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Abstract Appearance modeling is very important for back-
ground modeling and object tracking. Subspace learning-
based algorithms have been used to model the appear-
ances of objects or scenes. Current vector subspace-based
algorithms cannot effectively represent spatial correlations
between pixel values. Current tensor subspace-based al-
gorithms construct an offline representation of image en-
sembles, and current online tensor subspace learning al-
gorithms cannot be applied to background modeling and
object tracking. In this paper, we propose an online ten-
sor subspace learning algorithm which models appearance
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changes by incrementally learning a tensor subspace repre-
sentation through adaptively updating the sample mean and
an eigenbasis for each unfolding matrix of the tensor. The
proposed incremental tensor subspace learning algorithm
is applied to foreground segmentation and object tracking
for grayscale and color image sequences. The new back-
ground models capture the intrinsic spatiotemporal charac-
teristics of scenes. The new tracking algorithm captures the
appearance characteristics of an object during tracking and
uses a particle filter to estimate the optimal object state.
Experimental evaluations against state-of-the-art algorithms
demonstrate the promise and effectiveness of the proposed
incremental tensor subspace learning algorithm, and its ap-
plications to foreground segmentation and object tracking.

Keywords Incremental learning - Tensor subspace -
Foreground segmentation - Tracking

1 Introduction

Modeling the appearances of objects or scenes plays an im-
portant role in computer vision applications such as back-
ground modeling, tracking, and behavior analysis. Color
histograms (Nummiaroa et al. 2003; Perez et al. 2002) of
regions are widely used for appearance modeling due to
their robustness to region scaling, rotation, and shape vari-
ations. Their limitation is that they ignore the spatial distri-
bution of pixel values. Kernel density estimation-based ap-
pearance models (Elgammal et al. 2002; Yang et al. 2005)
use spatial weighted kernels to represent the spatial distrib-
ution of pixel values. Their limitation is their high compu-
tational and memory complexities. GMM (Gaussian mix-
ture model)-based appearance models (Zhou et al. 2004;
Wu and Huang 2004) use a mixture of weighted Gaussian
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distributions to learn a statistical model for colors. Their
limitation is that they deal with each pixel independently
and thus the relations between the values of nearby pixels
are not effectively characterized. Conditional random field-
based appearance models (Wang et al. 2006) use Markov
random fields to model the relations between the values of
neighboring pixels. Their limitations are that their training
is very expensive and the global distributions of pixels are
not considered. Online subspace learning-based appearance
models (Skocaj and Leonardis 2003; Ross et al. 2008) flat-
ten appearance regions to vectors in order to describe global
statistical information about pixel values. Their limitation
is that spatial information, which is invariant under certain
global appearance variations e.g. lighting changes and ro-
bust to image noise, is missing due to the flattening.

Recently, multi-linear subspace analysis has attracted
much attention and has been applied to image representa-
tion and appearance modeling, etc. Yang et al. (2004) de-
velop a 2-dimensional PCA (principal component analysis)
for image representation. An image covariance matrix is
constructed. The eigenvectors of this matrix are derived for
image feature extraction. Ye et al. (2004a) present a learning
method called 2-dimensional linear discriminant analysis in
which classification is based on operations on image matri-
ces. Ye (2005) propose an algorithm for low rank approxi-
mations of a collection of matrices using an iterative algo-
rithm which reduces the reconstruction error sequentially,
and improves the resulting approximation during successive
iterations. Ye et al. (2004b) present a new dimension reduc-
tion algorithm which constructs the low-order matrix repre-
sentation of images directly by projecting the images to a
vector space that is the product of two lower-dimensional
vector spaces. Some pioneering methods use tensors to con-
struct object models. Wang and Ahuja (2005) propose a
rank-R tensor approximation which can effectively capture
spatiotemporal redundancies in the tensor entries. Yan et
al. (2005) propose an algorithm for discriminant analysis
with tensor representation. This algorithm is derived from
the popular vector-based linear discriminant analysis algo-
rithm. Vasilescu and Terzopoulos (2002, 2003) apply the N-
mode SVD (singular value decomposition), i.e. multi-linear
subspace analysis, to construct a compact representation of
facial image ensembles factorized by different faces, expres-
sions, viewpoints, and illuminations. He et al. (2005) present
a tensor subspace analysis algorithm, which learns a lower
dimensional tensor subspace, to characterize the intrinsic
local geometric structure within the tensor space. Wang et
al. (2007) give a convergent solution for general tensor-
based subspace learning. Sun et al. (2006a, 2006b, 2008)
propose three tensor subspace learning methods: DTA (dy-
namic tensor analysis), STA (streaming tensor analysis), and
WTA (window-based tensor analysis), for representing data
streams over time.
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The above tensor analysis algorithms cannot be applied
to background modeling and object tracking directly. We
point out the following aspects:

1) Except for the DTA, STA, and WTA algorithms, the
above tensor analysis algorithms learn tensor subspaces of-
fline, i.e. when new data arrives, the subspace model is re-
trained using the new data and the previous data. This results
in high memory and time costs, while spatiotemporal redun-
dancies are substantially reduced. In the context of back-
ground modeling and object tracking, it is necessary to use
the new data to online update the previously learned model.
This is because appearance updating for background model-
ing and object tracking is more effective if the recent frames
in a video are weighted more heavily than previous frames.

2) The DTA, STA, and WTA algorithms include incre-
mental tensor subspace learning which adaptively updates
the subspaces. However, they cannot be applied to back-
ground modeling and object tracking. These three algo-
rithms use column spaces of the three unfolding matrices
obtained from the corresponding three modes of the ten-
sor. In fact, the column space of the unfolding matrix on
the third mode is of no use for background modeling and
object tracking, but the row space of this matrix is useful.
Furthermore, DTA and WTA update the covariance matrix
formed from the columns of each of the unfolding matrices
and then obtain an eigenvector decomposition of the updated
covariance matrix, assuming that the mean of the previous
unfolding matrix is equal to the mean of the unfolding ma-
trix of new data. As a result, the updating is not accurate if
the mean changes. DTA and WTA have the small size prob-
lem: the number of new samples is much less than the rank
of the covariance matrix. STA applies the SPIRIT (stream-
ing pattern discovery in multiple timeseries) iterative algo-
rithm (Papadimitriou et al. 2005) to the new coming data to
approximate DTA without diagonalization. The tensor sub-
spaces learned using STA are less accurate than the tensor
subspaces learned using DTA. (More descriptions to DTA,
WTA, and STA are given in Sect. 3.3.6.)

In this paper, we develop a new incremental tensor sub-
space learning algorithm, and apply it to foreground seg-
mentation and object tracking. The main contributions of
our work are as follows:

e The proposed algorithm learns online a low dimensional
tensor subspace representation of the appearance of an
object or a scene by adaptively updating the sample mean
and an eigenbasis for each unfolding matrix using ten-
sor decomposition and incremental SVD. Compared with
existing vector subspace algorithms for appearance mod-
eling, our algorithm more efficiently captures the intrinsic
spatiotemporal characteristics of the appearance of an ob-
ject and a scene. Furthermore, our method works online,
resulting in much lower computational and memory com-
plexities.
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e Based on the proposed incremental subspace learning al-
gorithm, two background models, one for grayscale im-
age sequences and the other for color image sequences,
are developed to capture the spatiotemporal characteris-
tics of scenes based on a likelihood function which is
constructed from the learned tensor subspace model. The
background models are used to segment the foreground
from the background. The experimental results show that
our algorithm obtains more accurate foreground segmen-
tation results than the vector subspace-based algorithm
(Li 2004) and the GMM-based algorithm (Stauffer and
Grimson 1999).

e We propose a visual object tracking algorithm in which
the proposed incremental tensor subspace learning algo-
rithm is used to capture the appearance of an object during
tracking (Li et al. 2007). Particle filtering is used to prop-
agate the sample distributions over time. The experimen-
tal results show that our algorithm tracks objects more
robustly than the vector subspace-based algorithm (Ross
et al. 2008) and the Riemannian metric-based algorithm
(Porikli et al. 2006).

The remainder of the paper is organized as follows:
Sect. 2 discusses the related work. Section 3 describes our
incremental tensor subspace learning algorithm. Sections 4
and 5 present our background segmentation algorithm and
our object tracking algorithm respectively. Section 6 demon-
strates experimental results. The last section summarizes the

paper.

2 Related Work

In Sect. 1, we reviewed the work closely related to tensor-
based appearance modeling in order to strengthen the mo-
tivation of this paper. For completeness, in the following,
we briefly discuss the developments in foreground segmen-
tation and visual object tracking.

2.1 Foreground Segmentation

Segmentation of foreground regions in an image sequence
is accomplished by comparing each new frame with the
learned background model. Effective modeling of the back-
ground is crucial for foreground segmentation. However,
changes in dynamic scenes, such as illumination variations,
shadow movements, and tree swaying, make background
modeling quite difficult.

Much work has been done in background modeling and
foreground segmentation. Stauffer and Grimson (1999) pro-
pose an online adaptive background model in which a GMM
is used to model the sequence of values associated with each
pixel. Each pixel in a new frame is classified by matching the
value of the pixel with one of the distributions in the GMM

associated with this pixel. Sheikh and Shah (2005) use non-
parametric density estimation over a joint domain-range rep-
resentation of image pixels to directly model multimodal
spatial uncertainties and complex dependencies between
pixel location and color. Jacques et al. (2006) present an
adaptive background model for grayscale video sequences.
The model utilizes local spatiotemporal statistics to de-
tect shadows and highlights. It can adapt to illumination
changes. Haritaoglu et al. (2000) build a statistical back-
ground model which represents each pixel by three values
which are its minimum intensity value, its maximum inten-
sity value, and the maximum intensity difference between
consecutive frames. Wang et al. (2005) present a proba-
bilistic method for background subtraction and shadow re-
moval. Their method detects shadows by a combined in-
tensity and edge measure. Tian et al. (2005) propose an
adaptive Gaussian mixture model based on a local normal-
ized cross-correlation metric and a texture similarity metric.
These two metrics are used for detecting shadows and il-
lumination changes, respectively. Patwardhan et al. (2008)
propose a framework for coarse scene modeling and fore-
ground detection using pixel layers. The framework allows
for integrated analysis and detection in a video scene. Wang
et al. (2006) use a dynamic probabilistic framework based
on a conditional random field to capture spatial and tempo-
ral statistics of pixels for foreground and shadow segmen-
tation. Li (2004) constructs a subspace-based background
model. An online PCA is used to incrementally learn the
background’s subspace representation.

