Skip to main content

Advertisement

Log in

Robust Gait Recognition by Learning and Exploiting Sub-gait Characteristics

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Gait recognition algorithms often perform poorly because of low resolution video sequences, subjective human motion and challenging outdoor scenarios. Despite these challenges, gait recognition research is gaining momentum due to increasing demand and more possibilities for deployment by the surveillance industry. Therefore every research contribution which significantly improves this new biometric is a milestone. We propose a probabilistic sub-gait interpretation model to recognize gaits. A sub-gait is defined by us as part of the silhouette of a moving body. Binary silhouettes of gait video sequences form the basic input of our approach. A novel modular training scheme has been introduced in this research to efficiently learn subtle sub-gait characteristics from the gait domain. For a given gait sequence, we get useful information from the sub-gaits by identifying and exploiting intrinsic relationships using Bayesian networks. Finally, by incorporating efficient inference strategies, robust decisions are made for recognizing gaits. Our results show that the proposed model tackles well the uncertainties imposed by typical covariate factors and shows significant recognition performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeni, P., Baltatu, M., & Alessandro, R. D. (2006). User authentication based on face recognition with support vector machines. In Proc. of the Canadian conference on computer and robot vision. Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  MATH  MathSciNet  Google Scholar 

  • Bauckhage, C., Tsotsos, J., & Bunn, F. (2006). Automatic detection of abnormal gait. Image and Vision Computing, 27, 108–115.

    Article  Google Scholar 

  • Bergtholdt, M., Kappes, J., Schmidt, S., & Schnörr, C. (2009). A study of parts-based object class detection using complete graphs. International Journal of Computer Vision.

  • Boulgouris, N., & Chi, Z. (2007). Gait recognition based on human body components. In IEEE international conference on image processing (ICIP) (Vol. 1, pp. 353–356).

  • Boulgouris, N., Plataniotis, K., & Hatzinakos, D. (2006). Gait recognition using linear time normalization. Pattern Recognition, 39, 969–979.

    Article  MATH  Google Scholar 

  • CASIA (2006). Gait database offered by Chinese Academy of Sciences. http://www.sinobiometrics.com.

  • Collins, R., Gross, R., & Shi, J. (2002) Silhouette-based human identification from body shape and gait. In Proceedings of IEEE international conference on automatic face and gesture recognition (pp. 366–371).

  • Dahyot, R., Charbonnier, P., & Heitz, F. (2004). A Bayesian approach to object detection using probabilistic appearance-based models. Pattern Analysis Applications, 7(3), 317–332. DOI:10.1007/s10044-004-0230-5.

    MathSciNet  Google Scholar 

  • Duda, R., Hart, P., & Stork, D. (2001). Pattern classification. New York: Wiley.

    MATH  Google Scholar 

  • Gonzalez, R., & Woods, R. (2002). Digital image processing. New York: Prentice Hall.

    Google Scholar 

  • Hallinan, P., Gordon, G., Yuille, A., Giblin, P., & Mumford, D. (1999). Two and three dimensional patterns of the face. A.K. Peters.

  • Han, J., & Bhanu, B. (2006). Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2), 316–322.

    Article  Google Scholar 

  • Heisele, B., Serre, T., & Poggio, T. (2007). A component-based framework for face detection and identification. International Journal of Computer Vision, 74, 167–181.

    Article  Google Scholar 

  • Intille, S., & Bobick, A. (2001). Recognizing planned, multiperson action. Computer Vision and Image Understanding, 81, 441–445.

    Article  Google Scholar 

  • Jensen, F., & Nielsen, T. (2007). Bayesian networks and decision graphs. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201–211.

    Google Scholar 

  • Kale, A., Sundaresan, A., Rajagopalan, A., Cuntoor, N., Chowdhury, A., Volker, K., & Chellappa, R. (2004). Identification of humans using gait. IEEE Transactions on Image Processing, 13, 1163–1173.

    Article  Google Scholar 

  • Kemp, C., Shafto, P., Berke, A., & Tenenbaum, J. (2006). Combining causal and similarity-based reasoning. In Proceedings of the twentieth annual conference on neural information processing systems. The Neural Information Processing Systems (NIPS) Foundation.

  • Kim, J., Choi, J., Yi, J., & Turk, M. (2005). Effective representation using ICA for face recognition robust to local distortion and partial occlusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12), 1977–1981.

    Google Scholar 

  • Krynski, T., & Tenenbaum, J. (2007). The role of causality in judgment under uncertainty. Journal of Experimental Psychology, 136(3), 430–450. DOI:10.1037/0096-3445.136.3.430.

    Google Scholar 

  • Lee, L., & Grimson, W. (2002). Gait analysis for recognition and classification. In Proceedings of IEEE international conference on automatic face and gesture recognition (pp. 155–162).

