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Abstract We investigate the estimation of illuminance flow
using Histograms of Oriented Gradient features (HOGs). In
a regression setting, we found for both ridge regression and
support vector machines, that the optimal solution shows
close resemblance to the gradient based structure tensor
(also known as the second moment matrix).

Theoretical results are presented showing in detail how
the structure tensor and the HOGs are connected. This rela-
tion will benefit computer vision tasks such as affine invari-
ant texture/object matching using HOGs.

Several properties of HOGs are presented, among oth-
ers, how many bins are required for a directionality mea-
sure, and how to estimate HOGs through spatial averaging
that requires no binning.
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1 Introduction

In this paper, meso-scale stochastic variation of an object’s
surface is not considered part of the shape, but is treated as
3D texture. This texture makes it possible to estimate (im-
age) illuminance flow, an axial (bi-directional) flow field in
the image that results from projecting the light vector first
into the objects tangential plane, and then into the image
plane.

A shape, as the one illustrated in Fig. 1, is modeled as a
smooth differentiable manifold (here a sphere). The appear-
ance of the texture is dependent on the direction of light rela-
tive to the tangential plane of the manifold. This modeling is
reminiscent of bump-mapping in computer graphics (Blinn
1978). Illuminance flow can in general only be observed if
3D texture is present.

Vectors (a, b)T and (−a,−b)T describe the same flow at
a given position, so the flow field in the image is described

Fig. 1 Left: Example photograph from the database used with flow
direction superimposed. A textured sphere is illuminated from the right
(tilt = 0◦, slant = 50◦). Black arrows illustrate illuminance flow (note
that both directions along the black lines are valid flow lines). Right:
Binary image indicating where the flow is well defined
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by local angles φ ∈ [0,180). The main application for illu-
minance flow is as a shape cue of the surface, but this is not
the focus of this paper. Shape from illuminance flow can be
seen as an approach to make use of 3D texture for shape
inference, but, again, this is not a topic that will be further
investigated in this paper. In this paper we focus on the esti-
mation of the field from images.

This work is in line with the study by Pont and Koen-
derink (2005) where a theory for analyzing the illumina-
tion orientation from 3D texture was presented. General-
izations to oblique viewing (Pont and Koenderink 2005;
Karlsson et al. 2009), anisotropic surfaces (Karlsson et al.
2008, 2009) and non-uniform albedo (Varma and Zisserman
2004) have been made.

In this paper, we investigate real-world rough objects
viewed from an arbitrary direction, and using standard re-
gression methods, estimate the illuminance flow over their
surfaces (see Fig. 1). We focus on a contemporary and
in fashion low-level feature: the Histograms of Oriented
Gradients (HOGs) (Dalal and Triggs 2005; Lowe 1999).
Histogram-like statistics with directionality have a long tra-
dition (good examples are Picard and Minka 1995; Flickner
et al. 1995 and Michel et al. 1996). The HOGs are the low-
level features of the key points in the Scale Invariant Feature
Transform (SIFT) (Lowe 1999). They perform well for hu-
man pose recognition from video (Dalal and Triggs 2005)
without the scale optimization and key point detection of
the SIFTs. We will use the HOGs in a low-level and local
fashion as a way of measuring directionality at a position in
an image.

Directionality can be defined in several ways, one way
(several ones will be discussed) is by the structure tensor
(2nd moment matrix), which can be seen as three coarse de-
scriptors of the distribution of the gradient.

Experimental results on real world surfaces show that the
structure tensor yields promising results (Koenderink and
Pont 2003) for estimating the illuminance flow, with esti-
mates within a few degrees of the veridical orientation (in
normal viewing). In previous works (Pont and Koenderink
2005; Karlsson et al. 2008, 2009) we have made theoretical
predictions based on modeling the imaging process of 3D
texture. This approach has shown the structure tensor to be
appropriate for estimating illuminance flow. However, the
issue of learning an optimal estimator based on observations
with ground-truth from arbitrary viewpoints has never been
posed, which is the focus of the current paper.

Several local and unsupervised illuminant estimators
have been suggested (Pentland 1982; Knill 1990; Zheng and
Chellappa 1992; Chantler and Delguste 1997; Llado 2003).
Iterative non-local algorithms (such as Brooks and Horn
1985), are not considered, neither are supervised algorithms
for a finite set of textures (such as Chantler et al. 2005).
These algorithms are either identical to or correlate strongly

with the gradient based structure tensor. The premise is a
surface texture normally viewed; the goal is a local estimate
of the illuminant tilt. In this setting, the illuminant tilt is the
same as the illuminance flow, but this is not true for arbitrary
viewing of the texture, as illustrated in Fig. 1. The tilt is rela-
tive to the camera frame, while the illuminance flow angle is
relative to the tangential frame of the object, and can change
locally within the image, even for collimated beams (point
source at infinity).