The aforementioned methods for background modeling
are unable to fully exploit the spatiotemporal redundancies
within image ensembles. In particular, the vector subspace
techniques (Li 2004) lose local spatial information, perhaps
leading to incorrect foreground segmentation results. Conse-
quently, it is interesting to develop the tensor-based learning
algorithms to effectively capture the spatiotemporal charac-
teristics of the background pixels.

2.2 Visual Object Tracking

The effective modeling of object appearance variations plays
a critical role in visual object tracking. There are two types
of appearance variations: intrinsic appearance variations re-
sulting from objects themselves such as object pose vari-
ation or object shape deformation, and extrinsic appear-
ance variations associated with the environment of the ob-
jects, such as changes in illumination, camera motion, or
occlusions. Much work has been done on modeling ob-
ject appearance for visual tracking. Hager and Belhumeur
(1996) propose a tracking algorithm which uses an extended
gradient-based optical flow method to track objects under
varying illumination. Black and Jepson (1998) present a nice
subspace learning-based tracking algorithm. A pre-trained,
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view-based eigenbasis representation is used to model ap-
pearance variations. Isard and Blake (1996) use curves or
splines to represent the boundary of an object and develop
the Condensation algorithm for contour tracking. Black et
al. (1998) employ a mixture model to represent and recover
object appearance changes in consecutive frames, providing
more reliable estimates of image motion than traditional op-
tical flow-based approaches. Jepson et al. (2003) develop a
robust tracking algorithm using wavelet features which can
be used to model the spatial correlations in images directly
and are suited to multiple scales. They use a wavelet basis
to decompose each image at two different scales. Each scale
has four orientations. In total, 8 filter masks are required.
The extraction of wavelet features is time consuming and
the number of extracted features is large. Zhou et al. (2004)
embed adaptive appearance models into a particle filter to
achieve robust visual object tracking. Yu and Wu (2006)
propose a non-rigid object tracking algorithm based on a
spatial-appearance model which captures non-rigid appear-
ance variations and recovers all the motion parameters effec-
tively. Li et al. (2005) use a generalized geometric transform
to handle object deformation, articulated objects, and occlu-
sions. Wong et al. (2006) present a robust appearance-based
tracking algorithm using an online-updating Bayesian clas-
sifier. Lee and Kriegman (2005) present a tracking method
based on an online learning algorithm which incrementally
learns a generic appearance model from a video. Lim et
al. (2006) present a human tracking framework using ro-
bust identification of system dynamics and a nonlinear di-
mension reduction technique. Ho et al. (2004) present a vi-
sual tracking algorithm based on linear subspace learning.
Ross et al. (2008) propose a generalized tracking framework
based on the incremental vector subspace learning method
with sample mean updating. Han et al. (2009) apply con-
tinuous density propagation in sequential Bayesian filtering
to real-time object tracking. The techniques of density in-
terpolation and density approximation are used to represent
the likelihood and the posterior densities with Gaussian mix-
tures. Gall et al. (2008) combine patch-based matching and
region-based matching to track both structured and homo-
geneous object body parts. Nickel and Stiefelhagen (2008)
propose a person tracker based on dynamic integration of
generalized cues. A layered sampling strategy is adopted
when particle filtering is applied to these cues. Chen and
Yang (2007) present a spatial bias appearance model which
exploits local region confidences for tracking objects un-
der complex backgrounds and partial occlusions. Mahade-
van and Vasconcelos (2009) propose an object tracking al-
gorithm which combines a top-down saliency mode and a
bottom-up saliency mode to localize the object. Yang et al.
(2009) propose an algorithm for tracking objects with non-
stationary appearances. In this algorithm, negative data con-
straints and bottom-up pair-wise data constraints are used
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to dynamically adapt to the changes in the object appear-
ance. Kwon and Lee (2009) track a non-rigid object using a
local patch-based appearance model which maintains rela-
tions between local patches by online updating. Ramanan et
al. (2007) propose a human body tracking algorithm which
models the appearance of each body part individually and
represents the deformable assembly of parts by spring-like
connections between pairs of parts. Matthews et al. (2004)
propose an appearance template updating algorithm that
does not suffer from tracker drift. The template can be up-
dated in every frame and yet still stay attached to the original
object. The template is first updated at the current template
location. To eliminate drift, this updated template is then
aligned with the benchmark template extracted from the first
frame. Grabner et al. (2008) formulate the tracker updating
process in a semi-supervised fashion by combining the de-
cisions obtained from a given prior classifier and an online
classifier. The prior classifier, which is trained using samples
extracted from the first frame, is used to deal with tracking
drift. Both the above two algorithms (Matthews et al. 2004;
Grabner et al. 2008) use a fixed template, which is con-
structed in the first frame, to significantly alleviate tracking
drift. The limitation of these two algorithms is that the tem-
plate constructed in the first frame becomes unreliable if the
object appearance undergoes large changes.

It is noted that the above tracking algorithms do not fully
exploit the spatiotemporal information in the image ensem-
bles obtained while tracking an object. This is particularly
true for the vector subspace-based tracking algorithms (Ross
et al. 2008) in which information about correlations between
neighboring pixels is for the most part lost when the images
are flattened into vectors. In order to achieve robust track-
ing, it is necessary to develop the tensor-based learning al-
gorithms for effective subspace analysis to more effectively
utilize the spatiotemporal information about an object’s ap-
pearance.

3 Incremental Tensor Subspace Learning

First, basic concepts of tensor algebra, as well as its nota-
tions and symbols, are briefly introduced. Then, our online
tensor subspace learning algorithm is described.

3.1 Tensor Algebra

Tensor algebra (Lathauwer et al. 2000) is the mathematical
foundation of multi-linear analysis. A tensor can be regarded
as a multi-order “array” lying in multiple vector spaces. We
denote an N-order tensor as A € RIXE2xInxIN \where
I, (n=1,2,...,N) is a positive integer. Each element in
this tensor is represented as a;,.;,..iy, Where 1 <i, < I,.
Each order of a tensor is associated with a “mode”. By un-

folding a tensor along a mode, a tensor’s unfolding matrix
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L i ,—';‘—| The Frobenius norm of A is defined as: ||A||p = (A, /i) .
= )| =] & &
i L | | i | Aw 3.2 Tensor Decomposition
= A Tensor decomposition is higher-order SVD (Vasilescu and
I — 71— Terzopoulos 2003) which is a generalization of the conven-
LI - L I h % tional matrix SVD. The SVD of a matrix X € R”*" can be
4] j‘ : : - represented as X = UX V7T, where matrix U € R™*™, ma-
I trix X € R™*" and matrix V € R™*". The column vectors in
L7 I R U are the eigenvectors of X X7 and ¥ is a diagonal matrix
. J L l Y 4 A containing the singular values of X. The tensor decomposi-
|0 : : tion of a N-order tensor A which lies in N vector spaces in-
e volves N orthonormal matrices UV, U®, ..., U™ to gen-

Fig. 1 Illustration of unfolding a 3-order tensor

corresponding to this mode is obtained. For example the
mode-n unfolding matrix A, € R Tt 1 of A consists
of I,,-dimensional mode-n column vectors which are ob-
tained by varying the nth-mode index i,, and keeping indices
of the other modes fixed, i.e. the column vectors of A, are
just the mode-n vectors. Figure 1 shows the process of un-
folding a 3-order tensor A into three matrices: the mode-1
matrix Aj) consisting of /j-dimensional column vectors,
the mode-2 matrix Ay consisting of />-dimensional col-
umn vectors, and the mode-3 matrix A(3) consisting of I3-
dimensional column vectors. The inverse operation of the
mode-n unfolding is the mode-n folding which restores the
original tensor A from the mode-n unfolding matrix Awy,
represented as A = fold(A ), n). The mode-n rank R, of
A is defined as the dimension of the space generated by the
mode-n vectors: R, = rank(Ay)).

The operation of mode-n product of a tensor and a matrix
forms a new tensor. The mode-n product of tensor A and
matrix U is denoted as A x, U. Let matrix U € R/n*In,
Then, A x, U € RIX > D1 JnxTns 1% IN and its elements
are calculated by:

(A X0 Uiyt jning1 iy = Zail...iNUj,,i,l- (1)

In

Of course, A x, U can be obtained by calculating U -
A first where the operation *“.” represents matrix multi-
plication, and then operating mode -n folding on U - Ay,.
Given a tensor A € RI*2XxIN and three matrices C €
RIw*In D e REn>In and E € RIn*In (n # m), tensor’s
mode-n product has the following properties:

1. (Axp CO) Xxm E=(AXmE) xy C=A x, C Xy E
2. (Ax, C) xu D=A x, (D-C)

The scalar product of two tensors A and B with the same
set of indices is defined as:

ZZ Zailiz»--iNbiliz--~iN~ 2)

i I

A

(A, B) =

erate these N spaces respectively: the orthonormal column
vectors of U™ span the column space of the mode-n un-
folding matrix A,y (1 <n < N). Then, the tensor A is de-
composed in the following way:

A:éX]U(l)XzU(2)~~XNU(N) 3)

where B is the core tensor controlling the interaction be-
tween the N mode matrices UD, ..., U™, In this way,
each mode matrix U™ (1 <n < N) (Vasilescu and Ter-
zopoulos 2003) is computed by finding the SVD for the
mode-n unfolding matrix: A,y = U,%, VI and | setting the
mode matrix U™ as the orthonormal matnx U, (UM =
U,). The core tensor is computed by Vasilescu and Ter-
zopoulos (2003):
B=Ax,uM .. x, U™ .. xyUu™" )
Such a decomposition can only be achieved offline, i.e. it
cannot be used for incremental tensor subspace learning.

