Skip to main content
Log in

Variable-Source Shading Analysis

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The shading on curved surfaces is a cue to shape. Current computer vision methods for analyzing shading use physically unrealistic models, have serious mathematical problems, cannot exploit geometric information if it is available, and are not reliable in practice. We introduce a novel method of accounting for variations in irradiance resulting from interreflections, complex sources and the like. Our approach uses a spatially varying source model with a local shading model. Fast spatial variation in the source is penalised, consistent with the rendering community’s insight that interreflections are spatially slow. This yields a physically plausible shading model. Because modern cameras can make accurate reports of observed radiance, our method compels the reconstructed surface to have shading exactly consistent with that of the image. For inference, we use a variational formulation, with a selection of regularization terms which guarantee that a solution exists. Our method is evaluated on physically accurate renderings of virtual objects, and on images of real scenes, for a variety of different kinds of boundary condition. Reconstructions for single sources compare well with photometric stereo reconstructions and with ground truth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arikan, O., Forsyth, D. A., & O’Brien, J. F. (2005). Fast and detailed approximate global illumination by irradiance decomposition. In SIGGRAPH ’05: ACM SIGGRAPH 2005 papers (pp. 1108–1114). New York: ACM Press.

    Chapter  Google Scholar 

  • Bar, M. (2003). Cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15(4), 600–609.

    Article  MathSciNet  Google Scholar 

  • Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–629.

    Article  MathSciNet  Google Scholar 

  • Battu, B., Kappers, A. M. L., & Koenderink, J. J. (2007). Ambiguity in pictorial depth. Perception, 36(9), 1290–1304.

    Article  Google Scholar 

  • Blake, A. (1985). Boundary conditions for lightness computation in Mondrian world. CVGIP, 32(3), 314–327.

    Google Scholar 

  • Blake, A., Zisserman, A., & Knowles, G. (1985). Surface descriptions from stereo and shading. Image and Vision Computing, 3(4), 183–191.

    Article  Google Scholar 

  • Brelstaff, G., & Blake, A. (1988). Detecting specular reflections using Lambertian constraints. In Int. conf. on computer vision (pp. 297–302).

    Google Scholar 

  • Brooks, M. J., Chojnacki, W., & Kozera, R. (1992). Impossible and ambiguous shading patterns. International Journal of Computer Vision, 7(2), 119–126.

    Article  Google Scholar 

  • Bruss, A.R. (1982). The eikonal equation: some results applicable to computer vision. Journal of Mathematical Physics, 23(5), 890–896.

    Article  MATH  MathSciNet  Google Scholar 

  • Chandraker, M., Agarwal, S., & Kriegman, D. (2007). Shadowcuts: Photometric stereo with shadows. In IEEE conf. on computer vision and pattern recognition (pp. 1–8).

    Chapter  Google Scholar 

  • Cohen, M. F., & Wallace, J. R. (1993). Radiosity and realistic image synthesis. San Mateo: Morgan Kaufmann.

    MATH  Google Scholar 

  • Crandall, M. G., & Lions, P.-L. (1983). Viscosity solutions of Hamilton-Jacobi equations. Transactions of American Mathematical Society, 277(1), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  • Dacorogna, B. (1989). Direct methods in the calculus of variations. Berlin: Springer.

    MATH  Google Scholar 

  • Dacorogna, B. (2008). Direct methods in the calculus of variations (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Daniel, P., & Durou, J. D. (1999). Creation of real images which are valid for the assumptions made in shape from shading. In ICIAP ’99: Proceedings of the 10th international conference on image analysis and processing (pp. 418–423).

    Chapter  Google Scholar 

  • Daniel, P., & Durou, J.-D. (2000). From deterministic to stochastic methods for shape from shading. In Asian conf. on computer vision (pp. 187–192).

    Google Scholar 

  • Debevec, P. E., & Malik, J. (1997). Recovering high dynamic range radiance maps from photographs. In SIGGRAPH ’97: proceedings of the 24th annual conference on computer graphics and interactive techniques (pp. 369–378).

    Chapter  Google Scholar 

  • Durou, J.-D., Falcone, M., & Sagona, M. (2008). Numerical methods for shape-from-shading: A new survey with benchmarks. Computer Vision and Image Understanding, 109(1), 22–43.

    Article  Google Scholar 

  • Dutre, P., Bala, K., & Bekaert, P. (2002). Advanced global illumination. Wellesley: AK Peters.

