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ABSTRACT. A general multi-scale vectorial total variation model with spatially adapted
regularization parameter for color image restoration is introduced in this paper. This
total variation model contains an L"-data fidelity for any 7 € [1,2]. The use of a spatial
dependent regularization parameter improves the reconstruction of features in the image
as well as an adequate smoothing for the homogeneous parts. The automated adaptation
of this regularization parameter is made according to local statistical characteristics of the
noise which contaminates the image. The corresponding multiscale vectorial total variation
model is solved by Fenchel-duality and inexact semismooth Newton techniques. Numerical
results are presented for the cases 7 = 1 and 7 = 2 which reconstruct images contaminated
with salt-and-pepper noise and Gaussian noise, respectively.

1. INTRODUCTION

In many applications, the deblurring and denoising of images are fundamental for subse-
quent image processing tasks, such as edge detection, segmentation, object recognition, etc.
In this paper, we consider the problem of recovering color images degraded by cross-channel
blurring and Gaussian or salt-and-pepper noise. For this purpose and without loss of gen-
erality, we assume a color image 0 is a vector-valued function defined on a bounded and
piecewise smooth open subset Q € R?, i.e. t1: Q — RM, where M is the number of channels
in the color model. Depending on the different noise types addressed above, the degraded
form z of 11 is obtained in case of

- Gaussian noise as
z =K+ n,
where K is a linear and continuous cross-channel blurring operator from L?(; RM)
to L2(Q;RM), ie., K € L(L*(Q;RM)), and n represents white Gaussian noise with
zero mean and variance o2;
and in case of
- salt-and-pepper noise as
g — { K1, with probability 1 — r,
n, with probability r.
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where the elements of n only attain the maximum or minimum of the intensity region
and r denotes the noise ratio. For instance, if the (intensity) values of & are confined
to [0, 1], then n(x) € {0,1}M for x € Q. Moreover, K is as above.

The problem of restoring u from z with unknown n is known to be typically ill-posed [31]
and it requires appropriate regularization for a successful solution. In order to preserve
significant edges when restoring images, Rudin, Osher and Fatemi proposed total variation
(TV) regularization [25] for removing Gaussian noise in gray-level images. In this approach
(which we refer to as the L2TV-model in what follows), the image u is recovered from given
data z by solving the optimization problem

(1.1) min / | Du| + )\/ |Ku — z|*dx,
ueBV(Q) Jq 2 Jo

where BV (£2) denotes the space of functions of bounded variation (see, e.g., [31] for its
definition) and A > 0 induces the regularization parameter 1/X. Due to its ability to preserve
edges, the L2TV-model is widely accepted as a reliable tool in image restoration. Over the
years, various research efforts have been devoted to studying, solving and extending the
L2TV-model; see, e.g., [12,14,20,22,25,30] as well as the monograph [31] and the many
references therein.

Whenever 4 is corrupted by salt-and-pepper noise, a non-smooth L'-data-fidelity term
proves to be more appropriate than the differentiable least-squares data fit in (1.1); see,
e.g., [21,22]. In this case, the associated minimization problem for recovering u from noisy
data z becomes
(1.2) min / | Dul —i—)\/ |Ku — z|dz,

ueBV(Q) Jq Q
which we call the L'TV-model subsequently.

It is well-known that the choice of A is crucial for the preservation of image details during
the restoration process [7,26,27,32]. In addition, as images are typically comprised of multiple
objects at different scales, variable values of A localized at image features of different scales
appear to be desirable to obtain better restoration results. For this reason, a multi-scale
total variation model with a spatially varying choice of parameters was introduced in [1],
and, in order to enhance image regions containing details while still sufficiently smoothing
homogeneous features, two spatially dependent regularization parameter selections based on
the L2TV- and the L' TV-model were proposed in [10] and [16], respectively. In [8], the scalar
L2TV-approach of [10] was extended to restore color images. Further literature addressing
this issue can be found in these references.

