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Abstract In this paper we formulate a hierarchical config-
urable deformable template (HCDT) to model articulated vi-
sual objects—such as horses and baseball players—for tasks
such as parsing, segmentation, and pose estimation. HCDTs
represent an object by an AND/OR graph where the OR
nodes act as switches which enables the graph topology to
vary adaptively. This hierarchical representation is compo-
sitional and the node variables represent positions and prop-
erties of subparts of the object. The graph and the node
variables are required to obey the summarization princi-
ple which enables an efficient compositional inference algo-
rithm to rapidly estimate the state of the HCDT. We spec-
ify the structure of the AND/OR graph of the HCDT by
hand and learn the model parameters discriminatively by
extending Max-Margin learning to AND/OR graphs. We il-
lustrate the three main aspects of HCDTs—representation,
inference, and learning—on the tasks of segmenting, pars-
ing, and pose (configuration) estimation for horses and hu-
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mans. We demonstrate that the inference algorithm is fast
and that max-margin learning is effective. We show that
HCDTs gives state of the art results for segmentation and
pose estimation when compared to other methods on bench-
marked datasets.
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1 Introduction

Vision is a pre-eminent machine intelligence problem which
is extremely challenging due to the complexity and ambigu-
ity of natural images. Its importance and difficulty can be ap-
preciated by realizing that the human brain devotes roughly
half of the cortex to visual processing.

In recent years there has been encouraging progress in
addressing challenging machine intelligence problems by
formulating them in terms of probabilistic inference us-
ing probability models defined on structured knowledge
representations. These structured representations, which
can be formalized by attributed graphs, encode knowledge
about the structure of the data. Important examples include
stochastic context free grammars (Manning and Schuetze
1999) and AND/OR graphs (Dechter and Mateescu 2007;
Chen et al. 2006; Jin and Geman 2006). The probability
distributions deal with the stochastic variability in the data
and, when training data is available, enable the models to
be learnt rather than being specified by hand. But although
this approach is conceptually very attractive for vision (Zhu
and Mumford 2006) it remains impractical unless we can
specify efficient algorithms for performing inference and
learning. For example, the success of stochastic context free
grammars (Manning and Schuetze 1999) occurs because the
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nature of the structured representation for these types of
grammars enables efficient inference by dynamic program-
ming. The classic applications of machine learning to vision
concentrated on applications where there was no need to
model the structure (i.e. there was no benefit to having unob-
served hidden states) such as support vector machines (Oren
et al. 1997) and AdaBoost applied to face (Viola and Jones
2004) and text detection (Chen and Yuille 2005). More re-
cent work—such as latent SVM (Felzenszwalb et al. 2008)
and boosting (Viola et al. 2005)—does involve some hidden
variables but these models still contain far less structure than
the probabilistic grammars, such as AND/OR graphs, which
seem necessary to deal with the full complexity of vision.

In this paper we address the problem of parsing, segment-
ing and estimating the pose/configuration of articulated ob-
jects, such as horses and humans, in cluttered backgrounds.
By parsing, we mean estimating the positions and properties
of all sub-parts of the object. Pose estimation for articulated
objects, and in particular humans, has recently received a lot
of attention. Such problems arise in many applications in-
cluding human action analysis, human body tracking, and
video analysis. But the major difficulties of parsing the hu-
man body, which arise from the large appearance variations
(e.g. different clothes) and enormous number of poses, have
not been fully solved. From our machine learning perspec-
tive, we must address three issues. Firstly, what object rep-
resentation is capable of modeling the large variation of both
shape and appearance? Secondly, how can we learn a proba-
bilistic model defined on this representation? Thirdly, if we
have a probabilistic model, how can we perform inference
efficiently (i.e. rapidly search over all the possible configu-
rations of the object in order to estimate the positions and
properties of the object subparts for novel images). These
three issues are clearly related to each other. Intuitively, the
greater the representational power, the bigger the compu-
tational complexity of learning and inference. Most works
in the literature (e.g. Srinivasan and Shi 2007; Mori 2005;
Chen et al. 2007), focus on only one or two aspects, and not
on all of them (see Sect. 2.2 for a review of the literature). In
particular, the representations used have been comparatively
simple. Moreover, those attempts which do use complex rep-
resentations tend to specify their parameters by hand and do
not learn them from training data.

In this paper, we represent the different configura-
tions/poses of humans and horses by the hierarchical
AND/OR graphs proposed by Chen et al. for modeling de-
formable articulated objects (Chen et al. 2007), see Fig. 1.
The nodes of this graph specify the position, orientation
and scale of sub-parts of the object (together with an in-
dex variable which specifies which sub-parts of the object
are present). This gives a representation where coarse infor-
mation about the object—such as its position and size—are
specified at the top level node of the graph and more precise
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Fig. 1 The HCDT uses an AND/OR representation which enables us
to represent many different configurations/poses of the object by ex-
ploiting reusable subparts. The AND nodes (squares) represent com-
positions of subparts represented by their children. The OR nodes (cir-
cles) are “switch nodes” where the node can select one of its child
nodes, hence enabling the graph to dynamically change topology. The
LEAF nodes (triangles) relate directly to the image. The compositional
inference algorithm estimates a parse tree which is an instantiation
of the AND/OR graph. This involves determining which subparts are
present—i.e. the graph topology specified by the OR nodes—and es-
timating the positions and properties of the subparts. For the baseball
player dataset (Mori et al. 2004), the topology of the parse tree speci-
fies the pose/configuration of the baseball player. The nodes and edges
in red indicate one parse tree. In this paper, the HCDT for baseball
players represents 98 possible poses—i.e. parse tree topologies

details are encoded at the lower levels. We call this the sum-
marization principle because, during inference and learning,
the lower level nodes in the graph only pass on summary sta-
tistics of their states to the higher level nodes—alternatively,
the higher level nodes give an “executive summary” of the
lower level nodes. In this paper we restrict the graph to be a
tree which simplifies the inference and learning problems.
The probability distribution defined on this representa-
tion is built using local potentials, hence obeying the Markov
condition, and is designed to be invariant to the position,
pose, and size of the object. The AND nodes encodes spatial
relationships between different sub-parts of the graph while
the OR nodes act as switches to change the graph topol-
ogy. The AND/OR graph represents a mixture of distribu-
tions where the state of the OR nodes determines the mix-
ture component. But the AND/OR graph is compact because
different topologies can contain the same sub-parts (see re-
usable parts (Jin and Geman 2006)). Hence the AND/OR
graph (see Fig. 1) can represent a large number of different
topologies (98 for humans and 40 for horses) while using
only a small total number of nodes (see analysis in Sect. 3.3).
We perform inference on the HCDT to parse the object—
determine which subparts are present in the image and esti-
mate their positions and properties. Inference is made effi-
cient by exploiting the hierarchical tree structure, the sum-
marization principle, and the reusable parts. These imply
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that we can perform exact inference by dynamic program-
ming which is of polynomial complexity in terms of the di-
mensions of the state space (e.g. the number of positions and
orientations in the image). But these dimensions are so high
that we perform pruning to restrict the number of state con-
figurations that we evaluate (pruning is often done in practi-
cal implementations of dynamic programming (Coughlan et
al. 1998)). This leads to a very intuitive algorithm where pro-
posals for the states of the higher level nodes are constructed
by composing proposals for the lower level nodes and keep-
ing the number of proposals small by pruning. Pruning is
done in two ways: (i) removing proposals whose goodness
of fit (i.e. energy) is poor, and (ii) performing surround sup-
pression to remove proposals that are very similar (e.g. in
space and orientation). We show that this pruned dynamic
programming algorithm performs rapidly on benchmarked
datasets and yields high performance (see results section).

Finally, we learn the model parameters, which spec-
ify both the geometry and appearance variability. We de-
sign the graph structure by hand (which takes a few days)
but our more recent work (Zhu et al. 2008) suggests how
the graph structure without OR nodes could be learnt in
an unsupervised manner (i.e. performing “structure induc-
tion” in machine learning terminology). To learn the pa-
rameters we extend the max-margin structure learning al-
gorithm (Altun et al. 2003; Taskar et al. 2003, 2004) to
HCDTs—AND/OR graphs—(these papers extended max-
margin learning from classification to estimating the para-
meters of structured models such as stochastic context free
grammars). Max-margin learning is a supervised approach
where the groundtruth of parse tree is given for training.
Max-margin learning is global in the sense that we learn all
the parameters simultaneously (by an algorithm that is guar-
anteed to find the global minimum) rather than learning local
subsets of the parameters independently. The discriminative
nature of max-margin learning means that it is often more ef-
fective than standard maximum likelihood estimation when
the overall goal is classification (e.g. into different poses).
It also has some technical advantages such as: (i) avoiding
the computation of the partition function of the distribution,
and (ii) the use of the kernel trick to extend the class of fea-
tures. We perform some pre-processing to estimate poten-
tials which are then fed into the max-margin procedure. We
note that max margin learning requires an efficient inference
algorithm—and is only possible for HCDTs graphs because
we have an efficient compositional inference algorithm. The
shorter vision of this learning has appeared in our previous
work (Zhu et al. 2008).