In this paper, we focus on estimating the illuminance flow
of the image of convex objects with rough surface texture.
We use the HOG features in a regression setting, where we
try both linear ridge regression and the support vector ma-
chine (SVM). To connect the results to previous work we
show how the HOGs can be used to achieve a similar mea-
sure to that of the tensor (but also how this measure differs).
This will enable us to show further properties of the HOGs,
including how they are connected to the tensor, how many
bins are required to encode a directionality measure, a dif-
ferent algorithm without binning to calculate the HOGs, and
show how affine invariant approaches affect them.

2 Theoretical Background

The position of the light source relative to the camera is
given by the tilt and the slant angles, as specified in Fig. 2.

The theory of illuminance flow estimation has been based
on the structure tensor (second moment matrix), which in
normal viewing for isotropic, uniformly Lambertian, low re-
lief surface textures will give the flow (Koenderink and Pont
2003). The structure tensor (2nd moment matrix), is defined
as

G = E[∇I∇T I ] =
(

E[IxIx] E[IxIy]
E[IxIy] E[IyIy]

)

where Ix is the partial derivative of the image and E[·] indi-
cates expected value. The highest eigenvector will yield the
directionality of the image. G contains the second moment
description of the stochastic 2D variable ∇I as well as the
second moments of the image power-spectrum (Bigun and
Granlund 1987).

Measuring directionality can also be done by building a
histogram of oriented gradients (HOG). For each gradient in

Fig. 2 The imaging geometry



306 Int J Comput Vis (2010) 90: 304–312

an image a bin is increased in value. The angle of the gradi-
ent determines which bin, and the magnitude how much is
added to it. A generalization is the Parzen window method
(Parzen 1962) where many positions (bins) in an angular
vicinity are updated. Assuming that such estimation is per-
formed, there is no complication from grouping involved,
i.e. one can freely choose a large number of bins based on a
small number of data. Of course, the density estimation will
be less reliable as data amount decreases.

The HOG can be made invariant to the sign of the gradi-
ent. The bins will then only need to cover the orientational
(axial) interval [0◦,180◦). We will refer to the invariant ver-
sion as the orientational HOG and to the regular HOG as
directional. Discrete periodic sequences of the HOGs are de-
noted f̄d ( n2π

N
) and f̄o(

nπ
N

) (for directional and orientational
HOGs respectively with N bin values). These are samples
of slightly different density functions, that are both related
to the bivariate probability density function (pdf) f (x) for
the gradient ∇I .

We will use a probabilistic approach to analyze both the
HOGs and G, and note on similarities with power-spectrum
moments. The main drawback with frequency based analy-
sis is the enforced toroidal topology and dependency on
smooth convex window functions. Instead, we will assume
that the pdf for the gradient, f (x), always exists. We men-
tion that what follows could be achieved in an elegant way
using Lebesgue theory. This would also generalize our ex-
pressions to probability distributions (here we assume den-
sity functions), but while adding elegance, it would do little
for insights for our specific problem. We will use only basic
probability theory and will still come to the same conclu-
sions.

There are three coarse descriptors of f (x) found in G.
The HOGs are similarly coarse descriptors for f (x) be-
cause each bin is the average of |∇I |, given some direction
atan(∇I ) = θ . In other words, HOGs are estimates of con-
ditional expectations. We consider the change of variables
implied by polar coordinates:

R = |∇I |,
T = atan(∇I ).

It will have a bivariate pdf fpol(r, θ) = rf (r cos θ, r sin θ).
The directional HOG is an estimation of fd(θ) =
E[R|T = θ ] = ∫ ∞

0 rfpol(r, θ) dr . We have:

fd(θ) =
∫ ∞

0
r2f (r cos θ, r sin θ) dr,

fo(θ) = fd(θ) + fd(θ + π)

where fd has period 2π and fo has period π , and are the
population versions of f̄d and f̄o.

3 Directionality by Complex Change of Variables

With the foundation laid in the previous section, we will be
able to show concretely how the HOGs and the structure
tensor differ in the information they are representing. In the
end of this section we will arrive at 5 properties for HOGs.
To reach this point, we need to consider the following com-
plex expected values ργ (k), with corresponding estimations
ρ̄γ (k):

ργ (k) = E[|∇I |γ exp(−ik atan(∇I ))],

ρ̄γ (k) = 1

P

P∑
p=1

(Ix(rp) − iIy(rp))k

(I 2
x (rp) + I 2

y (rp))
k−γ

2

(1)

for γ ∈ R
+ and k ∈ Z, where i = √−1 and the rps are pixel

positions. We can normalize it by ρ̂γ (k) = ργ (k)/ργ (0) so
that |ρ̂γ (k)| ∈ [0,1]. The ργ (2) for different γ are differ-
ent measures of directionality. |ρ̂γ (2)| = 1 always occurs

for images consisting entirely of isolines in the ∠ρ̂γ (2)

2 ori-
entation. When estimating ρ̂γ by ρ̄γ (k)/ρ̄γ (0), we can say
that we are performing kth order voting with a γ -correction
term. This is similar to the theory of Bigun and Granlund
(1987), where the differential operator (Dx + iDy ) and its
powers are analyzed. Powers of (Dx + iDy ) include higher
order derivatives of the image, which in turn are used to
obtain higher orders of complex moments of the power-
spectrum. We use normalized powers of (Ix + iIy) which
use only first derivatives of the image. The sequence in Eq. 1
are not power-spectrum moments.

