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Abstract

We present a monocul&@D reconstruction algorithm for inextensible de-
formable surfaces. It is based on point correspondencegbatthe actual
image and a template. Since the surface is inextensibldeftmations are
isometric to the template, for which the surface shape isvkndVe exploit
the underlying distance constraints to recover3Beshape. Though these
constraints have already been investigated in the litezatue propose a new
way to handle them. As opposed to previous methods, oursadesquire a
known initial deformation. Spatial and temporal smootlsrasors are easily
incorporated. The reconstruction can be usedraugmented reality pur-
poses thanks to a fast implementation. We report resultgrthetic and real
data. Some of them are faced to stereo-b&gedeconstructions to demon-
strate the efficiency of our method.

1 Introduction

Recovering th&D shape of a deformable surface from a monocular video and jaldésn
is a challenging problem, illustrated in figure 1 (a). It hagi addressed for years and
several algorithms have been proposed. BBeshape seen in the template is usually
known. This problem is ill-posed due to depth ambiguitieddiional consistency con-
straints are thus required. Most commordg, hoc constraints are used. These include
spatial and temporal surface smoothness [3, 4] and thedok-shape model [2, 3].

Our algorithm is dedicated to inextensible surfaces sudh@se shown in figure 1.
It uses point correspondences to compute upper bounds guothes’ depth using the
inextensibility assumption. We show that these boundstijrerovide a goodD recon-
struction of the surface. The algorithm does not requiradiai guess and easily handles
additional constraints. The same constraints have alsoieeently studied by [10].

There are two main differences between our method and théopseones. Firstly,
we treat the inextensibility constraints as hard constsaimstead of as a penalty. It makes
the result less empirical because we guarantee to find ateimgkle surface. Indeed,

*NICTA is funded by the Australian Government as represenyetid Department of Broadband, Commu-
nications and the Digital Economy and the Australian Re$e@auncil through the ICT Centre of Excellence
program.



smoothing terms that are used to handle priors on the sudi@e®t alter the inextensi-
ble property of the solution. Other methods usually mixet#it penalties and so have
to carefully trade off various terms to get convincing résulSecondly, our algorithm
does not need any assumption about the surface deformatitwe ivideo, contrarily to
other methods such as [11] for which the first frame of the widheist be ‘similar’ to the
template. Our algorithm is simple and fast, and can theedberused to provide a good
initialization to more sophisticated algorithms.

The paper is organized as follows. Related work on monoagésrmable recon-
struction is reviewed ir32. The evaluation of upper bounds is presenteg3rand the
surface recovery procedure §4. An experimental study on the reconstruction error is
proposed ir5. Results on synthetic and real data sets are reportggl iBventually, we
give our conclusion and research perspectivesin
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Figure 1: Monocular reconstruction of a deformable surfat@ Problem setup. (b)
Examples of paper sheets: the template (left) and two defdrameets, a smooth one
(middle) and a creased one (right). (c) Example of a can: l@mpmage (left),3D
template (middle), and the input image of the deformed cght:.

2 State of the Art

There are three main components in monocular deformablges@eonstruction: the
general low-rank shape model, the assumption that the todfjéaterest is a surface and
the knowledge of a template. They can be independently ussahabined together so as
to handle ambiguities in monocular reconstruction.

The low rank factorization solution to the non rigid shapeorery problem has been
introduced by [2]. The object is represented by a combinatiounknown basis shapes.
The algorithm recovers both the basis shapes and the caatfigurveights.The surface
hypothesis has recently been incorporated through pi3dr3 he method needs the whole
video to compute the solution and thus is not suited for rsttantion on the fly.

Learning approaches have proven efficient to model defdemnaitjects [11]. The
main drawback is the lack of generality when the trained rhid®o specific. To deal
with videos, temporal consistency is used to smooth therdeftions. It requires one



to know the initial3D shape. It usually needs a template, and the video is suclthinat
object deformation in the first frame is close to the one intémeplate.

Methods using only the surface assumption have been prapdsey require strong
priors on the surface. One of the motivations for these nitl®to perform paper scan-
ning from images of deformed paper sheets. For this kind pfiegtions, a template is
obviously not available. Under the surface smoothnesswgstion, [4] solves a system of
differential equations on the page borders to obtair8iheshape. Other approaches such
as [7] use textual information to evaluate the surface paters. These methods perform
well on smoothly bent paper but cannot be extended to arpiinaxtensible objects.

