Skip to main content
Log in

Primal and Dual Bregman Methods with Application to Optical Nanoscopy

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Measurements in nanoscopic imaging suffer from blurring effects modeled with different point spread functions (PSF). Some apparatus even have PSFs that are locally dependent on phase shifts. Additionally, raw data are affected by Poisson noise resulting from laser sampling and “photon counts” in fluorescence microscopy. In these applications standard reconstruction methods (EM, filtered backprojection) deliver unsatisfactory and noisy results. Starting from a statistical modeling in terms of a MAP likelihood estimation we combine the iterative EM algorithm with total variation (TV) regularization techniques to make an efficient use of a-priori information. Typically, TV-based methods deliver reconstructed cartoon images suffering from contrast reduction. We propose extensions to EM-TV, based on Bregman iterations and primal and dual inverse scale space methods, in order to obtain improved imaging results by simultaneous contrast enhancement. Besides further generalizations of the primal and dual scale space methods in terms of general, convex variational regularization methods, we provide error estimates and convergence rates for exact and noisy data. We illustrate the performance of our techniques on synthetic and experimental biological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar, R., & Vogel, C. R. (1994). Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems, 10, 1217–1229.

    Article  MathSciNet  MATH  Google Scholar 

  • Aubert, G., & Aujol, J. F. (2008). A variational approach to remove multiplicative noise. SIAM Journal on Applied Mathematics, 68, 925–946.

    Article  MathSciNet  MATH  Google Scholar 

  • Bardsley, J., & Goldes, J. (2009). Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation. Inverse Problems, 25.

  • Bardsley, J., & Luttman, A. (2009). Total variation-penalized Poisson likelihood estimation for ill-posed problems. Advances in Computational Mathematics, 31(1), 35–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Benning, M., & Burger, M. (2009). Error estimates for variational models with non-Gaussian noise (Tech. Rep. 09-40). UCLA CAM.

  • Bertero, M., Lantéri, H., & Zanni, L. (2008). Iterative image reconstruction: a point of view. In: CRM series: Vol. 8. Mathematical methods in biomedical imaging and intensity-modulated radiation therapy (IMRT).

  • Bissantz, N., Hohage, T., Munk, A., & Ruymgaart, F. (2007). Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM Journal on Numerical Analysis, 45, 2610–2636.

    Article  MathSciNet  MATH  Google Scholar 

  • Bregman, L. M. (1967). The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7, 200–217.

    Article  Google Scholar 

  • Brune, C., Sawatzky, A., & Burger, M. (2009a). Bregman-EM-TV methods with application to optical nanoscopy. In Proceedings of the 2nd international conference on scale space and variational methods in computer vision (Vol. 5567, pp. 235–246). doi:10.1007/978-3-642-02256-2_20.

  • Brune, C., Sawatzky, A., Wübbeling, F., Kösters, T., & Burger, M. (2010). Forward backward EM-TV methods for inverse problems with Poisson noise. Preprint.

  • Burger, M., & Osher, S. (2004). Convergence rates of convex variational regularization. Inverse Problems, 20, 1411–1421.

    Article  MathSciNet  MATH  Google Scholar 

  • Burger, M., Gilboa, G., Osher, S., & Xu, J. (2006). Nonlinear inverse scale space methods. Communications in Mathematical Sciences, 4(1), 179–212.

    MathSciNet  MATH  Google Scholar 

  • Burger, M., Frick, K., Osher, S., & Scherzer, O. (2007a). Inverse total variation flow. SIAM Multiscale Modelling and Simulation, 6(2), 366–395.

    Article  MathSciNet  MATH  Google Scholar 

  • Burger, M., Resmerita, E., & He, L. (2007b). Error estimation for Bregman iterations and inverse scale space methods. Computing, 81, 109–135.

    Article  MathSciNet  MATH  Google Scholar 

  • Burger, M., Schönlieb, C., & He, L. (2009). Cahn-Hilliard inpainting and a generalization to gray-value images. SIAM Journal of Imaging Science, 3

  • Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20, 89–97.

    Article  MathSciNet  Google Scholar 

  • Csiszar, I. (1991). Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Annals of Statistics, 19, 2032–2066.

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Dey, N., Blanc-Feraud, L., Zimmer, C., Kam, Z., Roux, P., Olivo-Marin, J. C., & Zerubia, J. (2006). Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microscopy Research Technique, 69, 260–266.

    Article  Google Scholar 

  • Ekeland, I., & Temam, R. (1999). Convex analysis and variational problems. Philadelphia: SIAM (Corrected Reprint Edition).

