the computer science based Al work of
that time, relationships were often hardcoded and thus not
generally extensible. On a smaller scale, Moissinac identi-
fied roads and city blocks in urban scenes using local context
rules to decide how roads connect and how blocks should
appear (Moissinac et al. 1994). Hinz used positional rela-
tions to determine the likely positions of roads in aerial im-
ages (Hinz and Baumgartner 2000). A recent approach for
parsing images of outdoor scenes by Berg et al. (2007) also
seeks to model images as collections of regions that obey po-
sitional and relational constraints. As far as we know, how-
ever, these models require a good deal of hand-tuning and
hardcoded logic in order to encode the relevant constraints.
SIGMA relied on experts to identify relationships of inter-
est to model, Moissinac knew exactly the domain he was
working with (handdrawn maps) and designed relationships
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accordingly, and Berg et al. used domain knowledge of the
objects they wanted to identify to design contextual cues.
Our model improves upon this shortcoming by employing
a minimax entropy learning framework to automatically se-
lect significant relationships from a bank of potential rela-
tionships that can be designed to work on many domains of
data without constant user input.

Our model borrows concepts from grammars in natural
language, so we would be remiss not to credit the large
and growing field of object recognition using hierarchies
and context in non-aerial image recognition. Growing out
of the early grammar work by Fu and Ohta (1981, 1985)
on grammars for line drawings, much recent work has at-
tended to the process of learning compositional object struc-
tures that employ local context to resolve ambiguities. The
constellation model (Weber et al. 2000), pictorial struc-
tures (Felzenszwalb and Huttenlocher 2005; Fischler and
Elschlager 1973), and patch hierarchies (Ullman et al. 2001)
all use learned statistical constraints to model the relative po-
sition of object parts to some reference frame. Higher level
compositional structures for object categories (Li and Per-
ona 2005; Todorovic and Ahuja 2006) have shown great per-
formance on object detection and localization tasks and can
even be learned from unlabeled images, while work on rule-
based models of shape have shown the power of statistical
composition (Keselman and Dickinson 2001; Siddiqi et al.
1999). Some of these models can express the general rela-
tionships present between shared object parts of the same
category, a very useful trait for generalization.

In later sections we define our model as an exponential
model over a graphical structure. We employ minimax en-
tropy techniques seen in Zhu et al. (1998) to learn the para-
meters of this model and pursue its contextual relationships.
However, we must acknowledge the huge number of contri-
butions made in modeling graphical models as exponential
families from all walks of machine learning and computer
vision. We refer to the tutorial by Jordan and Wainwright on
this topic (Wainwright and Jordan 2008) on similar uses of
maximum entropy for modeling distributions on graphical
models.

More general grammars for full scene modeling have
developed recently (Chen et al. 2006; Han and Zhu 2005;
Jin and Geman 2006; Tu and Zhu 2002; Zhu et al. 2008;
Zhu and Mumford 2006). The work in Han and Zhu (2005),
Tu and Zhu (2002) seek to explain an entire image by pars-
ing it hierarchically into constituent regions and objects,
while Chen et al. (2006), Jin and Geman (2006), Zhu et
al. (2008), Zhu and Mumford (2006) focus more on single
objects. These models borrow closely from models used in
natural language processing, and express structural and ap-
pearance variation as the result of production rules. Hierar-
chical models for objects that include scene-level constraints
have been presented in Singhal et al. (2003), Sudderth et al.
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(2005), which are very similar in spirit to our model. The
contextual constraints, however, tend to strictly be relative
position constraints. Moreover, while this entire corpus of
work is hugely important for object recognition, many of the
contributions here rely on the fairly constant arrangement of
a relatively fixed number of parts in objects. The variation
in part appearance, frequency, and location for a motorcycle
is far lower than that of the arrangement of cars and roofs in
a city scene.

In the field of natural language processing, much progress
has also been made on Unification-Based Grammars (UBG),
which seek to model sentences by augmenting a tree struc-
ture with additional features, such as pairwise frequencies of
words or attributes of the sentence as a whole (e.g. number
of direct objects) (Johnson et al. 1999). This work is very
related to ours in that the researchers seek to extend a tree
structure to include relationship constraints. While much
successful work has been done using UBG’s, the authors of
this article have yet to encounter a straightforward way for
automatically adding constraints to these models, much less
adding constraints proportional to their importance. UBG’s
are mostly seen in the field of natural language processing,
where the input data types are much more constrained than
in vision and can thus be labeled and tagged more easily by
hand. Our method provides a technique for automatically se-
lecting the most representative pairwise features to be added
to the model using minimax entropy.

We present an overview of our contextual hierarchy,
learning algorithm, and Bayesian inference process in
Sect. 2. This is followed by the formulation of our hierar-
chical and contextual model in Sect. 3 and by a description
of the learning process in Sect. 4. We show that sampled aer-
ial images drawn from our model are composed similarly to
aerial images that we trained from in Sects. 5 and 6. We
finally present a Bayesian framework for a three-stage infer-
ence algorithm in Sect. 7 before closing with experiments in
Sect. 8 and conclusions in Sect. 9.

2 Overview

In this section we give an overview of our 3-layer hierarchy
and the learning algorithm for adding context to our rep-
resentation. We also describe our Bayesian inference algo-
rithm, a 3-step process that first detects objects using dif-
ferent detectors, then uses cluster sampling to remove false
positives from our explanation before using top-down pre-
diction to detect any objects our explanation is missing.

2.1 Hierarchical and Contextual Representation

Figure 2 shows our 3-level hierarchy. It consists of nodes di-
vided into a root scene node, group nodes, and object nodes.
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Group nodes are collections of the same type of object, such
as blocks of roofs or lines of cars, while object nodes are the
single objects within each group. Below this level is the ob-
ject representation level, which may be hierarchical in and
of itself, as in the case of roofs and roads in our example, or
may terminate at a one-layer representation for the object.
The top 3-levels are representation agnostic, however, so we
will put off a discussion of object detection and representa-
tion until Sect. 7.1. The thick arrow edges between the scene
node and group nodes and between the group nodes and the
object nodes indicate that a varying number of each group
node may be present, and the number of object nodes they
are comprised of can vary as well. The hierarchy is similar
to a grammar, where the scene node decomposes into a vari-
able number of object groups, which in turn decompose into
a variable number of objects. This captures the loose, vari-
able nature of aerial images with just a few compact rules. If
we were to write these expansions in a grammar format, we
would write

Scene — (Roads™) U (Roofs™) U (Trees™) U (Parking Lots™)
U (Cars™)

Roads — Road*

Roofs — Roof™* (1)

Trees — Trees*

Parking Lots — Parking Lot*

Cars — Car®.

ek

Here we’re using
ing 0 or more of an object. One could rewrite the
tor by enumerating all cases, as in

in the regular expression sense, mean-
“*” opera-

Roads
— @|Road|(Road)(Road)|(Road)(Road)(Road)| ... (2)

On its own the hierarchy simply captures the number of
object groups and objects in the scene. We also add sta-
tistical constraints between objects to ensure that their ap-
pearance and configuration obey certain statistical proper-
ties, such as relative scale, relative position, etc. These sta-
tistical constraints are represented as dotted horizontal lines
in Fig. 2 and can be any measurable statistic between some
non-empty set of object nodes.

2.2 Minimax Entropy Learning

We use a minimax entropy learning framework for automat-
ically adding the horizontal constraints to the model during
learning. The algorithm first gathers feature statistics M s
across a set of aerial images. For clarity we will use the
term “relationship statistic” to mean feature statistic for the

remainder of the paper. For example, a relationship statis-
tic could be the distribution of the relative scale between
every pair of cars in every image in our training set. The
responses for each relationship statistic (e.g. relative scale
between cars, relative position between roofs, etc.) are then
modeled by a continuous parameterized distribution or just
as 1-D histograms. We assume we can draw samples from
our current model, which begins as just the hierarchy of ob-
ject groups with no constraints. These samples will be aer-
ial images themselves. We can gather the same relationship
statistics M, across our sampled images, again using the
example of measuring the relative scale between every pair
of cars in every image we sampled. We find the statistic 7;
that differs the most between My and M, thus indicating
its importance. We add this constraint to our model and then
repeat the procedure until no more relationship statistics dif-
fer significantly. By the end of this process, the most impor-
tant relationship statistics over samples from our model will
match the most important relationship statistics over true
aerial images. Figure 3 visualizes this process, and the re-
sults of learning the model are presented in Sect. 6.

2.3 Top-Down and Bottom-Up Bayesian Inference with
the 3-Level Hierarchy

In this section we give an overview of the 3-stage algorithm
for parsing new aerial images. In the first stage we detect ob-
jects in the image using bottom-up detectors. The next stage
then prunes false positives using cluster sampling, followed
by the third stage, which predicts missing objects based on
our current explanation of the scene.

1. Bottom-Up Detection: In the first phase we collect
bottom-up proposals for each object category of interest.
The detectors used to find each of these objects can be any
off-the-shelf detector and may detect many false positives in
the scene. We use Bags of textons and edges, along with a
number of boosting methods, to detect objects from multiple
categories at multiple scales. Textured objects, like parking
lots and trees, are detected at the pixel-level, while struc-
tured objects, like roofs and roads, are composed from edges
in the image. By using different detectors for each object cat-
egory, we ensure that we detect each category as well as we
can, though we allow for false positives and false negatives,
which will be handled in the next stages.

2. Top-Down Pruning of Inconsistent Detections: In the
second phase we use the context relations that we learned
in our model to prune out nodes that support unlikely in-
terpretations of the scene. We use a cluster-sampling al-
gorithm (C4) (Porway and Zhu 2009) for this phase. This
algorithm helps us overcome the strong coupling between
objects when we sample our different interpretations of the
scene. For example, Fig. 4 shows a case where we can ex-
plain a portion of the image as either a roof or a parking lot
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Fig. 3 A visualization of the learning process. Feature statistics M s
and M, are computed over a set of aerial images and a set of aerial
images sampled from our current model p, respectively. The most dif-
ferent of these, in this case ro, is selected to be added to our model.