In summary, our paper makes contributions to both ma-
chine learning and computer vision. The contribution to ma-
chine learning is the AND/OR graph representation (with
the summarization principle), the compositional inference
algorithm, and the extension of max-margin learning to

AND/OR graphs. The contribution to computer vision is
HCDT model for deformable objects with multiple config-
urations and its application to model objects such as horses
and humans. Our experimental results, see Sect. 6, show that
we can perform rapid inference and achieve state of the art
results on difficult benchmarked datasets.

2 Background

To describe the computer vision background we first need to
emphasize that an HCDT is able to perform several different
visual tasks which are often studied independently in the lit-
erature. Recall that the compositional inference will output
a parse tree which includes a specification of which subparts
of the object are present (i.e. the topology), and the positions
and properties of these subparts. An HCDT can perform: (i)
the pose/configuration estimation task by outputting the esti-
mated topology, (ii) the segmentation task by outputting the
states of the leaf nodes (and some postprocessing to fill in
the gaps), (iii) the parsing task by detecting the positions and
properties of the sub-parts (by the nodes above the leaves),
and (iv) the weak-detection task of detecting where the ob-
ject is located in an image (but knowing that the object is
present). We use “weak-detection” to distinguish this from
the much harder “strong-detection” task which requires es-
timating whether or not an object is present in the image.

2.1 Object Representation

Detection, segmentation and parsing are all challenging
problems. Most computer vision systems only address one
of these tasks. There has been influential work on weak-
detection (Coughlan and Ferreira 2002) and on the related
problem of registration (Chui and Rangarajan 2000; Be-
longie et al. 2002). Work on segmentation includes (Kumar
et al. 2005; Leibe et al. 2004; Borenstein and Malik 2006;
Cour and Shi 2007; Levin and Weiss 2006; Winn and Jojic
2005 and Ren et al. 2005).

Much of this work is formulated, or can be reformulated,
in terms of probabilistic inference. But the representations
are fixed graph structures defined at a single scale. This re-
stricted choice of representation enables the use of standard
inference algorithms (e.g., the hungarian algorithm, belief
propagation) but it puts limitations on the types of tasks
that can be addressed (e.g. it makes parsing impossible),
the number of different object configurations that can be ad-
dressed, and on the overall performance of the systems.

In the broader context of machine learning, there has
been a growing use of probabilistic models defined over
variable graph structures. Important examples include sto-
chastic grammars which are particularly effective for natural
language processing (Manning and Schuetze 1999).
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In particular, vision researchers have advocated the use
of probability models defined over AND/OR graphs (Chen
et al. 2006; Jin and Geman 2006) where the OR nodes en-
able the graph to have multiple topological structures. Zhu
and Mumford (2006) have made a strong case for the use
of AND/OR graphs in vision and given practical examples.
Similar AND/OR graphs have been used in other machine
learning problems (Dechter and Mateescu 2007).

But the representational power of AND/OR graphs
comes at the price of increased computational demands for
performing inference (and learning). For one dimensional
problems, such as natural language processing, this can be
handled by dynamic programming. But computation be-
comes considerably harder for vision problems and it is not
clear how to efficiently search over the large number of con-
figurations of an AND/OR graph. The inference problem
simplifies significantly if the OR nodes are restricted to lie
at certain levels of the graph (e.g. Meila and Jordan 2000;
Zhu et al. 2006), but these simplifications are not suited
to the problem we are addressing. These models have OR
nodes only at the top level which means they are like con-
ventional mixture distributions and do not have re-usable
parts.

2.2 Human Body Parsing

There has been considerable recent interest in human body
parsing. Sigal and Black (2006) address the occlusion prob-
lem by enhancing appearance models. Triggs and his col-
leagues (2002) learn more complex models for individual
parts by SVM and combine them by an extra classifier.
Mori (2005) use super-pixels to reduce the search space
and thus speed up the inference. Ren et al. (2005) present
a framework to integrate multiple pairwise constraints be-
tween parts, but their models of body parts are indepen-
dently trained. Ramanan (2006) proposes a tree structured
CRF to learn a model for parsing human body. Lee and
Cohen (2004) and Zhang et al. (2006) use MCMC for in-
ference. In summary, these methods involve representations
of limited complexity (i.e. with less varieties of pose than
AND/OR graphs). If learning is involved, it is local but not
global (i.e. the parameters are not learnt simultaneously)
(Ren et al. 2005; Sigal and Black 2006; Ronfard et al. 2002;
Mori 2005). Moreover, the performance evaluation is per-
formed by the bullseye criterion: outputting a list of poses
and taking credit if the groundtruth result is in this list (Mori
2005; Zhang et al. 2006; Srinivasan and Shi 2007).

The most related work is by Srinivasan and Shi (2007)
who introduced a grammar for dealing with the large num-
ber of different poses. Their model was manually defined,
but they also introduced some learning in a more recent pa-
per (Srinivasan and Shi 2007). Their results are the state of
the art, so we make comparisons to them in Sect. 6.
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By contrast, our model uses the AND/OR graph in the
form of Chen et al. (2007) which combines a grammatical
component (for generating multiple poses) with a Markov
random field (MRF) component which represents spatial re-
lationships between components of the model (see Jin and
Geman 2006; Chen et al. 2006; Zhu and Mumford 2006)
for different types of AND/OR graph models). We perform
global learning of the model parameters (both geometric and
appearance) by max-margin learning. Finally, our inference
algorithm outputs a single pose estimate which, as we show
in Sect. 6, is better than any of the results in the list output
by Srinivasan and Shi (2007) (and their output list is better
than that provided by other algorithms (Mori 2005)).

2.3 Max Margin Structure Learning

The first example of max-margin structure learning was pro-
posed by Altun et al. (2003) to learn Hidden Markov Mod-
els (HMMs) discriminatively. This extended the max mar-
gin criterion, used in binary classification (Vapnik 1995)
and multi-class classification (Crammer and Singer 2001),
to learning structures where the output can be a sequence
of binary vectors (hence an extension of multi-class classi-
fication to cases where the number of classes is 2", where
n is the length of the sequence). We note that there have
been highly successful examples in computer vision of max-
margin applied to binary classification, see SVM-based face
detection (Osuna et al. 1997).

Taskar et al. (2003) generalized max margin structure
learning to general Markov random fields (MRF’s), re-
ferred to a max margin Markov network (M 3). Taskar
et al. (2004) also extended this approach to probabilistic
context-free grammar (PCFG) for language parsing. But
max-margin learning has not, until now, been extended to
learning AND/OR graph models which can be thought of as
combinations of PCFG’s with MRF’s.

This literature on max-margin structure learning shows
that it is highly competitive with conventional maximum
likelihood learning methods as used, for example, to learn
conditional random fields (CRF’s) (Lafferty et al. 2001). In
particular, max-margin structure learning avoids the need to
estimate the partition function of the probability distribu-
tion (which is major technical difficulty of maximum likeli-
hood estimation). Max-margin structure learning essentially
learns the parameters of the model so that the groundtruth
states are those with least energy (or highest probability) and
states which are close to groundtruth also have low energy
(or high probability). See Sect. 5 for details.

3 The Hierarchical Configural Deformable Template

We represent an object by a hierarchical graph defined by
parent-child relationships, illustrated in Figs. 2 and 3. The
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Fig. 2 The HCDT uses an AND/OR graph as an efficient way to
represent different configurations of an object by selecting different
subparts. The graph in this figure, and the next, were both hand de-
signed (taking a few days). The leaf nodes of the graph indicates points
on the boundary of the object (i.e. the baseball player). The higher lev-
els nodes represent the positions and properties of sub-parts of the
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object, and whether the sub-parts are used. The HCDT for baseball
players uses eight levels, but we only show five for reasons of space.
Color is used to distinguish different body parts. The arms are not
modeled in this paper (or in related work in the literature due to the
nature of the database)
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Fig. 3 The HCDT AND/OR graph for horses which has 40 different topologies. The first pose (far left of top row) is the most common and is
used for the fixed hierarchy model (whose performance is compared to HCDT)

state variables defined at the top node of the hierarchy rep-
resents the position and properties (position, orientation, and
scale) of the center of the object. The state variables at the
leaf nodes and the intermediate nodes represent the posi-
tion and properties of points on the object boundary and of
subparts of the object respectively. Nodes are classified into
three types depending on their type of parent-child relation-
ships: (i) “AND” nodes have fixed parent-child relationships
and their states are compositions of their children’s states,
(i) “OR” nodes are switchable (Zhu and Mumford 2006)
which enables the parent node to choose one of its children

thereby affecting the topology of the graph, (iii) the “LEAF”
nodes are connected directly to the image. The children of
AND nodes are related by sideways connections which en-
force spatial relationships on the states of the child nodes.
The graph structure is specified so that AND and OR
nodes appear in neighboring levels with the top node being
an AND node and the LEAF nodes being children of AND
nodes. There are 98 possible configurations/parse trees for
the human body, some of which are shown in Fig. 2. The
subparts include the torso, the left leg, and the right leg of
the body (see circular nodes in the second row). Each of
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these subparts is built out of sub-subparts, shown by the
AND nodes (rectangles in the third row), which are selected
by the OR nodes. These are, in turn, composed by AND-ing
more elementary subparts (see fourth and fifth row).