    MATH  Google Scholar 

  • Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems. Dordrecht: Kluwer Academic (Paperback edition 2000).

    MATH  Google Scholar 

  • Evans, L. C., & Gariepy, R. F. (1992). Measure theory and fine properties of functions. Studies in advanced mathematics. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Article  MATH  Google Scholar 

  • Geman, S., & McClure, D. E. (1985). Bayesian image analysis: an application to single photon emission tomography. In Proc. statistical computation section (pp. 12–18). Washington: American Statistical Association.

    Google Scholar 

  • Giusti, E. (1984). Minimal surfaces and functions of bounded variation. Basel: Birkhäuser.

    MATH  Google Scholar 

  • Goldstein, T., & Osher, S. (2009). The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2(2), 323–343.

    Article  MathSciNet  MATH  Google Scholar 

  • He, L., Marquina, A., & Osher, S. (2005). Blind deconvolution using TV regularization and Bregman iteration. International Journal of Imaging Systems and Technology, 15(1), 74–83.

    Article  Google Scholar 

  • Hell, S., & Schönle, A. (2006). Nanoscale resolution in far-field fluorescence microscopy. In P. W. Hawkes & J. C. H. Spence (Eds.), Science of microscopy. Berlin: Springer.

    Google Scholar 

  • Hiriart-Urruty, J. B., & Lemaréchal, C. (1993). Grundlehren der mathematischen Wissenschaften (Fundamental principles of mathematical sciences) : Vol. 305. Convex analysis and minimization algorithms I. Berlin: Springer.

    Google Scholar 

  • Hofmann, B., Kaltenbacher, B., Pöschl, C., & Scherzer, O. (2007). A Convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems, 23, 987–1010.

    Article  MathSciNet  MATH  Google Scholar 

  • Hohage, T. (2009). Variational regularization of inverse problems with Poisson data. Preprint.

  • Huang, Y. M., Ng, M. K., & Wen, Y. W. (2009). A new total variation method for multiplicative noise removal. SIAM Journal on Imaging Sciences, 2, 20–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Iusem, A. N. (1991). Convergence analysis for a multiplicatively relaxed EM algorithm. Mathematical Methods in the Applied Sciences, 14, 573–593.

    Article  MathSciNet  MATH  Google Scholar 

  • Jonsson, E., Huang, S. C., & Chan, T. (1998). Total variation regularization in positron emission tomography (CAM Report 98-48). UCLA.

  • Kittel, J., et al. (2006). Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science, 312, 1051–1054.

    Article  Google Scholar 

  • Kiwiel, K. (1997). Proximal minimization methods with generalized Bregman functions. SIAM Journal on Control and Optimization, 35, 1142–1168.

    Article  MathSciNet  MATH  Google Scholar 

  • Klar, T. A., et al. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. PNAS, 97, 8206–8210.

    Article  Google Scholar 

  • Le, T., Chartrand, R., & Asaki, T. J. (2007). A variational approach to reconstructing images corrupted by Poisson noise. Journal of Mathematical Imaging and Vision, 27, 257–263.

    Article  MathSciNet  Google Scholar 

  • Liao, H., Li, F., & Ng, M. K. (2009). Selection of regularization parameter in total variation image restoration. Journal of the Optical Society of America A, 26, 2311–2320.

    Article  MathSciNet  Google Scholar 

  • Lorenz, D. A. (2008). Convergence rates and source conditions for Tikhonov regularization with sparsity constraints. Journal of Inverse and Ill-Posed Problems, 16, 463–478.

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenz, D. A., & Trede, D. (2008). Optimal convergence rates for Tikhonov regularization in Besov scales. Inverse Problems, 24, 055010.

    Article  MathSciNet  Google Scholar 

  • Lucy, L. B. (1974). An iterative technique for the rectification of observed distributions. The Astronomical Journal, 79, 745–754.

    Article  Google Scholar 

  • Marquina, A. (2009). Nonlinear inverse scale space methods for total variation blind deconvolution. SIAM Journal on Imaging Sciences, 2(1), 64–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Natterer, F., & Wübbeling, F. (2001). Mathematical methods in image reconstruction. SIAM monographs on mathematical modeling and computation.

  • Osher, S., Burger, M., Goldfarb, D., Xu, J., & Yin, W. (2005). An iterative regularization method for total variation based image restoration. Multiscale Modelling and Simulation, 4, 460–489.