In this paper, based on the analysis of the statistical characteristics of the underlying
noise we unify the models for Gaussian noise and salt-and-pepper noise removal to obtain
a general total variation model. Utilizing the vectorial total variation introduced in [4, 5],
the resulting general model is employed for restoring degraded color images. Moreover, we
introduce a multi-scale vectorial total variation with a spatially dependent regularization
parameter. The proposed automated adjustment strategy of the regularization parameter
is based on a local statistical estimator (LSE for short), and the resulting optimization
problems are solved by a superlinearly convergent algorithm based on Fenchel-duality and
inexact semismooth Newton techniques. We emphasize that our solver is capable of handling
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the L'TV-model and the L2TV-model within one framework. Compared to [8] our L™ TV-
framework requires appropriate generalizations of the statistical measures for computing the
regularization parameter as well as the semismooth Newton method with respect to both
theory and numerical implementation. The numerical results in this paper show that our
method outperforms the vectorial total variation [4,5] with a scalar regularization parameter
in both noise removal and detail preservation.

The outline of the rest of the paper is as follows. In Section 2 we introduce the unified
multi-scale vectorial total variation model for Gaussian and salt-and-pepper noise and the
primal-dual algorithm for solving the associated minimization problem. Section 3 addresses
the LSE-based parameter selection for color images. A method for color image restoration
combining the multi-scale representation and spatially adaptive parameter selection is pro-
posed in Section 4. Section 5 gives numerical results to demonstrate the performance of the
new method, and, finally, conclusions are drawn in Section 6.

Notation. Function spaces with bold face characters refer to spaces whose elements are
vector fields. For instance, L%(Q) = L*(Q;RM) or BV(Q) = BV(;RM). By (.,-) we
denote the L?-inner product where we do not distinguish between scalar- or vector-valued
functions. Moreover, for w € RM we use |w|, = (Zf\il lwg|)YT for 1 < 7 < 2, and
|w|oo = max;—1__p |wi|]. Moreover, |w|. = (Jwi],. .., wy|) " and |w|T = (jw1]7, ..., Jwp|")".
For matrices | - | denotes the Frobenius-norm.

2. MULTI-SCALE VECTORIAL T'OTAL VARIATION

In our restoration approach we use the same regularization for both noise models, but
we utilize different data fidelity terms. Based on statistical characteristics of the underlying
noise, however, Gaussian or salt-and-pepper noise removal will be cast into one framework
relying on constrained minimization.

2.1. A general total variation model. Before we introduce our general total variation
model, we recall some basic statistical characteristics of Gaussian and salt-and-pepper noise.
For this purpose consider the noise 7 as a random variable (r.v.) with f denoting its proba-
bility density function. For the description of the behavior of the random variable 7 several
measures are defined [18,24]. Some of the most important ones are

- the mean given by

B(r) — 7 anf(ay) dzy,  if 7 is a continuous r.v. (c.r.v.),
(n) = E%Eu xp f(xn) if n is a discrete r.v. (d.r.v.) in a universe Y C R

- the variance defined as

* 22 f(x Ty, — 2 i is a c.r.v.
V() = Bl B)?) = BG7)—Bla)? = { S Trl) S B e

- and the expected absolute value

B B f_oooo |zp| f () day if  isacr.v.,
EAV(n) = E(|n|) = { Zmneu |z | f () it n isad.r.v.
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In the case of Gaussian noise considered in this paper, n is normally distributed with mean
E(n) = 0 and variance Var(n) = o2. The associated probability density function is given by

and the expected absolute value is EAV(n) = \/%a. Making use of the variance of Gaussian

noise and n = z — Ku, the image restoration problem can be written as the constrained
minimization problem

(2.1) min / |Du| subject to (s.t.) / |Ku — z|%dz < 0?9,
u€BV(Q) Jo Q
which is equivalent to the unconstrained optimization problem (1.1) for an appropriate choice
of A > 0; see [6].
For salt-and-pepper noise, the value of the random variable  depends on u (here with
some misuse of notation). In fact, suppose the intensity region is [0, 1], then the conditional
probability density function depending on w is given by

1—r, if 2, =0,
, it oy, =1-u,
, it x, = —u,

fay [u) =

NN

where 7 is the noise ratio. The conditional mean, variance and expected absolute value of
the associated random variable 7 are readily obtained as

2
En|u) = g(l —2u), Var(n|u)= g(l — 2u + 2u?) — TZ +ru(l —u), EAV(n|u)= %

Based on the expected absolute value, one may attempt to restore @ by solving the following
constrained minimization problem:

(2.2) min / |Du|  s.t. / |[Ku — z|dx < f|Q\,
weBV(@) Jo Q 2
which is naturally linked to (1.2); see [16].