The graph structure was hand-specified as follows. First
we decompose the object into natural parts—e.g. the horse is
decomposed into the head, upper body, front legs and back
legs, see second row of Fig. 3. The horse is an ‘AND’ of
these four parts. Next we consider all possible ‘heads’ that
occur in the dataset and group them into a small number of
‘types’ (between 3 and 6). The ‘head’ is an OR of these dif-
ferent types. Heads within each type are required to be simi-
lar and to share similar subparts. For example, the third node
from the left in the third row of Fig. 3, shows two heads of
the same type which share two subparts, see fourth row. We
repeat the process by considering the exemplars of all these
subparts and dividing them up into types. Alternatively we
can think of this as a bottom-up process which combines
subparts (fifth row) by AND-ing and OR-ing to form larger
parts (third row) which are combined by ADD-ing and OR-
ing to form the object (first row). Hence we can combine
the most elementary parts—at the leaf nodes—by composi-
tion (AND-ing) and selection (OR-ing) to build objects with
varying poses and viewpoint. A similar strategy is used to
obtain a graph structure for the baseball player, see Fig. 2.
We decompose the baseball player into torso and head, left
leg, and right leg—i.e. the baseball player is an ‘AND’ of
these three parts—and then we proceed as for horses. Note
that the arms were not labeled in the baseball dataset (Mori
2005) so we do not model them in our graph. It took us about
three days to determine the graph structure for humans and
horses. After determining the structure it takes three minutes
to hand-label an image.

The graph structures are specified as follows. For the
baseball player, see Fig. 2, there are seven levels starting
at the root node. The nodes at the following levels are given
by: (i) 94 LEAF nodes at level 1, (ii) 94 OR nodes at level
2, (iii) 24 AND nodes at level 3, (iv) 14 OR nodes at level 4,
(v) 10 AND nodes at level 5, (vi) 3 OR nodes at level 6, and
(vii) 1 AND node at level 7. The horse model in Fig. 3 also
has seven levels. The nodes are specified by: (i) 68 LEAF
nodes at level level 1, (ii) 68 OR nodes at level 2, (iii) 27
AND nodes at level 3, (iv) 24 OR nodes at level 4, (v) 8
AND nodes at level 5, (vi) 4 OR nodes at level 6, and (vii)
one AND node at level 8.

We define a probability distribution over the state vari-
ables of the graph which is specified by potentials defined
over the cliques. These cliques are specified by the parent-
child relations for the OR and AND nodes and between the
children of the AND nodes. In addition, there are potentials
for the appearance terms linking the LEAF nodes to the im-
age. This probability distribution specifies the configuration
of the object including its topology, which will correspond
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to the pose of the object in the experimental section. The
probability distribution over the AND/OR graph is a mix-
ture model where the number of mixture components is de-
termined by the number of different topologies of the graph.
But the AND/OR graph is much more compact than tradi-
tional mixture distributions because it uses re-usable parts
(Jin and Geman 2006) which are shared between mixtures.
This compactness enables a large number of mixture distri-
butions to be represented by a graph with a limited number
of nodes, see Sect. 3.3. As we will describe later in Sect. 4
this leads to efficient inference and learning.

3.1 The Structure of the AND/OR Graph

We use the notations listed in Table 1 to define the HCDT.
Formally, an HCDT is a graph G = (V, E) where V is the
set of nodes (vertices) and E is the set of edges (i.e., nodes
u,v €V are connected if (u,v) € E)). The edges are de-
fined by the parent-child structure where Ch, denotes the
children of node v. The graph is required to be tree-like so
that each node has only one parent—e.g., Ch, (| Ch, =0
forallv,ueV.

There are three types of nodes, “OR”, “AND” and “LEAF”
nodes which specify different parent-child relationships.
These are depicted in Fig. 1 by circles, rectangles and
triangles respectively. LEAF nodes have no children, so
Chy, =@ if v € VLEAF The children Ch, of AND nodes
v € VAND are connected by horizontal edges defined over
all triplets (u, p, T) (i.e. we have horizontal edges for all

Table 1 The terminology used in the HCDT model

Notation Meaning
Vv the set of nodes
E the set of edges

VAND yOR yLEAF sets of “AND”, “OR” and “LEAF” nodes

w,v,0,T the index of nodes

Ch,, the children of node v

2y the state of node v

ty the switch variable for node v

V() the set of “active” nodes

2, the state of the “active” child node

(Xy, 0y, 8y) position, orientation and size

ZCh, the states of child nodes of v

I input image

y=1(z,1) the parse tree

m the max num. of children of AND nodes
n the max num. of children of OR nodes
h the num. of layers containing OR nodes
al’jND, al?R, af the parameters

pAND pOR oD the potentials
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triplets i, p,t € Chy if v € VAND) These connections be-
tween the child nodes means that the graph does contain
some closed loops, but the restriction that each child node
has a single parent means that we can convert the graph into
a tree by merging the states of all child nodes into a sin-
gle node as done in the junction tree algorithm (Lauritzen
and Spiegelhalter 1988) (this will enable our inference al-
gorithm). The children Ch, of OR nodes v € V& are not
connected. We let VEEAF denote the leaf nodes. See the
examples in Figs. 2 and 3.

3.2 The State Variables

The state variables of the graph specify the graph topology
and the positions and properties of the subparts of the ob-
ject. The graph topology is specified by a variable ¢ which
indicates the set of nodes V (t) which are active (i.e. which
component of the mixture model). The topologies are deter-
mined by the switches at the OR nodes. Hence, starting from
the top level, an active OR node v € VOR () must select a
child ¢, € Ch,,, where t, is a switch variable, see Fig. 2. The
topology is changed by an active OR node “switching” to a
different child. The active nodes v € V(¢) also have states
Zy = (X, 0, s,,) which specify the position x,,, orientation
6,, and size s, of the subpart of the object. The states of the
active AND and LEAF nodes v € VAND (1) | JVEEAF (1)
are specified by z,, and the states of the active OR nodes
are specified by (zy, #,). In summary, we specify the state
of the tree by the states y = {(z,,#,) : v € VOR(t)} Ulzy :
v e VAND ()| VEEAF (1)} where the active nodes V (¢) are
determined from the {#, : v € V (¢)} by recursively comput-
ing from the top node, see Fig. 2. We let z¢p, = {2, : o €
ChANDY denote the states of all the child nodes of an AND
node v € VAND 'We let z,, denote the state of the selected
child node of an OR node v € VOF,

Observe that the node variables z,, take the same form at
all levels of the hierarchy. This relates to the summarization
principle, see Sect. 3.4, and means that the state of parent
nodes are simple deterministic function of the state variables
of the children, see Sect. 3.5. The use of the summarization
principle is exploited in a later Sect. 4 to design an efficient
inference algorithm.

The task of parsing an object from an input image—
i.e. determining the parse tree—requires estimating the state
variables. This includes determining the graph topology,
which corresponds to the object configuration (e.g. the pose
of a human), and the positions and properties of the active
nodes. Different vision tasks are “solved” by different state
variables. The segmentation task is solved by the state vari-
ables {z, € VLEAF (1)} of the active LEAF nodes (followed
by some post-processing). The parsing task is to determine
the positions and properties of specific subparts of the ob-
ject. In the experimental section we evaluate it by deter-
mining that states of the LEAF nodes {z, € VLEAF(t)} (i.e.

the smallest sub-parts), but we could also include the higher
level nodes {z, € VANP (1) | VOR(t)}. The configuration
estimation task is determined by estimating the topology ¢
of the graph and is used, for example, to determine the pose
of humans playing baseball.

