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Abstract
We present an information theoretic approach to define the problem of structure from motion
(SfM) as a blind source separation one. Given that for almost all practical joint densities of shape
points, the marginal densities are non-Gaussian, we show how higher-order statistics can be used
to provide improvements in shape estimates over the methods of factorization via Singular Value
Decomposition (SVD), bundle adjustment and Bayesian approaches. Previous techniques have
either explicitly or implicitly used only second-order statistics in models of shape or noise. A
further advantage of viewing SfM as a blind source problem is that it easily allows for the
inclusion of noise and shape models, resulting in Maximum Likelihood (ML) or Maximum a
Posteriori (MAP) shape and motion estimates. A key result is that the blind source separation
approach has the ability to recover the motion and shape matrices without the need to explicitly
know the motion or shape pdf. We demonstrate that it suffices to know whether the pdf is sub-or
super-Gaussian (i.e., semi-parametric estimation) and derive a simple formulation to determine
this from the data. We provide extensive experimental results on synthetic and real tracked points
in order to quantify the improvement obtained from this technique.
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1 Introduction
Structure from motion (SfM) is a common approach to recover the 3D shape of an object
observed over multiple frames of an image sequence. Given a set of observations of 2D
point correspondences across the frames, it is possible to recover both the 3D positions of
the points and the underlying motion between frames (Faugeras 2001). This can be
described as follows. A sequence of F frames with P annotated points can be represented in
matrix form as
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where

with each Xf ∈ ℝ2×P composed of the centered xp and yp co-ordinates of the points in the
frame,

where μxf and μyf are the means of the x and y co-ordinates for the fth frame. A common way
to study the problem of structure from motion is to assume that these observed 2D points
have resulted from the projection of a set of 3D points which undergo an affine
transformation between frames and that some amount of error (noise) has been added
(Tomasi and Kanade 1992), that is,

(1)

where S ∈ ℝ3×Pis a matrix defining the shape of the objects, M is the motion matrix which
is composed of 2 × 3 affine transformation matrices Rf for each frame

and N∈ ℝ2F×P is a noise matrix representing the error in measurement at each point for each
frame. In what follows, we will assume that the motion matrix is composed of orthogonal
rows, thus employing a weak-perspective model.

1.1 Stochastic View of Noise-free SfM
In general, if we assume that the observations of the 2D points are measured with infinite
precision, the factorization of a set of 2D points measured from multiple frames of an image
sequence into a transformation from 3D to 2D and a set of 3D points for each frame f of a
total of F can be described by

(2)

where wf is a two-dimensional random vector of (centered) observed points, Rf ∈ ℝ2×3 is an
arbitrary transformation matrix, and s = (x,y,z)T is a three-dimensional random vector
representing a 3D point.
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When the observations are made over F frames, the stochastic model is described by

(3)

where w is now a 2F-dimensional random vector of (centered) observed points and R ∈
ℝ2F×3 is a transformation matrix over all frames, s is a three-dimensional random vector as
defined above.

In the signal processing community, blind source separation problems where a set of sources
s are linearly mixed by a mixing process R are defined by the same model in (3), where w is
a vector of observations of the mixtures of s. The goal of blind source separation is to
“unmix” s to recover the original 3D point without any knowledge of the distributions of R
or s. When the higher-order statistical properties of the sources s are used, the approach is
generally called ICA, although there are a number of ways to perform blind source
separation (see Belouchrani et al. 1997 for an example that uses second-order statistics
only). Herein, we will focus on the use of higher-order statistics as a means of unmixing the
sources and use the terms “ICA” and “blind source separation” interchangeably.

Examining the stochastic description of SfM in (3), we see that it, too, can be described as a
linear mixing problem. The R matrix creates a linear mixture of s yielding the observations
(mixture) w. To determine R and s in the noise-free case we seek a solution where the
covariance matrix of w, denoted Σw, is rank 3. The relationship between the sources and
observations of a general blind source separation problem and the factorization of shape and
motion in structure from motion in (3) is shown in Fig. 1. As the figure shows, when a 3D
object is described by a set of 3D points on the object's surface, these points can be
described by an unordered sequence of 1D measurements for the x, y and z directions. In
SfM, these points are assumed to undergo a transformation which includes the description of
the motion and the 3D to 2D transform which generates a set of 2D observations for each
frame (2D mixtures) of an image sequence of the motion. Again, the 2D observations can be
described as a sequence of 1D point observations for x and y measured from the image
sequence. This describes the generative process of the image sequence of observed points
for an object under motion. SfM seeks to undo the generative process by recovering the
transformation (demixing matrix) and the 3D shape, described by recovered 1D
measurements in x, y and z, that generated the set of 1D observations. This is functionally
identical to the process of recovering three 1D signals (sources) which were assumed to be
mixed by a process which generates a set of 1D mixtures. Note that we will use the terms
sources and shape interchangeably when describing blind source separation as it is applied
to SfM. Similarly we will use the terms mixing matrix and motion matrix interchangeably.

A solution to the noise-free SfM problem in (3), on which Tomasi and Kanade's original
factorization technique (Tomasi and Kanade 1992) is based, is provided from the Karhunen-
Loeve expansion—the eigenvectors of Σw uniquely diagonalize it, and provide an
orthonormal basis for w. In the context of SfM, the rotation matrix is thus an orthonormal
basis and s corresponds to the coefficients of expansion in the basis. While the eigenvectors
of Σw provide the only basis which diagonalize, they are not the only orthonormal basis
where the resulting covariance matrix is rank 3. In fact any orthonormal transformation of
the orthonormal basis of the eigenvectors is a solution as well. This implies that there is no
unique solution for R and for SfM; we cannot determine the exact pose of the object, only
the relative pose. Further, if s is jointly Gaussian, no further information can be extracted
from the statistics of this problem, since s can be completely described by Σw. One solution
is to exploit constraints derived from the shape (such as the existence of lines and conics,
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Kahl and Heyden 1999), or from photogrammetry (Zhang et al. 2003) to improve the SfM
results.

