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Abstract This work proposes an approach to tracking by
regression that uses no hard-coded models and no offline
learning stage. The Linear Predictor (LP) tracker has been
shown to be highly computationally efficient, resulting in
fast tracking. Regression tracking techniques tend to require
offline learning to learn suitable regression functions. This
work removes the need for offline learning and therefore
increases the applicability of the technique. The online-LP
tracker can simply be seeded with an initial target location,
akin to the ubiquitous Lucas-Kanade algorithm that tracks
by registering an image template via minimisation.

A fundamental issue for all trackers is the representation
of the target appearance and how this representation is able
to adapt to changes in target appearance over time. The two
proposed methods, LP-SMAT and LP-MED, demonstrate
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the ability to adapt to large appearance variations by incre-
mentally building an appearance model that identifies modes
or aspects of the target appearance and associates these as-
pects to the Linear Predictor trackers to which they are best
suited. Experiments comparing and evaluating regression
and registration techniques are presented along with per-
formance evaluations favourably comparing the proposed
tracker and appearance model learning methods to other
state of the art simultaneous modelling and tracking ap-
proaches.

Keywords Regression tracking · Online appearance
modelling

1 Introduction

This work is concerned with the development of fast visual
feature tracking algorithms that utilise no prior knowledge
of the target appearance. The approach presented here op-
erates at high frame rates, tracks fast moving objects and is
adaptable to variations in appearance brought about by oc-
clusions or changes in pose and lighting. This is achieved
by employing a novel, flexible and adaptive object repre-
sentation comprised of sets of spatially localised linear dis-
placement predictors associated to various modes of a multi
modal template based appearance model learnt on-the-fly.

Conventional alignment based tracking approaches aim
to estimate the position of the target in each frame by align-
ing an image template of the target with the new frame; the
template (or input frame) is warped in order to obtain an op-
timal alignment. The warp parameters are obtained by opti-
mising the registration between the appearance model and a
region of the input image according to some similarity func-
tion (e.g. L2 norm, Normalised Correlation, Mutual Infor-
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Table 1 Table of abbreviations used throughout text

Abbreviations Full meaning

LK Lucas-Kanade: tracking by registration.

LP Linear Predictor: tracking by linear
regression.

SMAT Simultaneous Modelling And Tracking:
Adaptive multi-modal template based
appearance model (Dowson and Bowden
2006).

LK-SMAT Tracking approach that combines LK
displacement estimation with SMAT
appearance modelling.

LP-SMAT Tracking approach that combines LP
displacement estimation with SMAT
appearance modelling.

LP-MED Tracking approach that combines LP
displacement estimation with a medoidshift
based appearance model.

mation). Optimisation is often carried out using gradient de-
scent or Newton methods and hence assumes the presence
of a locally convex similarity function with a minima at the
true position. The basin of convergence of such methods is
the locally convex region of the cost surface within which
a gradient descent approach will converge. The size of the
basin of convergence determines the range of the tracker i.e.
the maximum magnitude of inter-frame displacements for
which the approach will work. Trackers with small range
require low inter-frame displacements to operate effectively
and hence must either operate at high frame rates (with high
computational cost) or only track slow moving objects. If the
target moves a distance greater than the range between two
consecutive frames then the method will fail. While mul-
tiscale approaches can be used to address this in registra-
tion approaches, regression based tracking allows the user
to select the optimal range as a trade-off against accuracy
and will be experimentally shown to have a greater range
(not limited by the range of convexity or the presence of
local minima in the cost surface) than registration methods
and due to their simplicity are computationally efficient. The
computational efficiency of the method is a result of learning
a simple and general mapping directly from patterns of im-
age intensity differences to desired displacements, and ap-
plying this mapping at each displacement prediction step,
rather than performing an optimisation process for each pre-
diction step.

Whilst prior models can be used to model target appear-
ance, they place restrictions on the scope of applications
for which the trackers can be easily used. Furthermore, vi-
sual tracking approaches that are able to adapt their rep-
resentation of the target on-the-fly show increased robust-
ness over approaches for which the representation is either
specified (hard coded) or learned from a training set. Sin-

gle template models, such as those employed in the Lucas-
Kanade algorithm (Lucas and Kanade 1981), aim to model
the target appearance as one point on the appearance-space
manifold. In order to increase robustness to appearance
changes and minimise alignment drift, various template up-
date strategies have been developed. These include naive
update (Matthews et al. 2004) where the template is up-
dated after every frame and strategic update (Matthews et
al. 2004) where the first template from the first frame is re-
tained and used to correct location errors made by the up-
dated template. If the size of the correction is too large,
the strategic algorithm acts conservatively by not updating
the template from the current frame. With template update
methods, the template is intended to represent the current
single point in the appearance-space manifold. Approaches
that use some or all templates (Dowson and Bowden 2006;
Ellis et al. 2008), drawn from all frames, represent a larger
part of this manifold. In this work, all stored templates are
incrementally clustered to discover modes or aspects of the
target appearance.

Tracking methods that adapt the representation of the
target during tracking are prone to drift, as the appear-
ance model may adapt to the background or occluding ob-
jects. The approaches proposed here address this problem by
maintaining modes of an appearance model that correspond
to past appearances. Whilst this approach reduces the im-
pact of drift, as erroneous appearance samples do not conta-
minate all modes of the appearance model, the method does
not address the drift verses adaptation trade-off directly. The
work of Kalal et al. (2010) explicitly addresses the trade-off
between adaptation and drift.

The methods developed herein are designed to operate
at high frame rates and as such need to be computation-
ally efficient. The overarching design paradigm has been to
use fast/simple methods: linear regression (for displacement
prediction), random sampling (for learning displacement
predictors and template extraction), incremental template
clustering (for appearance modelling) and linear weight-
ing (for associating displacement predictors with appear-
ance modes). The use of simple regression methods is offset
by an evaluation mechanism that allows both the weight-
ing of the contribution of each displacement predictor and
the continual disposal and replacement of poorly perform-
ing displacement predictors.

There are many different formulations of the tracking
problem that lead to many and varied solutions: tracking by
detection (Viola and Jones 2002), tracking using graph cut
algorithms to iteratively segment the target (Bray et al. 2006)
and condensation algorithms (Isard and Blake 1998) to name
but a few. Each approach is thought to have a certain scope
of applications for which it will work best. It has been es-
tablished that a significant class of tracking problems can be
solved using the Linear Predictor and this paper aims to ex-
tend this class to problems requiring online feature tracking
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with appearance variation and real time operation. In par-
ticular, the approach presented here is, to the best of the
authors knowledge, the first regression based tracking ap-
proach that continually evaluates and adapts the regression
functions used for tracking on-the-fly. The experiments in
Sect. 7 go some way to delimiting the class of problems for
which the proposed approach is suitable.

The rest of the paper is organised as follows: Sect. 2
contains a review of the relevant literature regarding the
following three subjects; tracking via registration, track-
ing via regression and online appearance model learning.
An overview of the proposed tracking methodology is then
presented in Sect. 3. Section 4 introduces two methods for
learning models of the appearance of a target object dur-
ing tracking and Sect. 5 gives details of the registration and
regression tracking approaches and some illustrative exper-
imental results comparing the methods on real data are pre-
sented. In Sect. 6 the complete tracking algorithms—that put
together the regression techniques and the appearance mod-
elling techniques—are presented. In Sect. 7 a set of experi-
ments are presented that characterise, compare and evaluate
the proposed tracking approaches. Finally conclusions are
discussed in Sect. 8.

2 Background

As this work is concerned with comparing two approaches
(registration and regression) for predicting inter-frame dis-
placement as well as techniques for combining these ap-
proaches with methods for learning appearance models on-
line, this section contains a review of the relevant literature
regarding the following three subjects; tracking via registra-
tion, tracking via regression and online appearance model
learning.

2.1 Tracking via Registration

Lucas and Kanade made one of the earliest practical at-
tempts to efficiently align a template image to a refer-
ence image (Lucas and Kanade 1981), minimising the Sum
of Squared Difference similarity function. Efficiency was
achieved by using a Newton-Raphson method in the space
of warp parameters. In Newton-Raphson optimisation, it-
erative parameter updates to alignment parameters are ob-
tained by multiplying the Jacobian by the inverse Hessian
of the similarity function. Lucas and Kanade mainly consid-
ered translations, but later research considered more com-
plex transformations and attempted to reformulate the sim-
ilarity function allowing pre-computation of some terms. In
particular, Hager and Belhumeur (1998) proposed inverting
the roles of the reference and template at a strategic point
in the derivation, and Shum and Szeliski (2000) constructed

the warp as a composition of two nested warps. In a gen-
eral treatise on Lucas-Kanade (LK) techniques, Baker and
Matthews (2004) combined these methods to formulate the
inverse-compositional method. Dowson and Bowden (2008)
derived an inverse compositional formulation for aligning a
template and a reference image using Mutual Information
and Levenberg-Marquardt optimisation.

2.2 Tracking via Regression

Cootes et al. (1998) proposed a method for pre-learning a
linear mapping between the image intensity difference vec-
tor and the error (or required correction) in AAM model pa-
rameters. Jurie and Dhome (2002) employed similar Lin-
ear Predictor (LP) functions to track rigid objects. The work
of Matas et al. (2006) again uses linear regression for dis-
placement prediction, similar to the LP functions in Jurie
and Dhome (2002) and Cootes et al. (1998). They extend
the approach by introducing the Sequential Linear Predic-
tor (SLP) (Zimmermann et al. 2009). Williams et al. (2003)
presented a sparse probabilistic tracker for real-time track-
ing that uses an RVM to classify motion directly from a vec-
torised image patch. The RVM extends the method of form-
ing a regression between image intensity difference vectors
and the error/correction to non-linear regression. Mayol and
Murray (2008) extend these methods to general regression
for tracking planar and near planar objects.