3.3 The Compactness of the AND/OR Graph
Representation

The AND/OR graph used by HCDTs is a very powerful,
but compact, representation of objects since it allows many
different topologies/parse trees which can be used for de-
scribing different object configurations (e.g. different poses
of baseball players). This efficiency occurs because differ-
ent configurations share subparts. This enables an enormous
number of topologies to be represented with only a limited
number of nodes and with a limited number of cliques. This
compactness is of great help for inference and learning. It
enables rapid inference since we can search over the dif-
ferent topologies very efficiently by exploiting their shared
subparts. Similarly the sharing of subparts, and hence the
limited number of parameters required to specify all the
clique potentials, enables us to achieve good learning per-
formance while requiring comparatively little training data.
The following argument illustrates the compactness of
the HCDT by giving an upper bound for the number of
different topologies/parse trees and showing that the num-
ber of topologies becomes exponentially larger than the
number of nodes. We calculate the number of topologies
and the number of nodes assuming that all OR and AND
nodes have a fixed number of children n and m respec-
tively. These calculations become upper bounds for HCDTs
where the number of child nodes are variable provided we
set n =max,cyor |Chy| and m = max ,cyanp |Chy| (Where
|Chy,| is the size of the set Ch,, of children of v). We can con-
vert these into lower bounds by replacing max,, with min,,.
With these assumptions, we calculate (or bound) the

h—1 . .
)...n™ which is of or-

number of topologies by ")y m
der n™". The calculation proceeds by induction recalling
that each topology (parse tree) corresponds to a specifica-
tion of the switch variables {¢,} which select the children of
the OR nodes. Suppose gj is the number of topologies for
an HCDT with & OR levels. Then adding a new level of OR
and AND nodes gives the recursive formula g1 = {ngn}",
with go = 1, and the result follows.

Similarly, we can calculate (or bound) the number of
nodes by the series 1 +m +mn +m2n+--- (mn)" which can
be summed to obtain {(1 4+ n)m"'n" — (1 4+m)}/{mn — 1},
which is of order O ({nm}"). Hence the ratio of the number
of topologies to the number of nodes is of order nm" /{nm}"
which becomes enormous very rapidly as h increases.

By comparison, mixture models which do not use part-
sharing will require far more nodes to represent an equiv-
alent number of mixtures (equating each mixture with a
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topology). The ratio of the number of nodes used (by all
components) to the number of mixture components is sim-
ply the average number of nodes for each mixture compo-
nent and will be finite and large. Hence, unless the mix-
ture components are very simple, standard mixture mod-
els will usually have a much larger ratio of nodes to mix-
tures/topologies than HCDTs.

We stress that a small node-to-topology ratio not only
gives a compact representation but also enables efficient
learning and inference. The number of parameters to be
learnt depends on the total number of nodes and the size
of the cliques. Hence keeping the node-to-topology ratio
small will reduce the number of parameters to be learnt
(assuming that the number of topologies/object configura-
tions is fixed) and hence simplify the learning and reduce the
amount of training data required. Moreover, the complexity
of the inference algorithm depends on the number of nodes
and hence is also reduced by keeping the node-to-topology
ratio as small as possible.

For the baseball player HCDT in the results section we
have m =4,n =3, h =4, |[VLEAF| =94 |VOR| =112,
|VAND| = 129. The number of the active LEAF nodes is
always 27. The total number of different topologies/parse
trees is 98. Note that for this HCDT the bounds on the num-
ber of nodes is not tight—the bounds give a total of (144)2
nodes which the total number of nodes is 335. So, in prac-
tice, the number of nodes does not need to grow exponen-
tially with the number of layers.

3.4 The Summarization Principle and HCDT

We now describe the summarization principle in more de-
tail. This principle is critical to make the HCDT computa-
tionally tractable—i.e. to make inference and learning ef-
ficient. It was not used in our early work on hierarchi-
cal modeling (Zhu and Yuille 2005) or in alternative ap-
plications of AND/OR graphs to vision (Chen et al. 2006;
Jin and Geman 2006; Zhu and Mumford 2006).

In Fig. 4, we show a simple parse graph keeping only the
nodes which have been selected by the topology variable 7,
hence all the nodes shown are active. Each node has a state
variable z = (x, 6, s). The summarization principle has four
aspects:

(1) — z=(x,0,5)

Fig. 4 The Summarization Principle for a simple model. All nodes
shown are active and nodes 1, 2, 3 are AND nodes. See text for details
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(i) The state variable of node v is the summary of the
state variables of its children—e.g., the state of node 2 is a
summary of the states of nodes 4 and 5. In this paper, the
state variables of the parent are deterministic functions of
the state variables of its active children (see next subsection
for details).

(ii) The clique potentials defined for the clique containing
nodes 1, 2, 3 do not depend on the states of their child nodes
4,5,6,7 (e.g., the Markov property).

(ii1) The representational complexity of the node is the
same at all levels of the tree. More specifically, the state vari-
able at each node has the same low-dimensional representa-
tion which does not grow (or decrease) with the level of the
node or the size of the subpart that the node represents.

(iv) The potentials defined over the cliques are simple
since they are defined over low-dimensional spaces and use
simple statistics (see next subsection).

As we will describe in Sect. 4, the use of the summa-
rization principle enables polynomial time inference using
dynamic programming (with a junction tree representation).
The complexity of inference is partially determined by the
clique size which has been designed to be small (but due
to the size of the state space we need to perform pruning).
The learning is practical because of: (1) the small clique
size, (2) the potentials depend on simple statistics of the
state variables (which are the same at all levels of the hierar-
chy), and (3) the efficiency of the inference algorithm, which
is required during learning to compare the performance of
the model, with its learnt values of the parameters, to the
groundtruth.

3.5 The Probability Distributions: the Potential Functions

We now define a conditional probability distribution for the
state variables y conditioned on the input image I. This dis-
tribution is specified in terms of potentials/statistics defined
over the cliques of the AND/OR graph.

The conditional distribution on the states and the data is
given by a Gibbs distribution:

1
Pyl ) = meXp{—wq’(Ly)}- ey
where I is the input image, y is the parse tree, a denotes
model parameters (which will be learnt), @ (I, y) are poten-
tials and Z (I, &) is the partition function.

Let E(y|I) denote the energy, i.e. E(y|I) =a - ®(,y).
The energy E(y|I) is specified by potential defined over
cliques of the graph and data terms. This gives three types
of potential terms: (i) cliques with AND node parents, (ii)
cliques with OR node parents, and (iii) LEAF terms (i.e.
data terms). Hence we can decompose the energy into three
terms:
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EQ|) = Z al’jND . ¢AND (zu» zcn,) This gives horizontal potential terms:
nev AP AND AND
ok oK DD GV ST T A UCHEAE 3)
+ ) e 8%z, (v.p.T)ETri ()
neVOoR )
b b where there are coefficients a;‘N Dy, p, 1) for each triplet.
+ Z o, ¢ (L zp). @ The vertical terms relate the state variable z;, of the par-
;,LGVLEAF(I)

The first two terms—the clique terms—are independent
of the data and can be considered as priors on the spatial
geometry of the HCDT. These clique terms are defined as
follows.

The cliques with AND node parents can be expressed by
horizontal and vertical terms. The horizontal terms specify
spatial relationships between triplets of the child node which
are invariant to scale and rotation. For each triplet (v, p, 7)
such that v, p, T € Ch,, we specify the invariant shape vec-
tor ITV (Zhu et al. 2009) I(zy, 2, z¢), see Fig. 5, and de-
fine a potential qbf]ND(z,,, Zp,Z7) to be Gaussian (i.e. the
first and second order statistics of /(z,, z,, zr)). Recall that
I(zv,2p, z7) is independent of the scale and rotation of the
points z,, 2, zr and so the HCDT is independent of scale
and rotation. Denote Tri(w) to be the set of triples of chil-
dren of node p—i.e. Tri(u) = {(v,p,7) : v, p, T € Chy}.

2
a2
T~
B2

Y
\

Fig. 5 The horizontal terms for the AND clique potentials. The first
panel demonstrates the invariant shape vector (ITV) constructed from
the positions and properties z = (X, 6, s) of a triplet of nodes (which
are children of AND nodes). The ITV 1(z1, z2, z3) depends only on
properties of the triplet—such as the internal angles, the ratios of the
distances between the nodes, the angles between the orientations at
the nodes (i.e. the 6’s) and the orientations of the segments connecting
the nodes—which are invariant to the translation, rotation, and scaling

ent node to the state variables of its children 2Ch, = {zy :
v € Ch,} by a deterministic function. This is defined by
f(zen,) = (Xen, - Ocn, - Scn,)» where Xcp,, . Ocn,, are the av-
erages of the positions and orientations of the states x,, 6,
of the children v € Ch,,, and Schy, is the size of the region
determined by the zcp, .