In practice, however, for SfM (and for most signal processing problems), the marginal
probability density functions (pdfs) of s are not Gaussian. In signal processing, this is saying
that most real-world signals that contain useful information are not Gaussian. In SfM, the
implication is that the distributions of points measured on a 3D object do not exhibit a
Gaussian pdf in each dimension. Obviously, only a very small set of objects will have only
Gaussian marginal pdfs of points relative to the set of all possible object's distributions.
Given, now, that we almost always have non-Gaussian marginal pdfs for s, can we use more
information to provide a solution to (3)? One obvious answer to this question is that we can
use knowledge of the distribution of s. Unfortunately, we rarely have direct knowledge of
the distribution of the shape points. Nonetheless, we do have knowledge that the point
distributions are almost always non-Gaussian. This simple fact is sufficient to motivate our
use of independent component analysis (ICA) to provide a solution to SfM problems.

Obviously, ICA cannot provide any improvement on the shape estimate over the KLT
(Karhunen-Loeve Transform) in the noise-free case, since the KLT estimate is exact. Yet,
ICA solutions to (3) differ from a KLT approach in one major way—they do not have a
rotation ambiguity. In fact, in some ICA algorithms (FastICA, Hyvarinen et al. 2001, is a
notable example), (3) is solved by first whitening x via a variance scaled KLT which
reduces ICA to finding the specific rotation which will make the sources x maximally
independent in the whitened space.

If noise is present in the measurement of the 2D points (as is almost always the case), a
different approach is required. The direct factorization approaches described above are
sensitive to noise and with the exception of the unlikely case where we have jointly
Gaussian shape and noise pdfs, where shape and noise are independent, there are better
approaches. We will now describe these and illustrate how ICA offers advantages in this
context. A first look at modeling SFM as a BSS problem was done in Fortuna and Martinez
(2006). In the present paper we will expand on this by fully developing our BSS approach,
detailing the advantages that ICA offers and by providing compelling experimental
evaluation.

1.2 Stochastic View of Noisy SfM
For most practical SfM problems, it is necessary to include noise in the model. Thus, we
have a stochastic noisy SfM model defined as

(4)

where w, R and s are defined as in (3) and n is a 2F-dimensional random vector representing
the noise in the observations for all frames. If we use the approach of the KLT described in
the above section, we will arrive at the optimal solution for the problem defined in (4) if the
distribution of s is jointly Gaussian and the noise n is also jointly Gaussian and independent
of the distribution of s. For this case, we have

(5)

where Σw completely describes both the shape and the noise, since both are jointly Gaussian.
Therefore, through the use of the KLT we have used all of the available information about
the shape and the noise.
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However, in practice, it is highly unlikely that we will have exactly this situation. In every
other case, to improve on the shape estimate, we will need prior knowledge of the nature of
the shape, or the noise, or both. Previous approaches have focused on applying a noise
model, as defined by a maximum likelihood (ML) method (Morris and Kanade 1998), a
covariance weighted SVD (Irani and Anan-dan 2002), a closest rank r approximation (Chen
and Suter 2004) or matrix perturbation theory (Jia and Martinez 2010). The maximum
likelihood method is an information theoretic probabilistic implementation of the “bundle
adjustment” paradigm (Triggs et al. 2000) for zero-mean Gaussian noise. This idea can be
further extended to a Bayesian model, when prior information about the shape or the motion
is available (Kahl and Heyden 2001) or can be estimated (Forsyth et al. 1999).

Herein, we take a different approach. As above, we will show that we can exploit the non-
Gaussian nature of the shape pdf by considering the problem as noisy blind source
separation. Arguably, the most direct way of dealing with noise in a BSS context is to adopt
a Bayesian maximum a posteriori (MAP) approach (Hyvarinen 1998). By way of the
structure from motion definition in (4), we will propose a maximum a posteriori estimation
approach through the direct maximization of the joint likelihood of the shape s and the
transformation R. The major advantage of our approach is that the higher order statistics that
are used in the description of the shape offer a way to disambiguate shape and noise and lead
to a more accurate shape estimate.

We will show that the use of ICA provides an improvement in the accuracy of the
reconstructed shape over other methods and can be used to determine the absolute pose. We
will also show that ICA does not require the knowledge of the shape pdf to provide this
improvement. In fact, this is central to the theory of blind source separation. The key point is
that we can employ a MAP approach and maximize the log-likelihood and arrive at a stable
local maxima despite a significant mismatch in the pdf that is used to approximate the shape
pdf (Haykin 2000). This point separates a general probabilistic approach to SfM, such as
Morris and Kanade (1998) and Forsyth et al. (1999), from the ICA approach described in
this paper. We will also provide experimental verification and quantification of our approach
by way of shape and motion estimation in a variety of real and synthetic video sequences.
The recovery of the rotation ambiguity in the rigid case as well as the reduction of shape and
motion error will be illustrated.

2 Previous SfM Implementations and Our Blind Source Separation
Approach

In this section we will first outline previous factorization techniques for rigid SfM, followed
by a discussion of our BSS approach. We will maintain a likelihood based presentation
throughout this paper and derive a basic source separation algorithm for recovering the 3-
dimensional shape s from 2F observations with no noise. After that, we will consider the
case of noise and recall pervious maximum likelihood approaches. We then describe our
solution using maximum a posteriori formulation for separating the shape and motion.
Additionally, we will provide a simple example of the utility of ICA in determining the
rotation ambiguity inherent in the SVD based techniques.