In real applications, dimension reduction is necessary
for a compact representation of a tensor. Lathauwer et al.
(2000) propose a rank-(Rp, Rz, ..., Ry) approximation al-
gorithm for the dimension reduction. The algorithm applies
the technique of alternate least squares to find the domi-
nant projection subspaces of a tensor. Given an N-order ten-
sor A € RIxIxxIy 4 rank-(Ry, Ry, ..., Ry) tensor Dis
found to minimize the square of the Frobenius norm of the
error tensor:

D =argmin(|A — C[}). (5)
C

The computational and memory costs are high.

3.3 Incremental Rank-(Rj, R>, R3) Tensor Subspace
Learning

In this section, we describe the proposed incremental rank-
(R1, R2, R3) tensor subspace learning algorithm for 3-order
tensors. The algorithm applies an incremental SVD algo-
rithm (Ross et al. 2008) to identify the dominant projection
subspaces of a 3-order tensor and incrementally update these
subspaces when new data arrive.
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3.3.1 Incremental SVD

Gu and Eisenstat (1995) propose an efficient and stable algo-
rithm for finding the SVD of a matrix obtained by deleting
a row from an original matrix. The algorithm updates the
SVD of the original matrix. They (Gu and Eisenstat 1993)
also propose a stable and fast algorithm for finding the SVD
of a matrix obtained by appending a row to an original ma-
trix with a known SVD. The techniques for downdating and
updating SVD are quite similar to each other. In incremen-
tal SVD, the aim is to update a given SVD when new data
arrives. The SVD contains only a relatively small number
of non-zero singular values. Incremental SVD is suitable for
background modeling and object tracking, as it emphasizes
the current observations and retains information about the
previous observations in the previous SVD. The algorithm
in Ross et al. (2008) extends the classic incremental SVD
(Levy and Lindenbaum 2000) by computing the subspace of
a dynamic matrix with the mean updating which removes
the assumption that the mean of the previous data is equal to
the mean of the new data. More accurate incremental SVD
is obtained.

In this paper, we apply the incremental SVD algorithm in
Ross et al. (2008) to our incremental tensor subspace learn-
ing algorithm. In the following, this incremental SVD al-
gorithm is briefly described. Let A’ be the previous data
matrix where the data are represented by column vectors.
Let F/ be a new data matrix. Let w4, up, and w4+ be the
column mean vectors of A’, F’, and (A’|F’) respectively,
where the operation “I” merges the left and the right ma-
trices. Let {Uya, X4, Va} be the SVD of A’, where only
the principal components with larger singular values are re-
tained. The SVD {Uga+, T+, Vax} of (A’|F’) is estimated
from w4, {Ua, X4, Va}, and F’. This incremental updating
process is outlined as follows:

Step 1: Compute

_a n Ir
_IA+IFMA IA+IFMF

Hax (6)
where 14 is the number of the columns in A’ and IF is the
number of columns in F’.

Step 2: Construct a new matrix E:

IAlr
Io+1IF

E= <(F’ — mrlixip)l (ma — MF)) (N

where /|« 1s a Ir-dimensional row vector whose elements
f—-I’L
are all “1”,1e.1,1,...,1.
Step 3: Compute the QR decomposition of E to obtain
the eigenbasis E of E. Let matrix U’ be U’ = (U4 |E).
Step 4: Let matrix V' be

r_(Va 0
V_<0 QIF) ®
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where Q. is the Ir x Ir identity matrix. Then, matrix ¥/
is defined as:

, (B4 WAT E
oo (3 )

Step 5: Compute the SVD of £’ : &' = UX V7. Then,
the of SVD of (A’|F’) is obtained: Uyp+ = UU,Sp =3,
and (Va)T = (WT(v)HT.

The forgetting factor A in Ross et al. (2008) is used to
weight the data streams, in order that recent observations are
given higher weights than historical ones. This is achieved
by replacing the matrix A’ with LA’ in the incremental up-
dating process described above.

As shown in Levy and Lindenbaum (2000), Ross et al.
(2008), Golub and Van Loan (1996), the result of incremen-
tal SVD for a matrix is the same as the result of the SVD
for the matrix in the batch mode if all the non-zero singular
values at the previous step are retained and used for incre-
mental SVD at the current step. The subspace obtained us-
ing the incremental SVD in this way is very accurate. Except
for matrix SVD, there is no iterative process included in the
incremental SVD algorithm. There are reliable, stable algo-
rithms for the matrix SVD that converge rapidly to the cor-
rect result. So, the incremental SVD avoids the convergence
problem generally associated with iterative algorithms.

Let m be the number of rows in the data matrix and let
n be the number of singular values retained in the SVD
of the data matrix. In general, updates to the SVD require
O (mn?) operations in practice, although they can be done
in O (mnlog(n)) in theory. According to Ross et al. (2008),
the above incremental SVD only requires O (mnlF) opera-
tions. As I is a small integer, this incremental SVD is very
fast.

3.3.2 Unfolding an Extended 3-Order Tensor

In line with the requirements for foreground segmentation
and object tracking, we only consider the extension of 3-
order tensors along one order. Given a 3-order tensor Ae
RIXDXI3 \when a new 3-order tensor F € RI<DxIy ap
rives, A is extended along the third order to form a tensor
A* = (A|F) € RI" XI5 where the operation “I” merges
the left and the right tensors along the third order, and
I§ = I3 + I;. Figure 2 illustrates the process of unfold-
ing A* and the relations between the previous unfolding
matrices A(yy, A, A@3), the newly added unfolding ma-
trices F(1), F(2), F(3) and the current unfolding matrices
A’("l), A>(k2)’ A’("3). The three different modes of unfolding a
extended 3-order tensor are shown in the left of Fig. 2. The
three unfolding matrices A?l)’ Az‘z), and A>("3) corresponding
to the three different modes are shown in the right of Fig. 2.
In the figure, the white regions represent the previous tensor
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Fig. 2 Unfolding an extended 3-order tensor

A and the previous unfolding matrices, and the gray regions
denote the newly added tensor F' and its unfolding matrices
Fuy, Foy, F)-

3.3.3 Incremental Learning for Unfolding Matrices

After addition of the new tensor, the column spaces of the
two unfolding matrices on modes 1 and 2 are extended, and
the row space of the mode-3 matrix is extended. Conse-
quently, our incremental tensor subspace learning algorithm
needs to online track the changes in these three extended
spaces, and online identify the three corresponding domi-
nant projection subspaces for a compact representation of
the tensor. These three spaces are handled in the following
ways:

1) With respect to A<1)’ as A(l) = (Al F()), the SVD
of A{}, can be obtained from the SVD of Ay and the data
in F(y using the incremental SVD technique described in
Sect. 3.3.1.

2) With respect to AZ" ) it is noted that Az‘z) can be de-
composed as: A?z) = (A@)|F)) - P, where P is an elemen-
tary counterchange matrix obtained by column exchange
and transpose operations on an identity matrix Z with rank
115 Let

I I I 4 I I

e i T e TSNS
Z=(E | Q1| E2| Q2 ... E | Q1) (10)

which is generated by partitioning Z into 2/ blocks along
the column dimension. The partition of Z corresponds to
A’("2)’s block partition shown in Fig. 2, i.e. Eq, Ea, ... E,
correspond to the white regions, and Q1, Q2,... Qy, cor-
respond to the gray regions. Then, the elementary counter-
change matrix P is formulated as:

P=(E|E>...

|En1Q11Qa...101)". Y

In this way, the column subspace (column projection matrix)
of A’(“z) can be efficiently obtained by the SVD of (A(2)|F(2))
from the SVD of A(y) and F() using the incremental SVD
technique.

3) With respect to AZ‘3), we estimate the row subspace,
instead of the column subspace. This is because we only
consider the extension of a 3-order tensor along the third or-
der with the increase of the dimension of the third order, and
we then only need to track the changes in the row space of
AE), and identify the new row projection subspace. For the
applications to background modeling and object tracking,
this row space contains information about the changes in the
appearance of an object or background over time. But the
subspace of the column space is of no use for background
modeling and object tracking, because values of each pixel
in an appearance over time form a vector, and the subspace
of this column space only uses a small number of vectors to
describe the vectors of all the pixels in the appearance. The
dimension of this column space becomes larger and larger
over time until finally the column space is too large for prac-
tical applications. Consequently, for AE), we should calcu-
late the SVD of the matrix

T
<m) (12)

F@)
where the operation “—” merges the upper and lower ma-
trices. Formula (12) is equal to (A3))7 [(F3))T. We obtain
the SVD of (AT [(F3))T from the SVD of (A@))! and
(F@3))T using the incremental SVD technique.

The first R; dominant singular vectors with the larger
singular values are selected from the SVD of (A()|F(1))
to form the subspace of (A1)|F(1)). The first Ry domi-
nant singular vectors with the larger singular values are
selected from the SVD of (A)|F()) to form the sub-
space of (A)|F2)). The first R3 dominant singular vec-
tors with the larger singular values are selected from
the SVD of ((A3))T|(F3)T) to form the subspace of
((Aa)T|(F3))T). The obtained three subspaces form the
result of the incremental rank-(R1, R2, R3) tensor subspace
learning.

3.3.4 Incremental SVD for 3-Order Tensors

We can use the results of incremental SVD of (A )| F(1)),
(A@)|F2), and ((A3))T|(F3)T) to formulate online 3-
order tensor decomposition which is based on the SVD of
the unfolding matrices Az‘l), A’("z), and A’("3).
1) Let {UD, 2D VD) be the SVD of (A1) F1y). As
Afy = (A F1y), the SVD UM, DO VD of A% is ob-
tained by: UD =D, £ = 5O and v = V<1).
2) Let {U®, £® V) be the SVD of (A)|F2)). As
A = (A@)|F@) - P, where P is defined in (11), the SVD
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U® DD y@ of A’("Z) is obtained by: U® = 0(2), »@ =
2@ and v® = pT.y@,

3)Let {UD, £, V) bethe SVD of (A3 [(Fa)T).