D Car proposals

State A

Low Probability
Move

State B

Fig. 4 The problem with dealing with strong coupling in aerial im-
ages. Here we show an image patch that can be explained either by a
roof or by a parking lot with cars (often time the vents on roofs are
detected as cars). Traditional sampling methods fail because the in-
termediate steps to get from explaining the scene as a parking lot to
explaining the scene as a roof have very low probability. (a) Removing

with cars in it. If we switch from one explanation to the other
by adding or removing single objects to and from our current
explanation, it will take an exponentially long time to move
from one explanation to the other because the intermediate
steps are so unlikely.

Alternatively, adding the roof in Fig. 4(b) creates a very
unlikely configuration (let’s assume we never see parking
lots on top of buildings in the training data), so it will be re-
jected. C4 clustering solves this problem by finding strongly
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During the next iteration r, will now match between My and M, for
newly sampled images from p. This process continues until no feature
statistics differ significantly between the two sets of images

Roof

Parking Lot

High Probability
Move

cars one at a time just leaves an empty parking lot, which is a low prob-
ability state. (b) Adding the roof on top of the parking lot is a low prob-
ability state (we don’t often see parking lots on roofs). (¢) Switching
the parking lot and cars for the roof in one move is a high probability
move

coupled groups, like the parking lot and cars, and swapping
them simultaneously with alternative explanations, as shown
in Fig. 4(c).

3. Top-Down Prediction and Verification of Missing De-
tections: The third phase of our inference algorithm uses
the top-down model to predict any missing objects based
on the learned prior model and detections from Stage 2. For
example, if we detected 4 cars in a row with a gap in be-
tween them, it might be reasonable to predict that another
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Fig. 5 (Color online) Top-down hallucinations of missing objects. Solid rectangles indicate the detections from Stage 2, while the dashed rectan-
gles indicate hypotheses for missing objects proposed by the top-down part of our model

car should be present there. Figure 5 shows an example of
predicted roofs, cars, and roads based on our results from
stage two and our prior model. The hallucinated objects are
shown in green dashed rectangles, while the accepted de-
tections from C4 are shown in black solid rectangles. These
top-down predictions will then be pruned or accepted using
a final round of C4.

3 Formulation

In this section we present the probabilistic formulation for
our representation from Sect. 2.1.

3.1 Contextual Hierarchy Representation

Our representation G is a 3-tuple
Gg=(V,R, P), (3)

where V are the nodes in the top 3 layers of Fig. 2. Ris a
set of contextual relations and P is our probability model.

The hierarchical component formed from V consists of 3
types of nodes,

V=SuU VGroup U VObject. (4)

S: The root Scene node.

v Group . Groups of the same type of object, such as rows of
cars or blocks of roofs.

v Obiect: Individual objects in the image.

The Scene and group nodes may decompose into one of a
variable number of children nodes. This makes these nodes
similar to “Or” nodes, because node Vl.Gm”p can decompose
into ] OR2OR 3 OR...OR k objects. We define a variable

w(v) on v € V that takes an integer value for each number
of children a node v decomposes into,

o) e{0,1,2,...,n()}. (®)]

Each node v; € V has a set of attributes ¢ (v;) that de-
scribes its position, scale, and orientation,

o) ={X;,0;,0;}. (6)

In Sect. 5 we present our implementation of these attributes
for our experiments.

R ={ri,r,...,rnR)} is the set of relationships that ex-
ist between nodes at the same level of the hierarchy. A rela-
tionship r; consists of a set of k nodes Vj € V that it acts on,
a univariate function f() over their attributes, and a model
of the responses of f(), p:

I’iZ{Vk, ﬁ(¢(vk))v Pz} (7)

For example, the relative position between cars and build-
ings could be expressed as

f(@(Cars), ¢ (Buildings)) = Xcars — X Buildings- (8)

If we believe relative position between cars and buildings is
normally distributed with mean 5 and standard deviation 1,
then the whole relationship is packaged as

ri = {(Cars, Buildings), fi = Xcars — X Buildings fiO~ pi
=N, D). ©

We will discuss the relationship functions f() and their
distributions p; in our implementation in Sect. 5. At this
point it is enough to know that each relationship represents
the distribution of a function response over a set of nodes.
These distributions act as our statistical constraints. Figure 6
shows some examples of possible relationships.
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Fig. 6 Examples of

relationships/statistical Relative Position

Relative Scale

Relative Orientation Overlap

Alignment

constraints. A relationship can
technically be any function over

X1

the attributes of some ~ S1

non-empty set of nodes

P is our probability model, including the probability that
nodes decompose into a certain number of child nodes, as
well as the probability encoded in our statistical constraints.
We will define this probability model in Sect. 3.3.

3.2 Parse Graphs

A parse graph, pg, is one instance drawn from the language
of aerial images G. This is like a sentence drawn from nat-
ural language and corresponds to a single aerial image. An
example of a parse graph is shown in Fig. 1(c). In a parse
graph the production variables w(v) have been decided for
every node—we’ve selected some number of n groups from
which to form the scene and selected m; objects to exist
within each group. In addition, every group of objects in pg
that were constrained in G has inherited those appearance
constraints. For example, if G contains a constraint on the
relative distance between pairs of cars, every pair of cars in
pg ~ G will have an edge between them constraining their
relative distances.

Let us define some terminology on parse graphs, similar
to that of G:

1. Vpe € V:The nodes present in pg, which are a subset of
the nodes possible in G.

2. Qpg = {w(v); v € Vpg}: The values of the production
rules selected to form pg. For example, if group node
v; consists of 6 cars, w(v;) =6

3. Rpg € R: The constraints, or edges, between nodes
in V.. These edges are inherited from the relationships
R presentin G.

We should note here that parse graphs can be formed
either deterministically or probabilistically. During train-
ing, we will define some grouping rules to deterministically
combine labeled objects into hierarchical groups. Once la-
beled objects are deterministically grouped, we can measure
any relationships of interest across nodes at the same level.
During inference, however, the algorithm stochastically de-
termines the most likely groupings of objects into a parse
tree based on their relative appearances. The deterministic
grouping function used in training is up to the user, but of
course any inference methods will try to maximize the prob-
ability of a scene interpretation based on the grouping func-
tion used in learning. We describe the implementation de-
tails we use for this process in Sect. 5.2.

@ Springer

3.3 Probability Model

We begin with a set of aerial images /°% = {Ii”’” S
1,2,..., N°%} that have corresponding parse graph rep-
resentations PG = {pglf)bs ci=1,2,..., N°%}. These
parse graphs describe the hierarchy of labeled objects in
the image and are deterministically constructed from labeled
images as in Sect. 5.2. Each parse graph pg follows some
true, unknown distribution f(pg). We would like the sta-
tistics of our learned model p(pg) to match the statistics of
f(pg) as closely as possible. The statistics of f(pg) consist

of

1. The distribution of w(v(q)), the number of children each
node vy € V decomposes into.

2. The distribution of responses of f(g)() for each statistical
relation r(gy € R in G.

Note that we are switching our indexing subscripts from i’s
to «’s and B’s for clarity. o subscripts will be used when
we are referring to the distributions of node decompositions,
and B subscripts will be used when we are referring to the
distributions of relationship constraints.

We will model both node decomposition and relation-
ship distributions as histograms for the remainder of the
paper. Specific parametric models may fit the distributions
of w(v)) and f(g)() more closely, but we use histograms
so that we can focus the discussion on learning the model
without additional parameters. Also, histograms measure
the true continuous distributions of f(pg) and p(pg) in
the limit. We approximate the continuous distribution by the
piecewise-continuous representation of histograms for each
node v(y) € V and each f(g) € R. Our observed statistics for
each bin z of the histograms for w (v(y)) and f(g)() are then

Nob.y
> iz #Hoe) =2)
Nobs —n(v))
i=1 22j=0

a=1,2,...,n(V) (10)

Nobs Z #(f () = Z)
Vip) SVpeir " (B) '
H s fr—
®rg. =Y Y Vi Ve #U ) 0)

i=1

B=1,2,....n(R) (11)

H)(pg.2) = :
“ #0 (V) = /)

where # is a counting function representing the number of
times that something occurs, and #( f(g)()) is the number of



Int J Comput Vis (2010) 88: 254-283

263

times f(g) takes any value. Each bin z in Hy)(pg) is the
number of times that node v(,) decomposes into z children
divided by the number of times we observe v(,) decompos-
ing any of its n(v(y)) values. Each bin z in H(g)(pg) is the
number of times that relationship function f(g) returns z di-
vided by the number of times f(g) returns anything.

We seek a distribution p(pg) that matches the relation-
ship statistics (H)(pg), H(g)(pg)) as closely as possible
with f(pg), while remaining as random as possible (un-
prejudiced) along all other dimensions. This is equivalent to
making sure that the expectation of the number of objects in
each group, E,[w(v())], and the expectation of each rela-
tionship function, E,[ f(8)(¢ (V(s)))], matches between our
model and the true distribution. By maximum entropy this
becomes the following constraint satisfaction problem,

p(pg)* =arg maX{ —> " p(pg)log p(pg)} (12)

subject to

Eplowe)] = Efloe)], a=1,2,...,n(V) (13)
Eplfipy( @ (Vi) = E ¢l fip)(@(Vipy)l,

B=1,2,...,n(R) (14)
E flo ()] ~ Hg) (PG) (15)
E¢Lfip) (@ (Vip))] ~ Higy(PG™) (16)

In other words, we want the histograms formed from sam-
pled aerial images from our model to match the true distrib-
utions observed in the training data. The probability model
that satisfies these constraints is the familiar Gibbs model

1O, R) = —£(pg) 17

r(pg ) Z10] exp (17)
n(V) n(R)

E(p2) =) (Ma» Hay(p2)) + Y (hp), Hpy (pg))  (18)
a=1 B=1

Z[O]= Y exp t08), (19)
pgeL(9)

where ® = {A(y), A(g)}. The first term in £ (pg) is the energy
of the decomposition rules and the second is the energy of
the relationship constraints. If we have an unlikely number
of objects in an image (say O objects), then the first term
will have high energy and the interpretation will have low
probability. If we have objects that do not obey the statisti-
cal constraints we learned during training, for example we
observe a car on top of a tree, then the second term will have
high energy and the interpretation will have low probability.

The Lagrange multipliers {A(q), ()} are vectors of the
same dimension as H) or Hg), respectively, and (...) in-
dicates an inner product. For example, if relationship r(g)’s

function fg) evaluates to z on parse graph pg, then the en-
ergy from that relationship is )»fﬁ) * Higy(pg,z). The A’s are
the natural parameter set of the model and serve to weight
histogram bins so that dependent relationship interactions
are weighted correctly. These A’s will be learned in the fol-
lowing section.