An advantage to our method of examining SfM from a blind source separation viewpoint is
that we can readily derive previous techniques in the same context as our approach. More
importantly, however, because we make no prior assumptions about the data in our model
(outside of non-Gaussian source distributions), we could adjust a great many things in our
formulation: noise distribution, shape prior, motion prior, etc. Further, we can view SfM
from a number of approaches simultaneously—information theoretic, likelihood, maximum
non-Gaussianity, direct higher-order statistics—all of which arrive at (approximately) the
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same theoretical solution but have differing implementations. Herein, we have chosen to
outline specific ICA approaches (information theoretic and likelihood), specific noise
models (Gaussian and Laplacian), a specific approach to the shape prior (Generalized
Gaussian) and have chosen not to focus on a motion prior. However, our approach can be
adjusted to fit additional problem constraints as required.

2.1 SVD Solution
In the noise-free case, N = 0 in (1), in practice, the motion and shape matrices can be
recovered exactly (up to an arbitrary 3 × 3 linear transformation) from the SVD for a given
set of measured points W for all F frames and P points by

(6)

As such, M and S can be found by the rank 3 approximation of W ∈ ℝ2F×P—the first 3

columns of  and 3 rows of  As was just mentioned, this decomposition is not
unique, since

where Q ∈ ℝ3×3 is orthonormal. Each Rf in M must have an orthogonal row space,
requiring the use of some constraints to find a corrective transformation matrix Q ∈ ℝ3×3 to
be applied to Rf for all frames f. This transform can be found from a least-squares fit of an
over determined set of linear equations. Written concisely from Brand (2005)

where vech(A) is a vector representation of the lower triangular elements of a symmetric
matrix A and vc(x, y) = vech(xyT + yxT – diag(x ○ y)). Element-wise product is denoted by
○. This defines the SfM method in Tomasi and Kanade (1992). This technique has also been
applied when ║N║F is small relative to ║S║F leading to a least-squares solution; where
║.║F denotes the Frobenius-norm of the matrix. This approach can be further extended to
deal with large values of noise, N (Chen and Suter 2004; Jia and Martinez 2010).

2.2 ICA and Semi-parametric Density Estimation
From the stochastic model for noise-free SfM in (3), we derive an ICA solution using
minimum mutual information. This derivation only assumes that the pdf of the shape points
is non-Gaussian. There are a number of ways to derive an algorithm in the noise free case
which uses the higher order statistical properties of the sources to determine the mixing
process (Hyvarinen et al. 2001). By adopting a Bayesian framework we can maintain a
consistent approach between the noise free and noisy cases. This minimum mutual
information approach will show that it is possible to identify sources that are mixed by a
linear mixing process without assuming that they are independent. This is most easily done
in an information-theoretic context described in Hyvarinen et al. (2001) and repeated here.
In this way, we will make no assumption that the shapes in SfM follow any specific
probabilistic model, except that they are non-Gaussian, which, as stated in the previous
section, is a reasonable assumption.
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By the central limit theorem (CLT), if the marginal distributions of the shape were
independent and identically distributed, the mixture of 3D points w in (3) would be more
Gaussian than the original shape points s. Additionally, there are forms of the CLT which
relax the restrictions of independent, identically distributed random variables (Le cam 1986).
So, loosely speaking, the sum of random variables is more Gaussian than the original
variables. This implies that our focus in ICA need not be on exactly independent sources.
Instead, we should look for sources that are more independent than their mixtures. From the
CLT, these will be more non-Gaussian than their mixtures. This is important since it
removes the restriction that the sources be independent for ICA to separate the sources.
Indeed, if it were a requirement that the sources were exactly independent, ICA would be of
limited value, since few sources in practice would be exactly independent.

Starting from our noise-free model, when the observations are made over F frames, the
stochastic model is described by

(7)

where w is now a 2F-dimensional random vector of (centered) observed points and R ∈
ℝ2F×3 is a transformation matrix over all frames, s is a three-dimensional random vector as
described above.

In the noise free case, without loss of generality, we can assume a square mixing matrix,
through the use of a whitening transform. To do this and to simultaneously provide whitened
sources, we find a transformation V which will provide a new set of observations z, such
that

(8)

where w ∈ ℝ2F×1 is a random vector describing all observations of the 2F mixtures. This
transform can be found with

where E is a matrix whose columns are the eigenvectors of the 2F × 2F covariance matrix of
w and D is a diagonal matrix of the corresponding eigen values. Note that the rank of the
covariance matrix is 3, so we only need to use the first 3 eigenvectors and eigen values to
completely represent w. Therefore, V ∈ ℝ3×2F and we can now rewrite the original problem
as

(9)

where M̂ is a 3 × 3 orthonormal mixing matrix.

We see that , where Z is the 3 × P matrix of the ensemble of whitened sources
(shapes measured in x, y and z over P points) and W is the 2F × P matrix of the ensemble of
observations (2F measurements of P points). For the SVD of W in (6), the sample
covariance matrix of W (WWT) is UΣVT VΣUT = UΣUT thus U diagonalizes the sample
covariance matrix and U is therefore the a matrix of the eigenvectors of the sample
covariance matrix of w which are defined above as E for the random vector w. Therefore, E
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= U and Z = VT and the sources (shape) S found by the whitening process are simply a
scaled version of those found by the SVD (similarly for the motion). With whitened
Gaussian data, there are no higher order statistics and the SVD is therefore equivalent to a
source separation process where the sources are assumed to be Gaussian.

To begin, we recall three results from information theory. First, the mutual information I
between m scalar random variables yi, i = 1 … m is

(10)

Second, for a linear transformation y = Ax, the entropy of the transformed variable is

(11)

Third, entropy expressed as an expectation is

(12)

Now, from (9) and using (10) and (11) we can consider the mutual information of the shape
points s = M̂Tz,

(13)

where H(z) is a constant, depending only on the initial mixtures w (see (8)).