A special case which connects to the Bigun-Granlund
theory is ρ2(2) = E[(Ix − iIy)

2] and ρ2(0) = E[I 2
x + I 2

y ].
They encode G completely:

ρ2(2) = (λmax − λmin) exp(−i2 atan(vmax)),

ρ2(0) = λmax + λmin

where λmax and vmax are the highest eigenvalue and corre-
sponding eigenvector of G.

Another special case is ρ0(k) = E[exp(−ik atan(∇I ))].
This corresponds to the characteristic function (Mardia and
Jupp 2000) of the circular variable: T = atan(∇I ). The char-
acteristic function is equivalent to a Fourier transform of the
pdf of T . Thus, |ρ0(2)| is a fit of the second harmonic to
the pdf of T , and ∠ρ0(2)

2 is the orientation (the phase on the
unit circle) of the second harmonic. For γ = 0, the magni-
tude of the gradient is ignored, which is one extreme way of
measuring directionality.

A third special case is that of γ = 1, which is strongly
connected to the HOGs, as we shall see. In general, for all
γ , the change of variable formula (Mardia and Jupp 2000)
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gives the relation:

ργ (k) =
∫∫ ∞

−∞
|x|γ exp(−ik atan(x))f (x) dx

=
∫ π

−π

exp(−ikθ)

∫ ∞

0
rγ+1f (r cos θ, r sin θ) dr dθ,

ρ1(k) =
∫ π

−π

exp(−ikθ)fd(θ) dθ, (2)

ρ1(2k) =
∫ π

0
exp(−i2kθ)fo(θ) dθ. (3)

Equation 3 is found by evaluating Eq. 2 for k → 2k

as the sum of two integrals, one over [−π,0], the other
over [0,π], and then using exp(−i2kπ) = 1 and fo(θ) =
fd(θ) + fd(θ ± π). Equations 2 and 3 yield Fourier series
coefficients for fd and fo:

fd(θ) = 1

2π

∞∑
k=−∞

ρ1(k) exp(ikθ),

fo(θ) = 1

π

∞∑
k=−∞

ρ1(2k) exp(i2kθ).

If the population versions fd , fo, ρ1 are replaced with the
sample versions f̄d , f̄o and ρ̄1, then Eqs. 2 and 3 will turn
into discrete Fourier transforms. For the orientational HOG
we have:

ρ̄1(2k) =
N−1∑
n=0

exp

(
−i2k

nπ

N

)
f̄o

(
nπ

N

)
. (4)

Some properties of the HOGs that emerge from these ob-
servations are:

(1) If a directionality measure needs to be explicitly cal-
culated using HOGs, then a best matching sinusoidal yields
it. The second harmonic approximation of the directional
HOGs is equivalent to the first harmonic approximation of
the orientational HOGs and constitutes the measure that is
closest possible to G (assuming no other information of
f (x) is available).

(2) The minimum number of bins required to yield such
a directionality measure is given by the Nyquist-Shannon
sampling theorem (the sampling frequency is N

2π
). For the

orientational HOGs, we require N = 3, and for the direc-
tional HOGs N = 5. Note that we are considering the num-
ber of bins to be just the number of height samples of the es-
timated pdf. In traditional histograms, there is an additional
problem of grouping involved. More bins will mean also a
reduction in the quality of the estimation. This problem dis-
appears if one assumes a Parzen window method (Parzen
1962).

(3) The directionality inherent in the HOGs is strongly
correlated with that of G. They differ in γ -correction only.

The structure tensor has γ = 2, while the HOGs have γ = 1.
Algorithmically speaking, in G higher magnitude gradients
are weighted more than in the HOGs. If the magnitudes of
the gradients would be fixed to one (f (x) is nonzero only on
a circle), then the directionality of the HOGs and G would
be identical.

(4) An alternative to calculating the HOGs is to calculate
ρ̄1(k), and then to Fourier transform it. This approach avoids
the grouping procedure (the ‘binning’) inherent in the con-
ventional histogram approach. K elements of the sequence
(k ∈ [0,K − 1]) yields N = 2K − 1 bin values (samples in
f̄d ). For estimating f̄o(θ) the sequence ρ̄1(2k) is used in
the same way. This is equivalent to using a wrapped sinc
function as a Parzen window (Parzen 1962). The equivalent
to a Gaussian Parzen window can be achieved by multiply-
ing ρ̄1(k) with a Gaussian (because multiplication in Fourier
gives convolution and because a Gaussian function trans-
forms back to a Gaussian).