_ L Ag 3) w03 yE i
As Afy) = (72), the SVD U®, £O, v of AY s ob-

tained by: U® =V, 50 = (ENHT yO =g®,

It is noted that our online 3-order tensor decomposition
is different from the offline tensor decomposition formulated
in (3) and (4) in that we use the row vectors in the mode-3
unfolding matrix AE) rather than its column vectors. This
can be regarded as an extension of the offline tensor decom-
position, because if column vectors are used for Aé) the
incremental subspace learning for A’(k3) cannot be achieved.
The mode-3 unfolding matrix and its incremental subspace
learning just correspond to the vector subspace learning al-
gorithm in Ross et al. (2008). In this way, the subspace
learned using the algorithm in Ross et al. (2008) is kept in
our tensor subspace learning algorithm. This ensures, in the-
ory, that our incremental tensor subspace learning algorithm
can obtain more accurate results than the incremental vector
subspace learning algorithm.

3.3.5 Likelihood Evaluation

It is necessary for a subspace learning-based algorithm to
evaluate the likelihood of the test sample given the learned
subspace or subspaces. The likelihood evaluation method
with respect to the proposed incremental 3-order tensor sub-
space learning algorithm is described as follows: As we only
consider the increase of the dimension of the third order of
a 3-order tensor A € RN*12X13 with the dimensions of the
first and second orders held constant, the learned subspaces
of the tensor should be composed of the mode-1 column pro-
jection matrix U e RT1*Ri | the mode-2 column projec-
tion matrix U® e R2*R2 and the mode-3 row projection
matrix V& e RUMDXRs Tet (D and u® be the column
mean vectors of A(jy and A ) respectively. Let 1 be the
row mean vector of A3). Tensors M 1 and Mz are defined
by:

6]
Ml — (M(l)’ ’M(l)) c R11X12><1 (13)
Vo=@, ...,y e RIixhx1’
NS —

I

The sum of the reconstruction error norms of a test sample
J € RI*12x1 corresponding to the three modes is computed
by:

2
RE = <Z||<f = M) = ((J = M) < O uO) |3
i=1

+ e —u®)

@ Springer

1

— (U —n®)- (v .vOh) ||?> (14)

where J(3) is the mode-3 unfolding matrix ofJ, and the re-
construction error for a mode represents the distance from
the sample to the subspace corresponding to this mode. The
likelihood of the test sample J given the learned tensor sub-
spaces is computed by:

W @ yo RE?
p(JIUY, U, V) xexp| —— (15)
202
where o is a scale factor. The smaller the RE, the larger the
likelihood.

3.3.6 Theoretical Comparison

In the following, we compare our algorithm with DTA,
WTA, and STA in Sun et al. (2006a, 2006b, 2008).

DTA: For DTA in Sun et al. (2006a, 2008), the incremen-
tal updating of the subspace of the unfolding matrix of a ten-
sor on each mode is performed by updating the covariance
matrix formed from the columns of the unfolding matrix and
then obtaining an eigenvalue decomposition of the updated
covariance matrix. The updating is achieved by:

Ci < 1Ca+ X{p Xa) (16)

where C; on the right hand side of (16) is the covariance
matrix of the unfolding matrix on mode d for the data ob-
served at the previous steps, and X is the unfolding matrix
on mode d for the incoming data at the current step. Accord-
ing to Ross et al. (2008), this updating of the covariance ma-
trix is based on the assumption that jqy = 1/, where j14 is the
mean of the previous unfolding matrix, and u/, is the mean
of Xy, i.e. any changes in the mean are not considered. So,
this updating is not accurate if there are significant changes
in the mean. If the updating is applied to background mod-
eling and object tracking, the corresponding model cannot
adapt to large appearance changes.

According to (Ross et al. 2008) the accurate updating of
the covariance matrix with mean updating should be

pPq T
Ca < ACa+ X1y X+ ota (a = tq) (ta = pg)” (A7)

where p is the number of columns in the previous matrix and
q is the number of columns in the new incoming data ma-
trix. Even if we introduce (17) into DTA, the obtained sub-
space is still not accurate for the applications to background
modeling and object tracking, because DTA has the small
size problem. For a 3-order tensor (R/1*/2%53) the dimen-
sion of the row vectors in the unfolding matrix on mode 3 is
I1 ;. The corresponding covariance matrix is a I1l» x I1 >
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matrix. It is assumed that there are s new samples. In the
applications to background modeling and object tracking,
s &« I1Ir x I I. The rank of the mode-3 unfolding matrix
of the new incoming samples is equal to or less than s. The
eigenvector decomposition of a 111, x I I, matrix obtained
from s samples is degenerate. This is the small sample prob-
lem. One of the motivations in Ross et al. (2008) is to solve
the small sample problem using the incremental SVD. So,
our incremental subspace tensor learning method is more
accurate than DTA for the applications to background mod-
eling and object tracking.

2) WTA: WTA in Sun et al. (2006b, 2008) updates the
covariance matrix of the unfolding matrix in a similar way to
the DTA, but it only focus on a window of w recent samples,
i.e. the covariance matrix is more dependent on the most
recent w samples. Only one sample is used in each step of
the updating process:

Ci < 2Cq = Xn—w. @ X/—up @) + Xn.@ X @) (18)

where X,_,, (#) is the dth mode unfolding matrix of the
(n —w)th sample, and X, (4) is the mode-d unfolding matrix
of the n-th sample, i.e. the new sample. WTA has the same
limitations as the DTA: it is assumed that the mean of the
previous data is equal to the mean of the new data and it has
the same small sample size problem. Furthermore, the fact
that only the w most recent samples are focused on leads
to model drift in applications to tracking. According to Sun
et al. (2008), the tensor subspaces learned using WTA are
less accurate than the tensor subspaces learned using DTA.
So, WTA is less accurate than our tensor subspace learning
method for the applications to background modeling and ob-
ject tracking.

3) STA: STA in Sun et al. (2006a, 2008) applies the
SPIRIT (streaming pattern discovery in multiple timeseries)
iterative algorithm (Papadimitriou et al. 2005) to the incom-
ing data to update the column subspace of the data matrix
for approximating DTA without diagonalization. The tensor
subspaces learned using STA are less accurate than the ten-
sor subspaces learned using DTA while STA is faster than
DTA. So, STA is less accurate than our tensor subspace
learning method.

3.3.7 Remarks

We discuss the following aspects:

1) Compared with the offline SVD for tensors, the pro-
posed incremental SVD for 3-order tensors adapts to ap-
pearance variations with a much lower complexity. The
incremental tensor subspace learning algorithm requires
Ol Ih(Iz + Ié)(R] + R> + R3)] operations and O[I1 Ry +
bRy + 1 I[h(R3 + Ié)] memory units. In comparison, the
offline SVD for 3-order tensors requires O[I1I(I] + I +
I3 + I3) (13 + I3)] operations and O[I1 (I3 + I) 2] memory

units (Wang and Ahuja 2008). It is obvious that /3 is much
larger than Ry, Ry, R3, and I;. So, the complexity of the of-
fline SVD for 3-order tensors is much higher than that of our
incremental tensor subspace learning algorithm.

2) The batch tensor subspace learning is not suitable for
background modeling and object tracking, due to the fol-
lowing points: A) The time taken for batch computation
increases indefinitely as the length of the video increases.
B) The batch processing algorithm considers all the changes
in object appearance in all the observed frames. The infor-
mation in the sequence of frames is not used. This reduces
the accuracy of appearance updating especially when the
number of frames is very large, as recent frames provide
more accurate information about the appearance model.

3) When our incremental tensor subspace learning method
is applied to appearance modeling for background modeling
and object tracking, the appearance should be treated as a
2-D matrix, like the vector subspace-based algorithms in Li
(2004), Ross et al. (2008). In Li (2004), Ross et al. (2008),
the 2-matrix is unfolded into a vector, and the SVD tech-
nique is used to obtain the subspace representing changes
in object appearance over time. In our method, the tensor
technique is introduced to object appearance representation
over time by treating appearances using 2-D matrices. The
spatial information of the object appearance is included in
the subspaces of the unfolding matrices on the first and the
second modes of the tensor. The subspace of the unfolding
matrix on the third mode of the tensor describes appear-
ance changes over time. In contrast to the vector subspace-
based algorithm in Li (2004), Ross et al. (2008), our tensor
subspace-based algorithm captures more spatial information
in images.

4 Foreground Segmentation

We apply the proposed incremental tensor subspace learn-
ing algorithm to foreground segmentation from image se-
quences. Figure 3 shows the architecture of our foreground
segmentation algorithm. A tensor subspace-based back-
ground appearance model is obtained using the incremen-
tal tensor subspace learning algorithm. When new frames
arrive, they are matched with the background appearance
model to detect foreground pixels in these new frames. The
background images corresponding to these new frames are
then constructed and used to update the tensor subspace-
based background model using the incremental tensor sub-
space learning.

Let G be a sequence Bi, By, ..., By, ..., B, of back-
ground appearance images of a scene, i.e. a 3-order back-
ground appearance tensor, where B, represents the gth
background image. We define a rectangular pixel region cen-
tered at pixel (u, v), where the region has the height of I;
pixels and the width of I, pixels. Then, we define a back-
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Fig. 3 The architecture of our
foreground segmentation
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Fig. 4 The relation between tensors G and A

ground appearance tensor A = BY'Y, BE‘”, e, B;“’, ., B

which is smaller than G, where Bj" is composed of pixels
in the rectangular pixel region. This tensor captures the spa-
tiotemporal interactions between pixel (u, v) and its I1 15 — 1
neighboring pixels in the rectangular region. The relation
between tensors G and A is illustrated in Fig. 4. We apply
the proposed incremental tensor subspace learning to ten-
sor A to effectively mine statistical properties of A. In this
paper, we develop two background appearance models for
grayscale image sequences and color image sequences re-
spectively.