Using (12) we have the final expression for mutual information,

(14)

where m ̂i represents the ith row in the matrix M̂. We now have an expression for the mutual
information of the shape points in each dimension which we can minimize. Since me are
going to optimize this equation, we have ignored the constant, which will not affect the
optimality solution. In deriving this, we have not used the assumption of independence.
Further, we can show that minimizing mutual information is equivalent to maximizing non-
Gaussianity, as measured by negentropy.

From basic information theory, negentropy J is defined from entropy as

(15)

where ygauss is a Gaussian random vector with the same co-variance matrix as y.
Negentropy is zero for Gaussian random vectors and non-negative for all other cases.

From (13), using (15) we note that negentropy and the entropy of si only differs by the sign
and an additive constant. Further, since M is orthonormal, detM̂ is a constant (equal to 1).
Therefore,
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(16)

So to minimize mutual information, we can maximize the sum of the non-Gaussianities of
our ICA estimates, which justifies our approach to only make the assumption of non-
Gaussianity when applying ICA.

The resulting solution provides an expression to maximize with respect to M̂,

(17)

where

(18)

Three points are in order. First, z in (14) is a whitened version of w. Therefore, the
optimization is performed in the whitened space. We generate R and s from (9) by R = VTM̂

and s = M̂Tz. Second, this solution is identical to a solution derived from maximum
likelihood, which is why we chose to maximize the negative of the mutual information
(Hyvarinen et al. 2001). Third, the expectation in the third term is over the p shape points.

In order to maximize (17) we need some way to approximate the density of si (G in (17)). As
was mentioned previously, it is not necessary to have exact knowledge of the shape pdfs to
arrive at a solution for ICA. In fact, it is sufficient to know in which half-space of densities
the sources lie in (sub- or super-Gaussian). This is a semi-parametric density estimation
approach. Intuitively, this can be accomplished by simply measuring the kurtosis of each si
during the current iteration of the maximization of (17). A kurtosis > 3 would be considered
super-Gaussian while kurtosis < 3 is sub-Gaussian. A theorem provided in Hyvarinen et al.
(2001) and repeated in Appendix, justifies the claim that two density approximations can
optimally separate sources with unknown pdf. Herein, we will employ a generalized
Gaussian density to approximate either super-Gaussian (for example, Laplacian) or sub-
Gaussian (for example, mixtures of Gaussians) densities. Appendix validates the use of this
parameterized density. The generalized Gaussian density for the ith unit variance source is
defined by Haykin (2000)

(19)

where Γ is the gamma function. To utilize the generalized Gaussian density for G in (17) we
need to take the log of (19) and compute the expectation over all points p. This gives

where α is a positive constant controlling the shape of the density. With α < 2, we are
describing super-Gaussian densities. Of course, with α = 1, we get a Laplacian density. For
α > 2, we have sub-Gaussian densities. Unfortunately, the intuitive approach of using
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kurtosis as a measure to decide whether to use sub- or super-Gaussian is not robust.
Therefore, as was proposed by Lee et al. (1999a) and derived in Appendix, we can select the
use of sub- or super-Gaussian densities from the sign of the result of the criterion function

(20)

over all points in s.

We will also describe two shape densities, one sub-Gaussian and one super-Gaussian, as
synthetic examples which we will use as G in (17) when experimentally illustrating the
effectiveness of the generalized Gaussian density as an approximation. These densities are
illustrative only, but will provide analytic properties useful for the demonstration of our
idea. For this, consider i sources which are distributed according to

(21)

This defines a Laplacian distribution with variance σi
2. By definition, this density is super-

Gaussian. If the shape densities were known a priori and scaled to unit variance, the
objective function for SfM in (17) would include the log sum of these sources, or

where the absolute value function is evaluated for each element of si(p).

A second, and more flexible example of source distributions is a mixture of Gaussians. By
definition, this density is sub-Gaussian. For this case, the source pdf of N mixtures is
described by

(22)

where σn and μn are the standard deviation and mean respectively of the nth mixture. Here,
the objective function to be optimized for SfM in (17) would include

These examples are not as artificial as they might appear. For example, consider the 3D face
model shown in Fig. 2(a). The distributions of the 3D points in x, y and z are shown in Figs.
2(b)–2(d), along with a Laplacian approximation of P(Sz) and mixture of Gaussian
approximations of P(Sx) and P(Sy) which have been obtained with the EM algorithm
(Dempster et al. 1977). Despite the complexity of the shape, simple Laplacian and mixture
of Gaussians distributions provide a good density estimation.
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2.3 The Utility of ICA in Noise-free SfM
As a simple illustration of the use of ICA for recovering the motion and shape in the noise-
free case, consider the following example of a shape with 100 3D points distributed
uniformly inside a cube of unit variance. For this example, 25 2D images of the cube were
generated, each undergoing a random 3D orthonormal transformation. Noise with a variance
of 50 in both x and y was added to the 2D observations. Figure 3 shows the results obtained
with ICA and the SVD, which have been rescaled to unit variance for easy view. Notice that
while ICA is capable of recovering the correct shape orientation in the xy plane, the SVD
solution is rotated. In this case, the original object has a non-Gaussian distribution in x, y and
z and ICA provides an almost exact recovery of both the shape and its orientation in 3D
space without any a priori knowledge of the object's initial orientation. This concept was
first illustrated in the context of nonlinear ICA (Fujiki et al. 2004). For this example, we
show that linear ICA is sufficient. It is important to note that the measure of non-Gaussianity
(which provides the solution to the rotation ambiguity problem inherent in the SVD) is seen
to be insensitive to the additive noise, despite the fact that, in this case, no provision was
made in the ICA algorithm to model the noise. In the next section, we will further improve
the shape recovery by the inclusion of a noise model.