The formulations (2.1) and (2.2) can be condensed to obtain a combined model for re-
moving Gaussian or salt-and-pepper noise:

1 1
(2.3) min / |Du| s.t. / —|Ku—z|" dx < v,
u€BV(Q) Jo ’Q‘ QT

. 2 . . . .

where 7 = 2 with v» = % for removing Gaussian noise, and 7 = 1 with v; = § for
removing salt-and-pepper noise. The above general total variation model corresponds to the
unconstrained minimization problem

(2.4) min /|Du+)\/|Kuz|Td:U
ueBV(Q) Jo T/

with an appropriate choice of A > 0. In what follows we call (2.4) the TV-model.
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2.2. Multi-scale vectorial total variation. In [4,5] the L2TV-model (1.1) was extended
to recover color images based on vectorial total variation regularization. Transferring this
regularization scheme to (2.4) we obtain the general vectorial total variation model (VTV-
model)

A

(2.5) min / |Du| + / |Ku — z|ldx,
ueBV(Q) Jo T JQ

with 7 € {1,2} based on the noise model. The space BV(Q) is the set of vector-valued

functions u € L'(Q) such that [, |Du| < +o0, where the vectorial TV semi-norm [, |Dul|

is defined as

/\Du|:sup{/u-div{f' dr: v € CHQ,RM*?) |¥|p <1in Q}
Q Q

Note that the vectorial TV semi-norm is not the sum of the TV semi-norms of the respective
channels but rather it couples the channels [5]. The space BV () endowed with the norm

lullsvie = il o + /Q Dyl

is a Banach space. Corresponding to (2.5), we may equivalently consider the constrained
minimization problem

ue%l{}l /|Du s.t. M!QI/ —|Ku —z| de < v,

with 7 and v, as in (2.3).

In the VT'V-model, the regularization parameter A controls the trade-off between a good
fit of z and a smoothness requirement due to the vectorial total variation regularization.
Since images are usually comprised of multiple objects at different scales, locally different
A depending on image features is desirable in order to obtain better restoration results.
Roughly speaking, for small scale features, large A leads to little smoothing so that details
are usually preserved well. On the other hand, for large homogeneous features, small A leads
to smoothing so that noise is removed considerably. For this reason and based on (2.5),
we consider a multi-scale vectorial total variation model (MVTV-model) for restoring the
degraded color image z with Gaussian noise or salt-and-pepper noise:

1
(2.6) min /\Du|+/)\(:c)|Ku—z|: dx,
TJa

ueBV(Q) Jo

where A € L>(2) with 0 < ey < A(x) < A for almost all = € €2, and
(27 0 = [ wlen)i) dy
with A € L*(€2). In addition, here w is the mean filter defined as

Loif jy -2 < ¥
2.8 —J w2 0 = 95
(2.9 we)={ L
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where x € ) is fixed, w > 0 sufficiently small is the essential width of the filter window, 0 <
€ < 1 and w, are such that fQ fQ w(zx,y) dydr = 1. The corresponding locally constrained
model is

2 i D L L K () dx <

(2.9) ue%l{/p(ﬂ)/g |Du|  s.t. i /Q ;w(x,y)] u—z|l(x) de < v;.

The quantity A in (2.7) can be interpreted as the Lagrange multiplier for the constraint

in (2.9). Similar to [10,16], the relation between (2.6) and (2.9) as well as existence and
uniqueness can be studied.

2.3. A unified Moreau-Yosida based primal-dual approach for the MVTV-model.
The unifying approach of this section enables us to study the TV-regularization with either
L'- or L?-data-fidelity within one framework. In fact, one may even generalize to L7-data-
fidelity for any 7 € [1, 2]; see (2.6). As a consequence, this allows us to introduce and analyze
a unifying algorithmic framework for solving the respective image restoration problem as
well.