A key issue for LP trackers is the selection of its reference
point, i.e. its location in the image. In the work of Marc-
hand et al. (1999) predictors are placed at regions of high
intensity gradient but Matas et al. (2006) have shown that a
low predictor error does not necessarily coincide with high
image intensity gradients. In order to increase efficiency of
the predictors, a subset of pixels from the template can be
selected as support pixels used for prediction. Matas et al.
(2006) present a comparison of various methods for learning
predictor support, including randomised sampling and nor-
malised reprojection, and found that randomised sampling
is efficient with minimal and controllable trade-off in terms
of accuracy while Ong and Bowden (2009) employ an iter-
ative learning scheme to choose optimal support regions for
prediction.

This work avoids the need for costly reference point
and support selection strategies by evaluating the perfor-
mance of a predictor online and allowing poor performers
to be replaced as opposed to minimising a learning error of-
fline. Each of the displacement prediction trackers detailed
in Matas et al. (2006), Marchand et al. (1999), Williams et
al. (2003), and Ong and Bowden (2009) require either an
offline learning stage or the construction of a hard coded
model or both. As shall be shown, this work does not require
either hard coded models or offline learning. The approach
in Mayol and Murray (2008), using generalised regression,



Int J Comput Vis (2011) 95:154–179 157

can be trained at start up in a reported 0.5 s. However, once
trained the method employs no online learning to adapt the
regression functions.

Here the term ‘online’ implies that the learning is car-
ried out on-the-fly, from a single frame drawn from the se-
quence during tracking. While the prediction function learn-
ing methods employed here are not incremental, they are
less computationally expensive than other learning methods,
and so can be employed at frame rate during tracking. The
use of inexpensive learning methods results in potentially
inaccurate prediction functions which necessitates the inclu-
sion of mechanisms to evaluate, weight, remove and relearn
the functions. Novel mechanisms for achieving this evalu-
ation during tracking form an essential component of the
proposed methodology.

2.3 Online Appearance Model Learning

Tracking approaches typically employ appearance models
in order to optimise warp parameters (e.g. translation or
affine) according to some criterion function. Linear predic-
tor trackers typically rely upon hard coded models of ob-
ject geometry (Matas et al. 2006; Marchand et al. 1999).
This requires significant effort in hand crafting the models
and like simple template models (Lucas and Kanade 1981;
Baker and Matthews 2004; Matthews et al. 2004), are sus-
ceptible to drift and failure if the target appearance changes
sufficiently. Systems that use a priori data to build the model
(Cootes et al. 1998) or train the tracker offline (Williams et
al. 2003; Ong and Bowden 2009) can be more robust to ap-
pearance changes but still suffer when confronted with ap-
pearance changes not represented in the training data. In-
cremental appearance models built online such as the WSL
tracker of Jepson et al. (2001) have shown increased robust-
ness by adapting the model to variations encountered dur-
ing tracking, but the overhead of maintaining and updat-
ing the model can prevent real-time operation. Ross et al.
(2008) have proposed an adaptive appearance model that in-
crementally learns a low dimensional appearance subspace
representation, that operates at near frame rate (7.5 Hz) and
requires no offline training.

A number of methods have been proposed for online
learning of discriminative feature trackers (Avidan 2007;
Collins et al. 2005; Grabner et al. 2006). The discriminative
tracker of Grabner et al. (2006) that uses an online boost-
ing algorithm to learn a discriminative appearance model
on-the-fly, achieves real-time tracking. Another entirely on-
line approach that achieves real-time tracking is Dowson &
Bowden’s SMAT algorithm. Dowson and Bowden (2006)
make a preliminary presentation of the Simultaneous Mod-
elling And Tracking algorithm, SMAT, and show the bene-
fits of online learning of a multiple component appearance
model when employing alignment-based tracking.

Fig. 1 Simultaneous Modelling and Tracking methodology: The dis-
placement estimator, as well as generating the tracking output, provides
a mechanism for supervision of the appearance model learning process
i.e. it provides new examples of the target appearance that are added
to the appearance model. In return, the appearance estimator provides
information about the structure of the target appearance space that en-
ables the tracker to cope with a high degree of variation in appearance

3 System Overview

This section presents an overview of the proposed tracking
architecture in general terms. In the following sections spe-
cific methods for each of the architectures components are
introduced and evaluated.

At the most general level, the proposed tracking approach
can be described by the following process:

1. Estimate the current target appearance using an appear-
ance model

2. Adapt the displacement estimation mechanism to suit
current estimate of appearance

3. Estimate inter-frame displacement of the target
4. Adapt the appearance model given new appearance data
5. Repeat steps 1–4

These stages are achieved by the interaction of two com-
ponents, namely the displacement estimator and the ap-
pearance estimator. The displacement estimator, as well as
generating the tracking output, provides a mechanism for
supervision of the appearance model learning process i.e.
it provides new examples of the target appearance that are
added to the appearance model. In return, the appearance es-
timator provides information about the structure of the target
appearance space that enables the tracker to cope with a high
degree of variation in appearance. This basic methodology
is represented in Fig. 1.

The target appearance samples—templates drawn from
the image at the targets estimated location—will change dur-
ing tracking. This is caused by all appearance variations
that are not modeled by the pose parameters e.g. rotation
(if translation transformations only are considered), lighting
change, occlusion or changes of expression (when tracking
faces) as well as frame-to-frame inaccuracies in displace-
ment estimation. In the proposed appearance modelling ap-
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Fig. 2 Generic system architecture: The appearance model stores all
target templates and identifies aspects of the target. Aspects are associ-
ated to feature trackers by an association matrix. Each feature tracker
contributes to the overall pose estimation, the level of contribution is
determined by the strength of association to the current aspect i.e. the
association matrix value

proach, all stored templates are incrementally clustered to
discover modes or aspects of the target appearance. Identi-
fying the current aspect of the target appearance is the role
of the appearance model, as shown in Fig. 2. By identify-
ing aspects of the target, it becomes possible to adapt the
displacement estimation mechanisms to suit the current ap-
pearance.

The proposed tracking framework associates these as-
pects to banks of displacement estimators—trackers—via an
association matrix, see Fig. 2. The values in the association
matrix reflect the suitability of each tracker to each aspect
of the target. This provides a flexible way of controlling the
influence of each tracker to the overall pose estimation.

Within this architecture there are many possible ap-
proaches to implementing the appearance model, associa-
tion strategy, displacement estimation and final pose estima-
tion processes. In Sect. 4 two methods for on-the-fly appear-
ance modelling are introduced. Two displacement estima-
tion methods—template registration and linear regression—
are investigated in Sect. 5. In Sect. 6 various configurations
of the complete tracking framework are detailed.

4 Adaptive Appearance Models

Aside from the intrinsic requirement of a representation of
the target appearance for all tracking methods, appearance
models can additionally help cope with appearance changes
not parameterised by the pose parameters. Provided a per-
fect geometric model of the target and environment was
available, it would be possible to parameterise every pos-
sible change to the target appearance. Such a model would

have to include parameterisations of not only all degrees of
freedom (DOF) of the target object but also other objects
in the environment that may occlude the target along with
environmental effects such as changes in lighting. This is
simply not feasible in any real scenario. In addition, the es-
timation of the huge number of parameters required by such
a model would be intractable. Tracking approaches, there-
fore, tend to model only a subset of pose parameters, com-
monly translation (2 DOF) or affine (6 DOF). Any changes
not represented by the selected pose parameters will often
cause tracking failure. An appearance model can provide a
means of compensating for this partial parameterisation.

4.1 Aspect Learning for Tracking

Both regression and registration based trackers, that are in-
tended to track a 3D object such as, for example, a cube, are
initialised by identifying the region in the first frame that
contains the cube. If the cube then starts to rotate, perhaps
exposing a new face of the cube and hence presenting a new
aspect of the target, the initial target representation may no
longer be adequate. It would therefore be advantageous to
identify that a new aspect of the target had been presented
and to adapt the target representation used for tracking ac-
cordingly. Eventually the cube may rotate back to its origi-
nal orientation and thus present the initial aspect of the target
again. In this case it would be advantageous to recall the rep-
resentation associated to that aspect. This is the function of
the appearance models developed here: to identify different
aspects of the target—clusters of appearance samples—such
that the target representation used in estimating inter-frame
displacement can be partitioned and associated with the as-
pects for which they perform well.

The term ‘aspect’ is used to describe some mode or clus-
ter of the appearance manifold. As discussed above, the ap-
pearance manifold may include regions associated with all
appearance variations not modeled by the pose parameters
e.g. rotation, lighting change, occlusion or changes of ob-
ject appearance itself.

If a single template appearance of an object is considered
as one point on the appearance-space manifold (as in the
Lucas-Kanade method), the manifold can be represented by
storing the set T of all templates, T = {G0 . . .Gt } drawn
from all frames {F0 . . .Ft }. In order to identify aspects of
the target, the set of templates, T , should be clustered or
partitioned, T = {T 0 . . . T M} where T m ⊂ T .

For a subset of templates, T m ⊂ T , to represent a real as-
pect of the target appearance, the templates that make up an
aspect should be similar to one another and different to the
templates in all other aspects. Similarity is determined by a
distance metric. The L2 norm distance is used in the below
methods due to its computational efficiency but others, such
as Mutual Information or Normalised Correlation could also
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be used. Both the clustering methods detailed below com-
pute and maintain a matrix of L2 norm distances between
templates and use this to determine each templates aspect
membership i.e. to which aspect that template belongs.

4.2 SMAT: Greedy Template Clustering

In order to identify different aspects of the target, modes or
clusters of the appearance manifold must be discovered. The
method presented here partitions the appearance manifold,
assigning templates to partitions with a greedy incremental
algorithm.

Each of the M aspects, T m ⊂ T , m = 1 . . .M of the ap-
pearance manifold are represented by: a group of templates,
the median template μm, a threshold τm, and a weight-
ing wm. Use of the median rather than the mean avoids pixel
blurring caused by the averaging of multiple intensity val-
ues of templates that are not perfectly aligned. Weight wm

represents the estimated a priori likelihood that the mth par-
tition best resembles the current appearance of the target.
During tracking, a template is drawn from the new frame at
the location determined by the displacement estimator. To
identify the best matching partition to the new template, a
greedy search is performed starting with the partition with
the highest weight and terminating when a partition, T m∗

,
is found whose L2 norm distance to the image patch is less
than the threshold τ . The input image patch is then added
to partition T m∗

and the median, μm∗
, threshold, τm∗

, and
weights, wm,m = 1 . . .M , are updated. See Eq. 1 for the
component weight update strategy. If no match is made, a
new component is created with the new template and the
template from the previous frame. The learning rate, α, sets
the rate at which component rankings change and is set to
α = 0.2 for all experiments. This value was found through
experimentation.

wm =
{

wm+α
1+α

if m = m∗;
wm

1+α
if m �= m∗.