The vertical potential terms are defined to be d)éN D (zZu,
zcn,) = 8(zu, f(zcn,)) (Where 8(zy, f(zcn,)) =01if z,, =
f (zChM), and §(.,.) takes an arbitrarily large value other-
wise). This eliminates state configurations where the deter-
ministic relation between the parents and children are not
enforced.

The clique with OR node parents are expressed by a ver-
tical term which puts a probability on the different switches
that can be performed, and constrains the state (i.e. position
and properties) to be those of the selected child. This gives a
potential pOR (z,,, 1., 2,) =y, + 82y, f(21,)), where ay,
species the probabilities of the switches.

g 03

.H.
—
-
-
—
0 - —
_.'__- .
-
-
-
./‘
-

of the triplet. The second panel show how the triplets are constructed
from all child nodes of an AND node. In this example, there are four
child node and so four triplets are constructed. Each circle corresponds
to a child node with property (x, 6, s). The potentials for each triplet
are of Gaussian form defined over the ITVs of the triplets—the ¢A% P
corresponds to the sufficient statistics of the Gaussian and the parame-
ters @AV P will be learnt
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The data terms ¢>D (I, z,,) are specified only at LEAF
nodes u € VLEAF () and are defined in terms of a dictio-
nary of potentials computed from image features
F(, D(z,)) computed from regions in the image I spec-
ified by D(z,) (i.e. local “evidence” for a LEAF state z,
is obtained by computing image features from the domain
D(z,) which surrounds z,). More precisely, the potentials
are of form

P(F, D(zy,))|object)

D _
¢~ A, z,) =log P(F (I, D(z,))|background)’

“

The distributions P (F (I, D(z;))lobject) and P(F(I,
D(zy,))|background) are the distributions of the feature re-
sponse F(.) conditioned on whether z, is on the object or
in the background. They are univariate Gaussian distribu-
tions. There are 37 features in total including: (i) the inten-
sity (1 feature), (ii) the intensity gradient represented both
by the (x,y) components and by the magnitude and ori-
entation at four scales (16 features), (iii) the Canny edge
detector at four scales (1,2, 4, 8) (4 features), (iv) the Dif-
ference of Gaussian at four scales (7*7, 9%9,19*%19 and
25%25) (4 features), (v) the Difference of Offset Gaussian
(DOOG) at two scales (13*13 and 22%22) and six orienta-
tions (0, %n, %7‘[, ...) (12 features).

4 The Inference/Parsing Algorithm

We now describe our inference algorithm which is de-
signed to exploit the hierarchical structure of the HCDT.
Its goal is to obtain the best state y* by estimating y* =
argmax P(y|I; @) which can be re-expressed in terms of
minimizing the energy function:

y* = argmin{a - ®(1,y)}, 5)
)7

where the energy « - ®(I,y) is given by the three terms
in (2).

To perform inference, we observe that the hierarchical
structure of the HCDT, and the lack of shared parents (i.e.,
the independence of different parts of the tree), means that
we can express the energy function recursively and hence
find the optimum y using dynamic programming (DP). But
although DP is guaranteed to be polynomial in the relevant
quantities (number of layers and graph nodes, the size of
state space of the node variables z and ¢) full DP is too slow
because of the large size of the state space—every sub-part
of the object can occur in any position of the image, at any
orientation, and any scale (recall that z, = (X, 6y, sy)) SO
the states of the nodes depend on the image size, the number
of allowable orientations, and the allowable range of sizes
of the sub-parts). Hence, as in other applications of DP or
BP to vision (Coughlan et al. 2000; Coughlan and Ferreira
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Input: {pll)l }. Output:{pr }

- Bottom—Up(pl)
Loop : I =1to L, for each node v at level [
—If v is an OR node:

, -1
1. Union {pihb} =Upecn, Pp.a
—If v is an AND node:

1. Composition: {p{)’b} = eapeChv,aP,loTal

2. Pruning by Energy: {pf),a} = {pf)’akx - @, p{,’a) >
Th}

3. Surround

Suppression: {(P{;,a} =

LocalMaximum({pf)’a},eW) where €y is the size

of the window Wll, defined in space, orientation, and
scale

Fig. 6 The inference algorithm. @ denotes the operation of combining
proposals from child nodes to make proposals for parent nodes

2002) we must perform pruning to reduce the set of possible
states and ensure that the algorithms converges rapidly.

We call the algorithm compositional inference (Zhu
and Yuille 2005; Chen et al. 2007), see Fig. 6. It has a
bottom-up pass which starts by estimating possible states,
or proposals, for the leaf nodes and proceeding to estimate
states/proposals for the nodes higher up the tree, hence de-
termining the lowest energy states of the tree (subject to
pruning). The top-down pass (not shown here) selects the
optimal states of the nodes from the pruned states (the
bottom-up and top-down passes are analogous to the for-
ward and backward passes in standard DP). We have ex-
perimented with modifying the top-down pass to deal with
errors which might arise from the pruning but, in our ex-
perience, such errors occurred rarely so we do not report
it here (the modification involved keeping additional clus-
ters of proposals which were not propagated upward in the
bottom-up pass but which could be accessed in the top-down
pass—see (Zhu and Yuille 2005)).

The pruning is used in the bottom-up pass to restrict the
allowable states of a node u to a set of proposals (borrowing
terminology from the MCMC literature) which are repre-
sented including their energies. These proposals are selected
by two mechanisms: (i) energy pruning—to remove propos-
als corresponding to large energy, and (ii) surround suppres-
sion—to suppress proposals that occur within a surround-
ing window in z (similar to non-maximal suppression). In-
tuitively, the first pruning mechanism rejects high energy
configurations (which is a standard pruning technique for
DP—see Coughlan et al. 2000; Coughlan and Ferreira 2002)
while the second mechanism rejects states which are too
similar. The second pruning mechanism is less commonly
used but the errors it may cause are fairly benign—e.g. it
may make a small error in the position/orientation/size of a
sub-part but would not fail to detect the subpart.
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The pruning threshold, and the window for surround sup-
pression, must be chosen to that there are very few false neg-
atives (i.e. the object is always detected as, at worst, a small
variant of one of the proposals). In practice, the window is
(5,5,0.2,/6) (i.e., 5 pixels in the x and y directions, up
to a factor of 0.2 in scale, and /6 in orientation—same
for all experiments). Rapid inference is achieved by keeping
the number of proposals small. We performed experiments
to balance the trade-off between performance and computa-
tional speed. Our experiments show good scaling, see exper-
imental Sect. 6.

Compositional inference has an intuitive interpretation
since it starts by detecting states/proposals for the low-level
sub-parts of the object and proceeds to combine these to-
gether to give proposals for the higher level states. It is
reminiscent of constraint satisfaction since the proposals for
nodes at low levels in the tree are obtained only by using
the energy potentials for the corresponding subpart of the
tree (i.e. the subtree whose root node is the node for which
we are making the proposals), but the proposals for nodes at
higher levels involves imposes more energy potentials (en-
suring that the higher level subparts have plausible spatial
relationships).

We now specify compositional inference precisely by
first specifying how to recursively compute the energy
function—which enables dynamic programming—and then
describe the algorithm including the approximations (en-
ergy pruning and surround suppression) made to speed up
the algorithm. Pseudocode for compositional inference is
specified in Fig. 6.

Recursive Formulation of the Energy. The HCDT is
specified by a Gibbs distribution, see (1, 2). We exploit the
tree-structure to express this energy function recursively by
defining an energy function E, (Yges(v)|I) over the subtree
with root node v in terms of the state variables yges(y) of
the subtree—where des(v) stands for the set of descendent
nodes of v 80 Zges(v) = {2z 1 0 € V3, (¢)} (For any node v, we
define V), to be the subtree formed by the set of descendent
node with v as the root node).

There are two different cases for this recursion depending
on whether the level contains AND or OR nodes. We specify
these, respectively, as follows:

Ev (ydes(v) |I)

= Z Ep(ydes(p)|l) + “fND '¢AND(ZV’ ZChl,),
p€Chy

v e VAND () (6)

EyYdes)|D) = Er, Vdesey 1D + a0 - ¢OR (2, 1, 22,).
©)

Compositional Inference. Initialization: at each leaf
node v € VEEAF we calculate the states {p, )} (b indexes

the proposal) such that E,(p, »|I) < Th (energy pruning
with threshold 7h) and E,(p, »|I) < E,(p,|D) for all z, €
W (py.p) (surround suppression where W (p,, ») is a window
centered on p, ). (The window W (p, ) is (§5,5,0.2, 7 /6)
centered on p, 5). We refer to the {p, 5} as proposals for the
state z,, and store them with their energies E\, (p, »|I).