(5) If images are affine normalized using G, as is pro-
posed in several works (Mikolajczyk et al. 2005), then there
is little or no discriminant information available in ρ̄1(0) and
ρ̄1(2). There are a total of three degrees of freedom in ρ1(0)

and ρ1(2) (real and complex valued resp.) that correspond
closely to ρ2(0) and ρ2(2) (that encode G). If one uses the
HOGs as low level features, it might be prudent to use ρ̄1(0)

and ρ̄1(2) for affine normalization, instead of G. However, if
HOGs are estimated on smaller regions within a larger affine
normalized region, then ρ̄1(0) and ρ̄1(2) can still hold valu-
able information. Also note that HOGs are usually normal-
ized to unit mean which corresponds to enforcing ρ̄1(0) = 1
regardless of affine normalization.

We emphasize that we are not suggesting a new set of
low-level features here, but rather we suggest an analysis
of the existing ones (HOG) that makes the connection to
the structure tensor readily available, and sheds some light
onto what the HOGs actually do in terms of non-parametric
density estimation.

4 Axial Regression

We now turn our attention to the specific topic of illumi-
nance flow estimation using the HOGs as low-level features.
We want to once more remind the reader that we are here
not interested in any other task then illuminance flow esti-
mation. The topic is covered in previous works (Pont and
Koenderink 2005; Karlsson et al. 2009). In the present pa-
per, we are not going to attempt shape inference with our
regression (e.g. regressing for the normals of the surface).

We tried two standard approaches, first a linear model
with ridge regression, then a support vector machine where
several kernels were considered. Because illuminance flow
is an axial (orientational) property, we used the orientational
HOG.
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4.1 Linear Model

We first phrased the problem in a linear setting as y =
f T w, where y is the illuminance flow at a point, f =
{f̄o(

0π
N

), f̄o(
1π
N

), . . . , f̄o(
(N−1)π

N
)}T is the feature vector,

and w = {w0,w1, . . . ,wN−1}T is the weight vector. Col-
lecting all feature vectors in matrix F , and all ground-
truths in vector y, ridge regression is a regularized ver-
sion of LSE minimization, resulting in the pseudo-inverse:
w = (F T F + clinI)−1FT y, where I denotes the identity
matrix, and clin is the ridge parameter for the regression.
This corresponds to minimizing the objective function:

Elin = clin‖w‖2 + 1

2
‖Fw − y‖2

Using the illuminance flow angle φ directly to represent
the flow is not suitable for regression because of the angu-
lar discontinuity (for axial data, 0◦ is equivalent with 180◦).
Instead, one can choose to regress towards cos(2φ) and
sin(2φ) separately, arriving at 2 weight vectors indepen-
dently (when using the models for predictions, one needs
to divide the output angle by two). This can be eloquently
phrased as one single regression, by using complex numbers
where y = exp(i2φ):

y = f T w = exp(i2φ) =
N−1∑
n=0

f̄o

(
nπ

N

)
wn (5)

where wn ∈ C. The definition of the pseudo inverse al-
lows for complex numbers (replacing wT with conjugate
transpose w∗). We are minimizing one single consistent er-
ror Elin (we have ‖w‖2 = w∗w). That the regression on
cos(2φ) and sin(2φ) is done separately does not matter for
the outcome, nor does the coordinate frame we choose for φ.

In this model, if wn = exp(−i2π n
N

) then, following
Eq. 4, y = ρ̄1(2) which correlates with the structure tensor
(it differs only in γ -correction, and is the closest possible to
the tensor we can get using only the HOG).

4.2 Support Vector Model

The Support Vector Machine (SVM) was originally sug-
gested by Vapnik (1995) for classification and regression
(Vapnik et al. 1999). The SVM fits the linear function y =
f T w + b to the data by solving the following convex opti-
mization problem:

minimize Esvm = 1

2
‖w‖2 + csvm

∑
∀k

ζk,

subject to

{|(f T
k .w) + b − yk| ≤ ε + ζk,

ζk ≥ 0.

(6)

The constants csvm and ε are for tweaking the regression.
The SVM solves this by optimizing a dual formulation, ar-
rived at through forming the Lagrangian of Esvm. New vari-
ables are introduced, α = {αk}, where w = ∑K

k=1 αkf k , and
thus y = b + ∑K

k=1 αkf
T
k f . With a new objective function

and constraints with respect to α, the dual problem gives so-
lutions to the original (primal) problem (Vapnik 1995). The
set of training feature vectors that contribute to the output
is small because α is usually sparse (these are the support
vectors of the machine).

Generalizing to non-linear functions is done by provid-
ing a substitute scalar product (the kernel), κ(f 1,f 2). Each
possible kernel corresponds to performing transformations
of the data before the regression, such that a linear re-
gression in the transformed space corresponds to non-linear
regression in the original one (Aizerman et al. 1964). If
the objective function makes use of the kernel instead of
scalar products, then the output of the machine will be
y = b + ∑K

k=1 αkκ(f k,f ).
The linear SVM is very similar to ridge regression, but

the objective function we minimize is essentially different.
Elin and Esvm have the same smoothness term ‖w‖2, which
is independent of the data, they differ in how they penalize
data deviation from the model. Any deviations that is within
the ε bound is not penalized in the SVM regression, and is
penalized linearly for the amount above that threshold, with
slope equal to the parameter csvm. Ridge regression mini-
mizes a squared error, with no ε insensitive region. How-
ever, squaring also entails penalizing lower deviations less
then higher ones, so the two methods should be expected
to yield similar output. This argument holds despite the fact
that ridge regression and SVMs require widely different al-
gorithms (matrix inverse vs. iterative search). Both are con-
vex optimization problems, where a unique global optimum
is guaranteed. The power of SVMs lies in their ability to in-
troduce nonlinearities. For this reason, we compared SVM
regression with several popular kernels with the result we
achieved with the ridge regression.