(1)

To facilitate the efficient update of an appearance model
component, a matrix Qm maintains the L2 norm distances
between each pair of templates in the mth component.
Adding a new template to the component then requires only
the computation of a single row of Qm i.e. the distances be-
tween the new template and all other templates. The median
template index, j∗, is calculated using Eq. 2 and the compo-
nent threshold τm∗

is computed using Eq. 3 which assumes
an approximately Gaussian distribution of distances and sets
the threshold to three standard deviations of the distribution.

j∗ = argmin
j

n∑
i=0

Qm
ij , j = 1 . . . n (2)

Fig. 3 Appearance model medians for the head tracking sequence:
Two examples of the median templates of the four partitions of the
appearance space are shown, ordered with decreasing weight from left
to right. It is clear that the modes identify aspects of the target such
as side/front/occluded views. The matched component for the current
frame is marked with the bullseye

τ j∗ = 3

√√√√1

n

n∑
i=0

(Qm
ij∗)2 (3)

The dimensions of Qm depend on the number, n, of tem-
plates in the model but can be limited to bound memory re-
quirements and computational complexity. In practice, new
templates replace the worst template from the component.
It is also possible to limit the number of components, M .
When creating a new component the new component re-
places the worst existing component identified by the lowest
weight mworst = argminm wm, {m = 1 . . .M}.

For all the experiments presented in Sect. 7.4 a maximum
of n = 60 templates are maintained in each of a maximum
of M = 4 components of the model. This is found to be suf-
ficient to model a stable distribution whilst preventing com-
putational costs becoming too high for real-time tracking.
Figure 3 illustrates the SMAT model being used to identify
aspects of a head during a head tracking sequence. It can
be seen that the modes identify aspects of the target such as
side, front or occluded views.

4.3 Medoidshift Template Clustering

The second appearance model presented is again con-
structed online by incrementally clustering image patches
to identify various modes of the target appearance mani-
fold. Here, the clustering is performed by the medoidshift
algorithm introduced by Sheikh et al. (2007). Medoidshift
is a nonparametric clustering approach that performs mode-
seeking by computing shifts toward areas of greater data
density using local weighted medoids. As Sheikh et al.
(2007) show, the procedure can be performed incrementally,
meaning the clustering can be updated at the inclusion of
new data samples and the removal of some existing data
samples.

During tracking the appearance templates are collected
into vectors {G0 . . .Gt } and, as for the greedy clustering
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Fig. 4 The distance matrix pre and post clustering is shown with three
subsets of exemplars A, B and C. Sets A and C are temporally sepa-
rated but have the same appearance. Templates from each subset are
also shown

approach, a distance matrix, Q is populated with the L2

norm distances. Where the SMAT model maintains a Q
matrix for each model component, this model maintains
one Q matrix recording the distance between each stored
frame. The medoidshift algorithm uses Q to obtain a clus-
tering.1 The clustering is incrementally updated given a new
G vector and hence (by computing L2 norm values) a new
row/column of Q. In order to constrain the memory re-
quirements and computational complexity of maintaining
the appearance model, the number of templates retained,
and hence the number of data points clustered, is limited.
Once the limit has been reached the oldest template is re-
moved and replaced with the new template. The cluster up-
date must accommodate both the introduction and removal
of data points. The incremental update is achieved in a com-
putationally efficient manner exactly as described in Sheikh
et al. (2007).

The effect of this clustering, illustrated in Fig. 4, shows
the distance matrix at frame 275 of a head tracking sequence
before and after matrix indices are sorted according to the
cluster label. As can be seen, two temporally separated sub-
sets, A and C, of templates are assigned to the same cluster,
A ∪ C ⊂ T , identifying the front view aspect whilst a third
subset, B ⊂ T , is partitioned and identifies a side view as-
pect of the face. It is obvious that a displacement estimator
that represents the target appearance of the hidden side of
the face will be less reliable while this side view aspect is
presented.

4.4 Appearance Model Discussion

While the greedy approach provides a computationally effi-
cient method of partitioning the templates T = {G0 . . .Gt }
into aspects, T = {T 0 . . . T M} where T m ⊂ T , the algorithm
lacks some flexibility. Rather than the number of aspects
being a predefined value, M should ideally be data depen-
dent and reflect (rather than determine) the number of modes
present in the data’s distribution. Also once a template is as-
signed to a certain partition it will never become part of an-
other partition. This rigidity in terms of template-to-cluster
assignment and fixed number of modes is likely to cause

1As no meaningful partitioning is possible with small sample sets, the
clustering procedure is not carried out until frame 11 of tracking.

problems as the target appearance manifold evolves during
tracking.

The data driven, mode seeking medoidshift incremen-
tal clustering algorithm offers greater flexibility to the ap-
pearance modelling process. The number of aspects, M , are
not predefined and, as the appearance manifold grows and
changes over time, so too can the aspect membership of each
template.

Whilst the flexibility of the medoidshift approach allows
a representation that is more reflective of the real underlying
appearance distribution, the resulting representation of the
aspects are less straightforward to interpret than the SMAT
model. As the SMAT model has a fixed number of aspects,
it is straightforward to construct an association matrix that
associates a set of displacement predictors to each of the
models aspects. With the medoidshift approach however,
the varying number of aspects discovered and the adaptive
cluster membership of templates necessitates a less straight-
forward association mechanism. Section 6 gives details of
how both the appearance models are used within the track-
ing framework.

A significant factor in the computational overhead of
these appearance models is the maintenance of the distance
matrix, Q. As stated, this can be controlled by limiting the
number of templates stored by the model. Another way to
control the computational cost is to reduce the dimension-
ality of the distance function i.e. to subsample the image
templates prior to computation of L2 norm distances.

5 Regression vs. Registration

This section details and compares the registration and re-
gression approaches to predicting inter-frame displacement
of a target object for tracking. First, details of the registration
and regression tracking methods are given. The Linear Pre-
dictor (LP) regression tracker is introduced and the method
used for learning the LP regression function is detailed fol-
lowed by a description of methods of combining the outputs
of multiple LPs-LP flocks. Finally some experimental re-
sults are presented that compare regression and registration
techniques on an example of inter-frame displacement pre-
diction.

The tracking problem is defined as the task of estimating
the change of pose or warp parameter, δx, such that:

IR(W(x, δx)) ≈ IT (4)

where IR is the new input image, W is a warping function
(e.g. translation, affine) and IT is a template representing the
appearance of the target.

For the LK or registration based method this is treated as
a minimisation problem such that we wish to find δx that
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minimises the dissimilarity between IR and IT .

δx = argmin
δx

‖IR(W(x, δx)) − IT ‖ (5)

For the regression or Linear Prediction (LP) method, the
prediction directly estimates δx.

δx = P(IR(W(x,dx)) − IT ) (6)

Every tracking approach has some representation of the
target; tracking output is a function of both this representa-
tion and new image data. For registration methods the rep-
resentation is a template of pixel intensities, IT , drawn from
the input image at the location of the target. Tracking is then
the process of aligning template, IT , with the new input ref-
erence image, IR i.e. finding the warp, W , with parameters
δx that minimises (maximises) some distance (similarity)
function between IT and IR .

For the linear regression method presented in Sect. 5.2
the target representation is a vector of image intensities. Ad-
ditionally, the regression function, P, encodes information
about the target appearance. Tracking is then the process of
multiplying P with the difference between target represen-
tation vector and an intensity vector sampled from the input
image at the current position.

Looking at Eqs. 5 and 6 it is apparent that both ap-
proaches involve some operation on the difference between
the target representation and the input image information.
Whilst the registration method explicitly minimises the
cost surface to obtain an optimal alignment, the regression
method directly maps from image intensity difference pat-
terns to required displacements. In fact, as detailed in the
following section, the iterative optimisation methods used
in the registration approaches involve, at each iteration, a
linear operation on the intensity difference. The difference
between the two methods is that the parameters of the lin-
ear function used in the iterative optimisation methods are
based on cost surface gradient information, whereas for the
regression methods, the parameters are learnt from examples
of displacement and intensity difference patterns.

5.1 Tracking by Registration

The registration process aims to locate the region in IR (ref-
erence image) that most resembles IT (template image) by
minimizing a distance function, f , which measures the sim-
ilarity of the two regions. The position of IT relative to IR

is specified by a warp function W with parameters δx.

δx = argmin
δx

f [IR(W(x, δx)), IT (x)] (7)

Distance function, f , can be any similarity measure, e.g.,
L2 norm or MI. For comparisons of the relative merits of dif-
ferent similarity measures see Dowson and Bowden (2008).

The position of greatest similarity is found using an opti-
misation method. LK methods use a group of optimization
methods, the so-called Newton-type methods, i.e. methods
which assume locally parabolic shape and proceed with an
update as follows:

δx(k+1) ← δx(k) − H−1(δx(k))G(δx(k)) (8)

where H , ∂2f

∂δx2 , is the Hessian of f , and G, ∂f
∂δx , is the Ja-

cobian, while k indexes the iteration number. However, min-
ima in tracking and registration problems are frequent which
results in erroneous alignment of the template with the tar-
get. Multiple initializations can improve performance but at
an obvious computational cost.

