Skip to main content
Log in

3-D Symmetry Detection and Analysis Using the Pseudo-polar Fourier Transform

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Symmetry detection and analysis in 3D images is a fundamental task in a gamut of scientific fields such as computer vision, medical imaging and pattern recognition to name a few. In this work, we present a computational approach to 3D symmetry detection and analysis. Our analysis is conducted in the Fourier domain using the pseudo-polar Fourier transform. The pseudo-polar representation enables to efficiently and accurately analyze angular volumetric properties such as rotational symmetries. Our algorithm is based on the analysis of the angular correspondence rate of the given volume and its rotated and rotated-inverted replicas in their pseudo-polar representations. We also derive a novel rigorous analysis of the inherent constraints of 3D symmetries via groups-theory based analysis. Thus, our algorithm starts by detecting the rotational symmetry group of a given volume, and the rigorous analysis results pave the way to detect the rest of the symmetries. The complexity of the algorithm is O(N 3log (N)), where N×N×N is the volumetric size in each direction. This complexity is independent of the number of the detected symmetries. We experimentally verified our approach by applying it to synthetic as well as real 3D objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Averbuch, A., & Shkolnisky, Y. (2003). 3D Fourier based discrete radon transform. Applied and Computational Harmonic Analysis, 15, 33–69.

    Article  MATH  MathSciNet  Google Scholar 

  • Bokeloh, M., Berner, A., Wand, M., Seidel, H.-P., & Schilling, A. (2009). Symmetry detection using line features. Computer Graphics Forum (Proc. EUROGRAPHICS), 28(2), 697–706.

    Article  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006). Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Science, 103(5), 1168–1172.

    Article  MATH  MathSciNet  Google Scholar 

  • Bronstein, M. M., Raviv, D., Bronstein, A. M., & Kimmel, R. (2009). Full and partial symmetries of non-rigid shapes. IJCV.

  • Chen, S. (2001). Extraction of local mirror-symmetric feature by odd-even decomposition. Proceedings International Conference on Image Processing, 3, 756–759.

    Google Scholar 

  • Chertok, M., & Keller, Y. (2009). Spectral symmetry analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence (in press). http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.121.

  • Cheung, W., & Hamarneh, G. (2007). N-sift: N-dimensional scale invariant feature transform for matching medical images. In 4th IEEE international symposium on biomedical imaging: from nano to macro, 2007. ISBI 2007 (pp. 720–723).

  • Cornelius, H., Perdoch, M., Matas, J., & Loy, G. (2007). Efficient symmetry detection using local affine frames. In B. K. Ersbøll, & K. S. Pedersen (Eds.), SCIA 2007: Proceedings of 15th Scandinavian conference on image analysis. Lecture notes in computer science (Vol. 4522, pp. 152–161). Berlin: Springer.

    Google Scholar 

  • Derrode, S., & Ghorbel, F. (2004). Shape analysis and symmetry detection in gray-level objects using the analytical Fourier-Mellin representation. Signal Processing, 84(1), 25–39.

    Article  MATH  Google Scholar 

  • Eckmann Jeger, B., & Jeger, M. (1967). Vector geometry & linear algebra. New York: John Wiley & Sons.

    Google Scholar 

  • Hays, J. H., Leordeanu, M., Efros, A. A., & Liu, Y. (2006). Discovering texture regularity via higher-order matching. In 9th European conference on computer vision (pp. 522–535).

  • Holden, A. (1971). Shapes, space and symmetry. New York: Columbia University Press.

    Google Scholar 

  • Kazhdan, M. M., Chazelle, B., Dobkin, D. P., Finkelstein, A., & Funkhouser, T. A. (2002). A reflective symmetry descriptor. In ECCV ’02: Proceedings of the 7th European conference on computer vision-part II (pp. 642–656). Berlin: Springer-Verlag.

    Google Scholar 

  • Keller, Y., & Shkolnisky, Y. (2006). A signal processing approach to symmetry detection. IEEE Transactions on Image Processing, 15(6), 2198–2207.

    Article  MathSciNet  Google Scholar 

  • Keller, Y., Averbuch, A., & Israeli, M. (2005a). Pseudo-polar based estimation of large translations rotations and scalings in images. IEEE Transactions on Image Processing, 14(1), 12–22.

    Article  MathSciNet  Google Scholar 

  • Keller, Y., Shkolnisky, Y., & Averbuch, A. (2005b). The angular difference function and its application to image registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 969–976.