We phrased the illuminance flow problem in a similar
fashion as with the ridge regression. We regress towards
cos(2φ) and sin(2φ) separately, and will get two SVMs that
are combined to make predictions (output angle is divided
by two). In the ridge regression setting, this can be phrased
as one single regression using complex numbers, with a con-
sistent error. We are not aware of any method to provide the
same property for SVMs. However, because the ridge re-
gression and the linear SVM are similar, we argue that the
linear SVM has a roughly consistent error, but the same can-
not be said for any kernel.

4.3 Implementation and Data

For data, we used a set of 28 images of the same tex-
tured sphere photographed under controlled laboratory con-
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ditions. The lighting was approximately collimated beams
(one point source, far from the sphere), where the posi-
tion of the light source was varied in 14 slant directions
(10◦,20◦, . . . ,140◦). For each slant direction, the sphere
was photographed with lighting from the right (tilt direc-
tion 0◦) and the left (tilt direction 180◦). Furthermore, the
images were rotated to simulate more tilt directions, in total
16 directions (0,22.5, . . . ,337.5) for every slant angle.

The photographs are 8 bit gray depth, 600 by 600 pix-
els. The sphere was carefully positioned such that the cen-
ter of the image corresponds to the center of the sphere. The
sphere is roughly 0.5 meters in diameter, and was positioned
2 meters away from the camera. With a maximum variation
in visible height profile of 0.25 meters, we can assume that
the camera has an orthogonal projection as far as the sphere
is considered. The height profile is a sphere and with colli-
mated beams of known direction, we calculated the ground-
truth illuminance flow angles φ for every valid position in
the image. Positions outside of the silhouette, in the shadow
of the sphere or where the light hits the surface very close
to its normal direction were not considered, as these posi-
tions do not have illuminance flow well defined (illustrated
in Fig. 1). This amounted to over 260.000 data points in 32
dimensional feature space, with associated ground-truth il-
luminance flow φ ∈ [0◦,180◦).

Orientational HOGs were calculated on square, 8 by 8
pixel wide cells in the image. We used 8 bins, representing
the angular intervals of {[0◦,22.5◦), . . . , [157.5◦,180◦)}. At
the vertex of each cell are the positions to be described by
the features. For each position, the HOG bin values of all 4
cells sharing that vertex are collected into a feature vector of
32 elements. These are normalized to unit mean. Each fea-
ture vector (for each position considered) gets values from 4
HOGs, so the outer scale is 16 by 16 pixel wide blocks. Each
HOG contributes to 4 blocks, so there is overlap between the
feature vectors. Two such blocks are illustrated in Fig. 3.

The software for calculating HOGs was Bill Triggs’
(Dalal and Triggs 2005) implementation, which uses 2-point
derivative filters. We also implemented the structure tensor
algorithm with the same derivative filters and size of blocks
as with the HOGs. Linear interpolation is used in the binning

Fig. 3 Illustration of blocks and cells of the HOGs. Two blocks are
illustrated as white squares. Each Block has 4 cells, but only 7 unique
cells are covered due to feature overlap. The figure displays the same
size as was used in the experiments

algorithm of the HOGs to improve accuracy, which approx-
imately corresponds to a triangular Parzen window (Parzen
1962). Ridge regression was performed with the statistics
toolbox in the Matlab environment. For the SVM, we used
the “SVMlight v. 6.01” software implementation (Joachims
1999). We tried 4 different kernels: linear, polynomial, sig-
moidal (tanh) and radial basis function (rbf).

5 Results

Interestingly, all models (ridge and SVM) yielded near iden-
tical results to the ρ̄1(2) measure, which is visually indistin-
guishable from the structure tensor on these images. Typi-
cal output is illustrated in Fig. 4 together with ground-truth.
Performance is evaluated through the average angular devi-
ation (Ead ) of the estimate to the ground-truth illuminance
flow angle (averaged over all images in the database, over all
valid positions). All the regressed models had an Ead lower
than 16.5◦, with the best results for the (second order) poly-
nomial kernel at 16.43◦ and the worst being the rbf kernel
at 16.48◦ (further tweaking of kernel parameters and select-
ing different training sets will change this ordering). The left
panel of Fig. 5 illustrates the performance across the image
(different positions on the sphere). The corresponding illus-
trations for the other models are not shown, because they are
all visually indistinguishable.