4 Learning the Hierarchical Contextual Model

We begin with a set of N°* aerial images 1° = {Il."bs :
i =1,2,...,N°} and their corresponding parse graphs
PGP = {pg,.”bs ci=1,2,...,N°}. The parse graphs
PG°Y follow the real-world, unknown target distribution,
f(pg), by definition,

P ~ f(pg). (20)

Matching our distribution p(pg) to f(pg) is equivalent to
finding the values for ® that minimize the KL divergence
between the two distributions

o = argmin KL(f (pg)lp(pg; ©, R)) (21

B . f(pg)
= argngngg: fpg)log o

(22)
which is equivalent to finding the maximum likelihood es-
timates for ® and a set of relationships R constraining the
model. Letting £(®) be the log-likelihood function for our
parameters,

L©)= ) logp(pg:©.R) (23)
ngPG"bS

(®, R)* = argmax L(©). 24)
(©,R)

Learning our parameters can then be broken down into
two distinct stages:

1. Given a set of relationships R in the model, estimate
Aa)» A(p))-

2. Pursue a set of relationships R one-by-one to constrain
the model.

This may seem backwards, but it is easier to understand the
process if we first show the process for parameter estimation
given a set of relationships R followed by the process for
pursuing R.

4.1 Learning (A(y), A(8))
We solve for ® = (A(y), A(g)) using straightforward maxi-

mum likelihood estimation (MLE). Setting 6 =0, we can
solve for both sets of A’s:

a
F]
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1. A(«): We make the assumption that node decomposi-
tions are independent of each other and of their appearance
constraints. We can therefore model Hy)(pg) as a multino-
mial and count the frequency with which each node decom-
poses into a number of children, as in (10). This makes our
estimate for each A (q)

Ay = —log H(a)(PGObS). (25)

This is the MLE estimate for a multinomial and can be used
to estimate production rule probabilities in grammars given
that they are independent of any cross-link relations, i.e.
context-free (Chi and Geman 1998).

2. A(p): Setting 36 = 0 for Ag) yields

Eplfip) (@ (Vigy)))] = Hip)(PG) (26)

which are exactly the Lagrange constraints that resulted
from deriving our maximum entropy model. This equation
can also be written as

oL 1

= H, — E,[Hp)(PG™™)] (27
Thg N Z 8 (P8) — Ep[Hp)( )1 @27

pgePGOobs

which can be approximated by

oL

—_— =

#(PG™™) — His) (PG™).
drp)

(28)
Hgy(PG™") is the histogram formed from a set of parse
graphs PG = {pgfyn 1i=1,2,..., NV} that are synthe-
sized from our current model p(pg). The synthesized parse
graphs are drawn by first sampling the number of children
each node decomposes into according to the learned A ()
parameters. The appearances of the objects in the resulting
parse tree are then Gibbs sampled according to the current
A(p) weights and the constraints in the model. These images
will also be aerial images, so we can compute histograms for

Fig.7 Examples of learning the
relationship parameters, A(g).
(1) We begin with an observed
histogram H 9bs in this case the
relative size between cars. A
begins uniform. (2) Sampled

Relative car
size

the same relationship function f(g)() over these parse graphs
as we did over PG,

Solving for the Ag)’s such that Hpg(PG™") =
Hg)(PG°") can then be done using gradient descent. We
initialize the A (g) weights to 0

In the first stage when A(g) = 0, H(g)(P G*>") will be close
to uniform. Gradient descent is then used to update the
Ap)'Ss

ME = 2lg = n(Hp) (PG™™) — Hig)(PG™™)),

6 = (30)

where 7 is a step factor that can depend on the iteration 7.
This update reweights the Ag)’s for each histogram based
on how much Hg)(PG*™") differs from H(/g)(PG"bS). It re-
duces the energy for choosing underrepresented bins and in-
creases the energy for choosing overrepresented bins dur-
ing the next iteration of Gibbs sampling. After a number
of iterations the Agy’s will be weighted such that the syn-
thesized distributions match the observed distributions, and
thus p(pg) will match f(pg) along these dimensions. In
other words,

|Hg) (PG™™) — Hg)(PG™™)| < &2, B=1,2,....n(R).

€1V}

Figure 7 shows a toy example of the Ag) learning
process. We begin with one observed histogram H°?* for rel-
ative car size and its corresponding A weight vector, which
begins as a vector of all 0’s. Because this weight is uniform,
the images we sample in Step (2) look fairly random. In
Step (3) we compute H*", the distribution of relative car
sizes across these sampled images. This, unsurprisingly, is
fairly uniform as well because A was uniform. The figure
shows these H®" and H°” superimposed below to em-
phasize the difference in their bin counts. In Step (4) we

© 3 Ca

images PG*®" are drawn from
the model. (3) H*" is computed
for relative car size over the
sampled images. (4) X is
reweighted according to the

difference between H°”® and
H*"_ (5) Newly sampled
images appear scaled correctly

® S

IZI<> O

0
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update the A weights according to how much each bin dif-
fers. Step (5) shows the sampled images resulting from the
updated A weighting, which have much more appropriate
relative car sizes. This process is carried out simultaneously
for each A (g).

4.2 Relationship Pursuit

The A(g)’s above were learned given that we already knew
which relationships R existed in the model. We now show
how to select the relationship constraints for the model. Be-
cause our dictionary of potential relationships Ag could
be combinatorially huge, we will iteratively add relation-
ships according to their importance instead of fitting the full
model. Fitting the full model would require later attempts to
sample from the model or perform inference with the model
to check redundant relationships, making the model overly
complex and slower to compute with.

We pursue the relationship set R by beginning with just
an empty hierarchy,

po(pg: ©o. Ro);  Ro={V}. (32)
This is the model with no parameters learned at all. We then
learn the A(y)’s, or tree parameters, allowing us to sample
images with the correct distributions of objects, but without
spatial or appearance constraints. Sampling the model at this
stage would produce parse graphs with the correct number
of objects, but without horizontal constraints, causing the
resulting image to look more like an “alphabet soup” of ob-
jects that are big, small, overlapping, etc. We then iteratively
add a new relationship r from a dictionary of potential re-
lationships Ag at each iteration to get a new distribution
P+(pg;®4, Ry), Ry = RU{ry}. We choose r such that
we minimize KL(f (pg)| p+(pg; ®+, R1)) at each step:

po(pg; ©o, Ro) = p1(pg; O1, Ry) — -+
— pr(pg; Ok, Ry). (33)

At each iteration we want to select the relation ry that
brings our new model p. closest to f, thereby reduc-
ing the KL divergence between the two distributions. This
is equivalent to finding the new p4 that is maximally
KL divergent from our current p, as visualized in Fig. 3.
Because we are guaranteed to monotonically decrease
KL(f(p9)llp+(pg; ®, R;)) with every added relation (Zhu
et al. 1998), the r that is maximally far away from p must
be maximally close to f and thus represents the largest de-
crease in KL divergence:

ry = argmax KL(f (pg)llp(pg: ©. R))

—KL(f(p&)llp+(pg; O+, Ry)) (34
= argmraxKL(m(pg; Oy, RPllp(pg; ©, R)). (35)

We can approximate this decrease in KL divergence, oth-
erwise knows as the information gain, §(r4.), using the Ma-
halanobis distance between the synthesized and observed
histograms for the new potential relation r

8(ry) = KL(p+(pg: O+, Ry)|Ip(pg; ©, R))
~ dyain(H(j, (PG*™), H(y (PG™™)). (36)

This holds due to a Taylor expansion around the relationship
we’re interested in adding, as shown in the Appendix of Zhu
et al. (1998). We measure H(,g)(PG"bs) and Hg)(PG™") for
all relations r(g) € Ag and compare their Mahalanobis dis-
tances. The r(g) with the largest Mahalanobis between the
synthesized and observed histograms above some threshold
is added to the model in the next iteration and its A(g) para-
meters are learned as in the previous section.

4.3 Summary of Parameter Learning and Relationship
Pursuit Algorithms

The algorithm for learning the parameters of the model pro-
ceeds in two steps. We first learn the A(4)’s by MLE, which
are just the sample frequencies of the decompositions of
each node. We then iteratively add spatial and appearance
relations one-by-one until no relation remaining in Ag has
Mahalanobis distance greater than ¢;1. After each relation is
added, we iteratively update the A(g)’s for the current rela-
tion set to match Hg)(PG™™) to Hg)(PG°"), Vr(s) € R.
The algorithms are outlined below:

Algorithm 1 Relationship pursuit

1. Begin with an empty model pg and observed parse
graphs PG = {pg®® :i=1,2,..., N>},

2. Compute observed histograms Hg) (PG°*) and
H(a)(PG”bs) for all relationships in Ar and all node
frequencies, respectively.

3. Approximate the A(,)’s for the tree component using
MLE, yielding p;.

4. Repeat
(a) Sample N*" parse graphs from the current model,

PG ={pg™:i=1,2,...,N"}.

(b) Calculate Higy(PG™), B=1,2,...,|ARg].

(c) Select the r(g) for which
dmann (Hgy(PG™), Hgy(PG°)) is maximal as
ry.Addry to R.

(d) Relearn the Ag)’s for the new set R U {ry} using
Algorithm 2.

until dmanh(H(ﬂ)(PGsyn), H(ﬁ)(PGObs)) < 81,,3 =

1,2,...,]AR|.
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Algorithm 2 Parameter estimation algorithm

1. Given a set of relations R and current model
r(pg: ®, R),
2. Repeat
(a) Sample n parse trees from the model, PG*" =
{pg’":i=1,2,...,N""}.
(b) Calculate Hg)(PG™™), B=1,2,...,n(R).

(c) Update )\’(;)1 = )J(ﬁ) — (r;(H(ﬁ)(pGS.Vn) _
H(g)(PG™))).
until  [Hg) (PG™™) — Hpy(PG?)| < &,8 =

1,2,...,n(R).

5 Implementation

The learning algorithm above is independent of our choice
of models for the relationship statistics and the object repre-
sentations. In this section we present implementation details
used to learn the model above in our experiments.