We start by studying the Fenchel-Legendre pre-dual of a close approximation of (2.6).
For this purpose we define

1
Kyu:=X/"Ku, zy:=A"/"z and F(u) ::/|K,\uzA|; dzx.
TJa

From now on we invoke the assumption that
(A) (K)\K3Y) is invertible;

see, e.g., [9] for examples of blurring operators satisfying this assumption. In the denoising
case, i.e. K =id, this assumptions is obviously satisfied.
Applying the Fenchel calculus [11] we find that the convex conjugate of F is given by

FH(u*) = (Kn\K3) ' K\u*,z)) + T*((K\K3) ' Kyu®),
where

1 .
Ty = < Jo VIS dz, if1<7<2,
I{wGLQ(QHw\mgl a.e. in Q}(V)7 if =1,
where 771 + ¢! =1, with ¢ = oo for 7 = 1, and Is(-) denotes the indicator function of the
set S. Next we define the problem
min K K Ky divp,zy) + T (K\K3) 'K, divp),
o1 e, (A )+ T ((KK) )
s. t. IP|F <1 a.e. in Q,
where Ho(div) := {¥ € L2(Q,RM*2) : divv € L2(Q), ¥, -n = 0fori =1,...,M}. Here
n denotes the outward unit normal to 9 and V; refers to the i-th row of V. Assum-
ing (K\K$)"'K)\ € L(L(2)), note that continuity of J*(-) can only be guaranteed on
H{(div) := {V € Hy(div) : divv € L*(Q)}, with ¢ = oo for 7 = 1. As such a continu-
ity property is essential for the Fenchel calculus and also in view of an efficient numerical
approach, we replace J* by its Moreau-Yosida regularization [19, 33]

* . * 1%
(2.11) Tiv)= ol {77 W)+ Sllw = il }
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with a positive parameter p > 0. Then, the resulting problem is given by

: *)—1 L * *)—1 .
(212) I_)'EII-?OI(I(liiV) <<K)\K,\) Ky lep,Z)\> +\7u((K)\K)\) Ky lep)7
s. t. Iplr <1 a.e. in Q,
Note that J;(v) < Llv]i. and Jp(v) — J*(v) as p — oo for all v € L?(Q2). Moreover,
well-known results [3] yield that 7, ,, is continuously differentiable for every 0 < p < +o0. In
what follows, the choices 7 = 1 and 7 = 2 will play an important role. Hence, let us briefly
study j: in these cases.

- Case 7 = 2. One readily finds that

TrW) / V3 dr.

For A(xz) = Ao with Ag > 0, the problem (2.12) corresponds to a slightly rescaled
version of the Fenchel pre-dual of the classical TV-problem; see [15]. The re-scaling
factor is /(1 + ) and may be easily incorporated in the choice of Ay to obtain
equivalence between (2.12) and the pre-dual of [15]. Moreover, since (2.12) is inter-
esting only for large values of u, we have /(1 + p) ~ 1 and find that (2.12) closely
approximates the Fenchel pre-dual established in [15] even without re-scaling A.

- Case T = 1. The optimal v, in (2.11) satisfies pointwise a.e.

0c aI{WGL2(Q):|W\O¢§1 a.e. in Q}(Vﬂ) + :U(V,U - V)'

Obviously, v, € {w € L*(2) : |[w| < 1 a.e. in Q}; otherwise J*(v,,) = +oc. Thus,

- “/ max(0, |v]oe — 1)2
2 Ja

Now we study the effect of the Moreau-Yosida regularization, i.e., replacing (2.10) by
(2.12), on the primal problem. By the Fenchel-Legendre calculus [11], the convex conjugates
of

v* (v*) = j;(v*) —(v*,zy),
D*(P*) = IfweH,(div)w|r<1 ae. inQ}(P")
are obtained as
Upu(v) = TJu(v + 2z»),

®(p) := sup (G, P),
ges
where |p|r < 1 ae. in Q and S; = {d € Hy(div) : |d|]r < 1 ae. in Q}. For a further
analysis of ® let Sy = {G € CHQ,RM*2) . |d|r < 1in Q}, which is dense in S; with
respect to the topology of Hy(div). Extending the results in [15] to vector fields, we get that
P ((— div)*u) := SUPges, (W, — div §) is finite if and only if u € BV((2), that is,

(2.13) O((—div)* / |Du| < oo for ue BV(Q).
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According to the Fenchel duality theorem [11] we have that the dual of (2.12) is given by

2.14 i D Kyu —

(214) wmin [ Dul+ 7, (= m)

where

(2.15) Tu(v) = 1/ v[2 dx—i—l/ V|7 da
‘ o Jo TJo T

This proves the following result.

Theorem 1. For >0 and 7 € [1,2] the dual problem of (2.12) is given by

(2.16) min /|Du\—|—/ |[Kyu —z,|3 do + — /!Kku—zA\T dx
ueBV(Q

From this general result we come back to the two cases 7 = 1 and 7 = 2, which we focus
on in our numerics.