Recursion for parent AND nodes: to obtain the proposals
for a parent node u at a higher level of the graph u € VAND,
we first access the proposals for all its child nodes {p,; »,}
where {u; :i =1,...,|Chy|} denotes the set of child nodes
of u and their energies {E,; (py; »;1D i =1,...,|Chyl}.
Then we compute the states {p, ,} such that E,(p, »|I) <
E,(z,|I) forall z;, € W(p, p) where

|Chy,|
Eu(puplD = 13711}1 Y By Gaestup.bn D
Y li=t

+a, - P (pup, {pm,b,»}. 8)

In our experiments, the thresholds Th are set adaptively to
keep the top K proposals (K = 300 in our experiments). In
rare situations we may find no proposals for the state of one
node of a triplet. In this case, we use the states of the other
two nodes together with the horizontal potentials (geomet-
rical relationship) to propose states for the node. A similar
technique was used in Zhu et al. (2006).

Recursion for parent OR nodes: this simply requires enu-
merating all proposals (without composition) and pruning
out proposals which have a weak energy score.

The number g of proposals of each node at different lev-
els is linearly proportional in the size of the image. It is
straightforward to conclude that the complexity of our al-
gorithm is bounded above by Mn¢™. Recall that m is the
maximum number of children of AND nodes (in this paper
we restrict m < 4), n denotes the maximum number of pos-
sible children of OR nodes and M is the number of AND
nodes connected to OR nodes (M = 35 for the baseball
player). This shows that the algorithm speed is polynomial
in n and ¢g (and hence in the image size). The complexity for
our experiments is reported in Sect. 6.

5 Max Margin HCDT AND/OR Graph Learning
5.1 Primal and Dual Problems

The task of learning an HCDT is to estimate the parame-
ters « from a set of training samples (I, y1), ..., (¢, Ye)
€ T x )Y drawn from some fixed, but unknown probabil-
ity distribution. In this paper, the set of examples {i : i =
1,..., N.} corresponds to N, images and N, states of the
HCDT. The learning is performed in a supervised manner
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where the states of parse tree which are labeled by hand are
provided for training.

We formulate this learning task by using the max-margin
criterion (Vapnik 1995). This is a discriminative criterion
whose goal is to learn the parameters which are best for clas-
sification and be contrasted with maximum likelihood esti-
mation (MLE). Max-margin is arguably preferable to MLE
when the goal is discrimination and when limited amounts
of data are available, see Vapnik (1995). Standard max-
margin was developed for binary classification—i.e. when
y takes only two values—and so cannot be directly applied
to HCDTs. But we build on recent work (Zhu et al. 2008)
which has extended max-margin to hidden Markov models,
Markov models, and stochastic context free grammars (Al-
tun et al. 2003; Taskar et al. 2003, 2004). A practical advan-
tages of max-margin learning is that it gives a computation-
ally tractable learning algorithm which, unlike MLE, avoids
the need for computing the partition function Z[I, ] of the
distribution.

Max-margin learning seeks to find values of the parame-
ters « which ensure that the energies « - ®(I,y) are small-
est for the ground-truth states y and for states close to the
ground-truth. To formulate the learning for HCDTs we first
express the negative of the energy E,., as a function of
Ly, a:

Eneg(Ly,0) = ot - ®(L, y). C))

We define the margin y of the parameter & on example
i as the difference between the true parse (groundtruth) y;
and the best parse y*:

Vi = Epeg i, yi,00) —max Ejeg(I;, y, o) (10)
Y#Yi
=a-{®;y, — Dy} (11)

where ®; ,, = ®(I;, y;) and ®; y = ®(I;, y).

Intuitively, the size of the margin quantifies the confi-
dence in rejecting an incorrect parse y. Larger margins (Vap-
nik 1995) leads to better generalization and prevents over-
fitting.

The goal of max margin learning of an HCDT is to maxi-
mize the margin subject to obtain correct results on the train-
ing data:

max y (12)
Y
st o (@i, —Diy)>yLiy,Vy;  llal? <1; (13)

where L;, = L(y;,y) is a loss function which penalizes in-
correct estimate of y. This loss function gives partial credit
to states which differ from the groundtruth by only small
amounts (i.e. it will encourage the energy to be small for
states near the groundtruth).
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The loss function is defined as follows:

Leny)= Y, AGLz)+ Y

vGVAND(ti) UEVLEAF(II)

A(ZL, z0)
(14)

where A(Zf,, zy) =1 if dist(zf,, zy) = o orv ¢ V(t) (Note
that if node v € V(¢') from the ground truth is not active
in V (¢), then the cost is set to 1, which penalizes configu-
rations which have the “wrong” topology). Otherwise, we
have A(zf,, zp) = 0. dist(., .) is a measure of the spatial dis-
tance between two image points and o is a threshold. Note
that the summations are defined over the active nodes. This
loss function, which measures the distance/cost between two
parse trees, is calculated by summing over individual sub-
parts. This ensures that the computational complexity of the
loss function is linear in the size of the LEAF and AND
nodes of the hierarchy.

Max-margin can be reformulated as minimizing the con-
strained quadratic cost function of the weights:

1
min o +ch;~ (15)
1

st. a-{®;y —®;y}>L;y—&,Vy; (16)

where C is a fixed penalty parameter which balances the
trade-off between margin size and outliers (its value is spec-
ified in the experimental section). Outliers are training sam-
ples which are only correctly classified after using a slack
variable &; to “move them” to the correct side of the mar-
gin. The constraints are imposed by introducing Lagrange
parameters A; y (one A for each constraint).

The solution to this minimization can be found by differ-
entiation and expressed in form:

o« =CY A (Biy, — Diy), (17)
iy
where the A* are obtained by maximizing the dual function:

1
m}?XZ)\i,}'Li,y - ECZZAi’y)\j’w(q)i’yi - d)i,y)
iy

ij y.w

X (®@jy; — Pjw) (18)

s.t. Z)\;,y =1, Vi
)7

Observe that the solution will only depend on the training
samples (I;, y;) for which A; , # 0. These are the so-called
support vectors. They correspond to training samples that
either lie directly on the margin or are outliers (that need
to use slack variables). The concept of support vectors is
important for the optimization algorithm that we will use to
estimate the A* (see next subsection).

Aiy >0, Viy. (19)
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It follows from (17, 18), that the solution only depends
on the data by means of the inner product ¥ - ¥’ of the po-
tentials. This enables us to use the kernel trick (Cristianini
and Shawe-Taylor 2000) which replaces the inner product
by a kernel K (,) (interpreted as using features in higher di-
mensional spaces). In this paper, the kernels K (, ) take two
forms, the linear kernel, K(®, ®') = & - ®' for the data
potentials WP and the radial basis function (RBF) kernel,
K(®, ®') = exp(—r|® — ®'||?) for the remaining poten-
tials @—those defined on the AND and OR cliques—where
r is the scale parameter of the RBF (specified in the experi-
mental section).

5.2 Optimization of the Dual

The main difficulty with optimizing the dual, see (18), is
the enormous number of constraints (i.e. the large number
of {A; y} to solve for). We risk having to enumerate all the
parse trees y € ) which is almost impractical for an HCDT.
Fortunately, in practice only a small number of support vec-
tors will be needed. More precisely, only a small number of
the {A; y} will be non-zero. This motivates the working set
algorithm (Altun et al. 2003; Tsochantaridis et al. 2004) to
optimize the objective function in (18). The algorithm aims
at finding a small set of active constraints that ensure a suffi-
ciently accurate solution. More precisely, it sequentially cre-
ates a nested working set of successively tighter relaxations
using a cutting plane method. It is shown (Altun et al. 2003;
Tsochantaridis et al. 2004) that the remaining constraints
are guaranteed to be violated by no more than €, without
needing to explicitly add them to the optimization problem.
The pseudocode of the algorithm is given in Fig. 7. Note
that the inference algorithm is performed at the first step of
each loop. Therefore, the efficiency of the training algorithm
highly depends on the computational complexity of the in-
ference algorithm (recall that we show in Sect. 4 that the
complexity of the inference algorithm is polynomial in the
size of the AND/OR graph and the size of the input image).
Thus, the efficiency of inference makes the learning prac-
tical. The second step is to create the working set sequen-
tially and then estimate the parameter A on the working set.
The optimization over the working set is performed by Se-
quential Minimal Optimization (SMO) (Platt 1998). This
involves incrementally satisfying the Karush-Kuhn-Tucker
(KKT) conditions which are used to enforce the constraints.
The pseudo-code of the SMO algorithm is depicted in Fig. 8.
This procedure consists of two steps. The first step selects a
pair of data points not satisfying the KKT conditions. The
pseudo-code of pair selection is shown in Fig. 9. Two KKT
conditions are defined by:

hiy=0 = HE,»)=HGL.Y)+e
Aiy>0 = H>,y)=H@,y") —¢

(KKT1),
(KKT2)

Loop over 1

1. y* = argmaxy H(I;, y) where H(I;,y) = (o, ¥; ) +
L(yi.y).