We also implemented the regular structure tensor, with
equivalent derivative filters and averaging areas as with
the HOGs (2-point derivative filters and 16 by 16 square
blocks). The structure tensor yields Ead = 16.7◦. If the
weights of the linear model are fixed to those corresponding

Fig. 4 Typical output of the regressed models (white line segments)
compared to ground-truth (black). Samples are taken of every third
valid x and y coordinate (1/9 of the valid positions shown). Estimation
is by the linear ridge predictor, but is visually indistinguishable from
any other model regressed. Note that the positions in the lower right
corner occupy a domain where illuminance flow is not well defined,
as illustrated by Fig. 1 (incoming light is near to being parallel to the
surface normal)
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Fig. 5 Average angular deviation of the prediction to ground-truth,
averaged over all images. White: no deviation, black: deviation >45◦,
gray: linear scale in [0,45]. Left panel: Result achieved with HOG fea-
tures (approx. same image for all models). Maximum average deviation
≈ 79◦. Right panel, equivalent image for when the normal is appended
to the feature vector, for the rbf kernel SVM

to the structure tensor, then the same error occurs (difference
is smaller than 0.05◦). The small reduction in performance
when going from the regressed models to the pure structure
tensor is explained by the directional bias in the estimation
(square blocks, and 2-point filters). The regressed models
(both SVMs and linear) have compensated for directional
bias in the HOG features.

Ridge regression: Inspection of the regressed weights in
Fig. 6 verifies that wn ≈ C exp(−i2π n

N
), which corresponds

to the ρ̄1(2) measure. Figure 6 depicts the weights with their
angle divided by two (thus wn occupy half a circle) which
is the equivalent to dividing the output of the model by two
(which is required for an estimate of the illuminance flow
angle). Incorporating more features in the training set made
the weights converge towards wn ≈ C exp(−i2π n

N
) (closer

to the circles of Fig. 6). Changing the parameter clin changes
the magnitude of the regressed weights (C above) but not
their directional component, except for when clin is close
to zero. For clin = 0 the regression is pure LSE minimiza-
tion which will be (for this problem) unstable and prone
to over-fitting. We note that the results show some direc-
tional bias, especially in the directions (±45◦ and ±135◦).
These are weighted slightly less than the horizontal and ver-
tical directions. This is because 2-point derivative filters and
square regions are used in the HOG calculations, which give
rise to directional bias. If derivatives of Gaussians are used
as filters and roughly circular cells implemented, then this
effect disappears. Smoothing the image before the filtering
reduces but does not eliminate the directional effects of 2-
point derivative filters.

SVM models: The output is almost identical to the struc-
ture tensor, and visually indistinguishable from the ridge
regression for all kernels used. We used a training set of
12.000 randomly selected features for training, and the re-
maining features for verification. Training is on a mere 4%
of the data but took nearly a day to complete per kernel. The
output of the SVM models is indistinguishable from that of

Fig. 6 Weights of the linear model from ridge regression. Black dots:
weights, gray circles: centered around the positions of the ρ̄1(2) pre-
dictor. Weights have their angular part divided by two, so that each
gray radial line corresponds to the center of the bin of the HOG. There
are four HOGs used for each position in the image thus four weights
for each direction

the ridge regression, for both training and verification set.
All the regressed predictors had very similar performance
on the training and the verification set, with a difference in
Ead smaller than 2◦. Using different kernels yields different
result only for much smaller subsets of the training data, but
as the training set becomes bigger they all converge towards
structure-tensor-like behavior.

It seems that the HOG features are not indicative of illu-
minance flow beyond what is in ρ1(2). Unfortunately, with
our SVM modeling, we are not minimizing a consistent er-
ror which weakens this conclusion. To illustrate this issue,
if we change the frame in which the illuminance flow angle
is described (the direction of the zero axis) then the results
of the SVM regression change. For small training sets, a no-
ticeable change in output is evident (this is not so with the
ridge regression which is totally invariant to the frame used).
As the training set becomes bigger the output becomes less
dependent on the frame (in the training set used for the final
results, no directional bias can be seen).

5.1 Accounting for Oblique Viewing

A major source of error from the estimators comes from
oblique viewing of the texture, i.e. where image patches
are taken closer to the silhouette of the object. This is
clearly evident in the left panel of Fig. 5 where Ead actually
goes above 45◦ when taken close to the silhouette (random
guesses results in Ead = 45◦ for axial data). We appended
the local normal of the sphere (relative to the camera frame)
to the feature vector, to see if the regression would improve.
We note that it is unfeasible to assume that the normal is
available in real-world applications. We also encoded the
normals differently by e.g. projecting them into the camera
plane (yielding 2D vectors with magnitude less than one),
and by doubling the angle of the projected vector (which is
equivalent to considering it as an axis rather than a vector).
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We also used the normal in a preprocessing scheme, where
we performed an affine transform on the image region be-
fore the HOG features were calculated.

The affine transform aims at minimizing the effects of
oblique viewing of the texture. We performed first a contrac-
tion of the patch equivalent to the foreshortening but in the
orthogonal direction of the foreshortening. After that, a uni-
form up-sampling of the texture patch was performed. We
note that modeling oblique viewing as an affine transform is
an approximation to begin with, and that we lose fine-scale
information doing the normalization.