- Case 7 = 2. The convex conjugate of J; is readily obtained as

1 + 1+p
[ s
such that (2.16) becomes

1
(2.17) min / |Dul| + +,u/ |Kyu — z)|3 da.
ueBV(Q
Thus, (2.17) is just a re-scaled version of the original TV-problem. As noted above,
only large p-values are of interest such that (1 4 u)/p =~ 1.
- Case 7 = 1. Similarly to [16] one finds that

/|v|2 dac—}—/ |v| dz.
Thus, (2.16) becomes

(2.18) min / |D \—i—/ |[K\u — 2,3 dw+/ | K u — zy|1 dz.
ueBV(Q

The problem (2.12) is appealing as, in contrast to (2.18), it consists of minimizing a
smooth objective subject to pointwise constraints. For numerical stability reasons, the only
difficulty to overcome is the non-uniqueness of the solution of the general dual problem
(2.12). Following [17] we first study the case 7 = 2 and generalize afterwards. In fact, as a
remedy for the non-uniqueness we propose the following regularization, which we write here
for the primal problem:

. Y 2 ].‘I—,M/ 2
2.19 min = Vu dx—l—/ d.,(Vu)dr + —— Kyu — z,|5 dz,
@19)  min 8 (ulpde s [ oy (Vwde s S | jou -

where

(2.20) B (W)(x) = {

W@)le— 3, i)l >
@)z, i W)l <.
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Note that the regularization acts in two ways: First it increases the regularity of u by adding
the o-term, where we assume 0 < p < €\ < A(x) for a.e. = € Q, and secondly it smoothes
the T'V-regularization locally. For the latter study ®.. The effect is a unique solution of the
associated Fenchel dual which is given by

i L dive - 1E kg |12 v -y I4u 9
min s||divp + £ K}z 47 dr — 7 12
(2.21) PEL2(Q,RMx2) 2 ldivp + = F Kz g 5 Jo IPIE 2% Jo 1215
s.t. IPlr <1 a.e. in Q.

_ . 1 % -
where |[v[[}_, = <Hg"u‘,K)\V,V>H(1J7H_1 for v.e H1(Q) with H,, k, = (%KAK,\ —oA)L.
Note that in this case the involved function spaces are reflexive. Hence the dual problem of
(2.21) is equal to the primal problem (2.19). Although the explicit computation of the dual
might be tedious, the approach is readily generalized. In fact, for 7 € [1,2] we consider

(2.22) min Q/ |Vu]2pdx+/<I>7(Vu)dw+jM(K,\u—z>\).
ueH} () 2 Jo Q

The following first-order optimality conditions characterize a primal-dual solution pair
(u,p):
|
(2.23&) —oAu — divp + *K;(K)\l_l - Z)\) + K;(|K)\l_1 — Z)\lzil * O'(K)\l_l — Z,\)) =0,
I

(2.23b) max (v, |Va|p)p — Vi = 0,

where o(w) € dlw|; € RM for w € RM, and % denotes the Hadamard product of vectors in
R™, ie., VAW = (VIWL,...,VyWy,) .

Remark 2. The case 7 = 1 is still problematic, as we are only able to characterize (Kyu);(x)
as greater than or less than (z,);(x) whenever |(K \K}) 'K\ divp);(z)| =1 fori € {1,..., M}.
Analogously to [9,16], for T = 1 we propose the following modification of (2.22)

(2.24) min Q/ ]Vuﬁ:dw—i—/ ., (Vu) dx—i—/ U, g(Ku — zy) du,
ueH(Q) 2 Jo Q Q
where
a5 (vi(@))? if vi(x)] < 5
2.25 U, 5(vi)(z) =4 ** ’ e
(2.25) wp(vi)() { s (i (@) lvio)| — 5, i [vilw)] > 6,
where i € {1,..., M} corresponds to each channel. Hence, (2.23) modifies to
S 1 _ 1% _
2.26 —oAu —divp+ ——Ki(K)u — + ——K v =0,
(2.26a) oAU —divp + = AU —zy) PR
(2.26b) max(v, |Va|g)p — Vi = 0,
(2.26¢) max (03, |Kyu —z,|) xv — (Kyu—12),) =0,
where B = (B,...,0)T € RM, and max(v,w) = (max(vy, w1),...,max(v,,wy,)) € R" for

the vectors v, w € R™.
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Note that the systems (2.23) and (2.26) are non-smooth, i.e. not necessarily Fréchet-
differentiable. But the discrete version of these systems can be solved by semismooth New-
ton methods, respectively, see, e.g., [9,10,16,17]. Equipped with a line search strategy, it
can be shown that the generalized Newton solver converges globally, i.e. regardless of its
initialization, and locally at a superlinear rate. The proof is analogous to the one in [17].