Generally, LK type methods apply Quasi-Newton optimi-
sation, i.e. an approximation to the Hessian, H̃ , is used. In
general, Newton and Quasi-Newton only perform well when
near to the minimum. Steepest Descent methods, which ig-
nore local curvature and instead multiply G by a scalar step-
size value λ, perform better when further from the minimum.
The Levenberg-Marquardt (Marquardt 1963) method com-
bines these two methods. In this work a formulation sim-
ilar to that presented in Dowson and Bowden (2008) (us-
ing Levenberg-Marquardt and L2 norm) of this registration
based tracking is used in comparisons with regression based
techniques. The C++ (or Matlab) warthog library is used as
an efficient implementation.2

5.2 Tracking by Regression

Feature tracking by regression is achieved by predicting
inter-frame displacement of the target. The displacement
predictors explored here use linear models to predict. These
predictors compute motion at a reference point from a set of
pixels sub-sampled from its neighbourhood called the sup-
port set S = {s1, . . . , sk}. The intensities observed at the sup-
port set S are collected in an observation vector l(S). The
l0(S) vector contains the intensities observed in the initial
training image. Here the motion is a 2D translation t, we
use (S◦ t) = {(s1 + t), . . . , (sk + t)} to denote the support set
transformed by t. Translation is sufficient as the multi-modal
appearance models developed in Sect. 4 cope with affine de-
formations of the image templates, also shown in Dowson
and Bowden (2006).

Predictions are computed according to the expression
in Eq. 9 where P is a (2 × k) matrix that forms a lin-
ear mapping 
k → 
2 from image intensity differences,
d = l0(S) − l(S ◦ x), to changes in warp parameters, δx. The
state vector, x, is the 2D position of the predictor after pre-
diction in the preceding frame.

δx = Pd = P(l0(S) − l(S ◦ x)) (9)

2Link to code found at www.cvl.isy.liu.se/research/adaptive-regression-
tracking.

http://www.cvl.isy.liu.se/research/adaptive-regression-tracking
http://www.cvl.isy.liu.se/research/adaptive-regression-tracking
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This efficient prediction only requires k subtractions and
a single matrix multiplication, the cost of which is propor-
tional to k.

5.3 Predictor Learning

In order to learn P, the linear regressor or projection matrix,
N training examples of {δxi ,di} pairs, (i ∈ [1,N]) are re-
quired. These are obtained from a single training image by
applying synthetic warps and subtracting the deformed im-
age from the original. For efficiency, the warp and difference
computation is only performed at the support pixel locations
but, for illustration, the result of performing this operation
on the entire image is shown in Fig. 5 for eight different
translation warps. Also marked on the figure are four possi-
ble locations for support pixels and the unique observation
patterns they produce.

In this approach, support pixels are randomly selected
from within a range, rsp , of the predictors reference point.
This is in contrast to other LP learning strategies (Zimmer-
mann 2008; Ong and Bowden 2009) where the objective is
to select an optimal support set. The next step in learning
the linear mapping P is to collect the training data, {δxi ,di}
into matrices X, (2 × N ), and D (k × N ) where N is the
number of training examples. The Least SQuares (LSQ) so-
lution, denoted P , is then:

P = XD+ = XDT (DDT )−1 (10)

Fig. 5 Intensity difference images for eight translations. Four support
pixel locations illustrate the predictive potential of the difference im-
age. The input image is in the center. All images to the left/right of
the input have been translated left/right by 10 pixels. Those images
above/below the input have been translated by 10 pixels up/down. Un-
der the images, the motion and support vectors are illustrated

Where D+ is the pseudo inverse of D. Clearly there are
more sophisticated learning methods, both in the selection
of support pixels and in the method used to solve the re-
gression problem. However, the methods selected provide a
computationally efficient solution. As shall be shown here
and in Sect. 4, the use of LPs with low computational cost
combined with methods to rate the performance (and hence
weight the contribution) of each LP allows the replacement
of poorly performing LPs during tracking. This essentially
spreads the cost of learning appropriate mappings over a pe-
riod of time and allows incremental learning as opposed to
batch (offline) learning.

The LPs have a number of tunable parameters, these are
listed along with the values used in Table 2. The parame-
ter, rsp , defines the range from the reference point within
which support pixels are selected. Parameter rtr defines the
range of synthetic displacements used for training the pre-
dictor. Figure 6 illustrates the displacement prediction er-
rors of LPs with rtr = 10, rtr = 50 and rtr = 80. The pre-
dictor complexity, k, specifies the number of support pixels
used and hence the dimension of P. The number of synthetic
translations used in training is denoted N . In Sect. 7.2, ex-
perimental results are presented to illustrate the effect each
of these parameters has on tracker performance. It is suf-
ficient to say, increasing rtr increases the maximum inter
frame displacement at the expense of alignment accuracy;
k models the trade off between speed of prediction and ac-
curacy/stability. N does not affect prediction speeds but in-
stead parameterises a trade off between predictor learning
speeds and accuracy/stability.

Table 2 Parameters settings for all methods

Parameter Meaning Value

rsp Range around LP reference point
within which support pixels are
sampled

20

rtr Maximum magnitude of displacements
used for training LP

30

k LP complexity: number of support
pixels

150

N Training complexity: number of
training examples

100

L Max. number of predictors across all
modes

160(SMAT)
80(LP-MED)

M SMAT: Max. number of modes in
model

4

M LP-MED: Max. number of appearance
templates

200

α SMAT model learning rate 0.2

β LP-SMAT and LP-MED rate of
forgetting for association updates

0.1
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Fig. 6 The predicted displacement error (vertical axis) versus the true
displacement (horizontal axis) of three LPs is shown. The response
shown in red (or dark grey in black and white) at the bottom is of a
predictor trained on displacements in the range −40 to 40 pixels. The
response shown in green (light grey) in the middle is of a predictor
trained on displacements in the range −25 to 25 pixels and the re-

sponse shown in blue (black) at the top is of a predictor trained on
displacements in the range −5 to 5 pixels. It can be seen that, within
the range of displacements used for training, each of the LPs achieve
relatively low errors. It can also be seen, from the error bars, that whilst
increasing the range of displacements used for training extends the op-
erational range of the LP, it does so at the cost of stability

5.4 The Linear Predictor Flock

The displacement predictions made by LPs have limited ac-
curacy; this is especially the case where no attempt is made
to optimise support pixel selection. A simple approach to
handling the noise introduced by this inaccuracy is to take
the mean prediction from a collection of LPs as in Eq. 11.

δx̄ =
∑L

l=1 δxl

L
(11)

The state vector, x for each of the collection of L LPs is
then updated with this mean prediction, as in Eq. 12, causing
the LPs to flock together.

xl
t = xl

t−1 + δx̄, l = 1 . . .L (12)

The increase in prediction accuracy, as shown by the ex-
periments in Sect. 7.4, is due to the noise averaging charac-
teristics of the mean. Similar results are/would be obtained
using the median but this would complicate the weighting
of LP contribution to flock output as described below. An-
other approach is to use the RANSAC algorithm to select the
subset of LPs who’s prediction gains most consensus within
the flock. Although the outlier rejection of RANSAC may
be better than the mean value, RANSAC has a higher com-
putational cost and again is less well suited to weighting LP
contributions to flock output.

Within an LP flock, it is desirable to down weight poor
predictions or even remove/replace poorly performing LPs.

This is especially the case when using the simple learning
strategies detailed above. To weight the contribution a sin-
gle prediction makes to the overall flock output, some way
of assessing the reliability of the prediction is required—a
prediction error. As no ground truth displacement is avail-
able whilst tracking, this error function could rely on ob-
servation differences at the support pixels, the assumption
being that when a predictor performs well, the observations
at the support pixels—after the trackers state vector, x, has
been updated—should be similar to those observed in the
initial frame. Alternatively, we can consider flock output to
be ‘truth’ and evaluate predictions based on flock agreement,
i.e. the error is the difference between ‘true’ flock output
and the prediction being evaluated. If an LP ‘strays from the
flock’ it can be relied on less. This approach benefits from its
computational simplicity as it requires only difference com-
putations in the low dimensional pose space, ‖δx̄ − xl

t‖ (t is
the current frame) as opposed to in the higher dimensional
observation space ‖ll0 − llt‖. The observation difference er-
ror also requires additional computation for image bounds
checking.

There is considerable scope for different LP flock con-
tribution weighting strategies using either of the above pre-
diction errors. A simple and cost effective approach is linear
weighting (see Eq. 14) with normalised errors (see Eq. 13).
The weighting can be based on the errors computed in
the current frame, the previous frame or, as investigated in
Sect. 4, the history of the LP’s performance. In Sect. 6, the
weightings are computed in such a way as to control the
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contribution of predictors dependent on its usefulness given
the current appearance of the target. Equation 13 shows how
a weight is computed and Eq. 14 illustrates the linearly
weighted LP flock.

wl = 1 − ‖δx̄ − xl
t‖

max‖δx̄ − xl
t‖

, l = 1 . . .L (13)

δx̄ =
∑L

l=1 (wl · δxl )∑L
l=1 wl

(14)

The experiments in Sect. 7.3 show how this weighting
strategy improves the accuracy of the LP flock.

The ability to control the level of each LP’s contribu-
tion to the overall tracking output enables a high level of
adaptability and flexibility to the feature tracker—LPs can
be associated to various aspects of the target feature as in
Sect. 6. Furthermore, evaluating each LP’s performance pro-
vides the possibility to discard LPs that consistently perform
poorly. The process of evaluating, discarding, re-learning
and weighting performs a similar optimisation process to
that performed in offline training approaches or registration
processes such as the Lucas-Kanade tracker, but it does so
incrementally whilst the tracker is operating.

5.5 Inter-Frame Motion Example

Each of the three trackers under investigation (Lucas-
Kanade, LP and LP flock) was applied to an image sequence,
captured from a moving web camera, containing consider-
able motion blur and large inter-frame displacements caused
by vigorous shaking of the camera. Figures 7(a) and (b)
show frames 374 and 375 respectively.

On Fig. 7(a) the reference point being tracked is indi-
cated by the cross. On Fig. 7(b), which shows frame 375 as
suffering considerable motion blur, the same co-ordinate is
marked in light blue (grey in black and white) cross. Also
marked on Fig. 7(b) is the position each of the trackers be-
lieves to be the target. The Lucas-Kanade tracker, red (black)
circle, has moved a short distance from the position in the
previous frame and has failed to track the target. The sin-
gle LP tracker, yellow (grey) ×, has done better and the LP
flock, green (grey) star, has done better still. The ‘true’ point
(white cross) is obtained by taking a template of the target
and finding the global minimum in the cost surface as shown
in Fig. 7(c).