5.1 Object Representation

We represent our five object categories, (roads, trees, roofs,
cars, parking lots), by their enclosing boundaries. Each ob-
ject of interest is described by a boundary b that is defined
as a graph,

bi = (vi, &i), (37)

where v is a set of boundary points and ¢ is a set of edges,
along with a label /; indicating what type of object it is. The
boundaries and labels are hand-labeled in every observed
image 7°”%. These objects form the bottom layer of the hi-
erarchy. We create a node v; in the 3-layer hierarchy for
each boundary b; so that every boundary is represented by
a bottom-level node in the hierarchy and every bottom-level
node in the hierarchy has a corresponding boundary repre-
sentation.

From these boundaries we can derive the appearance at-
tributes ¢ (v;) = ¢ (b;) = {X;, 6;, 0} of each boundary b; for
each bottom-level node v; in the hierarchy. The smallest en-
closing bounding box, box;, was computed for each b;. The
position of each object is its center of mass, its orientation is
the major axis of box;, and its scale is the length and width
of box;, treating the major axis as our measure of length
and the minor axis our measure of width. If boundary b; for
node v; consists of n vertices v = {vy, v2, ..., v,} and (left;,
right;, top;, bottom;) describe the center points of the edges
of b;’s bounding box box;, we can compute each object’s
appearance attributes as,

X (Z?:l x(vj) 2 y(Vj)>

(38)
n n
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r~< Tightest enclosing
/ S~ bounding box

Fig. 8 An example of the features computed for a single object. The
boundary graph and smallest enclosing bounding box are used to com-
pute position, scale, and orientation

M 4xis = max((right; — left;), (top; — bottom;)) 39)
Maxis = min((right; — left;), (top; — bottom;)) 40)
0 = cos™ ' (Myis, (1,0)) (41)
0 = (| Maxis|, [Maxis|)- (42)

Figure 8 shows an example of the representation of a build-
ing based on these features.

5.2 Deterministically Forming Parse Graphs

Each 7°% has a corresponding parse graph pg®” describ-
ing the hierarchical arrangement of its objects. We are given
the boundaries of every object as described in Sect. 5.1.
We touched briefly on the deterministic formation of parse
graphs in Sect. 3.2, but now go into more details of our
implementation for deterministically converting labeled ob-
jects into parse graphs.

To form parse graphs from a collection of labeled objects
(the leaf nodes) we make the following stipulation:

Proposition 1 Boundaries within distance o of each other
that are of the same object label will be considered members
of the same group.

In other words, objects are deterministically assigned to
groups according to their distance between one another. This
provides two benefits:

(1) We can deterministically form a hierarchy from a flat set
of objects.

(2) We only measure relationship statistics within and be-
tween groups of objects, so limiting the distance at
which two objects are related prevents us from calcu-
lating and learning statistics of objects that are very far
away.

In our experiments we set o to be label-dependent. If
we let s be b;’s aspect ratio, we can define a set of dis-
tance thresholds as in Table 1. For example, a tree would
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need to be within 1.2 of its aspect ratio of another tree to be
considered in the same group. Because some objects within
the same label may vary significantly in size, one may also
choose to consider two objects proximal only if they are
within ¢ *min(sy, s2) of each other, where (s, s2) are the as-
pect ratios of the two objects in question. This is particularly
useful when determining which groups of objects should be
associated, as their sizes can vary significantly more than
those of single objects.

Figure 9 shows an example of deterministically forming
a parse graph from a set of labeled objects. In this exam-
ple, cars that are nearby one another are grouped together,
as shown in (a). The same goes for roofs labeled in (a). Fig-
ure 9(b) shows the resulting groups from this first step and
their distance-based relationships as well.

Table 1 Category-dependent distance thresholds o for deterministic
grouping based on an object’s aspect ratio s

Object label 0
Roof(s) K
Car(s) 0.5%s
Tree(s) 1.2x%xs
Road(s) 0.5%s
Parking Lot(s) K

Fig.9 An example of
deterministically forming the
neighborhood structure for a
parse graph from labeled
objects. (a) Cars and roofs that
are within a certain distance of
each other are grouped together.
(b) Groups that are within a
certain distance of each other
have group-level constraints
applied

-. A

L ()
=)
e
19
i
FO

(b)

D Object/Group boundary Q Object/Group center

Network structure between grouped objects

An important point to note here is that, though we form
parse graphs deterministically for our observed images, we
do not form them deterministically when inferring the best
explanation of a new image. In our training images /°%*
we are making the assumption that proximal objects are
grouped and that this grouping defines the number of objects
that the group consists of (decomposes into). There may,
however, be proximal groups in our testing images that have,
for example, a different number of objects than we expect to
see based on our training data. In this case, it may make
more sense to split the group into subgroups that match our
learned decomposition frequencies than grouping them all
under a hard-coded proximity condition. In a world where
we’ve only seen sets of three cars, a row of six cars is more
consistently explained as two sets of three by our model.

5.3 Relationship Functions

The functions f; for each relationship are defined over the
attributes of sets of nodes, ¢ (V;). We implemented the rela-
tionship functions listed in Table 2. The relationship func-
tions should be fairly explanatory, with the exception of
the position functions. Relative position returns the vector
between the centers of the two objects, which is relative
to the coordinate frame of the image. This is not particu-
larly useful as aerial images rarely have a well-defined “top”

Neighborhood Edge
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Table 2 Relationship function
definitions

Relationship n Nodes Function f;()

Aspect ratio 1 oy/0x

Relative position (in image coordinate frame) 2 X2 —X1)/s1

Radial position (in object coordinate frame) 2 {I1X2 — X1],0(1X2 — X1]) — 01}
Relative scale 2 s1/s2

Relative orientation 2 0 — 6

Percentage overlap 2 Areagyeriap /Area)

Alignment

N

SSE of least squares fit

or “bottom”. Radial position attempts to deal with this by
measuring relative distance in polar coordinates. These two-
dimensional features can also be decoupled and collected as
if they were independent, e.g. a relationship of just relative
X or Y positions or of distance and relative angle. The re-
sponses of these functions form the histograms H g, that we
match in the learning stage.

5.4 Histograms

We have chosen to represent our relationship statistic distri-
butions as histograms. This is intended to save us the trouble
of fitting specific distributions to each new relationship. In
order to use histograms, we made the following design de-
cisions:

1. The range of the histograms are determined by the maxi-
mum and minimum values observed in the training data.
We model values outside of this range by a decreas-
ing gradient function. Define the maximum probability
value allowed for this gradient function as p and the
width of the histogram bin as w. Then a point that is dis-
tance k bin widths beyond the edge of the histogram (i.e.
k * w distance from the edge) can be assigned probabil-
ity p — (k/n) x p, where n is as many extra bins as we’d
like to add to either side of our histogram. Thus, values
that are beyond the histogram edge are assigned a prob-
ability that is a fraction of the maximum probability p,
depending on how far away they are. n is usually set to
be something large, e.g. 10000, and p is usually set to
be the edge bin probability, which prevents the tail from
being greater probability than the probability in the edge-
most bins. Values greater than n are assigned probability
0 (or some minimum probability). These tails allow us to
model values outside of the histogram range while guar-
anteeing that their probability is never greater than the
probability for the edge closest to that side.

2. We divide our histograms into 10 bins each. We were
surprised to find that, empirically, any number of bins
above 6-7 were sufficient to produce samples from the
model that are perceptually similar to real aerial images.
Obviously we will never perfectly match the distributions
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with this discretization until we approach the limit, but
we find suitable results with even as few as 10 bins.

3. Our training set is intentionally small, so that little human
intervention is needed. At first it may appear that we are
therefore reducing the size of our training set and will
not have sufficient data to model the distributions. How-
ever, as most of our images are large images containing
hundreds of the objects, one image often provides a large
number of data points.

6 Experiments on Learning and Sampling

We selected 120 aerial images from the Lotus Hill Data-
base (Yao et al. 2007), which included labeled boundaries
of roofs, roads, parking lots, tree regions, and cars to use as
our training data.! As mentioned in Sect. 1, these boundaries
are hand-labeled. The images ranged in size from 640 x 480
pixels to 1000 x 1000 pixels. We set £y =4 and & = 0.2 for
Algorithms 1 and 2 and then learned a hierarchical contex-
tual model of objects in aerial images.

Figure 10 shows H(g)(PG°") and Hg)(PG*™) for four
typical relations at three iterations of the parameter learn-
ing algorithm. In the first iteration, the histograms from our
synthesized images are so far away from the true histograms
that most of their data is out of bounds. Halfway through
the learning, however, the histograms start to look coarsely
similar. By the final iteration, the histograms have matched
nearly perfectly. This assures us that the A(g)’s are reweight-
ing the histogram bins correctly such that, over time, the
images we synthesize using our model match the statistics
of true aerial images.

We used 5 object categories in our model (car, roof,
road, parking lot, tree) and their 5 corresponding group cat-
egories. We used 7 relationship functions in our model, re-
sulting in a relationship dictionary A g consisted of 360 pos-
sible relationships (10 aspect ratio relations + (5 objects) =
(5 objects) * (7 relationships) + (5 groups) * (5 groups) *

IDataset available from http://www.imageparsing.com. More data will
be released after the publication of this paper, but sample data is avail-
able free for downloading now.


http://www.imageparsing.com
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Fig. 10 (Color online) Histograms for four typical relations over the
course of the learning algorithm. The black lines are the histograms of
the observed data, H g (PGObS ), and the red lines are the histograms of
the synthesized data, Hgy(PG*™"), at each iteration. At first the statis-

Synthesized histograms

tics of the synthesized data are so far off from the truth that most values
are out of bounds. Halfway through the learning process the histograms
look close to matching and by the final iteration the histograms match
nearly perfectly
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Fig. 11 (Color online) Samples from our learned model (blue = roofs,
red = cars, black = roads, green = trees). These are not images di-
rectly sampled from the training data, but collections of objects obey-

(7 relationships)). Of those 360 possible relationships our
model selected 27, consisting mostly of overlap relations
(car/car overlap, building/tree overlap, car/parking lot over-
lap), relative scale relations (car/car relative scale, roof/road
relative scale), and alignment relations (car/car alignment).
There were also a few orientation relations added, though
they were only slightly better than noise (roof/road orienta-
tion) and could probably be weeded out by adjusting €.
Figure 11 shows samples from our final model
p(pg; ®, R). The resulting images appear similar to true
aerial images, with objects obeying many of the same spatial
and appearance constraints that we observe in the real data.
We see cars appearing on roads, roofs arranged in blocks,
and few or no spurious overlaps. Note that these samples
are not representative of a specific aerial image from the

ing the statistics of our learned model. We can create a vast amount of
unique object configurations even though we’ve never observed them
directly

training data or elsewhere. These are simply object bound-
aries that have been scaled, positioned, and oriented such
that they minimize the energy in our prior. Nevertheless, we
see that the relationship histograms match between the two
models and the sampled images are perceptually similar to
true aerial images. This shows that our learned model is in
fact capturing the relationship statistics present in true aerial
images and can thus recreate believable aerial image config-
urations.