3. SPATIALLY DEPENDENT REGULARIZATION PARAMETER SELECTION

Since the capability of multi-scale vectorial total variation is mainly limited by the selec-
tion of the parameter A, in this section we discuss a way to choose A in the MVTV-model.

3.1. Local statistical estimator for noise. Suppose the variance o2 of Gaussian noise
or the noise ratio r of salt-and-pepper noise is known; in practice estimates of o2 and r can
be obtained by following, e.g., the techniques in [2,13]. In order to enhance color image
details while preserving homogenous regions, we search for a reconstruction where some
statistical characteristics of the residual Ku — z are closer to those characteristics of the
noise in both the detail regions and the homogeneous parts. For this purpose, in view of
(2.9) and temporarily assuming € = 0 in (2.8) we are interested in spatially adapted A(x) to
satisfy the constraint

1
(3.1) /Q ;|Ku —z|l dz < v,

M|Q«]|
locally where Q¥ C  is specified below. Here, we introduce a local statistical estimator
(LSE for short) for an automated adaptive choice of A.

In the rest of this section, only discrete versions of images are considered. The residual
image is denoted by r* = z" — K"u", where r*, 2", K"u € R™*™*M 1 x n corresponds
to the image size, u" € R™*"*M ig the restored image from the minimization problem (2.6)
with A > 0. In order to satisfy the constraint (3.1), A has to be chosen on whether Q“ is
located in homogeneous or detail regions of the image. If we use a relatively small parameter
A, the residual r” will include noise as well as details. Then, based on the satisfaction of the
constraint (3.1), the distribution of details in the image is reflected.

Let €27, denote the set of pixel-coordinates in a w-by-w window centered at (,7) (with a
symmetrlc extension at the boundary), i.e

oty = i vt 3] <es 5

where |-| means rounding to the nearest integer towards zero. Then we apply the mean
filter with window size w to the residual image r” as follows:

LSE ,] = Tw2M Z Z s,t,l = Tw2M Z Z ‘ Zstl — Khuh)s,t,l

I=1 (s,t)€82; I=1 (s,t)eq2y;

T

In general, when there is only noise left in the residual, the constraint (3.1) is likely to be
satisfied, i.e., LSE“’JT < v;; otherwise we consider LSE“" to have a large value, which is
usually due to details.
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3.2. Selection of the parameter . According to its definition, LSE;” i " reflects the statis-
tical characteristic of the residual i 1mage in a given window Q .. Ideally, the residual contains
noise only. Hence, whenever LSE " < v, it is assumed that in the window the residual
primarily consists of noise; othervvlse ie. if LSE‘ZJ.T > v,, significant image details are left
in the residual. Therefore, A needs to be increased in this region in order to preserve the
details in the reconstruction.

For adapting A algorithmically we proceed as follows. Initially we set A to a same small
constant to obtain an over-smoothed restored image. Given \; (which yields A;) and an as-
sociated reconstruction uy, based on whether LSE“™F < 1. or not, we generate an improved
regularization parameter as follows:

0).1).

3=

(3.2a) (Ak41)ij = ¢ - min ((;\k)w + pmax <<LSEL{:}T,k) T (v)

(3.2b) ()‘kﬁ-l)i,j:é Z (5\k+1> )

s,t
(s,0)€Q;

where ¢ > 1, p > 0, LSE“™F is obtained from uy, and L is a large positive value to ensure
bounded )\k In our numerics we set the parameter p = pr = ||Ak||so/¥r in order to keep
the new )\k+1 at the same scale as /\k, = 1000, ¢ = 2 for Gaussian noise removal, and we
choose ¢ = 1.1 for salt-and-pepper noise removal since in this case the model is much more
sensitive to changes in \; see the analysis in [7] for the latter. In addition, we typically set
w = 17. In Section 5, however, we study the influence of the window size on the restoration
results.