2. if H(;, y*) — maxyes, H{;, y) > ¢
Si < SiUy*
As <optimize dual over S, S =S| JS;

Fig. 7 Working Set Optimization

Given a training set S and parameter A
Repeat

1. select a pair of data points (y’, y”') not satisfying the KKT
conditions.
2. solve optimization problem on (y’, y)

Until all pairs satisfy the KKT conditions.

Fig. 8 Sequential Minimal Optimization (SMO)

1. Violation = False
2. Foreach I, y', y" € S;
a) IFH®T',y)> H(X',y")+eand 4; ,y =0 (KKT 1)
Violation = TRUE; Goto step 3.
b) If HX',y") < HX',y") — € and A; ,» > 0 (KKT 2)
Violation = TRUE; Goto step 3.
3. Return y’, y”, Violation

Fig. 9 Pair Selection in SMO

where H(I;, y) = ®; ,+L(yi, y), y* = argmax, H(;, y)
and € is a tolerance parameter.

The second step is a local ascent step which attempts to
update the parameters given the selected pair. The updating
equations are defined as:

MY ki +5
(20)

Af‘y'f,’ =Ly — 0.

The dual optimization problem in (18) reduces to the simple

problem of solving for §:

max[H{;,y) — H{d;, y” 5= Le@: s — @, 0252
s iy lay)] ) I iy t,y””

2y
st Ay +820, Ay —8>0. (22)
This can be re-expressed as solving:
b
max{a8 — —52} (23)
s 2
s.t. ¢c<é§<d (24)

where a = H(I;,y) — H{1;,y"), b = C||®; y — <I>i,y//||2,
Cc= _)‘i,y” d= )‘i,y”-
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Hence, the analytical solution for two data points can be
easily obtained by

8% = max(c, min(d, a/b)). (25)

This completes the description for how to get solutions
for the update equations in (20). More details can be found
in Platt (1998) and Taskar et al. (2003).

6 Experiments

In this section, we study the performance of HCDTs for
segmentation, parsing, and weak-detection. We first study
HCDT’s performance on the horse dataset (Borenstein and
Ullman 2002) and analyze the computational complexity of
the inference. Next we apply HCDT’s to determine the pose
of baseball players.

6.1 Datasets and Implementation Details

Datasets. We performed the experimental evaluations on
two datasets: (i) the Weizmann Horse Dataset (Borenstein
and Ullman 2002) and (ii) the Human Baseball dataset (Mori
2005). Some examples from these datasets are shown in
Figs. 12 and 13 with parsing and segmentations results ob-
tained by our method. Many results have been reported for
these datasets which we use for comparison—see Ren et
al. (2005), Cour and Shi (2007), Levin and Weiss (2006),
Kumar et al. (2005), Winn and Jojic (2005) for the horse
dataset and (Srinivasan and Shi 2007; Mori et al. 2004;
Mori 2005) for the baseball dataset.

The Weizmann horse dataset is designed to evaluate seg-
mentation, so the groundtruth only gives the regions of the
object and the background. To supplement this groundtruth,
we asked students to manually parse the images by locat-
ing the positions of active leaf nodes (about 24 to 36 nodes)
of the HCDT in the images. These parse trees are used as
groundtruth to evaluate the ability of the HCDT to parse
the horses. There are 328 horse images in Borenstein and
Ullman (2002) of which 100 images are used for testing.
The remaining 228 images and their parsing groundtruth are
used for training. The HCDT model has 40 possible config-
urations to deal with the range of horse poses.

For the baseball dataset Srinivasan and Shi (2007) only
used 5 joint nodes (head-torso, torso-left thigh, torso-right
thigh, left thigh-left lower leg, right thigh-right lower leg).
For HCDTs there are 27 nodes on the boundary of each
baseball player which gives more detailed parsing than
alternatives (Srinivasan and Shi 2007; Mori et al. 2004,
Mori 2005). These 27 points correspond to the 94 leaf nodes
of the AND/OR graph in Fig. 2. Each (smallest) part has on
average 3.48 (94/27) poses (e.g. orientation). We also asked
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students to label the parts of the baseball players (i.e. to iden-
tify different parts of the humans). For human body parsing,
we used 48 human baseball images in Mori’s dataset (Mori
2005) as the testing set. The HCDT for humans is able to
model 98 poses. In Fig. 13, observe that the dataset contains
a large variety of human poses and the appearance of clothes
changes a lot from image to image. We created a training
dataset by collecting 156 human baseball images from the
internet and got students to manually label the parse tree for
each image for training.

Parameter Settings. The HCDT (after training by max-
margin) was used to obtain the parse y (i.e. to locate the
body parts). We used max-margin on the training dataset
to learn the parameters of the max-margin model. During
learning, we set C = 0.1 in (18), used the radial basis func-
tion kernel with » = 0.1, set the parameter in the loss func-
tion equation (14) to be o = 12, and set € = 0.01 in Fig. 7.
Our strategy for segmentation, which is inspired by Grab-
Cut (2004), is to obtain the parse by the inference algorithm
on the HCDT to determine the positions of the leaf nodes on
the boundary of the object. Then we performed postprocess-
ing to give a continuous closed boundary by graph-cut (us-
ing the positions of the leaf nodes to yield an initial estimate
of the feature statistics).

The Parsing Criterion. We used the average position er-
ror (Srinivasan and Shi 2007) as a criterion to measure the
quality of the parsing. The position error is defined to be the
distance (in pixels) between the positions of groundtruth and
the parsing result (leaf nodes). The smaller the position er-
ror, the better the quality of the parsing. For horses, there are
between 24 and 36 leaf nodes which appear on the boundary
of a horse. For the baseball player experiments, Srinivasan
and Shi (2007) only used 5 joint nodes (head-torso, torso-
left thigh, torso-right thigh, left thigh-left lower leg, right
thigh-right lower leg) per image. For HCDTs, there are 27
nodes along the boundary of human body which gives more
detailed parsing.

The Segmentation Criterion. Two evaluation criteria
are used to measure the performances of segmentation. We
use segmentation accuracy to quantify the proportion of the
correct pixel labels (object or non-object). For the base-
ball player experiments, we use the segmentation measure,
‘overlap score’, which is defined by %, where P is
the area which the algorithm outputs as the segmentation
and G is the area of ground-truth. The larger the overlap
score, the better the segmentation.

The Criterion for Weak-Detection. We also evaluated
the performance of HCDTs for the weak-detection task
(where the object is known to be in the image but its location
is unknown). Our criterion judges detection to be successful
if the area of the intersection of the detected object region
and the true object region is greater than half the area of the
union of these two regions.
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Table 2 Performance for parsing, segmentation and detection. The
table compares the results for the fixed hierarchy model (without OR
nodes), the HCDT, and alternative methods. Column 3 gives the pars-
ing accuracy—the average position error of leaf nodes of the HCDT is

10 pixels. Column 4 quantifies the segmentation accuracy. Column 5
quantifies the detection rate. Column 6 lists the training time. The last
column shows the average time of inference taken for one image

Models Testing size Parsing Segmentation accuracy Detection Training time  Testing time
Hierarchical Model 100 15.6 94.5% 99% 150 m 20s
AND/OR Graph 100 10.8 94.8% 100% 180 m 27 s
Ren et al. (2005) 172 - 91% - - -
Borenstein (Borenstein and Malik 2006) 328 - 93.0% - - -
LOCUS (Winn and Jojic 2005) 200 - 93.1% - - -
Cour (Cour and Shi 2007) 328 - 94.2% - - -
Levin (Levin and Weiss 2006) N/A - 95.0% - - -
OBJ CUT (Kumar et al. 2005) 5 - 96.0% - - -
Fig. 10 We compare the 50.0
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a0t i1 i
S 00 b R % y :
o 20 RS i T
150 faee fii 2 : Ralk ey s
g s o I
2 100 :
5.0 L ' l
0.0 T T T T T T T T T T T
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6.2 Performance of HCDT’s on the Horse Dataset

Results. In Table 2 we compare the performances of an
HCDT with 40 configurations/topologies against a simple
hierarchical model with a fixed topology (i.e. we fix the
states of the OR nodes). The topology of this fixed hier-
archical model (the first one in the top node in Fig. 3 was

chosen to be the topology that most frequently occurred (af-

ter doing inference with the HCDT with variable topology).