7 Bottom-Up/Top-Down Bayesian Inference

In this section we present the Bayesian formulation for find-
ing the highest probability explanation of an aerial image.
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We first run bottom-up detectors for each of the object cat-
egories. After this first stage of object detection, we use
a cluster sampling algorithm inspired by Swendsen-Wang
sampling called C4 to prune out false positives and incon-
sistent detections. In the third stage of the algorithm we pro-
pose locations of objects that may have been missed by the
bottom-up detectors or incorrectly pruned in the first stage.

7.1 Bottom-Up Detections
We use different bottom-up detectors for each type of object:

Cars We trained a discriminative AdaBoost classifier (Fre-
und and Schapire 1997) to detect cars. We collected 3000
positive examples of cars, selected by hand as patches con-
taining a single car from aerial images, as well as 3000 neg-
ative images for training, comprised of patches of training
images in which no car is present. Figure 12(a) shows car
detections using the learned classifier. Unfortunately, we do
find that this method results in many false positives, which
we will address later. AdaBoost is a commonly cited and
described algorithm, so we refer the reader to Freund and
Schapire (1997) for further details.

Parking lots and Trees Parking lots and trees are charac-
terized by their textures. Color information is highly vari-
able from one parking lot or grove of trees to the next, so
color histograms are too simple to capture an appearance
model for these classes. We resolve this problem by using

(b) Trees

(a) Cars (Adaboost) (TextonBoost)

Fig. 12 Single object detections using our bottom-up detectors
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(c) Parking Lots
(TextonBoost)

TextonBoost (Shotton et al. 2006), an algorithm for combin-
ing texture and shape cues in a boosting framework to cre-
ate a discriminative classifier. TextonBoost extracts textons
(collections of filter responses) for each category and clus-
ters them into a texton dictionary. These textons are then
boosted using to arrive at a combined discriminative clas-
sifier. We provided TextonBoost with about 100 images in
which the images are labeled (0/1) according to whether
or not a pixel belongs to background or the category we’re
learning (parking lots and trees are learned separately). The
pure bottom-up results are shown in Figs. 12(b) and 12(c).

Roofs and Roads Roofs and roads present quite a different
problem from the categories we’ve represented up until now.
They are neither defined by a constant shape nor a constant
texture. The most informative cues are the edges that de-
fine their boundaries. We use a recently developed algorithm
called Compositional Boosting (Wu et al. 2007) that hier-
archically combines low-level cues into higher-level struc-
tures. A more detailed explanation of Compositional Boost-
ing is given in Wu et al. (2007), but we will describe it at a
high level here.

High-level Description of Compositional Boosting Com-
positional Boosting learns a model by first defining a dictio-
nary of low-level features (such as edges) along with some
spatial rules of interest (e.g. parallelism, relative length,
collinearity). These low-level features are first labeled in a
number of training images and labeled as belonging to the

(d) Roads
(CompBoost)

(e) Roofs
(CompBoost)
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structure of interest or not. For example, in this experiment,
we labeled edges in the training data as belonging to a roof,
a road, or neither. Compositional Boosting begins building
a hierarchy from these labeled edges by testing the mutual
information of edges under certain spatial constraints. For
example, in the roof class we will see lines at right angles
more frequently than in random noise. Any composition
rules with mutual information greater than some threshold
are added to the hierarchy (e.g. two lines nearly 90 degrees
from one another should form a higher-level component).
This process then repeats at the next highest level until some
percentage of the labeled lines are modeled by the final com-
position. Figure 2 shows the Compositional Boosting hierar-
chies below the roof and road nodes. A roof can decompose
into a number of different shapes, each of which is formed
from lower-level components.

To detect structures in images, we first define detectors
for Compositional Boosting. We begin with an edge detec-
tor for edges, since they are the lowest level nodes in our
hierarchy. However, we may also define higher level detec-
tors to find higher-level nodes (e.g. corner detectors). Let us
define a possible set of detectors T ={t; :i =1,2,...,k}
at each node designed to detect that part directly from the
image. We also add auxiliary data structures to each node,
called “Open” and “Closed” lists. The open lists will store
any current potential detections for that node. The closed list
will store any accepted detections of the node the list resides
at. Each proposal in an open list is weighted by a posterior
probability ratio.

Compositional Boosting first creates proposals for the
open lists for an image I in one of two ways:

(1) Proposals for A are formed from local detectors 7.
The weight of each detection is the log-ratio of the local
marginal posterior probability on an image patch A’ using

t |t2 |----|t“| — A

Fig. 13 (Color online) A conceptualization of inference with Com-
positional Boosting. The left hand side shows an example of a node
in a Compositional Boosting tree with parent node A and children
nodes (A1, A2, A3). (t1,...,t,) indicate proposals for A detected di-
rectly from the image, while A = Aj - A - A3 indicates proposals for
A detected as a product of child proposals. In the inference process,

A % A]lAz'A3

some features of the image F (),

l .
&, ~log AN UAD), (43)
P(AT|F(1y)
where A is an alternative hypothesis.

(2) Proposals for A are formed by combining proposals
for A’s children from their Open and Closed lists. Proposals
from each list are compared based on their compatibility,
and highly compatible proposals are combined to propose
the higher level node A. The weight on these hypotheses is
the local conditional posterior probability ratio. Suppose a
proposal A’ is formed from three of its child proposals A’i,
A, and A}, then the weight will be

p(AL, AL, AL|AT) p(AT)
p(AL, AL, AL AT p(AD)

(44)

where A represents a competing hypothesis. In other words,
we are measuring the probability that these proposals ap-
peared as a result of A existing as opposed to some other
node. The top-down process then greedily adds proposals
from the Open lists to the Closed lists and updates the Open
list weights until no weights are above a certain threshold.

Figure 13 shows a toy example of this process. Here we
see that A can be formed from either its detections 7', or by
combining proposals from its children. This is where Com-
positional Boosting is particularly powerful, because weak
detections of compatible children may be enough for us to
propose the parent node.

Figure 14 shows an example of roof detection using
Compositional Boosting. We begin with a probabilistic edge
map formed from our source image. From this map we first
extract edge segments using an edge detector. We next com-
bine edges that are compatible according to the rules that

open list (weighted particles for hypotheses)

DI IE

closed list (accepted instances)

g ¢

we store proposals at node A in open and closed lists, where particles
in the open list are pending proposals and particles in the closed list
have been accepted. The up and down arrows in the figure indicate that
there is evidence for each particle coming from both bottom-up and
top-down channels
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Fig. 14 An example of detecting roofs with Compositional Boosting. We run a probabilistic edge detector to get image (b), after which the
algorithm detects object parts, such as parallel lines and corners in (¢) and (d). These act as evidence for the final roof proposals in (e)

we’ve learned from labeled roofs. Figure 14(c) shows paral-
lel lines detected in the image, while Fig. 14(d) shows cor-
ners detected in the image. Figure 14(e) shows the final roof
detections inferred from the composition of these low-level
features. We can see that the rectangular structures of roofs
are detected, but there are also many false positives present.

7.2 Top-Down Bayesian Formulation

Using the approach above, we arrive at a set of N candidate
proposals, Co = {c; :i = 1,2, ..., N}. Each candidate pro-
posal consists of a boundary of an object that was detected
using bottom-up detectors. We also use each detector’s out-
put as a measure of the object likelihood, L; = p(I|b;,1;).
The computation of this likelihood varies from detector to
detector, but in our experiments, for example, we computed
color histograms for classes like trees, parking lots, and
roads and used those to compute the likelihood of a bounded
region based on its color distribution. Other methods like
Compositional Boosting return a probability for the detected
object, which we used as its likelihood score. For our Ada-
Boost candidates we used the number of overlapping pro-
posals for each object as a measure of the likelihood of the
object. Note that each likelihood is independent of the other
classes, i.e. L; measures the probability that a patch belongs
to class A versus that it doesn’t, not the probability that it
belongs to class A versus class B. Ideally we would find
a multiclass model that accounted for the probability that
a patch belonged to class A over class B or class C, but
for now we use a simple two-class approximation to mea-
sure the strength of each proposal. Each proposal is then
¢i =1{bi,li, Li}.

Our goal is to find the parse graph pg that best describes
the image. pg will consist of a set of candidates C C Cy
and grouping decisions such that the likelihood of the can-
didates and probability of their configuration is maximized.
The Bayesian formulation is

pgt = argmax p(pgll) = argmax p(pg; ©, R)p(I|pg)
(45)
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Fig. 15 An example of two choices a greedy inference algorithm
could make for interpretations of the scene. Because cars cannot ap-
pear on top of roofs (let us assume the data supports this) selecting the
roof in decision 1 eliminates the car nodes while selecting the cars in
decision 2 does the opposite. The algorithm is stuck with this decision
no matter what later evidence it may find

7.2.1 Previous Approach and Motivation

The conference version of this work (Porway et al. 2008)
used a greedy algorithm to maximize this posterior. In that
work, the authors used an iterative approach that first as-
signed a weight w(c;) to each of the currently unselected
proposals based on how well it maximized the posterior. The
object with the highest weight was selected to be added to
the running parse of the scene, pg, thus forming pgy. The
objects were then reweighted according to how much the re-
maining objects would improve the overall explanation of
the scene and this process iterated until no objects above a
certain weight remained.