The method we propose is dedicated to surfaces and uses katenipassumes the
internal parameters of the camera to be known. It is morebfilexhan other approaches
since it applies to any inextensible surface such as papement or faces. Only one
frame is needed to compute the reconstruction and thererisea for a reference image
in the video,.e. an image for which th&D surface is known in advance.

3 Finding Upper Bounds on the Surface Depth
3.1 Principle

We focus on inextensible deformable objects imaged by ptioge cameras. A surface
template is assumed to be known. The template is composdue 8Dt surface shape
registered with an image of the object. Examples are showigime 1. For the paper
sheets, the reference shape is a plane, and for the can, @yinder. Assuming that
point correspondences are established between the imalge déformed object and the
template, we show that the region of space containing thecoly bounded. The internal
camera parameters allow one to compute the backprojedttbe matched feature points,
known as sightlines. Since the camera is projective, thHalgigs intersect at the camera
center and are not parallel to each other. The consequetize the distance between two
points increases with their depths. The template giveseisndximal distance between
two points (when the real dimensions of the template ardaaj the scale ambiguity
can be resolved). This is used to compute the maximal deptregdoints.

First of all, correspondences are established betweemidngd and the template using
for instance SIFT [8] or a detection process designed foordedble objects [9]. We
assume that there is no mismatch. The bounds are evaluateditha two step algorithm:

e Initialization. (§3.2) A suboptimal solution is computed by using pairwise-con
straints.

e Refinement. (§3.3) An iterative refinement process considers the uppendmoas
a whole and tunes all of them to get a fully compatible set ofriuts.

Our notation is shown in table 1.

3.2 Initializing the Bounds

The initialization of the bounds is computed pairwise. Twainps and the inextensibility
constraint are sufficient to bound the position of these taints along their sightlines.
For n correspondences, it gives— 1 bounds for each point. Only the most restrictive



T template l dij =lgT —af | ‘ Euclidean distance betweef andq] ‘
q' pointi in the template T depth of the point
| image of the deformed object Qi =Qi(l) 3D pointi
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Table 1: Our notation for this paper.

bound (.e. the tightest one) is kept as the initial bound. The sightlias2 computed in
the image of the deformed objdct(details can be found iag. [6]). The camera matrix
P = [M|p4] is composed of &3 x 3) matrixM and a(3 x 1) vectorps. The camera center
isC = —M~1p,. The vectow; orienting the sightline passing through the pajhts:

Mg
V=
IM~q; |
A 3D pointQ; on the sightline§ can be expressed as:
Qi(Hi) = pi vi +C.

The depthy; is the distance of the point to the camera center; it is pesj§]. As fig-
ure 2 illustrates, the inextensibility of the object givies following constraint between the
points: whatever the actual deformation, the Euclideatadie between twBD points is
lower or equal to the geodesic distance between them onriadee:

1Q —Qjll < llg" —af || = dij.

isometric deformation

3D surface

Template

Figure 2: Inextensible object deformation. The templatieif®rmed to th&D surface by

an unknown isometric transformation. The dashed line igy#wlesic curve betwee
ande, it has the same length; as the geodesic distance in the template. The Euclidean
distance between tID points is shorter due to the deformation.

As figure 3 illustrates, the coordinate frame system can besd#m such that:

o=(5) o)



Giveny;, the two pointQ; such that|Q; — Q;|| equalsd;j are given by:

Hj (Hi) = pi cos(aij) £ /df — p? sin?(aij). (1)

So there exists a real solution if and only if:

d?
. i
=\ sne(ay)

The boundy; is then computed from the whole set of correspondencesduiitioss of
generality, we assum®; < 7 which holds with most of the common lenses):

Li = [iix = min di
I ! j=1.n sin(aij) '
J#i

The point that induces the minimum upper bound has intledVe refer to this point*
as theanchor point of point i. The notation — i* reads “pointi* constraints the upper
bound of point”. This property is not symmetrid: — j does not implyj — i. It is one
of the reasons why this initialization is suboptimal, aslaiped in the next paragraph.
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Figure 3: Point parameterization along theFigure 4: Bound refinement. The initial
sightlines. bound[i gets refined tqly;.

3.3 Refining the Bounds

The set of initial bounds is not optimal for the whole set ofy®, as illustrated in figure 4.
We consider three points, and their pairwise computed b&uHhde bounds for the points
Qj and Q are given by the poin@;. The pointsQ; and Qx are used to compute two
bounds for the poin@;. Only the most restrictive one is kepe. [1ij. It means that the
pointQ; cannot be deeper than;. This gives the new boungd) for the pointQ.