2.4 BSS with Gaussian Noise
When we use the SfM model in (4) with a non-zero noise vector n within a source
separation framework proposed in this paper, it is easy to incorporate a model of the noise or
a model of both the noise and the sources in the formulation. The former results in a
maximum likelihood solution and the latter represents a maximum a posteriori solution. The
maximum likelihood solution was proposed previously by Morris and Kanade (1998). These
two options are detailed next.

2.4.1 Maximum Likelihood Solution—If we make the assumption that the noise in (4)
is Gaussian, for each frame f, the reprojection error (wf − Rfs) can be described
probabilistically by a Gaussian function and the following expression for the pdf of the
observed points results

(23)

where  is the normalization constant of a Gaussian distribution and Σf is the
covariance matrix of the noise term for each frame.

Taking the log of (23), averaging over all points and frames and ignoring any scaling factors
(C and number of frames and points F and P, respectively) we arrive at a maximum
likelihood solution by maximizing

(24)

Note that the scaling can be ignored since it doesn't affect the optimality point, only its
value. Equation (24) is essentially bundle adjustment (Triggs et al. 2000), with the exception
that a specific Gaussian noise model is applied. Implicitly (in an information theoretic
context), bundle adjustment assumes that the noise is Gaussian distributed with unit variance
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in x and y, although it is typically described as minimizing the 2-norm of the reprojection
squared error.

A simplification that we will make in this work is that the covariance of the noise doesn't
change across frames. While theoretically this is unnecessary, matters are some what
complicated practically in the MAP case (detailed below) when this is not done. The issue is
that if the optimization is accomplished taking each frame individually, we have F separate
demixing problems where 3 sources are linearly mixed to 2 observations. This problem is
under-determined. Although ICA has been shown empirically to apply in this case (Lee et
al. 1999b), there are issues of the identifiability and uniqueness of the sources (Eriksson and
Koivunen 2004). In short, the simplification is appropriate in practice since in most cases,
the noise will occur in a similar manner for all frames.

With this argument in mind, the simplification leads to a maximum likelihood solution

(25)

where w represents the random vector of 2F observations. The ML solution can be found
bilinearly as described in (Morris and Kanade 1998).

The major problem associated with a ML solution is that it only takes the noise pdf into
account. In fact, as mentioned previously, it is possible to use density approximations for the
shape s without knowing a priori what the exact shape densities are. More importantly, a
significant reduction in the error in determining the motion and shape can be obtained by
the inclusion of appropriate approximations for the shape densities. This is precisely the
additional advantage provided by ICA in the context of SfM. The maximum a posteriori
estimation which accomplishes this, is described next.

2.4.2 MAP Solution—Maximum a posteriori estimation, as it applies to SfM can be used
to maximize the joint probability of the posteriori density of the shape and the motion, that
is,

This defines the full a-posteriori density of both the motion and the shape. Since we are
focusing on the density approximations of the shape, we will assume a uniform (uninfor-
mative) prior on the motion. Under these assumptions plus the knowledge that the shape
should be independent of the motion a MAP solution for M and s is given by

The log of this MAP estimate provides an objective function to maximize,

(26)
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where gi (·) = −log Pi (·) are the individual densities of unit variance sources. For this
optimization, we will employ the same generalized Gaussian as for the non-noisy case
described by (19) and the same criterion, described by (20) for selecting the shape of the
densities and a constant co-variance matrix for the noise, giving the following objective
function,

(27)

Recall that in BSS, it is only necessary to determine whether the sources are sub- or super-
Gaussian and this can be reliably accomplished with the current estimate of the sources.
Hence, blind source separation provides the ability to recover motion and shape matrices
without any knowledge of the motion or shape. Further, a model of both the noise and the
shape densities can be readily included in the MAP methodology for performing ICA in the
presence of noise.

A number of techniques exist to maximize the objective function in (26). Some iterative
techniques resulting from direct differentiation can be found in Hyvarinen (1998), provided
that the source distribution approximation is differentiable. These approaches utilize an
alternating variables method. We applied general non-linear optimizers directly and found
that the total optimization time was reasonable for on the order of a hundred or so points
and, in any case, would be similar to that of bundle adjustment.

To summarize, when there is no noise in the point measurements, the SVD (6) can be used
to exactly determine the motion matrix M and the shape matrix S up to a rotation.
Additionally, (17) can be used to determine the rotation ambiguity. When the point
measurements are noisy, maximum likelihood estimation uses a noise model to provide a
solution by maximizing (25). If a model of both the noise and the shape are included, ICA
can be employed by maximizing (27). The ICA solution represents maximum a posteriori
estimation. To maximize (27) it is necessary to use the appropriate generalized Gaussian
density model (sub- or super-Gaussian) for each of the sources (the shapes in x, y and z).
This is accomplished by using the criterion in (20). This selection is employed at each step
of a general nonlinear optimization process.

2.5 The Orthogonality Constraint on M
An additional constraint exists in SfM on the motion matrix when we use the weak-
perspective model—each Rf in M has an orthonormal row space. This constraint can be
applied in a couple of ways. First, the orthonormality can be enforced at each step in an
iterative algorithm. Second, it can be enforced after the computation of M. If the latter
method is used, the rows are only approximately orthonormal, as determined by a least-
squares solution (Tomasi and Kanade 1992). A significant improvement to the ML
algorithm described in Morris and Kanade (1998) can be achieved by orthonormalizing the
motion matrix at each step in the algorithm. Alternatively, the motion matrix can be
described by quaternians, which parameterizes a rotation matrix so that the result is
orthonormal in the parameter space. We use this technique in all of the optimizations
(bundle adjustment, maximum likelihood and maximum a posteriori) presented in the
section to follow. Note that for when there is no noise a closed form solution exists (Tomasi
and Kanade 1992), which finds a transformation of M to enforce the constraint of
orthonormality. However, in the noisy case, no such solution exists, due to its uncertainty.
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3 Experimental Results
The previous section provided the details of the two claims that we make in this paper:

1. Rigid SfM can be described as a blind source separation problem. Implicit in this
claim is the idea that it is not necessary to have complete knowledge of the source
pdfs to employ MAP estimation for SfM.