The problem with this approach is shown in Fig. 15. Be-
cause the algorithm described in Porway et al. (2008) is
greedy, it cannot backtrack from a poor decision. By select-
ing the car node to be in the final parse of the scene in the
second case, the algorithm will now give an exceedingly low
weight to the enclosing roof, as we virtually never see cars
on top of roofs. However, had the roof been selected first,
as in scenario 1, the car would have been given a very low
weight and we would have arrived at the correct interpreta-
tion. We would like our new algorithm to be able to back-
track from these mistakes.
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7.2.2 Motivation: Swendsen-Wang Clustering

One solution to this problem is to use Swendsen-Wang clus-
tering (SWC). SWC was designed to sample the Ising model
by updating the labels of many sites at once instead of us-
ing Gibbs sampling to update one at a time (Barbu and Zhu
2005; Swendsen and Wang 1987). This is similar to our task
of switching many objects in or out of the explanation at
once. We’ll look at SWC at a high level to motivate our so-
lution to the problems in our specific task.

In classic Swendsen-Wang we have a number of sites
with class labels,

(X)) ={li.lp, ..., k}, (46)

X ={x1,x2,...,xn},

that have a neighborhood structure of edges E connect-
ing them. The goal of the algorithm is to assign the labels
such that some energy term £ (X) is minimized. In the Ising
model, this is simply a constraint that neighboring sites have
the same label

1
X) = — exp £
p(X) 7 &XP

EX)=8 ) 8U(x)=I(x), B>0.

(s,t)€E

(47)

In our model, p(X) would be our learned prior p(pg; ®, R).
SWC updates portions of X quickly by clustering neighbor-
ing nodes that have the same color and updating their labels
simultaneously. It does this by first introducing an auxiliary
variable into the Ising model, U, indicating whether an edge
is “on” or “off” between two nodes,

U={us:(s,t) e E}, use{0,1}. (48)

Edges are turned on with probability p if the nodes they
connect have the same value, and are turned off otherwise.

These edges will be used to join nodes with the same labels
into connected components.

The benefit of adding U to the formulation to get
(X, U) was that Swendsen and Wang could now take large
steps in the solution space. It was shown in Swendsen and
Wang (1987) that sampling from 7 (X|U) and 7 (U|X) it-
eratively produced samples from 7 (X, U). If this distribu-
tion was defined such that we can marginalize over U to get
p(X) back, then we can generate samples from p(X), which
is difficult and slow, by instead sampling from 7 (X, U),
which is easy and fast.

Without delving too deeply into the technical details,
Swendsen and Wang’s algorithm did just that in the follow-
ing algorithm:

1. Sample from 7 (U|X) to turn edges on and off. Edges
between nodes with different labels are turned off w.p. 1.
Edges between nodes with the same label are turned off
w.p. 1 — p, where p = 1 — e~ for the Ising model.

2. Form connected components CCP based on the edges
that are left on at this iteration. All nodes within each
CCP have the same label by the definition of 7 (X|U).

3. Select a connected component CCP; at random.

4. Sample from 7 (X|U) to relabel the nodes in CCP; ac-
cording to the state of neighboring nodes. This quantity
is often computed by Gibbs sampling the probabilities of
every possible labeling.

It can be shown that, because p(X) can be derived from
(X, U) by summing over U, we can sample from p(X).
Figure 16 shows an example of running Swendsen-
Wang clustering on the Ising model. In Fig. 16(a) edges
are probabilistically turned on or off based on the labels of
the nodes they connect to. This is equivalent to sampling
from 7w (U|X). A connected component is then formed in
Fig. 16(b) based on the edges currently on and its labels are

(a) Initial state

Fig. 16 An example of Swendsen-Wang clustering on the Ising model.
(a) The current state. (b) Nodes with different labels have their edges
turned off, while nodes with the same label are connected w.p. e~ 7.
The dashed lines show edges that were probabilistically cut between

(b) Edges cut probabilistically

(c) Component recolored

nodes with the same label. The remaining edges form connected com-
ponents. (¢) Simultaneously relabel all nodes in a randomly selected
connected component. This process updates large portions of the solu-
tion space quickly
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reassigned in Fig. 16(c). This last step is equivalent to sam-
pling from 7 (X|U). The end result from this process are
samples from 7 (X, U), and thus p(X).

This approach will not work for our task, however, for
two main reasons:

1. Alternative explanations: In our task, each object
proposal ¢; can take a label /; € {0, 1}, indicating if it is in
the current explanation or not. If we label a cluster using
traditional SWC, we can remove a cluster of proposals from
our explanation without adding any nodes back in. This may
cause our posterior probability to decrease, as we have now
explained less of the image. With no alternative explanation
to replace these removed proposals we simply decrease the
probability of our current system, which means this move is
accepted with a very low probability.

2. Conflicting nodes: If we add an object to the solution
set that conflicts with other objects, say a car on top of a
tree, this will give the explanation such high energy that this
move will never be accepted. This is the opposite problem
from problem 1, in that we now need to remove parts of the
current explanation simultaneously with adding the new ex-
planation, otherwise the combined explanation might have a
very low probability.

An example of this problem is shown in Fig. 4. We need
an algorithm that can exchange alternative explanations si-
multaneously without introducing conflicting objects to the
explanation.

7.3 C4: Clustering via Cooperative and Competitive
Constraints

We use an algorithm called Clustering via Cooperative and
Competitive Constraints (C4) (Porway and Zhu 2009) to
deal with these problems. It differs from Swendsen-Wang
clustering in two major ways:

1. Negative edges: In addition to the “positive” edges
in Swendsen-Wang clustering, in which nodes were encour-
aged to have the same label, C4 incorporates negative edges,
dictating that neighboring sites should not be labeled simi-
larly. We use them here to indicate that two explanations of
the scene can’t both exist at once. For example, we could
have negative edges between two overlapping cars to indi-
cate that they cannot both be in the same explanation at the
same time.

2. Composite Flips: Traditional Swendsen-Wang up-
dates the label of a single cluster in one step. In our model
the new labels for one cluster may cause it to violate con-
straints with neighboring clusters, so we may need to update
the labels of many clusters simultaneously. We thus form
composite components consisting of conflicting clusters that
all need their labels reassigned at once to remain consistent.
This is like the switch shown in Fig. 4(c), where an entire
parking lot and cars are not only taken out of the candidate
set, but are replaced with a roof simultaneously.

Figure 17 shows C4’s results on a toy model. In this ex-
ample, we have introduced a backbone of negative edges
down the middle of the lattice, requiring that nodes on one
side have the same color, but each side has a different color.
Traditional Gibbs sampling attempts to update one site at a
time, which creates a low probability state. SWC updates
an entire side at one time, but only updates one cluster and
ignores negative edges, thus creating another low probability
state. C4 clusters the entire system and relabels the individ-
ual clusters subject to both positive and negative constraints,
creating a high probability state.

We can extend the example in Fig. 17 to our actual prob-
lem. Figure 18 shows a number of object proposals, which
are like the nodes in Fig. 17. Objects that have a high prior
probability of being on together are grouped together with

Positive Negative
Edges _/v\_ Edges

(a)

Q00

Edges turned off
probabilistically
(b)

‘.’.PO

(c)

Fig. 17 A toy example of C4 on the Ising model. Here we’ve added
negative edges, indicated by jagged lines, that encourage nodes to have
opposite labels. In (b), we probabilistically turn edges on and off based
on whether they satisfy their current constraints (node labels same or
different). The remaining edges form connected components (CCPs).
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(c) A connected component Vj, which consists of sub-components
CCP; of the same label connected by negative edges, is relabeled ac-
cording to its constraints. Further details are provided in Porway and
Zhu (2009)
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Fig. 18 An application of C4 to a toy aerial image. (a) Compatible
object proposals (cars in the parking lot, the tree next to the building)
are connected by positive edges while non-compatible proposals (tree

“positive” edges (e.g. the neighboring cars and the park-
ing lot, the tree with the building), while objects that have
low prior probability of being on together are grouped by
“negative” edges (e.g. the building with the parking lot or
tree with parking lot). Here we’ve added positive and neg-
ative edges based on pairwise energies from the exponent
in p(pg; ©, R). If the energy between two nodes is above
a certain threshold, a negative edge is added between them.
Otherwise, a positive edge is added.

The probability assigned to each edge is determined by
using a squashing function of the energy between the two
nodes. This is used to map the pairwise energy to the range
[0, 1]. In our experiments we used an inverted logistic func-
tion F(x) = ﬁ where first F(x) =1 — F(x),x <0
and then we scale to [0, 1] via F(x)' =2 % F(x) — 1. This
creates a symmetric function where energies that are much
greater or much less than the center of the distribution u ap-
proach probability 1, while values near u approach 0, as they
are just barely positive or negative. The parameters u and s
can be adjusted to translate and scale the function, respec-
tively. In this way we create data-driven probabilistic edges
between proposals based on their pairwise energies.

In the same way that it does in Fig. 17, C4 probabilisti-
cally turns positive and negative edges on and off, then pro-
poses to relabel the selected cluster based on its constraints,
giving a label of O to objects that shouldn’t be in the cur-
rent interpretation and a label of 1 to objects that should be
in the current interpretation. Here C4 flips between the two
possible explanations of the scene in Figs. 18(b) and (c).
The decision to flip the interpretation or not is reached by
Gibbs sampling the possible component values (here O or 1),
meaning that each interpretation is selected to be turned on
proportionally to the value of p(X) it results in. In the case
of two equally likely interpretations, there is a 50% chance

with parking lot, building with parking lot) are connected by negative
edges. (b, ¢) C4 groups objects based on these connections and updates
the state of the system to swap between alternate explanations

that the interpretation will swap at each step. At the conclu-
sion of this process (which is sampling from 7 (U|X) and
m(X|U) as in SWC) our samples from p(pg|l) are sets of
proposals for interpreting the scene. Further derivations and
results can be found in Porway and Zhu (2009).

7.4 Top-Down Prediction

In addition to reducing false positives using C4, we can also
predict new instances of objects that may have gone unde-
tected using the hierarchical aspect of our model.

Given our final parse pg* from C4, we can Gibbs sam-
ple the group nodes to create new objects per group node or
new group nodes in the scene. We can then Gibbs sample
the appearance relationships for newly added nodes to form
new proposals. As many objects are loosely constrained in
the scene it is difficult to predict where objects should be ex-
actly. We remedy this by just predicting additional aligned
objects wherever we already have some aligned objects.
This allows us to find new true positives in addition to prun-
ing false positives. Figure 5 shows examples of hallucinated
objects using the results from the C4 pruning. These final
proposals will be added to a final round of C4 clustering to
arrive at the final parse.