4. Our METHOD

In [28,29] an image decomposition method (TNV-algorithm) was proposed, which cap-
tures different features in the image by varying the regularization parameter in (1.1). The
TNV-algorithm relies on a scalar regularization parameter, increasing this parameter and
appropriately feeding back the previous scales allows to recover small scale features. How-
ever, there is a point where the noise is also recovered as the parameter gets larger. Hence,
if the latter is the case, the method should refrain from further increasing the regularization
parameter and stop. In the following algorithm, we intertwine the idea of [28,29] with the
MVTV-model (2.6) and combine it with the spatially adapted regularization parameter se-
lection.

Algorithm.
1: Initialize ul = 0 € R™* ™M gh — ( ¢ RmXXMx2 30 — \g1,,, € R™¥" wl = "
and k£ = 0.

2: Utilizing the Moreau-Yosida regularization approach of Section 2.2 and 2.3, find ﬁZ
by solving the discrete version of the following problem:

. . S| y -
Uy, € arg mingepv (o) /Q |Du| + - /Q M| Ka — wg|Tdx
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FIGURE 1. Original images: (a) “Barbara”, (b) “Goldhill”.

. h _ b ~h h —_ ,h hy h
3: Update uk+hl—uk+uk and wi ; =z" — K'up_, .
4: Based on uj_ ;, update

1

O"H—l)i,j = (- min ((;\k)m + pmax <(LSE%T,k> T (VT)% ,0> ’L> ’
1 ~

o= T (),

(s,0)eQ;
5: Stop; or set k := k + 1 and go to step 2.

In this algorithm, 1,,, € R™*" denotes the matrix with all elements equal to 1. In
our numerical practice, initially we set A to a relatively small positive constant Xo. For
Gaussian noise removal, we always use \g = 2.5. However, for removing salt-and-pepper
noise the model is more sensitive to the selection of 5\0, and hence, our choice will depend
on the noise ratio. Similar to the Bregman iteration proposed in [23], we stop the iterative
procedure as soon as the constraint (3.1) is satisfied globally, i.e. Q“ := Q. For Gaussian
noise removal with a uniform initial Ao, our algorithm always satisfies the stopping condition
after three iterations. However, for removing salt-and-pepper noise the number of iteration
steps depends on the choice of Xo. The respective iteration numbers are listed together with
the numerical results in the next section.

5. NUMERICAL RESULTS

In this section we discuss numerical results to study the behavior of our method and
compare it with the vectorial total variation method, which is used to restore color images
by solving the VI'V-model with a scalar A. For illustrations, the results for the 220-by-220
RGB color images (i.e., M = 3) “Barbara” and “Goldhill”, are presented in Figure 1. In all
of our experiments the image intensity range is scaled to [0, 1].

5.1. Color image denoising. Here, we concentrate on image denoising, i.e., K is the
identity operator. The degraded images contain Gaussian white noise with ¢ = 0.1, see
Figure 2(a), or salt-and-pepper noise with the noise ratio r = 0.4, see Figure 3(a). For
the VIT'V-model operating with a scalar A, we adjust A until the visually best results were
obtained. In our method, we solve the MVTV-model with spatially dependent A\. Concerning
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(d)

FIGURE 2. Results of removing Gaussian noise for the images “Barbara”
(the 1st row) and “Goldhill” (the 2nd row): (a) Noisy images, (b) From
VTV-model, (¢) From MVTV-model, (d) Final A for MVTV-model.

the choice of the parameters in (2.19) and (2.24), the guideline is to use rather small 3, g, v
and large p in order to obtain an approximate MVTV-model. In our numerical experiments
we choose 1 = 105, o = 0 (the p-regularization serves primarily function space purposes
and is left out in the discrete setting), # = 0.001 and vy = 0.01. In addition, A\ controls the
trade-off between a good data fit and a smoothness requirement due to the total variation
regularization. In [7] it was shown that the scalar TV-model for 7 = 1 is more sensitive with
respect to A than for 7 = 2. In fact, for 7 = 1, for every scale there exists a threshold for
A such that the features of this scale and smaller scales disappear. For 7 = 2, on the other
hand, a scale dependent “fading-away”-effect is observed as A is decreased. In our tests,
in order to remove salt-and-pepper noise with 40% noise ratio, we initialize Ao = 0.7. In
this case, our algorithm satisfies the stopping condition after four iterations. Moreover, we
suggest that large Ao is used for low noise levels in order to preserve details whereas small
Ao is used in case of high noise levels.