2. Our formulation will provide an improvement to the quality of the shape estimate
via the use of the non-Gaussianity of the sources irrespective of the shape pdf.

To evaluate the BSS formulation derived in this paper, we present a set of experimental
results with synthetic and real data. We start with a large variety of synthetic examples in the
first experimental section below. These examples are provided to validate the use of blind
source separation techniques by comparing MAP with and without explicit knowledge of the
source pdfs. The second experimental section illustrates the improvement obtained from the
use of our approach on the reconstruction of 3D shapes from noisy tracked fiducials.

3.1 Statistical Comparison of SVD, ML and MAP
We start with three synthetic examples generated with 50 points according to Laplacian
densities, mixtures of Gaussian densities and a face model, respectively. Specifically, the
two distributions described in (21) and (22) were used to generate statistically independent
3D sources. In the Laplacian case, the source variances were 1,000, 100, and 10 for the x, y
and z directions. For the mixture of Gaussian sources, two mixtures for each direction were
considered. The x direction had means of −100 and 300 with variances 2,000 and 1,000. The
y direction had means of 200 and −200 with variances 200 and 100. The z direction had
means of −30 and 90 with variance of 100 in both cases. Figures 4(a) and 4(b) provide
samples of the point distributions. Figure 4(c) shows the 3D face model consisting of
approximately 350 points, from which 50 points were selected at random for our
experiment. For the Laplacian and mixture of Gaussians densities, a random transformation
matrix was generated for each frame. For the face model, a rotation of 90 degrees about the
y axis was generated as a geometric transformation, Fig. 4(d). Gaussian noise was then
added to the 2D point data resulting from the projection of the 3D points. The resulting 2D
points were then centered for the x and y directions. A similar methodology was applied to
generate 2D points from a 3D reconstruction of the dinosaur data sequence (Buchanan and
Fitzgibbon 2005) using 319 3D points which were considered “inliers”.

For the Laplacian and mixture of Gaussian points, the noise variance was parameterized to
1, 100, 200, 300 and 400 for the x direction and .1, 10, 20, 30 and 40 for the y direction,
creating 5 independent experiments for each of the two source distributions. For the face
data, the noise variance was parameterized to 1, 20, 40, 60 and 80 for the x direction and .1,
2, 4, 6 and 8 for the y direction. The motion and the structure matrix were recovered for each
experiment with 3 different techniques—SVD, ML estimation, and MAP estimation. All
estimates were referenced to the co-ordinate system of the first frame of the ground-truth.

In Tables 1 and 2, the first two priors (Laplacian and mixture of Gaussians) illustrate the use
of MAP estimation when the source distributions are known a priori and are applied directly
to the cost function. Figure 5 describes the mean motion and shape errors. Tables 3 and 4
illustrate the main idea of the work presented in this paper—the results of recovering the
motion and shape matrices of a Laplacian shape density with a super-Gaussian prior and a
mixture of Gaussian shape density with a sub-Gaussian prior. The priors were a generalized
Gaussian density where (20) was employed during the optimization to determine which
form of density to employ. Specifically, α in (19) can be switched between 1 and 3,
corresponding to super and sub-Gaussian densities, respectively. Figure 7 describes the
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mean errors in the recovered motion and shape matrices over 50 runs. The mean errors are
reported as the norm of the error in the estimated matrix expressed as a percentage of the
norm of the ground-truth matrix. Since these errors were decidedly non-Gaussian in
distribution, we have also provided box-plots (Figs. 6(a)–6(b)) of the largest measured
estimation errors with our technique.

Table 5 provides the mean motion and shape estimation error over 50 runs of the randomly
selected 50 face model points. Figure 6(c) provides a boxplot of the results with the largest
measured shape estimation errors. Table 6 provides the mean motion, shape and reprojection
estimation error over 50 runs of all 319 points of the reconstruction of the dinosaur sequence
Here, as in the Laplacian and mixture of Gaussian points, (20) was used to determine the
prior during optimization.

As expected, in all of the previous experiments, the error in both motion and shape increase
with increased noise variance. The key point that these experiments illustrate is that when
Tables 1 and 3 are compared, there is little difference between the means of the errors in the
estimated motion or shape for all levels of noise variance. Recall that the first table describes
the result when the Laplacian shape pdf is known a priori and the second describes the
results when using blind source separation with a generalized Gaussian. For example, at the
largest value of noise variance, the shape error with a known pdf is 8.41 percent, while it is
8.14 percent when no knowledge of the shape pdf is used a priori. A similar result is
illustrated by comparing Tables 2 and 4, obtained by using a mixture of Gaussian pdf model
a priori and the generalized Gaussian with BSS, respectively. In that case, for example, at
the largest value of noise variance, the shape error with a known pdf is 10.91 percent, while
it is 12.28 percent when no knowledge of the shape pdf is used a priori. These results clearly
validate our first claim that it is not necessary to know the shape pdf a priori to employ MAP
estimation and thus experimentally justify the use of blind source separation techniques.

In examining Fig. 5 we note that there is a statistically significant (p ≤ 0.05) difference
between the shape reconstruction quality over MLE with the use of MAP estimation when
the pdf of the sources is known a priori, provided that the noise variance is large enough
(greater than 100 in x and 10 in y). We would, of course, expect that for smaller values of
noise variance, the advantage of MAP estimation would be reduced. This result illustrates
that knowledge of the shape pdf can be used to improve the quality of the reconstruction,
which is to be expected. Also as expected, the motion estimate does not improve
significantly from a maximum likelihood formulation.