8 Experiments

We ran our algorithm on 5 large (4000 x 4000) images col-
lected from Google Earth. We learned a top-down model as
in Sect. 4 and implemented detectors for each of the objects
as described in Sect. 7.1. Figure 19 shows the process of
our algorithm on one of these images. The first panel shows
the original image, while the second panel shows an overlay
of the initial bottom-up detections, which contains a huge
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(b)

Il roadsli]

Fig. 19 The bottom-up to top-down pipeline. (a) The original image. ing C4. Many false positives are removed. (d) The results given newly
(b) The bottom-up detections. There are a huge number of overlap- proposed nodes from the hierarchical prior
ping and inconsistent detections. (¢) The top-down pruning results us-
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Fig. 20 ROC curves for detecting U junctions, L junctions, parallel lines, and opposing L junctions using Compositional Boosting. We see that
CompBoost helps us identify weakly detected junctions, which helps us propose better high-level detections

Fig. 21 Close up views of our
improvement during pruning.
Notice that overlapping
proposals and inconsistent
explanations (cars in trees) have
been removed

number of false positives (3 false positive roads, 71 false
positive buildings, 623 false positive cars, 10 false positive
trees). The third panel shows the results of using C4 cluster-
ing to find a high probability set of bottom-up detections to
explain the scene. The fourth panel shows the final explana-
tion of the image after some new proposals have been sug-
gested and verified. The first step of the C4 algorithm shows
the most dramatic improvement, with vast numbers of in-
consistent detections (cars on roofs, trees on roads, overlap-
ping roofs) being removed, leaving just single object bound-
aries for the important objects (we now have 0 false positive
roads, 5 false positive buildings, 57 false positive cars and 0
false positive trees). The second step gives a slight improve-
ment, though primarily just in finding missing cars, which
are difficult to see at this resolution. Note that there are still
some missed detections, either because our initial detectors
did not detect the object or because the context may have
inadvertently ruled out a valid explanation (e.g. accidentally
favoring the shadow of a roof instead of the roof itself, thus
suppressing the true roof).

The inference stage, given bottom-up proposals, takes
about 10 seconds to run on a dual core 1.6 GHz machine.
The bottleneck in our pipeline is the detection phase, how-
ever. For example, our AdaBoost results take a mere couple
of seconds to compute. The edge detector we used, on the
other hand, can take upwards of a minute to process each
image. Therefore, the speed of our approach is highly depen-
dent upon the speed required to compute the initial bottom-
up detections.

Because of the newness of Compositional Boosting, we
first examined how much improvement we achieved in de-
tecting low-level roof parts using Compositional Boosting.
Figure 20 shows ROC curves for detecting U junctions, L
junctions, parallel lines, and opposing L junctions. Using
specific bottom-up detectors alone (the blue curves) causes
us to miss a lot of the junctions present. By using Compo-
sitional Boosting, we are again able to leverage context and
hierarchy to identify missing junctions to help us propose
more roofs, as shown by the red curves.

Figure 21 shows a zoomed in view of our test images
before and after pruning. Figure 21 shows that, at first, we
have many conflicting proposals for the object boundaries,
notably that a parking lot could be on top of the roof. Af-
ter we enforce the contextual constraints we learned, how-
ever, we return to a sensible explanation of the scene, one in
which there are no longer cars on top of roofs or overlapping
proposals. Figure 22 shows a zoomed in view after we pro-
pose new cars. Initially we missed some cars in the rows of
the parking lots. Because our model recognizes that cars ap-
pear in rows, however, it proposes cars of roughly the same
shape and sizes of the neighboring cars around them, using a
line grammar. Cars matching above a certain likelihood are
accepted and the conflicting nodes are removed.

Table 3 shows the detection rate and false positives per
image of each category using just that category’s detector
(shown in parentheses) vs. using the full hierarchical con-
textual model. We can see that the hierarchical contextual
model greatly reduces the false positive rate from single-
object bottom-up detectors because it can leverage context
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to remove false positives. Our detection rate is about the
same, however, as the pruning phase in the second stage
serves mostly to rule out inconsistent detections. In the third
stage we were able to identify a few extra cars (as shown in

Table 3 False positives per image and detection rates for bottom-up
detectors versus our method

Detection method False positives Detection rate

per image

Cars (AdaBoost) 242.33 88.1%
Cars (Ours) 71.83 84.2%
Parking Lots (TextonBoost) 1.17 84.3%
Parking Lots (Ours) 0.16 84.3%
Trees (TextonBoost) 14.5 88.8%
Trees (Ours) 9.33 88.8%
Roofs (CompBoost) 73.5 70.3%
Roofs (Ours) 1.67 70.3%
Roads (CompBoost) 5.67 95%

Roads (Ours) 0.05 88.3%
Combined (All Detectors) 337.17 93.1%
Combined (Ours) 83.04 87.5%

Fig. 22), but the amount of extra detections was not enough
to account for the inadvertent pruning of true positives from
stage 2. Overall, our context allows us to achieve compa-
rable detection rates to single-object detectors, but with far
fewer false positives.

Figure 23 shows two different precision-recall curves for
the bottom-up and top-down stages of our process. We show
precision-recall as opposed to ROC curves because it is dif-
ficult to decide how to compute the number of true nega-
tives for multi-category classification tasks, a decision that
can drastically alter the appearance of the algorithm’s per-
formance. In Fig. 23(a), we measure our accuracy at the
pixel level. In this experiment, we labeled each pixel in the
image as belonging to an object category or not and then
converted our inferred boundaries to a similar labeling. In
Fig. 23(b) we measure our performance using object-level
accuracy. In this case we considered an object to be detected
if it had a boundary around it within some threshold of its
true scale and position. In both cases we can see that the top-
down improvements over the initial detections are substan-
tial. While the initial detections give average performance,
it is the introduction of the top-down pruning and prediction
that flattens our curve, enabling us to keep a very high level

Fig. 22 Close up views of our
improvement during top-down
prediction. Additional cars are
added to the rows due to the
presence of other collinear cars

i
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Recall
(a)

Fig. 23 Precision-Recall curves for the bottom-up and top-down in-
ference algorithm. In both cases we see a huge improvement by using
CSW to prune out false positives and using our model to predict miss-
ing objects. F| and F, are the best F-measures for the bottom-up and
for the full algorithm, respectively. (a) Precision-Recall curve using
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Recall

(b)

pixel-level accuracy, i.e. each pixel in the image is assigned a cate-
gory label. (b) Precision-Recall curve using object-level accuracy, i.e.
each object is considered detected if we infer an object of appropriate
dimensions over it
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Fig. 24 An example of
swapping alternative solutions
using C4. (a) Vents are
incorrectly labeled as cars on
top of the roof. (b) The cars are
correctly swapped out for the
roof simultaneously to arrive at
the correct solution

Partially Learned Model

Fig. 25 A comparison of inference results for the model learned with
a very high & versus a rather low & (i.e. fewer relationships are added
to the first model). The partially learned model is missing a lot of over-

of precision as the recall increases. Notice, however, that in
Fig. 23(b) the second stage actually degrades performance
slightly for low values of recall, likely because it has pruned
too many true positives, reducing our precision slightly. This
could likely be improved by adjusting the likelihoods of our
initial candidates so that we don’t overprune them. Over-
all though the top-down performance far eclipses the initial
bottom-up detection results on their own.

We also looked at the benefits of using C4 to find solu-
tions. Figure 24 shows an example of a patch where C4 is
extremely useful during inference. In the first panel, the al-
gorithm has mistakenly interpreted the vents on top of the
building as cars. This has thus ruled out the true explanation
that there is a building there. Thanks to C4’s ability to swap

it
Fully Learned Model

lap constraints (e.g. cars on trees, cars on buildings), and so makes very
poor decisions when parsing the scene. Many of the buildings have cars
on top of them and cars readily overlap each other

out all of the related cars while simultaneously adding the
roof, we are able to arrive at the correct solution in panel (b).
This solution is maintained because it has a higher probabil-
ity than the previous explanation.

In Sect. 4.2 we mentioned that we choose to add rela-
tionships iteratively instead of fitting the full model, as this
allows us to keep our model simple for sampling and per-
forming inference. The question remains, however, about
whether we need to learn as many relationships as we do.
Figure 25 shows the inference results for an aerial image
using a model with a high &1 (10) and a model with a stan-
dard 1 (4). We can see that the partially learned model is
lacking contextual relationships for cars and buildings, as
many cars appear on roofs, and cars appear on top of one
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another. The fully learned model does not make these mis-
takes. While ¢; is definitely variable, we strive to select a
value that produces good results while still minimizing the
size of our relation set R.

Figures 26 and 27 show the final results of our algo-
rithm on a number of other urban aerial images. We used
our algorithm to find the best parse graph representations
for each object and here just display the flattened configura-
tions of the highest probability parse graph for each scene.
We can see that the majority of objects are detected accu-
rately, though there are still a few false positives.

We would like to compare our methods to other works in
the field, but, as mentioned in Sect. 1, we are hard-pressed to
find competing algorithms that identify multiple categories
of objects. Similarly it was quite difficult to find benchmarks
on consistent datasets in the aerial imaging community, so
we would like to offer these results as a benchmark on the
aerial images we used from the Lotus Hill Database. These
images will be available from the Lotus Hill Institute’s web-
site (http://www.imageparsing.com) and can be used freely
by anyone else interested in testing on them.

9 Discussion and Future Work

In this paper we presented a 3-level contextual hierarchy for
modeling aerial images that automatically augments a hier-
archical model with relational constraints using a minimax
entropy framework. The learning algorithm was able to it-
eratively add relationships from even large dictionaries of
potential relationships in order to model the statistics of the
aerial images. We found that this learning process was im-
peded only by the time needed to sample new images, which
can be made tractable through a number of optimizations. In
the end our model selected only a small subset of the dictio-
nary of relationships, yet was still able to accurately recreate
aerial images. The current work relied on hand-labeled data,
but we would like to relax this assumption to first do un-
supervised recognition of object types before learning the
scene structure in future work.