We propose an iterative implementation of bound refineni@ating one iteration, for
each point, the upper bounds of the other points inducedégdtual point are computed.
If they are smaller than their actual bounds, these are adddthe iterations stop when
there is no change during one iteration, meaning that thadsare coherent.

To derive the update rule, we refer to equation 1 that linksdgpth of two points such
that the distance between the points is equal to their distameasured in the template,



i.e. the maximal distance between the two points. We study therdppund on poinj
induced by point: it is given by the largest value qfj:

Hj (ki) = pi cos(aij) +/df — p? sin?(aij). 2

As figure 5 illustrates, this function has a global maximum:

max __ ij (ppmaxy ij

= tan(aj)) “J(“i )= sin(aj) (3)
g Hl(ll\m‘
5 § AN
2 () -~
o
= Hi 7
o) d
o

[ W L
depth of point

Figure 5: Function giving depth of poiftagainst depth of poirt (left) Parameterization.
(right) Graph of the function.

The upper bound for pointwith respect to pointis thus:

i {Hicos(aij)Jr di — p? sin?(aij) if pigtan‘zié”)
ji=

dij .
S(ai}) otherwise,

and the formula to update the bound is the following:
iy = min (2}, Bji) -

In our experiments, this process converges in 3 or 4 iteratidt gives the upper
bound and the anchor point of each point; both are used toeetioe surface.

4 Recovering the Surface

Our surface recovery procedure has two main steps:

e Reconstruction of sparse3D points. (§4.1) The3D points are computed using the
upper bounds and the distances to their anchor points,

e Reconstruction of a continuous surface.(§4.2) The surface is expressed as an
interpolation of these points, possibly using surfacergrio

4.1 Finding a Sparse Set 08D Points

The set of bounds gives the maximal depth of the points. Fastestirface reconstruction
algorithm, one can directly use the upper bounds as pointiseogurface:

i = [ (4)



In practice, the error due to this approximation is smalkta@wn in figures 6, 7 and 8.

However, this is not satisfying considering the inexteitisjoconstraint. Indeed, the
distance between two upper bounf3(fi;) — Q(fi+)|| can be larger than their distance
in the templatedii<. For instance, when there is a symmetry between a point and it
anchor pointi — i* andi* — i, the distance is equal ti- - cos ! (%a“*). To get a more
consistent surface, we propose an optimization schemeftwcenthe length equality
between a point and its anchor point. Since the upper bouweggod results, the points
depth such that these length equalities are satisfied aghoear the upper bounds.

The optimization can also handle other priors on the polfts.instance, with a first
order temporal smoother, it has the following form:

u

po= argmin(i(pi — 1)+ y (ki (t) — (t—l))2> o

subjectto [|Qi— Q|| =di= fori=1.n,

with u the points depth vectog; (t) the depth of thé—th point for the current frameand

y the balancing weight. This is a linear least squares probleder non-linear quadratic
constraints, solved with the Levenberg-Marquardt algamif6] (the initial solution is
given by equation (4)).

4.2 Interpolating to a Continuous Surface

The reconstructe@D points are eventually treated as control points of a mappifrgm
the template to th&D space. This allows us to represent the surface by transfeari
regular mesh designed on the template. In practice the mgppe choose is composed
of three2D to 1D Thin-Plate Splines. These have proven efficient in the sgm&tion
of deformable objects [1]. Getting a continuous surface esak possible to deal with
surface priors. At this stage, another optimization prea be used to include these
priors. They are written as penalty terms of a cost functiau is minimized with respect
to the depth of the control points. For priors on the temparal geometric smoothness
of the surface, one can write this optimization as:

n 2

m 2
i< argming (1) A S 2@ +rlsO-ac-J?

(6)
subjectto ||Qi—Qi+||=dix fori=1.n,

with g; a vertex of the meshn the number of vertices of the mesh ahdy the bal-

ancing weights controlling the trade-off between the distato the bounds, the geomet-

ric smoothness and the temporal one. Fixing the deformaiurters of the Thin-Plate

Splines in the template, problem (6) shows to be linear Isqgares under non-linear
guadratic constaints. It can be similarly solved as prokfgm

5 Error Analysis

The quality of the reconstruction depends on the number okespondences and the
noise in the images. Though the latter has been ignored ithdwretical derivation, we



show how to deal with it in the reconstruction algorithm. Tex@eriments to assess the
reconstruction error against the number of points or theenmiagnitude are performed on
synthetic surfaces. They are modeled by developable sgfadich are isometric to the
plane. In practice we use a 200mm wide square shape. Thedgaiints are randomly
drawn on the shape. The reconstruction error fori thi feature point is defined as:

ei) = 1Q — Q| (7)