All the models gained performance with the affine nor-
malization but they regressed nonetheless to the same
structure-tensor-like behavior. The best performance was
with the polynomial kernel (Ead = 11.9◦) and the worst was
the sigmoidal kernel (Ead = 12.1◦), a difference we accredit
to variability in training set selection and kernel parameters.

Ridge regression: We achieved no improvement with
the appended normals. Inspection of the regressed weights
showed that the ones corresponding to the normals equaled
zero, independently of how the normals where encoded. The
linear model is not powerful enough to make use of this kind
of information.

SVM models: In contrast with the ridge regression, the
SVM has the capability to make use of the normals. When
appending them to the feature vectors, an improvement was
noticed that was dependent on which kernel was used. The
best improvement was achieved with the rbf kernel (Ead =
12.8◦) with the projected normal coded with double angle.
The second order polynomial kernel has Ead = 13.4◦ and
the sigmoidal has Ead = 15.7◦. The performance over dif-
ferent positions in the image of the rbf kernel SVM is illus-
trated in the right panel of Fig. 5. All the other results follow
the same pattern: an improvement close to the silhouette, but
the closer to the center of the image (normal viewing) the
closer the models agree with the structure tensor algorithm.
The rbf kernel SVM performs very much like the affine nor-
malization scheme.

6 Discussion

This paper has 2 major contributions; (1) deriving theo-
retical properties of the Histogram of Oriented Gradients
(HOGs), and (2) estimate illuminance flow through regres-
sion on the HOG features.

6.1 HOG Properties

Our theory uses spatial averaging over a set of non-linear
mappings of the gradient (Eq. 1). We have shown how the
resulting sequence is equivalent to a Fourier series expan-
sion of the HOG features, where the second harmonic is

strongly correlated with the eigenvector of the structure ten-
sor (2nd moment matrix). The only difference between the
second harmonic of the HOG and the structure tensor is a γ -
correction of the gradients in the corresponding spatial av-
eraging. In affine invariant texture and object matching the
structure tensor is often used in a normalizing procedure,
and our theory predicts how this will affect the HOGs. It
also shows how many bins are needed of the HOG to calcu-
late a similar measure as the structure tensor, as well as an
alternative way of calculating HOGs, without binning.

The structure tensor is not the only way of achieving
affine normalization. It entails a γ -correction of two in our
spatial averaging. Better results might be achieved if a direc-
tionality measure is used that is consistent with the low-level
features (HOGs), that involves a γ of one (i.e. enforcing the
second harmonic to have zero energy). Further investigation
into this will be a subject of future work.

One could naturally ask whether the gradient mappings
might yield even more efficient features then the HOGs.
This is an interesting topic as well, but beyond the scope
of this paper. We have not suggested a new set of fea-
tures, but rather, an analysis of the existing ones (HOG) that
makes the connection to the structure tensor readily avail-
able, and explains what the HOGs actually do in terms of
non-parametric density estimation.

6.2 Illuminance Flow Regression

We used the HOGs as low-level features in a regression set-
ting and tried different methods to train an illuminance flow
estimator. All methods yield approximately the same esti-
mator: the second harmonic of the HOGs. Because this is the
closest possible to the structure tensor that can be achieved
using only HOGs, as well as visually indistinguishable on
the images used, we conclude that the structure tensor is near
optimal for the images in this study.

A natural question is whether the results generalize to ar-
bitrary texture, which could be composed of different fine-
scale surface geometry and any form of local variation in
surface reflectance. We have in earlier work discussed the
applicability of the structure tensor for deviations from the
uniform plaster type of texture (Karlsson et al. 2008). Essen-
tially, as long as the height profile has sufficiently low aver-
age height and is reasonably smooth, then a less Lambertian
reflectance will not affect the outcome of the structure ten-
sor. This is especially true if the light source is more elon-
gated than a point source. For flat spatially varying albedo
texture (on which the vast majority of computer vision the-
ory is based) Illuminance flow is not observable. In the case
where both fine-scale surface texture (say plaster) and flat
albedo texture (say a flat painted pattern) are present simul-
taneously, things become more troublesome. Oblique view-
ing and anisotropy for flat texture can be modeled as one
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single affine transform (a fact that makes popular computer
vision algorithms possible).

We tried both linear ridge regression and Support Vec-
tor Machines(SVM) with several kernels. We were unable
to find any significant improvement in performance using
the more powerful SVM. This is an indication that for the
estimation of illuminance flow there is no more useful in-
formation in HOGs other then what is in the second har-
monic. Essentially, we found that the gradient structure ten-
sor is the optimal estimator in our setting (albeit with a lower
γ -correction than what is usually suggested).

This conclusion is weakened by the fact that our SVM
regression is not minimizing a consistent error. We could
not find a way to do the regression on both the x and the y

component of the ground-truth simultaneously as was done
with the ridge regression. We contended with doing 2 sep-
arate SVM regressions, one for each component of the illu-
minance flow vector.