4.1 Grayscale Background Model

For grayscale image sequences, the tensor subspace model
for the tensor A € RN *12X1 agq0ciated with pixel (u, v) con-
sists of the mode-1 column projection matrix U ¢ RT1 >R
the mode-2 column projection matrix U® e R2*R2_ and
the mode-3 row projection matrix V3 e RUI"2%Rs  Given
the rectangular pixel region J;/| € RI1*12 centered at (u, v)
inanew frame 7+ 1, the likelihood P (J/", UV, U@, V)
for J/'; given the learned tensor subspace model {U M,
U@, vO®i for pixel (u, v) is estimated using (14) and (15).
In this way, the criterion for foreground segmentation is de-
fined as:

) e background if P(J/Y, UV UPD VO > Ty,
’ otherwise

foreground
(19)

@ Springer

Incremental tensor
subspace learning

Online background
model learning

where T,y denotes a threshold.

After foreground segmentation is implemented for all the
pixels at frame ¢ 4 1, a background appearance image B;1
at time ¢ + 1 is constructed according to the result of fore-
ground segmentation at time ¢ + 1 and the previous back-
ground appearance images Bj, Ba, ..., B;. Let M; be the
mean background appearance image at time #:

1t
M, = — By. 20
: t};k (20)

Typically, M; is computed recursively:

r—1 1
Mt:TMt—l_’_;Bt' (21)

Then, the value B,y (u,v) of each pixel (u#,v) in B;4 is
computed by:

(1 —w)M;(u, v) + oJi+1(u, v)

B 1(u,v) = if (u, v) € foreground (22)

Jiy1(u,v) otherwise

where w is a learning rate factor which is set to a very small
value. Formula (22) means that if a pixel is determined to
belong to the background, then its value in the current back-
ground appearance image is of course set to its value in
the current frame; otherwise its value in the current back-
ground appearance image is interpolated between its value
in the current frame and its value in the mean background
appearance image. This ensures that the background model
can adapt to the changes in the environment such as lighting
variations. Subsequently, the estimated background appear-
ance images are used to update the tensor subspace model of
the background appearance tensor A of each pixel (u, v) by
applying the proposed incremental tensor subspace learning
algorithm.

4.2 Color Background Model

There are two typical background modeling algorithms
which can deal with color: the GMM-based algorithm
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(Stauffer and Grimson 1999) and the kernel-based algo-
rithm (Elgammal et al. 2002). In the GMM-based algorithm,
each mixture component of the background model is a single
Gaussian distribution in the RGB color space. The covari-
ance matrix of each Gaussian is a diagonal matrix Y = o2/
where I is an identity matrix and o is a standard deviation.
The GMM-based algorithm deals with the RGB channels
separately, and assumes the same standard deviation for each
channel. Although dealing with color in this way is not con-
sistent with real data distributions, it can greatly increase
the speed with only a slight loss of accuracy. The kernel
density estimation-based background modeling algorithm
(Elgammal et al. 2002) also deals with the color channels
separately, i.e. the joint probability density of color pixels is
decomposed into the product of independent kernel density
functions of each color channel. In contrast to the GMM-
based algorithm, the kernel-based algorithm uses different
Gaussian kernel variances for each channel.

Referring to the GMM-based algorithm (Stauffer and
Grimson 1999) and the Kernel-based algorithm (Elgammal
et al. 2002), we extend the proposed background model for
grayscale sequences to the background model for color im-
age sequences. In the color background model, we use the
(r, g, s) color space which is defined in terms of the RGB
color space by r = R/(R+ G+ B),g=G/(R+ G+ B),
and s = (R + G + B)/3. The effects of shadows are reduced
in the (7, g, s) color space (Elgammal et al. 2002).

Let A" € RI1 22X be 3 3-order tensor B{Bj...By... B/,
where B is a matrix which is composed of the 7-components
of pixels in the rectangular appearance region centered at
pixel (u,v) at time g. Similarly, we define tensors A8 €
RIxbxt (BSBS . Bf) and A* € RI'*2%" (BiBS...BY))
for the g-components and the s-components of the pixels
in the region centered at (u, v). For each component’s ten-
sor AC (C e {r, g,s}), atensor subspace model is incremen-
tally learned using the proposed incremental tensor subspace
learning algorithm. In this way, three tensor subspace mod-
els for each pixel are obtained corresponding to the three
color components. The learning process for the tensor of
each component is similar to that for the grayscale sequence.
The subspace model for tensor AC (C e {r, g, s}) consists of
the following terms: 1) the maintained subspace dimensions
(RE, Rg, Réc) corresponding to the three tensor unfolding

. . . C
modes; 2) the column projection matrices U(él) e RI>R

and U((Cz) € R’2X[‘w2C of modes 1 and 2, and the mode-3 row

. . . C
projection matrix Vg) € RUI xRy

vectors M((Cl ) and ,LL((g ) of the unfolding matrices A((Cl) and Ag)

; 3) the column mean

of modes 1 and 2, and the row mean vector M((S ) of the mode-
3 unfolding matrix A((%). Let J/,, € RItxI J[‘i_l e RIixD
and JtSJrl € R x2 pe, respectively, the matrices of r, g, s-
components of pixels in the appearance region centered at
(u,v) at time ¢ + 1. The distances RM!,, RMj, and RM?,

uv’

between {r, g, s}-components of pixels in the rectangular
image region J;)!; centered at (u,v) at frame ¢ + 1 and
the learned {r, g, s}-component tensor-based subspace mod-
els are calculated, respectively, using (14). Then, the likeli-
hood P, for ft“fl given the learned tensor subspace models
W, u? v w® u® vy and (U, U, vy
for pixel (u, v) is estimated by:

N e > L(RMFN\1(RMS,N
uy = EXp| — - -
2 oy 2 Oy 2 oy

(23)

where o,, 0, and oy are three scale factors. The criterion for
foreground segmentation is defined as:

if Pyy > Teotor

background
(. v) { otherwise 24

foreground

where T,,;,r is a threshold.

Using the result of foreground segmentation at the cur-
rent time ¢ + 1, we can estimate the current background ap-
pearance image which consists of the (r, g, s)-component
background appearance matrices: B, € R'"*2, Bf | €
R"™>%2 and BS, | € R'1*2 The elements in these three ma-

1+
trices are estimated by:

(1 —wo)ME (u,v) + 0c S (u, v)

BE (u,v)=1{ if (u, v) € foreground (25)

JSF] (u,v) otherwise

where C € {r, g, s}, wc is a learning rate factor, and M,(C is
the mean matrix of Bic, Bg, ..., and B;C at time ¢. As for-
mulated in (20) and (21), Mt(C is computed recursively.

Subsequently, the newly estimated background appear-
ance component matrices are used to incrementally update
the subspace models of the component tensors of the color
background appearance region centered at each pixel by ap-
plying the incremental tensor subspace learning algorithm.
The tensor subspace model for each component is learned
and updated in the same way as the tensor subspace model
for the grayscale sequences. Figure 5 is used to further illus-
trate the foreground segmentation process for color image
sequences.

5 Visual Tracking

We apply the proposed incremental tensor subspace learn-
ing algorithm to appearance-based object tracking. Figure 6
shows the architecture of our object tracking algorithm. In
the algorithm, a low dimensional subspace model for the
appearance tensor of an object is learned. The model uses
the incremental rank-(R1, Ry, R3) tensor subspace learning
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Fig. 5 Foreground
segmentation for color image
sequences
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algorithm to find the dominant projection subspaces of the
3-order tensor of the object appearance. The current object
state, which is initialized according to the previous state and
the dynamic model, is optimized using a particle filter. The
appearance region specified by the optimal state is the track-
ing result which is used to further update the object appear-
ance tensor subspace model.

5.1 Object Appearance Tensor Subspace Model

For tracking in grayscale images, the appearance regions of
an object at different frames are normalized to the same size
using linear interpolation and the intensities of the pixels in
these normalized appearance regions form a tensor A. The
length of the tensor increases with time. For this tensor A,
unfolding matrices AW AD and A® of modes 1, 2, and
3 are obtained. Column subspaces U" and U® of modes
1 and 2 and row subspace V3 of mode 3 are learned us-
ing the proposed incremental tensor subspace learning algo-
rithm. These three subspaces are combined via tensor recon-
struction as formulated in (14) to form a tensor subspace-
based object appearance model. We compute the likelihood
for a candidate object appearance region given the tensor
subspaces of the object appearance. The value of the like-
lihood is a measure of the similarity between the candidate
region and the tensor subspaces of the object appearance.

@ Springer

When tracking an object in a color image sequence, the
r, g and s values of the pixels in the normalized appearance
regions of the object at different frames form, respectively,
three tensors A’ , A8 , and AS for the r, g, and s compo-
nents. For each tensor AC (C € {r, g, s}), unfolding matri-
ces A(l), A(z) and AG) of modes 1, 2, and 3 are obtained,

and the corresponding column subspaces U(((zl) and U((Cz) of

modes 1 and 2 and the corresponding row subspace V, (3)
of mode 3 are then learned. We compute the reconstructlon
error RMC (C € {r, g,s}) of the component C matrix of a
candidate object appearance region given the componentC’s
tensor subspaces of the object using (14). Then, the likeli-
hood for the candidate object region given the tensor sub-

spaces of the object is estimated by:
2
) ) (26)

1/RM"\* 1/RMS\* 1/RM*
exp| —= - = - =

2\ o 2\ o, 2\ o
where o, 0., and o, are three scale factors. Formula (26) is
similar to (23).