    Google Scholar 

  • Falcone, M., & Sagona, M. (1997). An algorithm for the global solution of the shape-from-shading model. In LNCS : Vol. 1310. Proceedings of the 9th international conf. on image analysis and processing (pp. 596–603). Berlin: Springer.

    Google Scholar 

  • Fenske, M. J., Boshyan, J., & Bar, M. (2005). Can a gun prime a hairbrush? The “initial guesses” that drive top-down contextual facilitation of object recognition. Journal of Vision, 5(8), 851.

    Article  Google Scholar 

  • Forsyth, D. A., & Zisserman, A. P. (1989). Mutual illumination. In IEEE conf. on computer vision and pattern recognition (pp. 466–473).

    Google Scholar 

  • Forsyth, D. A., & Zisserman, A. (1990). Shape from shading in the light of mutual illumination. Image and Vision Computing, 8(1), 42–49.

    Article  Google Scholar 

  • Forsyth, D. A., & Zisserman, A. P. (1991). Reflections on shading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7), 671–679.

    Article  Google Scholar 

  • Georghiades, A. S., Belhumeur, P. N., & Kriegman, D. J. (2000). From few to many: Generative models for recognition under variable pose and illumination. In IEEE int. conf. on automatic face and gesture recognition (pp. 277–284).

    Google Scholar 

  • Goral, C. M., Torrance, K. E., Greenberg, D. P., & Battaile, B. (1984). Modeling the interaction of light between diffuse surfaces. In Proc. ACM SIGGRAPH (pp. 213–222).

    Google Scholar 

  • Hernández, C., Vogiatzis, G., & Cipolla, R. (2008). Shadows in three-source photometric stereo. In European conf. computer vision (pp. 290–303).

    Google Scholar 

  • Ho, J., Lim, J., Yang, M.-H., & Kriegman, D. (2006). Integrating surface normal vectors using fast marching method. In European conf. computer vision (Vol. III, pp. 239–250).

    Google Scholar 

  • Horn, B. K. P. (1970a). Shape from shading: a method for obtaining the shape of a smooth opaque object from one view (Ai tr-232), MIT.

  • Horn, B. K. P. (1970b). Shape from shading: a method for obtaining the shape of a smooth opaque object from one view. PhD thesis, MIT Department of Electrical Engineering.

  • Horn, B. K. P. (1974). Determining lightness from an image. Computer Graphics and Image Processing, 3(1), 277–299.

    Article  Google Scholar 

  • Horn, B. K. P. (1977). Understanding image intensities. Artificial Intelligence, 8(2), 201–231.

    Article  MATH  Google Scholar 

  • Horn, B. K. P., & Brooks, M. J. (1986a). The variational approach to shape from shading. Computer Vision, Graphics & Image Processing, 33(2), 174–208.

    Article  Google Scholar 

  • Horn, B. K. P., & Brooks, M. J. (1986b). The variational approach to shape from shading. Computer Graphics and Image Processing, 33(2), 174–208.

    Article  Google Scholar 

  • Horn, B. K. P., Szeliski, R. S., & Yuille, A. (1993). Impossible shaded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(2), 166–170.

    Article  Google Scholar 

  • Ikeuchi, K., & Horn, B. K. P. (1981). Numerical shape from shading and occluding boundaries. AI, 17(1–3), 141–184.

    Google Scholar 

  • Jin, H., Cremers, D., Yezzi, A. J., & Soatto, S. (2004). Shedding light on stereoscopic segmentation. In IEEE conf. on computer vision and pattern recognition (Vol. I, pp. 36–42).

    Google Scholar 

  • Johnson, M. K., & Farid, H. (2005). Exposing digital forgeries by detecting inconsistencies in lighting. In MM&Sec ’05: Proceedings of the 7th workshop on multimedia and security (pp. 1–10). New York: ACM.

    Chapter  Google Scholar 

  • Koenderink, J. J. (1998). Pictorial relief. Philosophical Transactions of the Royal Society of London A, 356(1740), 1071–1086.

    Article  MATH  MathSciNet  Google Scholar 

  • Koenderink, J. J., van Doorn, A. J., Kappers, A. M. L., & Todd, J. T. (2001). Ambiguity and the ‘mental eye’ in pictorial relief. Perception, 30(4), 431–448.

    Article  Google Scholar 

  • Kreyszig, E. O. (1989). Introductory functional analysis with applications. New York: Wiley.

    MATH  Google Scholar 

  • Krivanek, J., Gautron, P., Pattanaik, S., & Bouatouch, K. (2005). Radiance caching for efficient global illumination computation. IEEE Transactions on Visualization and Computer Graphics, 11(5), 550–561.