We formulated the linear ridge regression through com-
plex numbers, which easily shows that the error is indepen-
dent of the particular frame we use to describe ground-truth
angles. If, similarly, the SVM framework could be general-
ized to deal with complex numbers, then it should be able to
use SVMs with a consistent error for axial regression prob-
lems of this kind. Alternatively, the two SVM regressions
could be performed simultaneously, with an additional con-
straint that the combined output should be on the unit circle
(which should still be a convex optimization problem), thus
coupling the models. This will be a worthwhile subject for
future work.

Acknowledgements Oscar van Hoof is gratefully acknowledged for
providing the images used for the data collection. We thank profes-
sors Josef Bigun and Christoph Schnoerr for valuable discussions. This
work has been funded by EU project VISIONTRAIN (MRTN-CT-
2004-005439). Sylvia C. Pont was supported by the Netherlands Or-
ganization for Scientific Research (NWO).

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Aizerman, M., Braverman, E., & Rozonoer, L. (1964). Theoretical
foundations of the potential function method in pattern recogni-
tion learning. Automation and Remote Control, 25, 821–837.

Bigun, J., & Granlund, G. H. (1987). Optimal orientation detection of
linear symmetry. In Proceedings of ICCV (pp. 433–438).

Blinn, J. F. (1978). Simulation of wrinkled surfaces. SIGGRAPH, 12,
286–292.

Brooks, M., & Horn, B. (1985). Shape and Source from Shading. In
Proceedings of 9th international joint conference on artificial in-
telligence (pp. 932–936).

Chantler, M., & Delguste, G. (1997). Illuminant-tilt estimation from
images of isotropic texture. Proceedings of Vision, Image and Sig-
nal Processing, 144, 213–219.

Chantler, M., et al. (2005). Classifying surface texture while simulta-
neously estimating illumination direction. International Journal
of Computer Vision, 62, 83–96.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for
human detection. In Proceedings of CVPR (pp. 886–893).

Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom,
B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., &
Yanker, P. (1995). Query by image and video content: the QBIC
system. Computer, 28, 23–32.

Joachims, T. (1999). Making large-scale SVM learning practical, ad-
vances in kernel methods—support vector learning. Software
available online at http://svmlight.joachims.org/, accessed June
2008.

Karlsson, S., Pont, S. C., & Koenderink, J. J. (2008). Illuminance flow
over anisotropic surfaces. Journal of the Optical Society of Amer-
ica A, 25, 282–291.

Karlsson, S., Pont, S. C., & Koenderink, J. J. (2009). Illuminance flow
over anisotropic surfaces with arbitrary viewpoint. Journal of the
Optical Society of America A, 26, 1250–1255.

Knill, D. (1990). Estimating illuminant direction and degree of surface
relief. Journal of the Optical Society of America A, 7, 759–775.

Koenderink, J. J., & Pont, S. C. (2003). Irradiation direction from tex-
ture. Journal of the Optical Society of America A, 20, 1875–1882.

Llado, X. (2003). Simultaneous surface texture classification and illu-
mination tilt angle prediction. In British machine vision confer-
ence

Lowe, D. G. (1999). Object recognition from local scale-invariant fea-
tures. In Proceedings of ICCV (pp. 1150–1157).

Mardia, K. V., & Jupp, P. E. (2000). Directional statistics. Wiley series.
New York: Wiley.

Michel, S., Karoubi, B., Bigun, J., & Corsini, S. (1996). Orientation ra-
diograms for indexing and identification in image databases. Eu-
sipco, 96, 1693–1696.

Mikolajczyk, K., et al. (2005). A comparison of affine region detectors.
International Journal of Computer Vision, 65, 43–72.

Parzen, E. (1962). On estimation of a probability density function and
mode. Annals of Mathematical Statistics, 33, 1065–1076.

Pentland, A. P. (1982). Finding the illuminant direction. Journal of the
Optical Society of America A, 72, 448–455.

Picard, R. W., & Minka, T. P. (1995). Vision texture for annotation.
Multimedia Systems, 3, 3–14.

Pont, S. C., & Koenderink, J. J. (2005). Irradiation orientation
from obliquely viewed texture. In Proceedings of the DSSCV05
(pp. 205–210).

Vapnik, V. N. (1995). The nature of statistical learning theory. Berlin:
Springer.

Vapnik, V. N., Golowich, S., & Smola, A. (1999). Support vector
method for multivariate density estimation. Advances in neural
information processing systems (Vol. 12, pp. 659–665).

Varma, M., & Zisserman, A. (2004). Estimating illumination direction
from textured images. In Proceedings of CVPR (pp. 179–186).

Zheng, Q., & Chellappa, R. (1992). Estimation of illuminant direction,
albedo and shape from shading. In Physics-based vision: shape
recovery (pp. 39–61).

http://svmlight.joachims.org/

	Illuminance Flow Estimation by Regression
	Abstract
	Introduction
	Theoretical Background
	Directionality by Complex Change of Variables
	Axial Regression
	Linear Model
	Support Vector Model
	Implementation and Data

	Results
	Accounting for Oblique Viewing

	Discussion
	HOG Properties
	Illuminance Flow Regression

	Acknowledgements
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