5.2 Bayesian Inference for Tracking

A Markov model with hidden state variables is used for
motion estimation. An affine image warping is applied to
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model the object motion between two consecutive frames.
The object state variable vector X; at time ¢ is described
using the six parameters of the affine motion transform:
Xty Vis Mty Sty Brs and @y, which are respectively the transla-
tion parameters of the x, y coordinates, the rotation angle,
the scale, the aspect ratio, and the skew direction. The loca-
tion, size and pose of the object are indicated in the affine
motion parameters. Given a set of observed image regions
01, Oy, ..., Oy, the posterior probability of the object state
is formulated by Bayes’ theorem:

p(Xt|01a 027"'7 Ot)

x p(O|X;) / p(X:1X—1)

x p(X;-1101, 02, ..., O;—1)d X; 27
where p(O;|X;) is the likelihood for the observation O;
given the object state X;, and p(X;|X;_1) is the probabil-
ity model for the object state transition. The terms p(O;|X;)
and p(X;|X;_1) determine the tracking process. A Gaussian
distribution is employed to model the state transition distri-
bution p(X;|X;—1):

pP(Xi|Xi—1) =N(X; : X1, X) (28)

where X denotes a diagonal covariance matrix with six diag-
onal elements af, ayz, 03, asz, aﬁg, and aé. The observation
model p(O;|X;) is evaluated using the likelihood for a sam-
ple image region given the learned appearance tensor sub-
spaces. For grayscale image sequences, this probability is
estimated using (15). For color image sequences, this prob-
ability is estimated using (26).

A standard particle filter (Isard and Blake 1996) is used
to estimate the object motion state. The components of each
particle correspond to the six affine motion parameters. For
the maximum a posteriori estimate, the particle which max-
imizes the observation model is selected as the optimal state
of the object in the current frame. The affinely warped im-
age region associated with the optimal state of the object is
used to incrementally update the tensor subspace-based ob-
ject appearance model.

6 Experiments

The experimental results for the foreground segmentation
are shown first, and then the experimental results for the vi-
sual object tracking are shown. The runtimes are measured
on a computer with 3.25 GB RAM and Intel Core2 Quad
CPU at 2.83 GHz.

6.1 Foreground Segmentation

In order to evaluate the performances of the proposed incre-
mental tensor subspace learning-based algorithms for fore-
ground segmentation for grayscale image sequences and
for color image sequences, four examples corresponding to
four videos are shown to demonstrate the claimed contribu-
tions of our algorithms. The first two videos consist of 8-
bit grayscale images while the two remaining videos consist
of 24-bit color images. The first video is selected from the
PETS2001 database, available on http://www.cvg.cs.rdg.ac.
uk/slides/pets.html. It consists of 650 frames. In the video,
a person walks along a road in a well lit scene, and ve-
hicles enter or leave the scene every now and then. The
second video consists of 1012 frames. In the video, three
persons walk in a scene containing a side of a building,
two lightly swaying trees, and two cars. In the middle of
the video, these three people occlude each other. The third
video consists of 89 frames. In the video, two cars are mov-
ing in a dark and blurry traffic scene. The last video is se-
lected from CAVIAR?2, available on http://homepages.inf.
ed.ac.uk/rbf/CAVIARDATAL1/. It consists of 1000 frames.
In the video, several people walk along a corridor, or en-
ter or leave the corridor from time to time. The first two
videos are used to evaluate the foreground segmentation
performance of the proposed algorithm for grayscale im-
age sequences, while the third and fourth videos are used
to evaluate the foreground segmentation for color image
sequences. The tensor subspace-based background mod-
els for either grayscale image sequences or color image
sequences are updated every three frames. The rectangu-
lar regions centered at each pixel are of size 5 x 5 pix-
els, i.e. the values of I; and I in Sect. 4 are both set
to 5.

We compare our background modeling algorithm with
the representative incremental vector subspace learning-
based algorithm in (Li 2004) and the standard GMM-based
algorithm in Stauffer and Grimson (1999), with respect to
accuracy and speed. The competing algorithms are briefly
described below:

e The vector subspace-based algorithm in (Li 2004) incre-
mentally constructs, using online PCA, a scene’s back-
ground model represented by a low dimensional vector
subspace. Although it uses a PCA model defined over the
whole image, information on each pixel is included in the
PCA model and each pixel should be handled one by one
to detect foreground pixels using the learned PCA model.
In the algorithm, each image is flattened into a vector
whose dimension is equal to the product of the width and
the height of the image. In our algorithm the maximum of
the lengths of the flattened vectors is only 71/, which is
much less than the number of pixels in the full image. Our
algorithm can be applied to images which are in practice
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too large for the vector subspace-based algorithm in Li
(2004).

e For more fair comparison, we modify the original version
of the vector subspace-based algorithm in Li (2004) by
defining a separate PCA model for each I; x I rectangle
sampled from the image, and compare our algorithm with
the modified version of the vector subspace-based algo-
rithm, besides the original version of the vector subspace-
based algorithm.

e The GMM-based algorithm provides a very good trade-
off between representational power and algorithmic com-
plexity, allowing for good results in real time.

As the vector subspace-based algorithm in Li (2004) is
only available for grayscale image sequences, the grayscale
videos in Examples 1 and 2 are used to achieve the com-
parisons between our algorithm and the vector subspace-
based algorithms. The GMM-based algorithm is available
for both grayscale and color image sequences, so results of
the GMM-based algorithm for all the four videos are re-
ported. In the following, the results of the examples are il-
lustrated, and then the analysis of the results is given.

6.1.1 Example I

In the first example, the subspace dimensions Rp, Ry, and
R3 for the incremental tensor subspace learning algorithm
are empirically set to 3, 3, and 10 respectively. The scale
factor o in (15) is set to 15. The threshold T4y in (19) is
set to 0.8. The learning rate factor w in (22) is set to 0.08.
The parameters for the vector subspace-based algorithm are
chosen to ensure that it performs as accurately as possible.
The PCA subspace dimension p is 12; the updating rate «
in Li (2004) is 0.96; and the coefficient 8 in Li (2004) is
11. The parameters for the GMM-based algorithm are set as
defaults in the OpenCV tool.

Six representative frames 345, 486, 511, 529, 563, and
624 of the foreground segmentation results are shown in
Fig. 7, where the first and the sixth rows are from the orig-
inal sequence, the second and the seventh rows show the
results of our algorithm, the third and the eighth rows show
the results of the original version of the vector subspace-
based algorithm, the fourth and the ninth rows show the re-
sults of the modified version of the vector subspace-based
algorithm, and the fifth and the tenth rows show the results
of the GMM-based algorithm. It can be seen that the seg-
mentation results of our algorithm are clean, connected for
each object, and almost noiseless, and furthermore almost
all of the associated shadows are omitted. Our algorithm
obtains more accurate foreground segmentations than the
vector subspace-based algorithms and the GMM-based al-
gorithm.

The frame rate of our algorithm for this example is 1.2
frames per second. The frame rate of the original version
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of the vector subspace-based algorithm in Li (2004) is 8.3
frames. The frame rate of the modified version of the vec-
tor subspace-based algorithm is 2.3 frames. The frame rate
of the GMM-based algorithm is 7.6 frames per second. Al-
though our algorithm is slower than the vector subspace-
based algorithms and the GMM-based algorithm, the speed
of our algorithm is still acceptable.

6.1.2 Example 2

In the second example, the subspace dimensions R, R,
and R3 for the incremental tensor subspace learning al-
gorithm are empirically assigned as 3, 3, and 12 respec-
tively. The scale factor « in (15) is set to 20. The thresh-
old Tgrqy in (19) is chosen as 0.81. The learning rate fac-
tor w in (22) is assigned as 0.09. The parameters for the
vector subspace-based algorithm are set as follows: the
PCA subspace dimension p is 13; the updating rate « is
0.95; and the coefficient 8 is 9. The parameters for the
GMM-based algorithm are set as defaults in the OpenCV
tool.

Five representative frames 178, 197, 203, 215, and 243 of
the foreground segmentation results are displayed in Fig. 8,
where the first row is from the original image sequence and
the second, the third, the fourth, and the fifth rows corre-
spond to our algorithm, the original version of the vector
subspace-based algorithm in Li (2004), the modified ver-
sion of the vector subspace-based algorithm, and the GMM-
based algorithm, respectively. It is shown that our algorithm
obtains a much cleaner segmented background than the vec-
tor subspace-based algorithms and the GMM-based algo-
rithm, and the foreground segmented by our algorithm is
cleaner, better connected for each object, less noisy, and
less affected by shadows than the foreground regions seg-
mented by the vector subspace-based algorithms and the
GMM-based algorithm.

For this example, the frame rates of our algorithm, the
original version of the vector subspace-based algorithm, the
modified version of the vector subspace-based algorithm,
and the GMM-based algorithm are 5.7, 39.6, 11.2, and 30.9
frames per second, respectively.

6.1.3 Example 3

In the third example, the tensor subspace dimensions (R7,
R;, RY), (RS, Ré", Ré"), and (R, R;, R;) corresponding to
the three components (r, g, s) in the color space are empiri-
cally assigned as (3, 3, 11), (3, 3, 11), and (3, 3, 10), respec-
tively. The learning rate factors w,, wg, and wy in (25) are all
assigned as 0.08. The scale factors o;, 0, and oy in (23) are
setto(0.12, 0.13, and 16, respectively. The threshold T¢j0r in
(24) is chosen as 0.79. The parameters for the GMM-based
algorithm are set as defaults in the OpenCV tool.
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Fig. 7 Foreground
segmentation results for the first
video: Rows 1 and 6 are from
the original sequence where the
moving regions are highlighted
by white boxes; Rows 2 and 7
show the results of our
algorithm; Rows 3 and 8 show
the results of the original
version of the vector
subspace-based algorithm; Rows
4 and 9 show the results of the
modified version of the vector
subspace-based algorithm; and
Rows 5 and 10 show the results
of the GMM-based algorithm

#529

Five representative frames 52, 69, 79, 83, and 87 of the
foreground segmentation results of our algorithm and the
GMM-based algorithm are shown in Fig. 9, where Rows
1, 2 and 3 display the original images, the results of our
algorithm and the results of the GMM-based algorithm, re-
spectively. The foreground regions are accurately segmented
using our algorithm even though their sizes are small; al-
most all the street lamps are segmented as background, even
those which are particularly bright; and our algorithm suc-
cessively identifies regions corresponding to traffic lights
which change over time as background. However, some of
these regions are mistakenly identified as foreground by the
GMM-based algorithm. In this example, our algorithm more
accurately models the color background than the GMM-
based algorithm. The frame rates of our algorithm and the

#563 #624

GMM-based algorithm are 5.3 and 32.0 frames per second,
respectively.