The evaluations are performed on the same 100 test images.

To quantify the significance of the improvement made by
the HCDT (i.e. the AND/OR representation) we plot the 100
paired comparisons in Figs. 10, 11. The p-value for the t-test
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(a) Hierarchy Parsing (b) Hierarchy Segmentation (c) AND/OR Parsing {d) AND/OR Segmentation

Fig. 12 This figure is best viewed in color. Columns (a) to (d) show the parsing and segmentation results obtained by the fixed hierarchy model
and the HCDT respectively. The colored dots show the positions of the leaf nodes of the object
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Fig. 13 The first column shows the parse results of the human body. Color points indicate the positions of subparts. The same color is used in all
images to indicate the same subparts. The second column shows the segmentations. The remaining four columns give extra examples

Table 3 Empirical Complexity Analysis. This table shows the num-
bers of proposals and the time costs at different levels of the hierarchy
(“clusters” means the number of proposals accepted after surround sup-
pression). “Aspects” is the average number of grandchildren nodes for
each level, see text for details

L Nodes Aspects No. Clusters Proposals Time

8 1 12 11.1 2058.8 1.206 s
6 8 1.5 30.6 268.9 1.338s
4 27 1 285.1 1541.5 1.631s
2 68 1 172.2 1180.7 0.351s

on parsing is less than 107> while the p-value for segmen-
tation is 0.03. These tests show that the improvement made
by adding OR nodes is statistically significant for parsing
(alignment of object parts), but less so for segmentation.
For all experiments we used a computer with 4 GB mem-
ory and 2.4 GHz CPU. Learning took 150 minutes for the
model with fixed hierarchy and 180 minutes for the full
HCDT. The inference time per image was 20 seconds for
the fixed hierarchy model and 27 second for the full HCDT.

Our results show that the HCDT outperforms the fixed
hierarchy model for all tasks (i.e. parsing, detection and
segmentation) with only 30% more computational cost. In
Fig. 12, we compare the parse and segmentation results ob-
tained by the fixed hierarchical model and the HCDT. The
states of the leaf nodes of parse tree give the estimated po-
sitions of the points along the boundary and are illustrated
by colored dots (the same colors for corresponding subparts
in different images). Observe that both models (i.e. fixed hi-
erarchy and HCDT) are able to deal with large shape defor-
mation and appearance variations (after training with max
margin), see the top four examples, despite cluttered back-
ground and varied texture on the horses. But the HCDT is
much better at locating subparts, such as the legs and the
head, than the fixed hierarchy model which is only able to
detect locate the torso reliably. This is illustrated by the last
four examples in Fig. 12 where the legs and heads appear in
different poses. The fixed hierarchy model succeeds at per-
forming segmentation reasonably well even though its pars-
ing results are not very good (mainly because of the effec-
tiveness of grab cut). This observation is consistent with the
quantitative comparisons in Table 2. But the last example
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shows a case where incorrect parsing—the fixed hierarchy
model locates the head in the wrong position—can result in
poor segmentation. In summary, the HCDT performs well
for both parsing and segmentation in these experiments. We
note that parsing is a more demanding test of the model for
this dataset because good numerical results can be obtained
for segmentation even when salient parts of the objects—
e.g., the legs—are not accurately detected. Also the fixed
hierarchy model uses grab cut as a final stage, which gives it
an advantage. We expect that the variable hierarchical model
will be more effective at segmentation for more challenging
datasets than Weizmann (i.e. for datasets which contain ob-
jects with large variations of shape and pose).
Comparisons. In Table 2, we compare the segmentation
performance of our approach with other successful methods.
Note that the object cut method (Kumar et al. 2005) was
reported on only 5 images. Levin and Weiss (2006) make
the assumption that the position of the object is given (other
methods do not make this assumption) and do not report how
many images they tested their method on. Overall, Cour and
Shi’s method (Cour and Shi 2007) was the most successful
when evaluated on a large subset of the dataset. But their re-
sult is obtained by manually selecting the best from the top
10 results (other methods output a single result). By con-
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# of top parses per image

trast, our approach outputs a single result but yields a higher
pixel accuracy of 94.8%. Hence we conclude that our ap-
proach outperforms those alternatives which report results
on large subsets of this dataset. Note that no other papers
report parsing performance on this dataset since most (if not
all) of these methods do not estimate the positions of differ-
ent parts of the horse (and do not even represent them).

6.3 Empirical Complexity Analysis

Table 3 shows the empirical complexity properties of the
algorithm. We report for AND levels only (recall that the
model has a total of 8 levels) because the computation at
the OR-nodes is almost instantaneous (it only requires list-
ing the proposals from all its child nodes and doing pruning).
Column 2 reports the number of nodes at each level. Column
3 gives the average number of aspects of the AND nodes at
each level. Columns 4 and 5 reports the average number of
clusters and proposals for each node—the number of pro-
posals are the number of compositions of child nodes and
the number of clusters is the number of accepted propos-
als after surround suppression. Column 6 reports the time.
Observe that the number of proposals increases by an or-
der of magnitude from level 6 to level 8. This is mostly due
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to the increase in the number of aspects (the more aspects,
the more the number of proposals required)’. Note that sur-
round suppression greatly reduces the number of propos-
als (compare the numbers of clusters and proposals in Ta-
ble 3.

6.4 Human Body Parsing

Parsing Results. We show our parsing and segmentation re-
sults for humans in Fig. 13. The dotted points give the po-
sitions of the leaf nodes of parse tree (which lie along the
boundary of human). Similar subparts are indicated by the
same color in all images. For example: (i) yellow and red
points correspond to the left and right shoulder respectively,

I'We define aspects as follows. Let 1 denote an “AND” node. Suppose
node u has k child “OR” node. Let ny, ny, ..., n; denote the number
of child nodes of the k “OR” nodes. Then the aspect of node w is
ny X ny X --- X ng. The number of proposals for node p scales linearly
with the number of aspects. Note that k and ny, ..., ny will usually be
small, so the aspects are usually not large.

and (ii) light blue and dark blue points correspond to the left
and right legs respectively. Observe that the variety of poses
are extremely large, but the HCDT is able to successful esti-
mate pose/configuration and to segment the body. The time
cost of training the HCDT was 20 hours and the inference
takes 2 minutes for images with size 640 x 480.
Performance Comparisons. We compare the perfor-
mance of HCDTs to that reported by Srinivasan and Shi
(2007), which are the best results achieved so far on this
dataset (e.g. better than Mori et al. ’s (2005)). Firstly, we
compare the average position errors of the parse in Fig. 14.
Observe that the best parse of the HCDT gives a perfor-
mance slightly better than the best (manually selected) of
the top 10 parses output by Srinivasan and Shi (2007) and
significantly better than the best (manually selected) of their
top three parses. Secondly, we compare the average over-
lap scores in Fig. 14. The difference of performance mea-
sured by overlap score is arguably more significant. Observe
that our result is significantly better than the best (manu-
ally selected) of their top 10 parses. Our better performance
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is probably due to greater representational power of our
model—the many graph topologies that the HCDT explic-
itly represents—and the different learning techniques (de-
scribed earlier).

Convergence Analysis. We study the convergence be-
havior of max-margin AND/OR graph learning in Fig. 15.
The left panel shows the convergence curve in terms of the
objective function defined in (18). Observe that there is a big
jump around iteration 200. The right panel plots the conver-
gence curves of the average position error on the training
and testing data. The trends of both plots are similar.

7 Discussion

We formulated a novel hierarchical deformable template
(HCDT) for representing objects which has varying topol-
ogy enabling it to adjust to a large variety of different con-
figurations/poses. The HCDT specifies a probability distri-
bution defined over an AND/OR graph. The node variables
indicate the positions and properties of subparts of the ob-
ject and obey the summarization principle. We report an ef-
ficient “compositional inference” which estimate the most
probable states of the HCDT. This is a form of dynamic
programming where pruning mechanisms are used to en-
sure that the algorithm is fast when evaluated on two public
datasets. The structure of the AND/OR graph is specified by
hand but the parameters are learnt in a globally optimal way
by extending max-margin structure learning technique de-
veloped in machine learning. Advantages of our approach
include (i) the ability to model the enormous number of
poses/configurations that occur for articulated objects such
as humans and horses, (ii) the discriminative power provided
by max-margin learning (by contrast to MLE), and (iii) the
use of the kernel trick to make use of high-dimensional fea-
tures. We gave detailed experiments on the Weizmann horse
and human baseball datasets, showing improvements over
the state-of-the-art methods. We are currently working on
improving the inference speed of our algorithm by using a
cascade strategy. We are also extending the model to repre-
sent humans in more details.
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