    Article  Google Scholar 

  • Larson, G. W., & Shakespeare, R. (1998). Rendering with radiance: the art and science of lighting visualization. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Lax, P. D. (2002). Functional analysis. New York: Wiley.

    MATH  Google Scholar 

  • Mitsunaga, T., & Nayar, S. K. (1999). Radiometric self calibration. In IEEE conf. on computer vision and pattern recognition (pp. 374–380).

    Google Scholar 

  • Nayar, S. K., Ikeuchi, K., & Kanade, T. (1991). Shape from interreflections. IJCV, 6(3), 173–195.

    Article  Google Scholar 

  • Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Oliensis, J. (1991). Uniqueness in shape from shading. International Journal of Computer Vision, 6(2), 75–104.

    Article  Google Scholar 

  • Pentland, A. (1982). Finding the illuminant direction. Journal of the Optical Society of America, 72(4), 448–455.

    Article  Google Scholar 

  • Pharr, M., & Humphreys, G. (2004). Physically based rendering: from theory to implementation. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Potetz, B. (2007). Efficient belief propagation for vision using linear constraint nodes. In IEEE conf. on computer vision and pattern recognition.

    Google Scholar 

  • Prados, E., & Faugeras, O. (2005a). A generic and provably convergent shape-from-shading method for orthographic and pinhole cameras. International Journal of Computer Vision, 65(1–2), 97–125.

    Article  Google Scholar 

  • Prados, E., & Faugeras, O. (2005b). Shape from shading: A well-posed problem? In IEEE conf. on computer vision and pattern recognition (Vol. II, pp. 870–877).

    Google Scholar 

  • Prados, E., Faugeras, O. D., & Rouy, E. (2002). Shape from shading and viscosity solutions. In European conf. computer vision (Vol. II, pp. 790–804).

    Google Scholar 

  • Ragheb, H., & Hancock, E. R. (2005). Surface radiance correction for shape from shading. Pattern Recognition, 38(10), 1574–1595.

    Article  Google Scholar 

  • Ramamoorthi, R., & Hanrahan, P. (2001). A signal-processing framework for inverse rendering. In Proceedings of SIGGRAPH (pp. 117–128).

    Google Scholar 

  • Raskar, R. (2002). Projector-based three dimensional graphics. PhD thesis, UNC-Chapel Hill.

  • Robles-Kelly, A., & Hancock, E. R. (2007). Shape from shading using the heat equation. IEEE Transactions on Image Processing, 16(1), 7–21.

    Article  MathSciNet  Google Scholar 

  • Rouy, E., & Tourin, A. (1992). A viscosity solutions approach to shape-from-shading. SIAM Journal of Numerical Analysis, 29(3), 867–884.

    Article  MATH  MathSciNet  Google Scholar 

  • Shimshoni, I., & Ponce, J. (1997). Recovering the shape of polyhedra using line-drawing analysis and complex reflectance models. CVIU, 65(2), 296–310.

    Google Scholar 

  • Sillion, F. X., & Puech, C. (1994). Radiosity and global illumination. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Tankus, A., Sochen, N., & Yeshurun, Y. (2005). Shape-from-shading under perspective projection. International Journal of Computer Vision, 63(1), 21–43.

    Article  Google Scholar 

  • Tsai, P.-S., & Shah, M. (1994). Shape from shading using linear approximation. Image and Vision Computing, 12(8), 487–498.

    Article  Google Scholar 

  • Wada, T., Ukida, H., & Matsuyama, T. (1997). Shape from shading with interreflections under a proximal light source: Distortion-free copying of an unfolded book. International Journal of Computer Vision, 24(2), 125–135.

    Article  Google Scholar 

  • Ward, G. J., Rubinstein, F. M., & Clear, R. D. (1988). A ray tracing solution for diffuse interreflection. In SIGGRAPH ’88: Proceedings of the 15th annual conference on computer graphics and interactive techniques (pp. 85–92).

    Chapter  Google Scholar 

  • Worthington, P. L., & Hancock, E. R. (1999). New constraints on data-closeness and needle map consistency for shape-from-shading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(12), 1250–1267.

    Article  Google Scholar 

  • Zhang, R., Tsai, P. S., Cryer, J. E., & Shah, M. (1999). Shape from shading: A survey. PAMI, 21(8), 690–706.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Forsyth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsyth, D.A. Variable-Source Shading Analysis. Int J Comput Vis 91, 280–302 (2011). https://doi.org/10.1007/s11263-010-0396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0396-9

Keywords

Navigation