6.1.4 Example 4

In the fourth example, the tensor subspace dimensions
(R}, RS, RY), (R}, R3, RS), and (R§, Ry, R}) correspond-
ing to the three components in the (7, g, s) color space are
empirically set to (3,3,9), (3,3,9), and (3, 3, 11) respec-
tively. The learning rate factors w,, wg, and wy in (25) are
all set to 0.08. The scale factors o;, og, and oy in (23) are
setto 0.11, 0.13, and 20 respectively. The threshold T, in
(24) is chosen as 0.78. The parameters for the GMM-based
algorithm are set as defaults in the OpenCV tool.

The five representative frames 296, 312, 472, 790, and
814 of the foreground segmentation results are displayed in
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Fig. 8 Foreground
segmentation for the second
video: In row 1, the moving
regions are highlighted by white
boxes; Rows 2, 3, 4, and 5 show
the results of our algorithm, the
original version of the vector
subspace-based algorithm, the
modified version of the vector
subspace-based algorithm, and
the GMM-based algorithm,
respectively

#52

#69 #79 #83 #87

Fig. 9 The foreground segmentation results for Example 3: In row 1, the moving regions are highlighted by white boxes; Row 2 displays the
results of our algorithm; and Row 3 corresponds to the results of the GMM-based algorithm

Fig. 10, where Row 1 shows the original images, and Rows2  In contrast, the GMM-based algorithm does not effectively
and 3 show the results of our algorithm and the GMM-based  handle shadows, in that many shadows are mistakenly clas-
algorithm respectively. It can be seen that good foreground  sified as foreground. The frame rates of our algorithm and
segmentation results are obtained using our algorithm inthat ~ the GMM-based algorithm for this example are 5.2 and 28.7
the background is clean and the foreground is connected. frames per second, respectively.
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#296 #312

#790

Fig. 10 The foreground segmentation results for Example 4: In row 1, the moving regions are highlighted by white boxes; Rows 2 and 3 show the

results of our algorithm and the GMM-based algorithm respectively

6.1.5 Analysis of Results

The reason why our algorithm obtains more accurate fore-
ground segmentation results in complicated scenes, as com-
pared with the incremental vector subspace-based algo-
rithms and the GMM-based algorithm, is that our algorithm
is able to exploit the spatiotemporal correlations of values of
pixels within the image ensembles by the incremental ten-
sor subspace learning. The vector subspace-based algorithm
flattens the images into vectors, and as a result loses most
of the spatial correlation information. The global or local
variations in a scene would substantially change the vector
subspace, resulting in foreground segmentation errors. The
GMM-based algorithm models all the pixels in an image in-
dependently: spatial correlations of the image are not con-
sidered.

The reason why our foreground segmentation algorithm
is slower than the GMM-based algorithm and the vector
subspace-based algorithms is that the GMM-based algo-
rithm directly models individual pixels; the vector-based al-
gorithm uses a PCA model defined over the whole image;
the modified vector subspace-based algorithm uses a flat-
tened matrix to describe appearance changes in the rectan-
gular region centered at each pixel; but our algorithm uses a
tensor corresponding to three unfolding matrices to describe
appearance changes in the rectangular pixel region centered
at each pixel. The speed of our algorithm is still acceptable
because the size of the rectangular region is small, and the
incremental SVD in Ross et al. (2008) is fast.

The frame rate of foreground segmentation is dependent
on the image size. For example, the frame rate in Example 1
is much lower than the frame rates in Examples 2, 3, and 4,
because the image size in Example 1 is much larger than the
image sizes in other examples.

6.2 Tracking

To evaluate the performance of the proposed tracking algo-
rithm, five videos are used, one video for each example. The
different scenarios include noisy images, scene blurring, ob-
jects with small apparent sizes, object pose variations, and
occlusions. In the first, fourth, and fifth examples, moving
faces are tracked. In the second and third examples, pedes-
trians are tracked. The face tracking is initialized using the
face detection algorithm (Yan et al. 2007). For tracking a
pedestrian in the video captured by a stationary camera, the
initialization is based on background subtraction. For track-
ing a pedestrian in the video taken by a mobile camera, the
initialization is based on optical flow region analysis (Zhou
et al. 2007).

For the tensor subspace representation of object appear-
ance during tracking, object regions obtained at different
times are normalized to a size of 20 x 20 pixels using
linear interpolation. The forgetting factor A in the incre-
mental SVD is set to 0.99. For the particle filtering in
the visual tracking, the number of particles is set to 300.
The six diagonal elements UXZ,U)%,O',%,O'SZ, g, and a(g in
the covariance matrix X in (28) are assigned the values
52,5%,0.03%,0.032,0.005%, and 0.0012, respectively. The
tensor subspaces are updated every three frames.

In the experiments, we compare our tracking algorithm
with three state-of-the-art representative and typical track-
ing algorithms: the vector subspace learning-based tracking
algorithm (Ross et al. 2008), the Riemannian metric-based
tracking algorithm (Porikli et al. 2006), and a DTA-based
tracking algorithm which is designed for this paper. The
competing algorithms are briefly described below:

e The vector subspace learning-based tracking algorithm
flattens object appearances in frames in which the object
appears into vectors on which online subspace learning is
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#11 #21 #30

Fig. 11 Tracking results for Example 1: The first row shows the re-
sults of our algorithm without added noise; the second, the third and
the fourth rows show, respectively, the results of our algorithm and the

implemented to obtain a vector subspace-based represen-
tation of the object appearance.

e The Riemannian metric-based tracking algorithm (Porikli
et al. 2006) uses the covariance matrix of image features
for object representation. An affine-invariant Riemannian
metric is used in updating of the appearance model.

e According to Sun et al. (2008), DTA is more accurate than
STA and WTA. So, we choose to apply DTA to object
tracking. DTA itself cannot be applied to tracking directly.
We modify DTA by using the row space of the mode-3
unfolding matrix instead of the column space, as required
by the tracking application. The values of all parameters
such as the forgetting factor, the particle number, and the
covariance matrix in (28) are the same as those used in
our tensor subspace-based tracking algorithm.

In the following, the results of these five examples are
first demonstrated, a quantitative comparison of the results
is then made, and analysis of results is finally given.

6.2.1 Example 1

The video for this example is captured in an indoor scene
from a mobile camera, available on http://www.cs.toronto.
edu/~dross/ivt/. It consists of 100 frames. Each frame is an
8-bit grayscale image. In the video, a man walks in a room,
changing his pose and facial expression over time under
varying lighting conditions. In order to investigate track-
ing performance in the presence of high amplitude image
noise, we add Gaussian random noise to the video. The
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#41 #54 #72

vector subspace-based algorithm and the DTA-based algorithm in the
presence of high amplitude noise

process of adding the noise is formulated as: I'(x, y) =
g (x,y)+s-Z),where I (x, y) is the original pixel value at
(x,y),I'(x, y) is the pixel value after the noise is added, Z
is a sample from the standard normal distribution N (0, 1), s
is a scale factor controlling the noise amplitude, and the
function g(¢) is defined as:

0 <0
255 ¢ >255 (29)
[p] 0=<¢ <255

glp)=

where [¢] stands for the floor of the element ¢.

In the experiment, s is set to 200. The subspace dimen-
sions Ry, Ry, and R3 are empirically assigned as 3, 3, and 5
respectively. For the vector subspace learning-based track-
ing algorithm, 5 singular vectors are maintained during the
tracking, and the remaining singular vectors are discarded
at each subspace updating. Six representative frames 11,
21, 30, 41, 54 and 72 of the tracking results are shown in
Fig. 11, where the first row shows the tracking results of
our algorithm without added noise, and the remaining three
rows show, respectively, the tracking results of our algo-
rithm, the vector subspace-based tracking algorithm, and the
DTA-based algorithm in the presence of the added noise.
The results shown in the first row are used as references for
the accuracies of the tracking results shown in the remaining
three rows. From Fig. 11, we see that the proposed tracking
algorithm is more resistant to strong noise. Two points are
made out:


http://www.cs.toronto.edu/~dross/ivt/
http://www.cs.toronto.edu/~dross/ivt/
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Fig. 12 Results of tracking a pedestrian with a very small apparent size in a dark scene: Rows 1, 2, 3, and 4 correspond to our algorithm, the
vector subspace-based algorithm, the Riemannian metric-based algorithm, and the DTA-based algorithm, respectively

e Our algorithm exhibits much more robust results than the
vector subspace-based tracking algorithm. The reason for
this is that the added noise substantially changes the vec-
tor subspace representation of the object appearance in
the vector subspace-based tracking algorithm, resulting
in tracking errors. In comparison, our tracking algorithm
relies on a tensor subspace model which makes use of
more spatial information from the three modes, resulting
in more accurate results.

e Our algorithm tracks the face of the man more accurately
than the DTA-based algorithm. The reason for this is that
the tensor subspaces learned using our algorithm are more
accurate than the tensor subspaces learned using the DTA-
based algorithm.

The frame rates of our algorithm, the vector subspace-
based algorithm, and the DTA-based algorithm are 11.2,
38.0, and 8.3 frames per second, respectively. So our al-
gorithm is faster than the DTA-based algorithm, but slower
than the vector subspace-based algorithm.