    Article  MathSciNet  MATH  Google Scholar 

  • Panin, V. Y., Zeng, G. L., & Gullberg, G. T. (1999). Total variation regulated EM algorithm. IEEE Transactions on Nuclear Sciences, NS-46, 2202–2010.

    Article  Google Scholar 

  • Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629–639.

    Article  Google Scholar 

  • Remmele, S., Seeland, M., & Hesser, J. (2008). Fluorescence microscopy deconvolution based on Bregman iteration and Richardson-Lucy algorithm with TV regularization. In T. Tolxdorff, J. Braun, T. M. Deserno, H. Handels, A. Horsch, & H.-P. Meinzer (Eds.), Informatik aktuell. Proceedings of the workshop bildverarbeitung für die Medizin 2008 (pp. 72–76). Berlin: Springer. doi:10.1007/978-3-540-78640-5_15.

    Chapter  Google Scholar 

  • Resmerita, E., & Anderssen, S. (2007). Joint additive Kullback-Leibler residual minimization and regularization for linear inverse problems. Mathematical Methods in the Applied Sciences, 30, 1527–1544.

    Article  MathSciNet  MATH  Google Scholar 

  • Resmerita, E., & Scherzer, O. (2006). Error estimates for non-quadratic regularization and the relation to enhancing. Inverse Problems, 22, 801–814.

    Article  MathSciNet  MATH  Google Scholar 

  • Resmerita, E., et al. (2007). The expectation-maximization algorithm for ill-posed integral equations: a convergence analysis. Inverse Problems, 23, 2575–2588.

    Article  MathSciNet  MATH  Google Scholar 

  • Richardson, W. H. (1972). Bayesian-based iterative method of image restoration. Journal of the Optical Society of America, 62, 55–59.

    Article  Google Scholar 

  • Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268.

    Article  MATH  Google Scholar 

  • Rudin, L., Lions, P. L., & Osher, S. (2003). Multiplicative denoising and debluring: theory and algorithms. In S. Osher & N. Paragios (Eds.), Geometric level sets in imaging, vision, and graphics (pp. 103–119). New York: Springer.

    Chapter  Google Scholar 

  • Sawatzky, A., Brune, C., Wübbeling, F., Kösters, T., & Schäfers, K. M. B. (2008). Accurate EM-TV algorithm in PET with low SNR. In IEEE nuclear science symposium.

  • Scherzer, O., & Groetsch, C. (2001). Inverse scale space theory for inverse problems. In M. Kerckhove (Ed.), Scale-space and morphology in computer vision. Proc. 3rd int. conf. scale-space (pp. 317–325). Berlin: Springer.

    Google Scholar 

  • Shepp, L. A., & Vardi, Y. (1982). Maximum likelihood reconstruction for emission tomography. IEEE Transactions on Medical Imaging, 1(2), 113–122.

    Article  Google Scholar 

  • Shi, J., & Osher, S. (2008). A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM Journal on Imaging Sciences, 1(3), 294–321.

    Article  MathSciNet  MATH  Google Scholar 

  • Strong, D. M., Aujol, J.-F., & Chan, T. F. (2006). Scale recognition, regularization parameter selection, and Meyer’s G norm in total variation regularization. Multiscale Modeling & Simulation, 5(1), 273–303.

    Article  MathSciNet  MATH  Google Scholar 

  • Snyder, D. L., Helstrom, C. W., Lanterman, A. D., Faisal, M., & White, R. L. (1995). Compensation for readout noise in CCD images. Journal of the Optical Society of America A, 12, 272–283.

    Article  Google Scholar 

  • Vardi, Y., Shepp, L. A., & Kaufman, L. (1985). A statistical model for positron emission tomography. Journal of the American Statistical Association, 80(389), 8–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Vogel, C. (2002). Computational methods for inverse problems. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Wernick, M. N., & Aarsvold, J. N. (Eds.) (2004). Emission tomography: the fundamentals of PET and SPECT. San Diego: Academic Press.

    Google Scholar 

  • Willig, K. I., Harke, B., Medda, R., & Hell, S. W. (2007). STED microscopy with continuous wave beams. Nature Methods, 4(11), 915–918.

    Article  Google Scholar 

  • Witkin, A. P. (1983). Scale-space filtering. In Proc. int. joint conf. on artificial intelligence (pp. 1019–1023). Karlsruhe.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Brune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, C., Sawatzky, A. & Burger, M. Primal and Dual Bregman Methods with Application to Optical Nanoscopy. Int J Comput Vis 92, 211–229 (2011). https://doi.org/10.1007/s11263-010-0339-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0339-5

Keywords

Navigation