5.1 Number of Points

Figure 6 shows the average reconstruction error againstutmber of correspondences.
The dashed curve represents the fast implementation egaation (4)) and the full one
corresponds to the optimized points under length consgrainly (equation (5)). As ex-
pected, the error decreases thanks to the point optimizafidne curves decrease: the
higher the number of points, the lower the error. The acguo&the reconstruction is re-
lated to two situations: the amount of deformation betwéerpibints and the orientation
of the points with respect to the camera. Their respectifheances are explained below.
Due to lack of space, we do not show any quantitative results.

While deforming, the Euclidean distance between3Depoints decreases. Since our
algorithm is somehow based on the preservation of the Erafidistance between a point
and its anchor point, the less it deforms between these pairg, the better the results.

The 3D orientation of a point and its anchor point changes theivelatosition of
their projections in the image. There exist a configuratidrere the angle between the
sightlines of the two points is maximum. This is the optimaéntation since it leads to
a closer upper bound, and thus minimizes the reconstruetian.

For both situations, the increasing number of points givesenchance to get an op-
timal situation,i.e. the points and their anchor points are well-oriented andtimface is
not deformed too much between them.

5.2 Influence of the Noise

There are two ways to see the noise on our point primitiveali®e one can arbitrarily
choose in which image (the template or the image) the exantgare and in which one
they are noisy. This choice induces differences in our dlgor. the ‘noise in the image’
changes the orientation of the sightlines whereas theéniaishe template’ modifies the
reference distances; between the points. Since 08D points are parameterized along
their sightlines, we choose the second possibility. Theyndistances measured in the
template lead to lower upper bounds if they are under evaduatith the refinement
process on the bounds, this error is propagated to othetspspoiling the reconstruction
accuracy. To avoid this, we add a constant corrective tetorthe reference distances:

dij<—dij+k. (8)

This term reflects how reliable the distances are. Its effwgigs related to the noise level,
as shown in figure 7. The curve presents a minimum at 55% ofviéi@ge noise magni-
tude, giving an empirical way to choose the term. This cuhes also that it is better to
over-estimate this parameter than to under-estimate iveider it is difficult in practice

to evaluate the noise magnitude. This term is fixed to ond pix@ur experiments. The



precision of the reconstruction gracefully degrades withrioise magnitude, as shown in
figure 8. The relation between the noise magnitude and tlumsémiction error is nearly
linear. For a noise magnitude of 5 pixels, the average esrbelow 5.5mm.
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6 Experimental Results on Real Data

To evaluate the quality of our reconstructions, we have @eghthem to stereo-basegd
reconstructions. We report results on three objects: tw«pagder sheets and a can. The
templates and the images of the deformations are shown irefiigurhe reconstructions
are registered to the stereo-based reconstructions usigiglaransformation and a scale
factor before evaluating the discrepancy. They are shouigume 9.

Figure 9: Reconstruction results. (a) Reprojections ofemtimated surfaces. (b) Stereo
reconstructions. (c) Our reconstructions. (d) Discrepdretween the reconstructions.

The shape of the smoothly bent paper sheet is well recoveredibalgorithm and
looks like the stereo-based reconstruction. The recoctstruhas been performed using
80 point correspondences. The Root Mean Squared error iig,.2Zneaning that our
reconstruction is close to the stereo one.



The reconstruction of the creased sheet has been done @gdagni correspondences.
Itis simlar to the3D shape from the stereo algorithm. The RMS error is 3.3mm ldrger
than the one of the smooth deformation. Actually, the creaszke the deformations less
adapted to our algorithm. However, the accuracy is stif\&tisfaying.

We also used our method to reconstruct the deformed can sihdiguire 1. We suc-
cessfully recovered the shape using 72 point correspoerdetite RMS error is 1.6mm.

7 Conclusions

The algorithm we presented has been designed for inextersiofaces imaged by a
perspective camera. It evaluates 8i2 bounds on the points such that the inextensible
constraints can be satisfied. A surface optimization cam ltigerun to handle priors such
as surface smoothness or temporal consistency. Our reselt®nvincing, and show that
our algorithm brings a simple and effective solution to thenwcular deformable recon-
struction problem. Possible extensions include couplimgatgorithm with a matching
process for deformable environments such as [9].
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