The results are shown in Figure 2 and 3. We can see that compared with the results from
the VTV-model our method suppresses the noise successfully while preserving more details.
In this respect observe the background and the scarf of “Barbara” and the window and roof
regions in “Goldhill”. In addition, we also show the final values of the parameter A obtained
by our choice rule (3.2). We find that in detail regions A is usually large in order to preserve
the details, and it is small in the homogeneous regions to remove noise.

In order to test our method for different values of the window size w, Figure 4 shows the
restored images with w = 7,17,27. For Gaussian noise removal we observe a remarkable
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(a) (d)

FiGURE 3. Results of removing salt-and-pepper noise for the images “Bar-
bara” (the 1st row) and “Goldhill” (the 2nd row): (a) Noisy images, (b) From
VTV-model, (¢) From MVTV-model, (d) Final A for MVTV-model.

stability with respect to w. However, for salt-and-pepper noise removal larger window size
leads to better results. We clearly observe more noise remaining in the restored image for
small w. For 7 = 1, this is mainly due to the sensitivity of the MVTV-model with respect to
the regularization parameter. Moreover, the reduced number of random variables contained
in a small window increases the statistical error in the regularization parameter update (3.2).

5.2. Color image deblurring and denoising. In this section, we consider the restoration
of noisy blurred images. The blurring operator K is a cross-channel blurring operator with
the kernel

Ky Keg Ky 0.8 (M,7,135) 0.1-(A,7) 0.1-(G,9,7)
Ky Ky Kg | = 01-(4,9) 0.8-(G,5,1) 0.1-(M,7,90) |,
Ky Ky Ky 0.1-(G,7,5)  0.1-(M,7,45) 0.8-(A,5)

where (A,r) denotes the average blur with window size r, (G,r,0) denotes Gaussian blur
with window size r and standard deviation o, (M,[,0) denotes motion blur with length [
and angle 6, and (r, g,b) are the three channels in the RGB color model. Further we have
Gaussian white noise with ¢ = 0.02 or salt-and-pepper noise with r = 0.6.

Figures 5 and 6 show the degraded images and the results by minimizing the VI'V-model
and the MVTV-model by our method, respectively. In order to remove the salt-and-pepper
noise with 60% noise ratio, we set A\ = 1.8 in our method. The selection of the other
parameters is as in Section 5.1, and the number of iteration steps is 5. In contrast to
the results obtained by the VI'V-model which uses the scalar A\, our method preserves more
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FIGURE 4. Restored images by our method with different w for Gaussian
noise removal (the 1st row) and salt-and-pepper noise removal (the 2nd row):
(a) w=7, (b) w=17, (c) w = 2T7.

details; see, e.g., the background of “Barbara” and the window and roof regions of “Goldhill”.
Furthermore, for restoring blurred images with Gaussian noise our method is still able to
distinguish most of the detail regions properly.

6. CONCLUSION

A multi-scale vectorial total variation model with a unified data-fidelity term [[Ku —
z||£T(Q) and spatially dependent regularization parameter A\ for color image restoration is
proposed in this paper. We focus on the cases 7 = 1 and 7 = 2 suitable for salt-and-pepper
noise and Gaussian noise, respectively. The discrete system of the MVTV-model are solved
by Fenchel-duality and semismooth Newton techniques. It was shown that with a local
statistical estimator to update A iteratively, the new method can restore the degraded im-
ages efficiently while preserving details. Our method is able to properly reconstruct blurred
images containing Gaussian noise. In case of salt-and-pepper noise, due to the high noise
ratio and the significant gap between noise values and the noise-free pixel values, the detail
regions are more difficult to detected. In the latter context, potential future research may
focus on alternative statistical measures or alternative ways to select \. In fact, we explored
vector-valued choices of A in the RGB-context, where each component function of A corre-
sponds to one color channel. In some cases we indeed obtained improved reconstructions.
This approach, however, raises the question of an information balance when choosing A.
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(d)

FIGURE 5. Results of restoring the blurred images with Gaussian noise:
“Barbara” (the 1st row) and “Goldhill” (the 2nd row): (a) Noisy images,
(b) From VTV-model, (¢) From MVTV-model, (d) Final A for MVTV-model.
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