Figure 7(c) is informative as it illustrates the difference
between the regression and registration processes, specifi-
cally highlighting the problems of using gradient descent or
Newton methods that assume the presence of a locally con-
vex similarity function with a minima at the true warp po-
sition. Although the global minimum of the similarity func-
tion, or cost surface, is at the true warp position, the Lucas-
Kanade tracker is ‘caught’ in a local minimum. The inter-
frame displacement was larger than the basin of convergence

of the tracker i.e. it fell outside the area of convexity of
the surface around the true point. On the other hand, both
the regression techniques are able to ‘leap’ across the cost
surface and track successfully despite motion blur and the
large 37 pixel inter-frame displacement. This is because the
regression approach learns how patterns of image intensity
differences relate to displacements. In Sect. 7 various track-
ers, including more advanced registration based approaches,
are tested on the entire 1000 frame video sequence and, due
mainly to severe camera shake and hence large inter-frame
displacement, only the regression methods are successful.

6 Tracking Framework

This section details three configurations of the tracking
framework: LK-SMAT, LP-SMAT and LP-Medoidshift. The
first method uses the appearance model to identify dif-
ferent aspects of the target appearance and to provide a
template—the median template of the best matching model
component—for use in the registration process. For the LP
methods, the function of the appearance models developed
is to identify different aspects of the target such that the set
of LPs can be partitioned and associated with the aspects for
which they perform well.

Details of the mechanisms used to associate flocks of LPs
with appearance modes identified by each of the appear-
ance models are presented. Due to differences in the cluster-
ing approaches used—greedy and medoidshift clustering—
different strategies for this partitioning and association are
required. Specifically, with the medoidshift approach, there
is not a fixed number of modes and an appearance template
may change the cluster to which it belongs, whereas with
the SMAT approach, there is a fixed number of modes and
a template is assigned to just one mode for the duration of
tracking.

6.1 LK-SMAT: Registration Based Simultaneous
Modelling and Tracking

The LK-SMAT tracker uses the SMAT appearance model
to identify different aspects of the target appearance and thus
provide a template—the median template of the best match-
ing model component—for use in the registration process.

There is a one-to-one association between the target as-
pect and the templates used for tracking, this is illustrated by
the identity association matrix in Fig. 8. Only one template,
the median of the matched component, is associated to an
aspect.

Tracking is the process of registering new image data
with the median template from the estimated best aspect, ex-
tracting a template from the estimated location, updating the
appearance model (with the greedy algorithm), selecting the
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Fig. 7 Inter-frame motion example: The registration (circle), regres-
sion (×) and flock (star) displacement estimators are tested on a image
sequence featuring vigorous camera shake. The regression methods are

shown to accurately estimate the large (37 pixel) inter-frame displace-
ment while the registration method fails due to a local minimum in the
cost surface
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Fig. 8 LK-SMAT system architecture: The SMAT appearance model
identifies aspects by partitioning templates using a greedy clustering
algorithm. Identifying the current aspect selects the template for use
in registration process. The association matrix in this formulation is
simply an identity matrix

Algorithm 1 LK-SMAT tracking procedure

F0 ←first image
Initialise target position x̄0, height h and width w from
user input
Extract first appearance template G0

Set initial component weight wm = 1
while Ft �= NULL do

Register currently selected appearance template G∗
with new frame Ft as in Eq. 7
Extract new appearance template Gt at estimated target
location
Assign new template to partition m∗ using greedy
search algorithm
Compute L2 norm distances for a single row of Tm

Compute median template index and , j∗, and compo-
nent threshold, τm∗

, using Eqs. 2 and 3
Update component weights, wm,m = 1 . . .M , as in
Eq. 1.
t ← t + 1

end while

best component and hence medium template for registering
with the next frame and so on.

The complete tracking procedure is detailed in Algo-
rithm 1.

6.2 LP-SMAT: Linear Predictors for Simultaneous
Modelling and Tracking

The LP-SMAT tracker learns LPs specific to a particular as-
pect of the target object in order to continue to track through
significant appearance changes. This association between

Fig. 9 LP-SMAT system architecture: LPs associated to the active
SMAT appearance model component through association matrix are
activated for tracking. The contribution each LP makes is determined
by its strength of association with the current aspect. Association
strengths are updated to reflect the LP’s performance for the current
aspect each frame

aspects and LPs is achieved by an association matrix, A,
as illustrated in Fig. 9. Given a bank of L linear predictors
and M appearance model components, the association ma-
trix A has dimension (L×M). A zero value at Alm indicates
that predictor l is not associated to component m and there-
fore is deactivated when component m is active i.e. m = m∗.
Each of the M components are associated to L/M LPs. For
all the experiments, M = 4 and L = 160 meaning 40 LPs
are associated to each component and hence that 40 linear
predictions are computed each frame.

An error function is used to continually evaluate each
LP’s performance over time. Rather than assigning a single
error value to predictor l, error values are instead assigned
to the association between each of the L predictors and each
of the M appearance model components. The error values
are stored in the association matrix A and can also be inter-
preted as a measure of the strength of association between
a predictor and an appearance model component. The per-
formance value used is a running average of prediction error
with exponential forgetting; meaning that high values indi-
cate poor performance. The error function used is the L2

norm distance between predictor output δxl and the overall
tracker output δx̄, ‖δxl − δx̄‖. Equation 15 details how the
association matrix is updated with these error values. The
rate of forgetting is determined by parameter β = 0.1, set
experimentally and unchanged in all experiments.

At+1
lm = ((1 − β) · At

lm) + (β · ‖δxl − δx̄‖) (15)

This record of LP performance provides a method for
weighting each LP’s contribution to overall tracker output,
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δx̄, defined in Eqs. 16 and 17.

Wm
l =

{
1 − Alm

max(Aim)
, i = 1 . . .L if Alm > 0

0 if Alm = 0
(16)

δx̄ =
∑L

l Wm
l δxl∑L

l Wm
l

(17)

A further advantage of maintaining a performance metric
on each LP-aspect association is that it allows poorly per-
forming LPs to be replaced by LPs learnt online. A new pre-
dictor is learnt for every frame from synthetic displacements
of the previous frame and is evaluated on its prediction of the
current frame. The worst predictor, φ, is identified from the
current active component m∗ using Eq. 18. If the prediction
error of the new LP is less than the φth (worst) LP’s error,
‖δxnew − δx̄‖ < ‖δxφ − δx̄‖, then the new predictor replaces
the φth (only in the current active component). This process
serves both to introduce view-specific predictors as well as
prevent outliers from contributing to the tracker output. Note
that a predictor can be used by multiple components and is
only completely destroyed if it has zero values for all com-
ponents.

φ = argmax
l

Alm∗ , l = 1 . . .L (18)

Note that when a new component of the appearance
model is created all the predictors from the previously used
component are assigned to the new component by copying a
column of A.

The complete LP-SMAT tracking algorithm is sum-
marised in Algorithm 2.

6.3 LP-Medoidshift: Online Partitioning of Linear
Predictors for Tracking

Similarly to the LP-SMAT approach, by learning aspect
specific predictor weightings, each predictor can be associ-
ated to a greater or lesser extent to each aspect. However,
the medoidshift clustering approach does not have a prede-
termined number of clusters, as in the SMAT model. The
flexibility of the model is further enhanced by the possibil-
ity for appearance templates to change their cluster mem-
bership as the dataset is expanded incrementally. In order to
utilise this clustering for partitioning the set of LPs, a flex-
ible mechanism for associating clusters to LPs is required.
This is achieved by maintaining a record of the performance
of each LP for each template as opposed to each component
in the SMAT model. A combination of template member-
ship and these performance measures are used to compute a
strength of association between each LP and any aspect.

The weighting mechanism is achieved by an association
matrix, A, as illustrated in Fig. 10. Given a bank of L lin-
ear predictors and a set, T, of M appearance templates,

Algorithm 2 LP-SMAT tracking procedure

F0 ←first image
Initialise target position x̄0, height h and width w from
user input
M ← 4,L ← 160
for l = 0 to L/M do

xl = {rand(−h/2 : h/2), rand(−w/2 : w/2)} {Ran-
domly select reference point}
Generate {δxi ,di} {Training data}
Compute Pl as is Eq. 10
Al,m=1 = 1 {Assign all initial predictors to first mode
with equal weight}
m∗ = 1 {Set first mode as active}

end for
while Ft �= NULL do

Compute δxl as in Eq. 9 ∀l∃ Al,m∗ > 0 l = {0 . . .L}
Compute δx̄ as in Eq. 17
Update predictor states xl = xl + δx̄
Update association matrix, A, as in Eq. 15
Identify the worst predictor, φ, from the current active
component m∗ using Eq. 18.
Extract new appearance template Gt

Obtain m∗ ⊂ {1 . . .M} {Active component obtained by
greedy assignment of new template to model compo-
nent}
Assign template Gt to m∗ component
Update m∗ component mean and threshold as in Eqs. 2
and 3.
Learn new predictor as in Eq. 10
if new predictor performance ≥ old predictor perfor-
mance then

Replace worst predictor φ

Update association matrix, A, as in Eq. 15
end if
t ← t + 1

end while

T = {G0 . . .GM}, the association matrix A has dimension
(L × M). Note that M is much larger here than for the
SMAT model where M indicates the number of modes rather
than the number of templates. The value at Alm indicates
the strength (or weakness) of association between predictor
l and template (exemplar) m. The values of A are set and
updated using Eqs. 19 and 20. Equation 19 shows how the
prediction error is computed and used to initialise the associ-
ation values between each predictor and the new appearance
template mt . The error is the flock agreement error, as in the
LP-SMAT approach, and as detailed in Sect. 5.4.