The bottom-up methods we used along with our three-
phase Bayesian inference algorithm were instrumental in
obtaining the results that we did. Using C4 to swap inter-
pretations of the scene was extremely helpful, and at times
critical, in finding a good subset of detections to represent
the scene. Our top-down prediction did not, however, sig-
nificantly improve results much, as our algorithm only pro-
posed objects that met the line grammar relationship rules
(e.g. cars). As was seen in Fig. 21, very few cars are actually
added to the representation. This work served as a proof of
concept that some combined bottom-up/top-down inference
can definitely improve performance, but in this case there
were SO many objects in each scene that an improvement

@ Springer

by 10-20 newly detected objects didn’t significantly impact
our classification rate. For specific tasks, for example one in
which finding every car is important, this technique will be
very useful.

In our experiments we hand-defined our 3-level hierar-
chy and added the context automatically. When learning the
hierarchy automatically, however, the question remains as
to when one uses hierarchy to group objects and when one
simply uses context. We found that grouping objects made
our representation simpler and allowed us to avoid the com-
putational inefficiency of computing a fully pairwise graph
between all objects. However, we certainly could have cre-
ated a flat model and added constraints to that. The question
of when to use hierarchy and when context on a flat model
suffices is an interesting and unresolved one.

Overall we found that our method was able to learn rela-
tionships flexibly and out-performs commonly-used single-
object detectors. We hope in the future to find a combination
of initial detectors, improved bottom-down inference, and
adjustments to C4 that will improve our results even further.

Acknowledgements This work at UCLA is supported by an NSF
grant IIS-0713652 and ONR grant N00014-05-01-0543. The work
at Lotus Hill Research Institute is supported by 863 project
2008AA01Z126 and NSFC grant 60776793. We thank the Lotus Hill
Dataset for groundtruth annotation (Yao et al. 2007) for the aerial im-
ages used in this paper and Benjamin Yao for his many helpful discus-
sions and his assistance with preparing the dataset.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Barbu, A., & Zhu, S.-C. (2005). Generalizing Swendsen-Wang to sam-
pling arbitrary posterior probabilities. Pattern Analysis and Ma-
chine Intelligence, 27, 1239-1253.

Berg, A., Grabler, F., & Malik, J. (2007). Parsing images of architec-
tural scenes. In IEEE 11th international conference on computer
vision.

Chen, H., Xu, Z., Liu, Z., & Zhu, S.-C. (2006). Composite templates
for cloth modeling and sketching. In Proceedings of the IEEE
conference on computer vision and pattern recognition (Vol. 1,
pp. 943-950).

Chi, Z., & Geman, S. (1998). Estimation of probabilistic context-free
grammars. Computational Linguistics, 24(2).

Felzenszwalb, P., & Huttenlocher, D. (2005). Pictorial structures for
object recognition. International Journal of Computer Vision,
61(1),55-79.

Fischler, M., & Elschlager, R. (1973). The representation and matching
of pictorial structures. IEEE Transactions on Computers, 22(1),
67-92.

Freund, Y., & Schapire, R. (1997). A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Journal
of Computer and System Sciences, 55.

Fu, K. S. (1981). Syntactic pattern recognition and applications. New
York: Prentice Hall.


http://www.imageparsing.com

Int J Comput Vis (2010) 88: 254-283

283

Han, F,, & Zhu, S.-C. (2005). Bottom-up and top-down image parsing
by attribute graph grammar. In Proceedings of the international
conference on computer vision (Vol. 2).

Hinz, S., & Baumgartner, A. (2000). Road extraction in urban ar-
eas supported by context objects. International Archives of Pho-
togrammetry and Remote Sensing, 33.

Jin, Y., & Geman, S. (2006). Context and hierarchy in a probabilistic
image model. In Proceedings of the IEEE conference on computer
vision and pattern recognition (Vol. 2, pp. 2145-2152).

Johnson, M., Geman, S., Canon, S., Chi, Z., & Riezler, S. (1999). Esti-
mators for stochastic unification-based grammars. In Proceedings
ACL’99, Maryland.

Keselman, Y., & Dickinson, S. (2001). Generic model abstraction from
examples. Pattern Analysis and Machine Intelligence, 27, 1141—
1156.

Li, F.-F,, & Perona, P. (2005). A bayesian hierarchical model for learn-
ing natural scene categories. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (Vol. 2, pp. 524—
531).

Li, Y., Atmosukarto, I., Kobashi, M., Yuen, J., & Shapiro, L. (2005).
Object and event recognition for aerial surveillance. In SPIE—the
international society for optical engineering.

Maloof, M. A., Langley, P., Binford, T. O., Nevatia, R., & Sage, S.
(2003). Improved rooftop detection in aerial images with machine
learning. Machine Learning.

Matsuyama, T., & Hang, V. (1990). Sigma: A framework for image
understanding integration of bottom-up and top-down analyses.
New York: Plenum.

Moissinac, H., Matre, H., & Bloch, 1. (1994). Urban aerial image un-
derstanding using symbolic data. In Image and signal processing
for remote sensing, proc. SPIE.

Nicolas, B., Viglino, J., & Cocquerez, J. (2000). Knowledge based sys-
tem for the automatic extraction of road intersections from aerial
images. International Archives of Photogrammetry and Remote
Sensing.

Ohta, Y. (1985). Knowledge-based interpretation of outdoor natural
color scenes. London: Pitman.

Porway, J., & Zhu, S. C. (2009). C4: Stochastic inference on graphi-
cal models with positive and negative edges for rapidly exploring
competing solutions (Technical Report).

Porway, J., Wang, K., Yao, B., & Zhu, S.-C. (2008). A hierarchical and
contextual model for aerial image understanding. In Proceedings
of the IEEE conference on computer vision and pattern recogni-
tion.

Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2006). Textonboost:
Joint appearance, shape and context modeling for multi-class ob-
ject recognition and segmentation. In Proceedings of the Euro-
pean conference on computer vision (pp. 1-15).

Siddiqi, K., Shokoufandeh, A., Dickinson, S., & Zucker, S. W. (1999).
Shock graphs and shape matching. International Journal of Com-
puter Vision, 35(1), 13-32.

Singhal, A., Luo, J., & Zhu, W. (2003). Probabilistic spatial con-
text models for scene content understanding. In IEEE computer
society conference on computer vision and pattern recognition
(Vol. 1).

Sivic, J., Russell, B., Efros, A., Zisserman, A., & Freeman, W. (2005).
Discovering objects and their location in images. In Tenth IEEE
international conference on computer vision.

Sudderth, E. B., Torralba, A., Freeman, W. T., & Willsky, A. S. (2005).
Describing visual scenes using transformed Dirichlet processes.
In Neural information processing systems.

Swendsen, R., & Wang, J. (1987). Nonuniversal critical dynamics in
Monte Carlo simulations. Physical Review Letters.

Todorovic, S., & Ahuja, N. (2006). Extracting subimages of an un-
known category from a set of images. In Proceedings of the IEEE
conference on computer vision and pattern recognition (Vol. 1,
pp. 927-934).

Tu, Z., & Zhu, S.-C. (2002). Image segmentation by data-driven
Markov chain Monte Carlo. I[EEE Transactions on Pattern Analy-
sis and Machine Learning, 24(5), 657-673.

Ullman, S., Sali, E., & Vidal, M. (2001). A fragment-based approach
to object representation and classification. In Proceedings of the
4th international workshop on visual form.

Vestri, C., & Devernay, F. (2001). Using robust methods for automatic
extraction of buildings. In Proceedings of the IEEE conference on
computer vision and pattern recognition (Vol. 1).

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted
cascade of simple features. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 511-518).

Wainwright, M., & Jordan, M. (2008). Graphical models, exponen-
tial families, and variational inference. Foundations and Trends
in Machine Learning, 1(1), 1-305.

Weber, M., Welling, M., & Perona, P. (2000). Towards automatic dis-
covery of object categories. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (Vol. 2, pp. 101-
108).

Wei, L., & Prinet, V. (2005). Building detection from high-resolution
satellite image using probability model. In Geoscience and remote
sensing symposium, IGARSS (pp. 25-29).

Wu, T. F, Xia, G. S., & Zhu, S.-C. (2007). Compositional boosting
for computing hierarchical image structures. In Proceedings of
the IEEE conference on computer vision and pattern recognition
(pp- 1-8).

Yao, B., Yang, X., & Zhu, S.-C. (2007). Introduction to a large scale
general purpose groundtruth dataset: methodology, annotation
tool, and benchmarks. Energy Minimization Methods in Computer
Vision and Pattern Recognition, 4697, 169—183.

Zhao, T., & Nevatia, R. (2001). Car detection in low resolution aer-
ial image. In IEEE international conference on computer vision
(Vol. 1).

Zhu, S.-C., & Mumford, D. (2006). A stochastic grammar of images.
Foundation and Trends in Computer Graphics and Vision, 2(4),
259-362.

Zhu, S.-C., Wu, Y.-N., & Mumford, D. (1998). Frame: Filters, random
fields, and minimax entropy towards a unified theory for texture
modeling. International Journal of Computer Vision, 2, 107-126.

Zhu, L., Lin, C., Huang, H., Chen, Y., & Yuille, A. (2008). Unsuper-
vised structure learning: Hierarchical recursive composition, sus-
picious coincidence and competitive exclusion. In Proceedings of
the 10th European conference on computer vision: Part I1.

@ Springer



	A Hierarchical and Contextual Model for Aerial Image Parsing
	Abstract
	Introduction  
	Objectives and Motivation
	Major Contributions
	Related Work

	Overview 
	Hierarchical and Contextual Representation
	Minimax Entropy Learning
	Top-Down and Bottom-Up Bayesian Inference with the 3-Level Hierarchy

	Formulation  
	Contextual Hierarchy Representation
	Parse Graphs
	Probability Model  

	Learning the Hierarchical Contextual Model
	Learning (lambda(alpha), lambda(beta))
	Relationship Pursuit
	Summary of Parameter Learning and Relationship Pursuit Algorithms

	Implementation
	Object Representation
	Deterministically Forming Parse Graphs
	Relationship Functions
	Histograms

	Experiments on Learning and Sampling 
	Bottom-Up/Top-Down Bayesian Inference
	Bottom-Up Detections
	Cars
	Parking lots and Trees
	Roofs and Roads
	High-level Description of Compositional Boosting

	Top-Down Bayesian Formulation
	Previous Approach and Motivation
	Motivation: Swendsen-Wang Clustering

	C4: Clustering via Cooperative and Competitive Constraints
	Top-Down Prediction

	Experiments  
	Discussion and Future Work
	Acknowledgements
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