More interesting, in Fig. 7 we illustrate the second claim of this paper—a statistically
significant improvement in the shape reconstruction can be made with MAP estimation
without explicit knowledge of the shape pdf. All that is necessary is to estimate whether the
shape distribution is super-or sub-Gaussian. Again, for all values of noise variance greater
than 100 in x and 10 in y, we observe a statistically significant (p ≤ 0.05) difference between
the shape reconstruction quality of MLE with the use of MAP estimation when the pdf of
the sources is not known a priori.

In Fig. 8, we show the mean errors in motion and shape estimation for a synthetic face
model. We see that a statistically significant improvement in the motion estimate is obtained
for variance greater than 60 in x and 6 in y, and the shape estimate improvement of MAP
over MLE misses significance. Further, in Fig. 9, a similar result to the face model is seen.
All of the motion estimates for the MAP approach are statistically significantly better than
the MLE or SVD approaches. It should be noted, also, that in order to align the shapes for
measurement with respect to the ground truth, the shape estimate error is minimized in a
least-squares sense. As a result, it is possible that although we optimize for minimum shape
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error, after we align the estimate and ground truth, it may be that the improvement is seen in
the motion estimate. In any case, on the whole, these experiments provide a convincing
argument that blind source separation techniques will improve the shape estimate over MLE,
irrespective of the shape pdf.

3.2 Reconstruction of Real Data from Noisy Tracked Fiducials
In our final study, we consider the reconstruction of two commonly used datasets and a third
dataset that we collected from a video of tracked facial fiducials. The common datasets
included a publicly available origami cube sequence www-cvr.ai.uiuc.edu/ponce_grp/data/
zeroskew/data.tgz, the Model House Sequence (Fitzgibbon and Zisserman 1998) and the
previously used dinosaur sequence. In all cases, we selected points which were visible over
a minimum of 5 frames which gave us 175 points over 5 frames for the cube data, 275 points
over 15 frames for the house data, 139 points over 17 frames for the face data and 319 points
over 21 frames for the dinosaur sequence. The tracked face points correspond to a video
sequence of a real face filmed as it moves in 3D with minimal change in expression. Figure
10 shows the frames of the 139 tracked points from the face video sequence. The facial
detection of these points was obtained using the algorithm described in Ding and Martinez
(2008).

For these examples, two experiments were conducted with 50 runs of randomly generated
noise. The first experiment used Gaussian noise added to the 2D tracked points with a
variance of 50, 50, 10 and 10,000 in both the x and y reprojected directions for the cube,
house, face and dinosaur data respectively. The second study used outliers generated as a
uniform distribution with a width of 20, 20, 5 and 500 in x and y applied to 30% of the
points (selected at random) for the cube, house, face and dinosaur data respectively. Both the
outliers and Gaussian noise experiments were reconstructed with 3 different techniques—
SVD, ML, and our MAP approach.

Tables 7 and 8 illustrate the application of MAP estimation to real data with Gaussian noise
and outliers, respectively. Note that here we don't have a ground-truth to measure the results
against. As a result, we are describing the sensitivity of the 3D measurement to noise and
also indicate the reprojection error. From Table 7 we see that the shape error provided by the
MAP estimation was equal to or better than the next best approach. The real data results are
summarized in Figs. 11–14. While the MAP shape estimate was not always statistically
significantly better than MLE, it was statistically significantly equal to or better than MLE in
all but the house data with outliers.

It is important to note that all of these sensitivity results were obtained using a starting point
derived from the noise-free solution for each technique. All of these techniques are
optimization techniques and only the SVD has a global solution, therefore they are sensitive
to the initialization point. In practice, this ideal starting point cannot usually be obtained.
None the less, we are evaluating the sensitivity of the approach to noise, which is the best
that we can do in the absence of ground truth data. As a final note on the optimization
techniques employed in this work, all were performed with Matlab's unconstrained non-
linear optimization routine—fminunc. For the largest data set (319 points and 21 frames),
we performed one iteration in approximately 2 seconds. In no cases did our routines
converge in more than 500 iterations. Most were under 100 iterations. This gives a worst
case computation time of about 17 minutes (Intel Core 2 Duo CPU, 1.60 GHz, 3 GB ram).
Most took under 4 minutes. Note that this is considerably longer than the MLE approach,
which typically converges in under a minute. It is thus fair to say that our implementation
took an order of magnitude longer to converge than MLE. To improve upon this result, one
could employ a faster noisy ICA algorithms (Cichocki et al. 1998). In the present paper, we
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simply selected an implementation that directly followed our objective functions for the
purpose of clarity.

Finally, we show the 3D reconstruction provided by MAP estimation to the tracked points
data in Fig. 15. In the first three of these reconstructions, we do not add any synthetic noise
to the data points since these are real tracked points. In the last reconstruction (the dinosaur)
we added Gaussian noise with a variance of 10,000 in both x and y. The original
reconstruction is shown with black points and the noisy reconstruction using MAP is shown
with gray points. Note that the difference in reconstruction error of all of these figures
between the SVD, MLE and MAP is less than 1 percent. This cannot be easily visualized.
As a result, we have only shown the MAP reconstruction for illustrative purposes only—the
error tables and plots provide a complete quantitative description.

4 Conclusion
We have shown that a significant improvement in shape estimate can be obtained from a
MAP approach to structure from motion. More importantly, explicit knowledge of the shape
pdf is not needed to obtain this improvement. In fact, the theory of blind source separation,
for which we have shown that SfM applies directly, dictates that we can optimally
reconstruct the shape and motion without explicit knowledge of the shape pdf. In a sense, we
can use the non-Gaussianity of the shape pdf in each direction to provide an improvement
over maximum likelihood without prior knowledge. Since the vast majority of real-world
shape pdfs are non-Gaussian, our approach is as applicable as maximum likelihood and, by
extension of it, bundle adjustment. We have validated the use of our blind source separation
framework through extensive experimental data. As the theory of blind source separation in
the presence of noise advances, so too will its application to structure from motion. The SfM
approach derived in this paper should provide an indication of where such improvements
should be directed.
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Appendix
Theorem 1 If the input data follows the model in (9) and we employ a smooth even function
G, the local maxima of the expectation of G(m ̂Tz) with ║m ̂║ = 1 will be satisfied by the
rows of the mixing matrix M̂ so that the corresponding si satisfy

(A.1)

where g(.) is the derivative of g(.), g′(·) is the derivative of g(.), m̂i denotes the ith row of M̂
and si denotes the ith source.