Almt = ‖δx̄ − xl
n‖, l = 1 . . .L (19)

The association values for all the other templates in the
active aspect, Tm∗ ⊂ T, are then updated as follows, for all
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Fig. 10 LP-MED system architecture: The appearance templates are
incrementally clustered using the medoidshift modes seeking algo-
rithm. Each LP makes a prediction each frame and the level of con-
tribution made is determined by its performance during each of the
frames that form part of the current appearance aspect

predictors l = 1 . . .L:

A′
lm =

⎧⎨
⎩

((1 − β) · Alm) if Gm ∈ Ti∗
+ (β · ‖δx̄ − xl

n‖),
Alm if Gm /∈ Ti∗

(20)

This has the effect of smoothing the performance mea-
sures within a cluster. The values are a running average pre-
diction error with exponential forgetting; meaning that low
values of Alm indicate greater association between predic-
tor l and clusters containing exemplar m. As in the LP-
SMAT model, the rate of forgetting is determined by pa-
rameter β = 0.1, set experimentally. In all the experiments
M ≤ 200—meaning after 200 frames, the oldest template is
removed from the model—and L = 80. These parameters
are also set experimentally.

This error function and update strategy are used to con-
tinually evaluate predictor performance over time. This pro-
vides a means for appearance dependent weighting of each
predictors contribution to overall tracker output, δx̄, as de-
fined in Eqs. 21 and 22.

wl = 1 −
∑

∀m∃Tm∗ Alm

max
∑

∀m∃Tm∗ Alm

(21)

δx̄ =
∑L

l=1 (wl · δxl )∑L
l=1 wl

(22)

The continuous evaluation of predictor performance also
allows poorly performing predictors to be replaced by pre-
dictors learnt online. The worst predictor, l∗, is identified as

Algorithm 3 LP-Medoidshift tracking procedure

F0 ←first image
Initialise target position x̄0, height h and width w from
user input
for l = 0 to L do

xl = {rand(−h/2 : h/2), rand(−w/2 : w/2)} {Ran-
domly select reference point}
Generate {δxi ,di} {Training data}
Compute Pl as is Eq. 10
wl ← 1 {Set all initial predictor weights to 1}

end for
while Ft �= NULL do

Compute δxl as in Eq. 9 for l = {0 . . .L}
Compute δx̄ as in Eq. 22
Update predictor states xl = xl + δx̄
Extract new appearance template Gt

Compute new row and column of distance matrix, L2

norm Gt and {G0 . . .Gt−1}
Obtain Ti∗ ⊂ {G0 . . .Gt−1} {Obtained by clustering
T = {G0 . . .Gt−1}}
Update association matrix, A, as in Eq. 20
Identify worst predictor as in Eq. 23
Learn new predictor as in Eq. 10
if new predictor performance ≥ old predictor perfor-
mance then

Replace worst predictor l∗
Update association matrix, A, as in Eq. 24

end if
Compute predictor weightings for next frame as in
Eq. 21
t ← t + 1

end while

in Eq. 23. The LP whose minimum error (over all exemplars)
is greatest of all minimum errors (over all LPs) is selected.

l∗ = argmax
{l=1,...,L}

(
min{m=1,...,M} Alm

)
(23)

The entries in A relating to the replaced predictor are up-
dated as in Eq. 24.

Al∗m =
∑L

l=1 Alm

L
, m = 1 . . .M (24)

The entries in A relating to the replaced LP are averaged
across all LPs for each exemplar. The complete tracking al-
gorithm is summarised in Algorithm 3.

7 Experiments

This section details a set of experiments used to characterise,
compare and evaluate the various tracking approaches. First
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a convergence test is introduced and used to characterise and
compare registration and regression approaches to displace-
ment estimation as well as to investigate the effects of some
of the parameters for these methods. This is followed by an
experiment illustrating the benefits of the flock weighting
strategy. Finally each of the tracking approaches is run on a
number of challenging video sequences and the performance
of each tracker is evaluated and compared.

7.1 Convergence Testing

A convergence test is used to test and compare various con-
figurations of the regression and registration tracking ap-
proaches. For registration, the test involves extracting a tem-
plate at a given point, Ptrue = {xpos, ypos}, then starting

the registration process at various displacements Ptrue +
d1,Ptrue + d2, . . . ,Ptrue + dn, where d = 	P and n is
the number of tests carried out. The displacements can be
thought of as simulated inter-frame displacements in the
tracking scenario. For the regression tracking approach the
test is similar—the model is learnt at Ptrue and predictions
are made given observations at displacements. The conver-
gence test evaluates the accuracy (how close to Ptrue does the
tracker get), success rate (how many tests fall within a given
accuracy) and range (maximum magnitude of displacements
for which tracker performs well) of the approaches.

The results represented in Figs. 11 and 12 are obtained
by performing convergence tests using three tracking algo-
rithms (a single LP, a flock of 60 LPs and the Lucas-Kanade
registration algorithm) on a dataset of three hundred image

Fig. 11 Convergence error (in
pixels) for three tracking
approaches over a range of test
displacements. The error bars
represent the log of the variance
of the pixel error over the 3000
tests at each range

Fig. 12 Success rate of the
Lucas-Kanade, LP and LP flock
tracker. A test is treated as
successful if the tracker
converges to within 5 pixels of
the true point. The error bars
represent the variance of success
score over the 3000 tests at each
range
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patches (fifteen points selected on a grid from twenty images
of different content, qualities and from different sources).
The displacements (the horizontal axis) range from zero to
forty with twenty equal steps. At each of the three hundred
points, and for each of the twenty range steps, the conver-
gence test is performed ten times giving a total of sixty thou-
sand tests.

For the results presented in Figs. 11 and 12 the LP pa-
rameters are: k = 100 (number of support pixels), N =
150 (number of training examples), rsp = 20 (support pixel
range) and rtr = 20 (training range). The LP flock is made
up of 60 unweighted LPs with the same parameters. The
Lucas-Kanade tracker uses the L2 norm distance metric with
a template of 20-by-20 pixels, zero order nearest neighbour
interpolation and employs the Levenberg-Marquardt optimi-
sation method.

It can be seen in Fig. 11 that, up to a certain range of
displacements—that used in training the LP—the accuracy
of both the regression methods remains fairly constant after
which it degrades rapidly and linearly. The accuracy gained
by the LP flock of sixty LPs is around four pixels and can be
seen in Fig. 12 to increase the success rate by ten percent.
The success rate is the proportion of tests at a given range
that converge to within five pixels of the target. It is shown
by the error bars in Figs. 11 and 12 that, along with accu-
racy, the stability of the predictions made by the LP flock is
increased over the single linear prediction.

Figure 12 shows that the registration method has a greater
success rate up to displacements of around five pixels, af-
ter which it degrades rapidly. This suggests the registra-
tion method has greater alignment accuracy within a certain
range, the range of the basin of convergence of the alignment
cost surface, than the LP flock regression approach.

It is evident in Figs. 11 and 12 that the regression ap-
proaches have a greater range than the registration approach.
There are methods for increasing the range of registration
approaches such as image blurring and multiscale image
registration (Hansen and Morse 1999; Paquin et al. 2006).
These methods essentially work by smoothing the registra-
tion cost surface thus increasing the range over which align-
ment can be achieved but at the cost of alignment accuracy.
Performing these operations hierarchically, from course to
fine, can achieve greater range and increased accuracy but
with an obvious increase in computational cost. An equiva-
lent course to fine approach has been developed for regres-
sion methods by Zimmermann et al. (2009) and also Ong
and Bowden (2009). The Sequential Linear Predictor (SLP)
first predicts displacement using a linear regression function
trained on a larger range of displacements (and hence with
lower accuracy) and then with another function trained on
a smaller range and so on until the required level of accu-
racy is obtained. The real advantage of regression techniques
over registration techniques is that the range is defined by

the training process as opposed to being dependent purely
on the shape of the alignment cost surface i.e. it is possible
to specify a priori the desired operating range as is explored
in the following section.

7.2 Parameter Effects

In order to evaluate the effect of various parameters on the
accuracy, stability and computational cost of LP trackers,
convergence tests are performed with a range of parameter
configurations. The parameters explored are rsp (range from
reference point within which support pixels are selected), rtr
(range of synthetic displacements used in training), k (com-
plexity of LP i.e. number of support pixels) and N (learning
cost i.e. number of synthetic displacements used in train-
ing the LP). Rather than performing a global optimisation
of these parameters (over the image dataset) these tests il-
lustrate how the convergence characteristics of the trackers
changes with varying parameters.

Figure 13(a) and (b) show how varying rsp (the range
from the reference point within which support pixels are se-
lected) effects the LP’s convergence test performance. As
the support range increases, the accuracy increases. There is
little or no effect on the range of displacements for which
the prediction accuracy remains constant (the same as rtr ).
Given the nature of the convergence tests (the image is sta-
tic so there is no discrepancy between foreground and back-
ground) it should be noted that, in a real tracking scenario, if
rsp is too large it may result in the use of background pixels
which would result in poor displacement predictions.

Figures 13(c) and (d) show how varying rtr (range of
synthetic displacements used in training) effects the conver-
gence test performance. As the training range increases, the
range of displacements for which the prediction accuracy
remains constant also increases. This is as expected—an LP
trained for displacements of up to 20 pixels will perform
consistently for test ranges of 20 pixels or less and poorly
for displacements greater than 20. The trade-off for this in-
crease in operating range is lower prediction accuracy (this
result is also illustrated in Fig. 6).

7.3 Prediction Evaluation and Flock Weighting

The LP flock weighting strategy introduced in Sect. 5.4 pro-
vides a mechanism for controlling each individual LP’s con-
tribution to the overall flock output. The level of contribu-
tion an LP makes can be influenced by two factors. Firstly,
due to the random selection of reference point and support
pixels and the inherent weakness of the LSQ method, an LP
may be consistently poor at predicting displacements. This
would imply the LP should make a small contribution and
that it should have a low weight. Secondly an LP’s ability to
predict may also be affected by changes to pixel intensities
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Fig. 13 The effect of varying the support pixel range, rsp , and training range, rtr , on pixel errors and success rates. Larger (redder in colour online
version) lines indicate greater rsp /rtr . Values for rsp and rtr start at 5 pixels, increasing to 50 pixels in steps of 5

on the target. Such intensity changes may be brought about
by changes to the appearance of the target, occlusions and, in
the case of 2D translation LPs, out of plane displacements,
rotation or affine deformation. If, for example, part of the
target being tracked by an LP flock should become occluded,
then those LPs whose reference point and support pixels are
occluded—or indeed close to the occlusion boundary—will
be considerably less reliable during the occlusion and hence
would benefit from receiving a low weight.