    Article  Google Scholar 

  • Keller, Y., Shkolnisky, Y., & Averbuch, A. (2006). Algebraically accurate 3-D rigid registration. IEEE Transactions on Signal Processing, 54(11), 4323–4331.

    Article  Google Scholar 

  • Kim, W., & Kim, Y. (1999). Robust rotation angle estimator. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8), 768–773.

    Article  Google Scholar 

  • Kiryati, N., & Gofman, Y. (1998). Detecting symmetry in grey level images: the global optimization approach. International Journal of Computer Vision, 29(1), 29–45.

    Article  Google Scholar 

  • Lowe, D. (2003). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 20, 91–110.

    Google Scholar 

  • Loy, G., & Eklundh, J.-O. (2006). Detecting symmetry and symmetric constellations of features. In Proc. European conf. comp. vision (ECCV’06). LNCS (Vol. 3951, pp. 508–521). Berlin: Springer.

    Google Scholar 

  • Lucchese, L. (2004). Frequency domain classification of cyclic and dihedral symmetries of finite 2-D patterns. Pattern Recognition, 37, 2263–2280.

    Article  Google Scholar 

  • Martinet, A., Soler, C., Holzschuch, N., & Sillion, F. (2006). Accurate detection of symmetries in 3d shapes. ACM Transactions on Graphics, 25(2), 439–464.

    Article  Google Scholar 

  • Miller, W. (1972). Symmetry groups and their applications. London: Academic Press.

    MATH  Google Scholar 

  • Mitra, N. J., Guibas, L., & Pauly, M. (2006). Partial and approximate symmetry detection for 3D geometry. ACM Transactions on Graphics, 25, 560–568.

    Article  Google Scholar 

  • Ni, D., Chui, Y. P., Qu, Y., Yang, X., Qin, J., Wong, T.-T., Ho, S. S. H., & Heng, P. A. (2009). Reconstruction of volumetric ultrasound panorama based on improved 3D sift. Computerized Medical Imaging and Graphics, 33(7), 559–566.

    Article  Google Scholar 

  • Ovsjanikov, M., Sun, J., & Guibas, L. J. (2008). Global intrinsic symmetries of shapes. Computer Graphics Forum, 27(5), 1341–1348.

    Article  Google Scholar 

  • Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., & Guibas, L. (2008). Discovering structural regularity in 3D geometry. ACM Transactions on Graphics, 27(3):1–11. 43.

    Article  Google Scholar 

  • Prasad, V. S. N., & Davis, L. S. (2005). Detecting rotational symmetries. In Tenth IEEE international conference on computer vision, 2005. ICCV 2005 (Vol. 2, pp. 954–961), 17–21 Oct. 2005.

  • Prasad, V. S. N., & Yegnanarayana, B. (2004). Finding axes of symmetry from potential fields. IEEE Transactions on Image Processing, 13(12), 1559–1566.

    Article  MathSciNet  Google Scholar 

  • Raviv, D., Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2007). Symmetries of non-rigid shapes. In IEEE 11th international conference on computer vision, 2007. ICCV 2007 (pp. 1–7).

  • Reisfeld, D., Wolfson, H., & Yeshurun, Y. (1995). Context free attentional operators: the generalized symmetry transform. International Journal of Computer Vision, 14, 119–130.

    Article  Google Scholar 

  • Shen, D., Ip, H., & Teoh, E. K. (2001). Robust detection of skewed symmetries by combining local and semi-local affine invariants. Pattern Recognition, 34(7), 1417–1428.

    Article  MATH  Google Scholar 

  • Stoy, G. A., Neumann, P. M., & Thompson, E. C. (1994). Groups and geometry. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Thompson, D. W. (1961). On growth and form. Cambridge University Press, Cambridge.

    Google Scholar 

  • Trucco, E., & Verri, A. (1998). Introductory techniques for 3-D computer vision. New Jersey: Prentice-Hall (pp. 333–334).

    Google Scholar 

  • Weyl, H. (1952). Symmetry. Princeton: Princeton University Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Averbuch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermanis, A., Averbuch, A. & Keller, Y. 3-D Symmetry Detection and Analysis Using the Pseudo-polar Fourier Transform. Int J Comput Vis 90, 166–182 (2010). https://doi.org/10.1007/s11263-010-0356-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0356-4

Keywords

Navigation