This theorem states that if we consider a whitened representation of the sources and we
apply any non-linearity G to approximate the actual density, we will arrive at the same local
maxima as long as the condition in (A.1) is satisfied.

The remaining question is which function is most appropriate for G. In fact, a sufficiently
close approximation to the actual source densities where Theorem 1 holds is all that is
necessary. So as long as we use densities that satisfy (A.1), we will still arrive at the optimal
local maximum of the likelihood. As an example of 2 simple functions which satisfy the
theorem, consider
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(A.2)

and

(A.3)

From (A.1), using the fact that the derivative of tanh (s) = 1 − tanh2(s), we arrive at a
criterion for the selection of the functions g+ and g−, by always making the sign of the
expectation in (A.1) positive. For g+ we have E{−si tanh(si) + (1 − tanh2 (si))} and for g− we
have E{si tanh(si) – (1 – tanh2(si))}. Further, 1 − tanh2(s) = sech2(s) and we can write a
criterion which, based on the sign of the result, will provide the function which satisfies the
inequality in the theorem, i.e.,

(A.4)

for the g+ and

(A.5)

for g−. This is precisely the criterion derived by Lee et al. (1999a) and the one that we use in
this paper.

We are using the generalized Gaussian density function in our optimization function, since
we are comparing the results to specifically chosen sub- and super-Gaussian densities. This
density for i unit variance sources is defined by Haykin (2000)

(A.6)

where Γ is the gamma function and r defines the measure of spread. The generalized
Gaussian that we employ has derivatives that closely approximate g+ and g− depending on
the selection of the exponent of the Gaussian. The generalized Gaussian has the advantage
of exactly approximating the super-Gaussian density which we use in our examples. This is
not true of the pdf corresponding to g+ used in the derivation. Unfortunately, for the
purposes of the theorem, we had to use a function whose the 2nd derivative was everywhere
differentiable. The generalized Gaussian does not satisfy this property. So we instead used a
tanh based approximation for g in theorem and we now show visually that the generalized
Gaussian closely approximates the tanh based approximation. Figure 16 shows the pdf and
derivative functions g for both the generalized Gaussian pdf defined in (A.6) and the tanh
derivative function.
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Fig. 1.
Structure from motion as a demixing problem. A 3D face, described by points in x, y and z
undergo a transformation and the demixing process recovers the transform and the original
shape

Fortuna and Martinez Page 21

Int J Comput Vis. Author manuscript; available in PMC 2013 May 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Marginal densities of a 3D face and their Laplacian and mixture of Gaussians
approximations. The 3D face model is shown in (a) and the distributions of the points P(Sx),
P(Sy), P(Sz) in x, y and z are shown in (b)–(d) respectively
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Fig. 3.
SfM recovery of 3D points distributed uniformly inside a cube of unit variance. The
distribution of the original points is shown in (a). The points recovered by ICA are shown in
(b) while the recovery performed by the SVD is shown in (c)
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Fig. 4.
3D points—(a) Laplacian distributed, (b) Mixture of Gaussian Distributed, (c) Face model,
(d) Face model rotated about the y axis
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Fig. 5.
Results showing (a) motion error for a Laplacian distributed shape with a Laplacian pdf
model, (b) shape error for a Laplacian distributed shape with a Laplacian pdf model, (c)
motion error for a mixture of Gaussian distributed shape with a mixture of Gaussian pdf
model (d) shape error for a mixture of Gaussian distributed shape with a mixture of
Gaussian pdf model. Note that, thanks to the addition of the shape prior, the errors in (b) and
(d) are much smaller than those in (a) and (c)

Fortuna and Martinez Page 25

Int J Comput Vis. Author manuscript; available in PMC 2013 May 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6. Boxplots of the synthetic shape errors. (a) Super-Gaussian (b) Sub-Gaussian (c) Faces
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Fig. 7.
Results showing (a) motion error for Laplacian distributed shape with a generalized
Gaussian pdf model, (b) shape error for Laplacian distributed shape with a generalized
Gaussian pdf model, (c) motion error for mixture of Gaussian distributed shape with a
generalized Gaussian pdf model, (d) shape error for mixture of Gaussian distributed shape
with a generalized pdf model
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Fig. 8. Results—(a) Face with generalized pdf model-motion, (b) Face with generalized pdf
model-shape
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Fig. 9. Results—(a) Dinosaur sequence with generalized pdf model-motion, (b) Dinosaur
sequence with generalized pdf model-shape
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Fig. 10. Tracked face points for 10 video frames
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Fig. 11. Results: (a) Cube Data—Gaussian noise, (b) Cube Data—outliers
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Fig. 12. Results: (a) House Data—Gaussian noise, (b) House Data—outliers
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Fig. 13. Results: (a) Tracked Face Points—Gaussian noise, (b) Tracked Face Points—outliers
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Fig. 14. Results: (a) Dinosaur Sequence—Gaussian noise, (b) Dinosaur Sequence—outliers
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Fig. 15. MAP shape reconstructions (a) Cube (b) House (c) Face (d) Dinosaur
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Fig. 16.
Generalized Gaussian and tanh density approximations. The generalized Gaussian pdf and
its derivative g are shown in (a) and (b) respectively. The tanh derivative's corresponding
pdf and the tanh function used for g are shown (c) and (d) respectively
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