In Sect. 4, appearance models that can handle pixel inten-
sity changes on the target, such as those brought about by oc-
clusion, were developed and Sect. 6 details adaptive weight-
ing mechanisms to control the contribution of LPs given
the current state of the target. To demonstrate the principle

and effectiveness of the weighting mechanism presented, an
experiment comparing both the weighted and unweighted
LP flock is presented. Figure 14 shows the results of run-
ning the two methods on a convergence test involving de-
formation to the target. Sixty thousand randomly selected
displacements from the 300 image patches are made and the
prediction/convergence error is recorded. However, after the
LP flock is learnt and for each of the 20 test ranges, a 5-by-
5 pixel area randomly located within 20 pixels of the target
reference point is masked i.e. the 25 pixels are set to white
thus synthesising an occlusion on the target.

The flock agreement error, ‖δx̄ − xp
n‖, computed on the

current flock output is used to re-weight contributions and
hence compute the ultimate flock displacement prediction.
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Fig. 14 Average result of sixty thousand convergence tests on
weighted flocks of LPs using images with synthetic occlusions. The
weighted flock is more accurate than the unweighted flock across all
displacement ranges. The stability of the flock also improves slightly
as can be seen by the shorter error bars

As can be seen in Fig. 14, the weighted flock is consistently
more accurate than the unweighted flock. The stability of
the flock also improves slightly as can be seen by the shorter
error bars in Fig. 14.

It should be noted that the results shown in Fig. 14
only demonstrate that the flock agreement error can be used
to weight poorly performing or occluded LPs. In this ex-
periment no LPs are replaced and no multi-modal appear-
ance models are used. The usefulness of the weighting ap-
proach is more thoroughly demonstrated in the comparison
between the LP-FLOCK and LP-SMAT/LP-MED trackers
in Sect. 7.4. For the LP-SMAT and LP-MED trackers the
weighting is used to evaluate, remove and replace LPs as
well as form aspect specific sets of LPs.

7.4 System Evaluation

This section presents experiments evaluating the tracking
performance in terms of accuracy and efficiency and pro-
vides comparison to other state of the art simultaneous mod-
elling and tracking approaches. First each of the investi-
gated trackers is reviewed, then the datasets used are detailed
and tracking performance is evaluated. Videos demonstrat-
ing each of the trackers on the sequences are available here.3

Trackers:4 The trackers under investigation in this sec-
tion are:

3www.cvl.isy.liu.se/research/adaptive-regression-tracking.
4Links to implementations for trackers (1) and (2) available at www.
cvl.isy.liu.se/research/adaptive-regression-tracking and for (6) and
(7) at www.vision.ee.ethz.ch/boostingTrackers.

Table 3 Summary of datasets

Name Image #frames Introduced

Car-Surveillance 282 PETS’2000

Dudek-Face 1144 Jepson et al.
(2001)

Runner 400 Dowson and
Bowden
(2006)

Head-Motion 2350 New

Camera-Shake 989 New

1. LK—the inverse compositional LK tracker using L2

norm and Levenberg-Marquardt optimisation,
2. LK-SMAT—as described in Sect. 6.1 and (Dowson and

Bowden 2006),
3. LP-FLOCK—as in Sect. 5.4 with 60 LPs.
4. LP-SMAT—as in Sect. 6.2,
5. LP-MED—as in Sect. 6.3,
6. Online-Boost—The tracker introduced by Grabner et al.

(2006) that tracks by online boosting discriminative fore-
ground/background classifiers, and

7. Semi-Online-Boost—the online boosting tracker with a
semi-supervised classifier update (Grabner et al. 2008).

Results for tracker (7) are only presented if and when
tracker (6) is shown to fail where other techniques succeed.
All parameters for trackers (6) and (7) are default and for
all other trackers are as detailed in Table 2 and no parameter
tuning is performed.

Datasets:5 The datasets used for evaluation are detailed
in Table 3. The Car-Surveillance is a benchmark sequence
in the IEEE International Workshops on Performance Evalu-
ation of Tracking and Surveillance (PETS’2000) featuring a
car from a surveillance camera. The Dudek-Face sequence
was presented in Jepson et al. (2001) to demonstrate the
trackers handling of appearance changes and un-modeled
pose deformations. The Runner sequence is a typical track
athletics sequence. The Head-Motion is a sequence of a
moving head and torso, and the Camera-Shake sequence
is taken from a moving webcam pointing at a phone and
undergoing vigorous shaking causing motion blur and large
inter-frame displacements.

5All datasets and ground-truth (where present) available at www.cvl.
isy.liu.se/research/adaptive-regression-tracking.

http://www.cvl.isy.liu.se/research/adaptive-regression-tracking
http://www.cvl.isy.liu.se/research/adaptive-regression-tracking
http://www.cvl.isy.liu.se/research/adaptive-regression-tracking
http://www.vision.ee.ethz.ch/boostingTrackers
http://www.cvl.isy.liu.se/research/adaptive-regression-tracking
http://www.cvl.isy.liu.se/research/adaptive-regression-tracking
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For the Car-Surveillance sequence, the target was suc-
cessfully tracked by the LP-SMAT, LP-MED and Online-
Boost in all 282 frames (as the Online-Boost tracker is suc-
cessful the Semi-Online-Boost tracker is not tested). All
other trackers fail to track the target through the appearance
changes within the first 50 frames. Figure 15 shows tracking
results for the first last and middle frames of the sequence.
Only the LP-MED and Online-Boost trackers are marked for
clarity—the LP-SMAT result is very similar to the LP-MED
result in this case. Also shown in Fig. 15 are the four SMAT
model median templates at frame 141. The current aspect
median is marked with a bullseye. The LP-SMAT tracker
operated at an average of 24 frames per second (fps), the LP-
MED at an average 20 fps and the Online-Boost at 16 fps.

The Dudek-Face sequence was not tracked entirely by
any of the tracking approaches under investigation. Fig-
ure 16 highlights frames from the sequence with each track-
ers estimated pose marked. At around frame 155 both the
LK and the LK-SMAT trackers begin to drift. Between
frames 203 and 223 the hand is passed over the face caus-
ing the LP-FLOCK tracker to leave the target. The LP-
SMAT, LP-MED and Online-Boost trackers are able to track
through the hand occlusion. At around frame 364 the glasses

Fig. 15 Tracking results for LP-MED (solid rectangle) and On-
line-Boost (dashed rectangle) are shown for first, last and middle frame
of sequence along with the median templates identified by the SMAT
appearance model during frame 141

are removed from the face, this causes a momentary appear-
ance change as well as a longer term change. All the re-
maining three trackers cope with this appearance change.
At around frame 650 the LP-SMAT tracker begins to drift,
tracking only the lower part of the face, this is followed
around 100 frames later by the LP-MED tracker loosing the
target. Around 50 frames after the LP-SMAT tracker has lost
track the Online-Boost tracker also looses track and begins
to adapt to the background. By chance the face moves back
into the area being tracked and the Online-Boost tracker is
able to recover for a short while before losing track again for
the last 10 frames. The Semi-Online-Boost tracker was also
tested on this sequence, but produced poorer results than
the LP-SMAT, LP-MED and Online-Boost trackers. During
much of the sequence, the Semi-Online-Boost tracker pro-
duces no output and a number of false positive detections.
It should be noted that Grabner et al. (2006) report results
showing another version of the Online-Boost boost tracker
successfully tracking the Dudek-Face sequence, however
these results are not achievable with the simpler implemen-
tation that is made publicly available.

The tracked region in the Dudek-Face sequence is 130 ×
130 pixels. The Online-Boost tracker runs at a fairly con-
stant 4 fps and the LP-SMAT and LP-MED trackers run at
an average 8 fps and 10 fps respectively. Figure 17 compares
the computational cost of these three methods. As the frame
by frame processing time is not available for the Online-
Boost tracker just the average frames per second is plotted.
The Online-Boost algorithm has a very consistent computa-
tion time per frame. From this figure it can be seen that the
LP-MED tracker also operates at a stable speed after an ini-
tial period. This initial high frame rate is due to having few
examples in memory and hence a small distance matrix and
association matrix. Interestingly, the occasional peaks in the
LP-SMAT frame rate (seen in Fig. 17) coincide with signifi-
cant events in the sequence e.g. the first and second peaks (at

Fig. 16 (Color online) Highlighted frames from the Dudek-Face sequence. Tracker key: Dark blue—LK, black—LP-FLOCK, green—LK-SMAT,
light blue—LP-SMAT, red—LP-MED, yellow—Online-Boost
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Fig. 17 The floating average
frames per second is shown for
LP-SMAT and LP-MED
trackers is shown. The average
speed of the Online-Boost
tracker on this sequence is
shown for reference

around 200 frames and 350 frames) coincide with the hand
passing over the face and with the glasses being removed
respectively. This is due to the creation of new modes dur-
ing these transient appearance changes. As a new mode will
be represented by very few templates the cost of maintain-
ing the distance matrix between each template is low. As the
component becomes populated with new templates the cost
of maintaining the distance matrix rises again as is shown
by the falling frame rate after each event.

Figure 18 shows the SMAT model medians for four key
frames. The medians are sorted with decreasing weight left
to right. The four key frames are: during and after the hand
occlusion, and during and after the removal of the glasses.
It can be seen that the SMAT model quickly builds a new
mode to represent each of the transient changes of appear-
ance. After the hand passes away from the face the appear-
ance returns to an earlier aspect and so the previously learnt
predictor weightings are re-employed. After the glasses have
been removed a new mode is created to represent the new
appearance and this mode soon has the highest weight i.e.
most resembles the estimated target appearance.