  • Li, X., Maybank, S., Yan, S., Tao, D., & Xu, D. (2008). Gait components and their application to gender recognition. IEEE Transactions on Systems, Man and Cybernetics—Part C: Applications and Reviews, 38(2), 145–155.

    Article  MATH  Google Scholar 

  • Liu, Z., & Sarkar, S. (2006). Improved gait recognition by gait dynamics normalization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 863–876.

    Article  Google Scholar 

  • Liu, Z., & Sarkar, S. (2005). Effect of silhouette quality on hard problems in gait recognition. IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics, 35, 170–183.

    Article  Google Scholar 

  • Lu, H., Plataniotis, K., & Venetsanopoulos, A. N. (2008). MPCA: Multilinear Principal Component Analysis of tensor objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(1), 18–39.

    Google Scholar 

  • Martinez, A. (2002). Recognizing imprecisely localized, partially occluded and expression variant faces from a single sample per class. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(6), 748–763.

    Article  Google Scholar 

  • Mohan, A., Papageorgiou, C., & Poggio, T. (2001). Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(4), 349–361.

    Article  Google Scholar 

  • Moon, H., & Phillips, P. J. (2001). Computational and performance aspects of PCA-based face-recognition algorithms. Perception, 30, 303–321.

    Article  Google Scholar 

  • Murphy, K. (2007). Software for graphical models: a review. Tech. rep., International Society for Bayesian Analysis (ISBA) Bulletin.

  • Murray, M. (1967). Gait as a total pattern of movement. American Journal of Physical Medicine, 46, 290–332.

    Google Scholar 

  • Murray, M., Drought, A., & Kory, R. (1964). Walking patterns of normal men. Journal of Bone and Joint Surgery, 46, 335–360.

    Google Scholar 

  • Myung, J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47, 90–100. DOI:10.1016/S0022-2496(02)00028-7.

    Article  MATH  MathSciNet  Google Scholar 

  • Neapolitan, R. (2003). Learning Bayesian networks. New York: Prentice Hall.

    Google Scholar 

  • Nixon, M., & Carter, J. (2006). Automatic recognition by gait. IEEE Special Issue on Biometrics: Algorithms & Applications, 94, 2013–2024.

    Google Scholar 

  • Nixon, M., Tan, T., & Chellappa, R. (2006). Human identification based on gait. Berlin: Springer.

    Book  Google Scholar 

  • Pearl, J. (1997). Probabilistic reasoning in intelligent systems. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Russel, S., & Norvig, P. (1995). Artificial Intelligence a modern approach. New York: Prentice Hall.

    Google Scholar 

  • Sarkar, S., Phillips, P., Liu, Z., Vega, I., Grother, P., & Bowyer, K. W. (2005). The humanid gait challenge problem: data sets, performance, and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 162–177.

    Article  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  MATH  MathSciNet  Google Scholar 

  • Tong, Y., Liao, W., & Ji, Q. (2007). Facial action unit recognition by exploiting their dynamic and semantic relationships. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(10), 1683–1699.

    Article  Google Scholar 

  • Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86.

    Article  Google Scholar 

  • Veeraraghavan, A., Chowdhury, A., & Chellappa, R. (2004). Role of shape and kinematics in human movement analysis. In Proceedings of IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 730–737).

  • Veeraraghavan, A., Srivastava, A., & Chowdhury, K. (2009). Rate-invariant recognition of humans and their activities. IEEE Transactions on Image Processing, 18(6), 1326–1339.

    Article  Google Scholar 

  • Xu, D., Yan, S., Tao, D., Zhang, L., Li, X., & Zhang, H. J. (2006). Human gait recognition with matrix representation. IEEE Transactions on Circuits and Systems for Video Technology, 16(7), 896–903.

    Article  Google Scholar 

  • Xu, Z., Chen, H., Zhu, S., & Luo, J. (2008). A hierarchical compositional model for face representation and sketching. IEEE Transaction on Pattern Analysis and Machine Intelligence, 30(6), 955–969.

    Article  Google Scholar 

  • Yan, S., Xu, D., Yang, Q., Zhang, L., Tang, X., & Zhang, H. (2005). Discriminant analysis with tensor representation. In Proc. IEEE conf. comput. vision pattern recognit., 2005 (pp. 526–532).

  • Yu, S., Tan, D., & Tan, T. (2006). A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In The 18th international conference on pattern recognition (ICPR).

  • Zhou, Z., Bennett, A. P., & Damper, R. (2006). A Bayesian framework for extracting human gait using strong prior knowledge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(11), 1738–1752.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Venkat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkat, I., De Wilde, P. Robust Gait Recognition by Learning and Exploiting Sub-gait Characteristics. Int J Comput Vis 91, 7–23 (2011). https://doi.org/10.1007/s11263-010-0362-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0362-6

Keywords

Navigation