The Runner sequence features athletes running through
the bend of a race track and then down the straight to-
wards the camera. The trackers are initialised in the first
frame on the only athlete to remain in the scene for the
whole sequence. As can be seen in Fig. 19, the Online-
Boost tracker (yellow dashed rectangle) jumps up to start
tracking the head and upper torso of the athlete at frame 10
whereas all the other trackers stay tracking the central torso
area. This is reflected in the positional accuracy graph in
Fig. 20. As the ground-truth position (obtained by hand la-

Fig. 18 SMAT model medians for four key frames. The medians are
sorted with decreasing weight left to right. The four key frames are:
during and after the hand occlusion, and during and after the removal
of the glasses

beling) is centered on the athlete the Online-Boost tracker
accumulates greater area once it starts to track the head of
the athlete. Result for the Semi-Online-Boost tracker are not
shown here as the tracker fails early on and, due to the sig-
nificant appearance changes early in the sequence, does not
produce any output for most of the sequence. The LK tracker
(blue rectangle) begins to drift and loses track completely
by frame 150 (refer to Figs. 19 and 20). The LP-FLOCK
tracker begins to lose track at around frame 100. The Online-
Boost, LK-SMAT, LP-SMAT and LP-MED continue to
track through significant appearance changes (even though
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Fig. 19 (Color online) Highlighted frames from the track running sequence. Tracker key: Dark blue—LK, black—LP-FLOCK,
green—LK-SMAT, light blue—LP-SMAT, red—LP-MED, yellow—Online-Boost

Fig. 20 The positional error for
each tracker is shown.
Ground-truth was obtained by
hand labeling the sequence

the Online-Boost is tracking a different part of the athlete it
does not loose track until around frame 410). The LP-MED
tracker stays on the target longer than all the other trackers
and gives a more stable track of the target. All trackers fail
by frame 420. The frame rates for each tracker on this and
all other sequences are given in Table 4.

The head tracking sequence consists of 2500 frames with
the head undergoing large pose variations and at one point
becoming occluded by a cup for over 100 frames. The
LK-SMAT, LP-SMAT, LP-MED, Online-Boost and Semi-
Online-Boost trackers each track the head throughout the
whole sequence but the methods with no online appearance
learning (LK and LP-FLOCK) both fail to track the target.

Figure 21 shows the head being tracked by the LP-MED
tracker (top row). On the bottom row of Fig. 21, the posi-
tion of the LPs are indicated (black spot) as well as the sup-
port pixel range, rsp , (white dashed circles). Also marked on
the bottom row are the positions of the worst predictor from
the current frame (red mark) and the predictor learnt in the
current frame (green mark). As can be seen the worst pre-
dictors often lie with most or all the support pixels on the
background or, in the case of the cup, on the occluding ob-
ject. These predictors are not necessarily removed, they may
be re-employed later in the sequence when a previous aspect
is presented.
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Table 4 Average frame rate per second. Template sizes for each
sequence are: CAR—40 × 20, DUDEK—130 × 130, RUNNER—
38 × 126, HEAD—90 × 100, CAM-SHAKE—25 × 25. Parameters
for all methods are unchanged for each sequence and set as detailed in
the relevant part of Sect. 6

Tracker CAR DUDEK RUNNER HEAD SHAKE

LK-SMAT 12 2 6 6 12

LP-FLOCK 65 16 24 25 65

LP-SMAT 24 10 15 16 35

LP-MED 20 8 12 12 20

Online-Boost 16 4 7 7 16

Fig. 21 The medoidshift algorithm tracks the head sequence (top
row). LP positions (small black dots) and support pixel ranges (white
dashed circles) are shown as well as the worst predictor from the cur-
rent frame (large black circle) and the predictor learnt from this frame
(large white circle). It is this process that generates view-specific dis-
placement predictors within the model

The Camera-Shake sequence is captured from a low cost
web cam and is of a static scene and a moving camera. The
camera undergoes considerable shaking causing large inter
frame displacements as well as translation, rotation and tilt-
ing. Figure 22 shows results on this sequence for the LP-
MED (red), Online-Boost (yellow solid) and Semi-Online-
Boost (yellow dashed) trackers (results for the LP-SMAT
tracker are similar to the LP-MED tracker on this sequence,
though a little less accurate). All trackers except LP-SMAT
and LP-MED fail on this sequence by frame 280 (the onset
of some camera shake). The Semi-Online-Boost algorithm
is able to re-initialise a number of times during the sequence
but is never able to track while the camera is being shaken

due to high inter-frame displacements and image blur. The
displacement predicted from frame 374 to 375 is 37 pixels
(16 vertical and 33 horizontal) and despite the significant
blurring in frame 375, the tracker still succeeds in making
a low error prediction. Due to online learning of predictors,
some are learnt from blurred images allowing for predic-
tion during this blur. Figure 23 shows the positional accu-
racy plots generated by the six trackers on this sequence.
Due to the limited basin of convergence both the alignment
based trackers fail to deal with the large inter frame dis-
placements and SMAT loses track as soon as the camera
starts to shake. On this sequence the LP-Medoidshift ap-
proach achieves more accurate results than the other two LP
trackers.

For all sequences the target patch is identified by hand
only in the first frame, all algorithm parameters are un-
changed between sequences. Ground truth for every frame
of the athletics and camera motion sequences was achieved
by hand labeling and was used to generate the error plots in
Figs. 23 and 20.

8 Conclusion

An online Linear Predictor tracker has been introduced and
has been shown to be applicable to a number of tracking
scenarios. The online LP allows for the explicit trade-off be-
tween predictor range, accuracy and computational cost as
shown by the convergence tests in Sect. 7.1. Essential to the
use of the online-LP are mechanisms to evaluate, weight,
remove and relearn LPs online during tracking. A general
tracking framework that combines online-LP flocks with
methods for online appearance model learning has been de-
veloped and various configurations investigated. Within this
framework the tracking process provides a mechanism for
self supervision of the appearance model learning process
and, in return, the appearance model provides information
about the structure of the target appearance space that en-
ables the tracker to cope with a high degree of variation in
appearance. The only supervision required is to identify the
location of the target in the first frame.

Two methods for appearance model learning are intro-
duced. The SMAT model partitions the appearance space
into a predefined number modes that represent aspects of
the target. While this does limit the flexibility of the model
and may lead to potential misrepresentation of the underly-
ing appearance distribution, the SMAT tracker has demon-
strated the ability to adapt to large appearance changes very
quickly. The ability to introduce new modes on-the-fly to
represent transient target appearance changes (e.g. occlusion
of face by hand, see Fig. 18), whilst maintaining unchanged
the representation of other parts of the appearance space,
proves highly beneficial for tracking many objects.
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Fig. 22 Highlighted frames from the shaking camera sequence. Tracker key: Solid dark grey (red)—LP-MED, solid white (yel-
low)—Online-Boost, dashed white (yellow)—Semi-Online-Boost

Fig. 23 The positional error for
each tracker is shown. Where
the Online-Boost tracker fails
and is re-initialised is indicated
by the vertical yellow lines

The medoidshift algorithm on the other hand benefits
from the increased flexibility and hence greater likelihood
to build more representative models of the object appear-
ance space, regardless of the temporal evolution of the tar-
get appearance. This flexibility also extends into the general
tracking framework by allowing a more flexible association
strategy between aspects of the target and the online-LPs.

The tracking approaches investigated in this work model
2D target transformations (translation). Any higher order
transformations of the target (e.g. scale or rotation) are con-
sidered as appearance changes, and treated as new aspects
within the adaptive appearance models. Whilst the introduc-
tion of higher order transformations is possible, and may

considerably improve results in some cases (e.g. the Dudek-
Face and Runner sequence, in which the target undergoes
considerable scale changes), it has been found that the intro-
duction of more parameters into the warping function can
increase the risk of drift and the number of local minima
(Dowson and Bowden 2006).

An objective of this work is to delineate the class of prob-
lems for which the proposed methods are preferential by in-
cluding examples of partial failure (Dudek-Face) and exam-
ples where this method outperforms the other approaches
(Camera-Shake). The success of the LP based techniques on
the Camera-Shake sequence highlight the ability of regres-
sion techniques to cope with large inter-frame displacements
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in the presence of local minima. On the other hand, registra-
tion techniques tend to achieve higher accuracy provided the
displacement is within the basin of convergence.

Other tracking approaches (Ross et al. 2008; Jepson et
al. 2001) have been shown to track the Dudek-Face se-
quence. Compared to the proposed approach, these methods
are slower, but handle the significant appearance changes
in this sequence more robustly. Given that these are affine
trackers and the trackers compared here only model trans-
lation, direct comparison is not included as this would raise
issues regarding the DoF used in tracking that are not ad-
dressed here.

Both the appearance models developed have demon-
strated the ability to adapt to large variations in appearance
in order to manage flocks of online-LPs and to facilitate ac-
curate and efficient tracking. When compared to the online
boosting methods, there are clearly cases where the discrim-
inative classifiers will be better able to represent the target,
but for a class of tracking problems the LP-MED/LP-SMAT
model provides comparable accuracy with an increase in
computational efficiency.

Due to the computational efficiency of the online-LP, the
tracker is able to track targets in real time (35/20 frames per
second for LP-SMAT/LP-MED), even whilst building and
maintaining the appearance model. It is shown that the ap-
proach can handle large inter frame displacements and adapt
to significant changes in the target appearance with low
computational cost. The online-LP tracker has been shown
to be particularly effective at tracking through considerable
camera shake.

The advantages of such a simultaneous modelling and
tracking approach are clear when considering how much
hand crafting, offline learning, hand labeling and parameter
tuning must be done in order to employ many existing ob-
ject tracking approaches. By developing the online-LP and
mechanisms to manage LP-flocks, the class of applicable
tracking problems has been extended to included, amongst
others, automatic seeding of the tracker. For example, a
computer vision application may seed a target tracker—such
as LP-SMAT or LP-MED—on a region of detected motion,
without any prior on target appearance.

Many applications require tracking that operates at high
frame rates and can handle high object velocities as well as
be robust to significant appearance changes and occlusion.
This is achieved here by utilising the computationally effi-
cient technique of least squares prediction and online target
appearance modelling.
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