6.2.2 Example 2

The video used in this example is chosen from the open
PETS2001 database. It is recorded in an outdoor scene by
a stationary camera and it consists of 500 8-bit grayscale
images. In this video, a pedestrian with a very small appar-
ent size moves down a road in a dark scene. The motivation

of this example is to check the tracking performance in han-
dling image blurring and objects with small apparent sizes.

In the experiment, the tensor subspace dimensions Rj, R»,
and Rz in our algorithm and the DTA-based algorithm are
empirically set to 5, 5, and 8 respectively. For the vector
subspace-based tracking algorithm, 16 singular vectors are
maintained during the tracking. Six representative frames
236, 314, 334, 336, 345, and 360 of the tracking results
are shown in Fig. 12, where the first, the second, the third,
and the fourth rows correspond to our algorithm, the vector
subspace-based algorithm, the Riemannian metric-based al-
gorithm, and the DTA-based algorithm, respectively. It can
be seen that the results of our algorithm are the most accu-
rate. The Riemannian metric-based algorithm tracks more
accurately than the vector subspace-based algorithm. The
DTA-based algorithm loses the track after Frame 173. This
example reflects that our algorithm makes a more compact
object appearance representation and thus more efficiently
reduces spatiotemporal redundancy of object appearance in-
formation particularly for tracking an object with a small
apparent size in blurred images.

The frame rates of our algorithm, the vector subspace-
based algorithm, the Riemannian metric-based algorithm,
and the DTA-based algorithm are 10.9, 33.6, 25.6, and 8.6
frames per second, respectively. Our algorithm is faster
than the DTA-based algorithm, but slower than the vector
subspace-based algorithm and the Riemannian metric-based
algorithm.
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Fig. 13 Tracking during drastic pose changes: Rows 1 and 2 show
the results of our algorithm for the color sequence and the grayscale
sequence respectively; Rows 3, 4, and 5 show, respectively, the results

6.2.3 Example 3

The video for this example is recorded in an outdoor scene
using a mobile camera. It consists of 235 frames. In the
video, a man walks from left to right on a well lit road and
his body pose varies over time. In the middle of the video,
there are drastic motions and pose changes: the man bows
down to reach the ground and then stands back up again.
The motivation of this example is to make a comparison be-
tween our algorithm and the competing algorithms in han-
dling pose variations.

The 8-bit grayscale image sequence and the 24-bit RGB
color image sequence are both considered. The tensor sub-
space dimensions R, Ry and R3 are empirically assigned
as 8, 8, and 10 respectively. For the vector subspace-based
algorithm, 16 singular vectors are maintained during the
tracking. Six representative frames 145, 150, 166, 182, 192,
and 208 of the tracking results are shown in Fig. 13, where
Rows 1 and 2 show the results of our algorithm for the
color sequence and the grayscale sequence respectively; and
Rows 3, 4, and 5 show, respectively, the results of the vec-
tor subspace-based algorithm, the Riemannian metric-based
algorithm, and the DTA-based algorithm for the grayscale
image sequence. It can be seen that in the color sequence
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of the vector subspace-based algorithm, the Riemannian metric-based
algorithm, and the DTA-based algorithm for the grayscale sequence

and in the grayscale sequence, our algorithm tracks the ob-
ject successfully even when there are drastic pose and mo-
tion changes. The results for the color sequence are slightly
more accurate than the results for the grayscale image se-
quence as more information is available in the color se-
quence. However, both the vector subspace-based algorithm
and the DTA-based algorithm lose the track during and af-
ter the drastic pose and motion changes. The results of the
Riemannian metric-based algorithm are very inaccurate in
many frames. For this example, the frame rates of our algo-
rithm, the vector subspace-based algorithm, the Riemannian
metric-based algorithm, and the DTA-based algorithm are
10.8, 34.2, 27.6, and 8.3 frames per second, respectively.

6.2.4 Example 4

The video for this example is recorded from an indoor scene
by a stationary camera. It consists of dark and motion-
blurring grayscale images, and its length is 535 frames. In
this video, a man shakes his head, first takes off and then
wears his glasses, and sometimes uses his hands to occlude
his face. The motivation of this example is to compare the
performance of our algorithm with those of the competing
algorithms in handling partial occlusions.
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Fig. 14 Tracking a face during partial occlusions in blurred images: Rows 1, 2, 3, and 4 show the results of our algorithm, the vector sub-
space-based algorithm, the Riemannian metric-based algorithm, and the DTA-based algorithm, respectively

In this example, the tensor subspace dimensions Rp, R
and R3 are empirically set to 3, 3, and 5, respectively. For
the vector subspace-based algorithm, 10 singular vectors are
maintained during the tracking. Six representative frames
92, 102, 119, 132, 148, and 174 of the tracking results are
shown in Fig. 14, where rows 1, 2, 3, and 4 correspond to
our algorithm, the vector subspace-based algorithm, the Rie-
mannian metric-based algorithm, and the DTA-based algo-
rithm, respectively. From the figure, we see that our algo-
rithm tracks the face accurately under poor lighting condi-
tions even when the face of the man is occluded seriously by
the hands from time to time. However, the vector subspace-
based algorithm loses track of the face in several frames.
The results of the Riemannian metric-based algorithm are
acceptable, although they are less accurate than the results of
our algorithm. The DTA-based algorithm can complete the
tracking all the time but its results are inaccurate, in particu-
lar when the face is occluded (see Frames 92, 119, and 148).
For this example, the frame rates of our algorithm, the vector
subspace-based algorithm, the Riemannian metric-based al-
gorithm, and the DTA-based algorithm are 11.2, 40.6, 27.7,
and 9.2 frames per second, respectively.

6.2.5 Example 5

This example is widely used for testing face tracking algo-
rithms. The video is available on http://www.cs.toronto.edu/
vis/projects/dudekfaceSequence.html. It is recorded with a
mobile camera, and its length is 573 frames. In this video, a
man who sits in a chair changes his pose and facial expres-
sion over time and from time to time his hand occludes his
face. (There are benchmark points in this example, and the
corresponding quantitative results are shown in Sect. 6.2.6.)

In the experiment, 8-bit grayscale images are used. All
the tensor subspace dimensions are set to 8. The subspace
dimension of the vector subspace-based algorithm is set to
13. Six representative frames 50, 76, 106, 107, 118, and
124 of the tracking results are shown in Fig. 15, where the
first, the second, the third, and the fourth rows correspond
to our algorithm, the vector subspace-based algorithm, the
Riemannian metric-based algorithm, and the DTA-based
algorithm, respectively. It can be seen that our algorithm
tracks the face accurately even during occlusions and pose
changes, while the vector subspace-based algorithm, the
Riemannian metric-based algorithm and the DTA-based al-
gorithm loses the track in many frames. For this example,
the frame rates of our algorithm, the vector subspace-based

@ Springer


http://www.cs.toronto.edu/vis/projects/dudekfaceSequence.html
http://www.cs.toronto.edu/vis/projects/dudekfaceSequence.html

324

Int J Comput Vis (2011) 91: 303-327

#50 #76 #106

#107 #118 #124

Fig. 15 Tracking a face under partial occlusions and pose variations: Rows 1, 2, 3, and 4 show the results of our algorithm, the vector sub-
space-based algorithm, the Riemannian metric-based algorithm, and the DTA-based algorithm respectively

algorithm, the Riemannian metric-based algorithm, and the
DTA-based algorithm are 10.7, 26.7, 24.2, and 9.4 frames
per second, respectively.

6.2.6 Quantitative Comparisons

For Examples 1, 2, 3, and 4, there are no existing bench-
marks, so we provide a quantitative comparison between
our algorithm, the vector subspace-based algorithm, the Rie-
mannian metric-based algorithm, and the DTA-based algo-
rithm by labeling a number of representative frames in each
of these examples. The centers of object locations in the rep-
resentative frames are labeled manually as the ground truth.
Then, we quantitatively evaluate the tracking performances
by computing the mean location deviation which is the av-
erage of the pixel distances between the center of the rec-
tangle which representing the tracking result in each frame
and the corresponding center of the ground truth. The less
the deviation, the higher the localization accuracy. Table 1
lists the mean localization deviations of the tracking results
of our algorithm, the vector subspace-based algorithm, the
Riemannian metric-based algorithm, and the DTA-based al-
gorithm in the representative frames in the four examples.
From the table, it can be seen that the object localization
accuracy of our algorithm is higher than those of the vec-
tor subspace-based algorithm, the Riemannian metric-based
algorithm, and the DTA-based algorithm.

For Example 5, each frame contains seven manually la-
beled benchmark points, which characterize the location and
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Table 1 Mean localization deviations of the tracking results

Algorithms Examples

Example 1 Example 2 Example3 Example 4
Our algorithm 5.1 2.5 33 2.5
Vector 31.7 28.7 77.2 28.6
subspace-based
Riemannian - 12.7 19.6 6.5
metric-based
DTA-based 27.3 68.3 79.2 11.3

the shape of the face. These benchmark points are used to
evaluate the accuracy of tracking results. During the track-
ing, the values of the object’s affine motion parameters for
each frame are used to obtain seven validation points corre-
sponding to the seven benchmark points. In each frame, the
deviation which is defined as the average of the pixel dis-
tances between each validation point and its corresponding
benchmark point is used to quantitatively evaluate the track-
ing accuracy in this frame. The quantitative comparison re-
sults are displayed in Fig. 16, where the x-coordinate is the
frame number and the y-coordinate is the tracking deviation.
From the figure, we see that the average pixel distances for
our tracking algorithm are always lower than those for the
vector subspace-based tracking algorithm, the Riemannian
metric-based algorithm, and the DTA-based algorithm: our
algorithm obtains more accurate results than the competing
algorithms.
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Fig. 16 The quantitative comparison for Example 5: (a) Our algorithm; (b) The vector subspace-based algorithm; (¢) The Riemannian met-

ric-based algorithm; (d) The DTA-based algorithm

6.2.7 Analysis of Results

From the aforesaid experimental results, it is shown that our
tracking algorithm is able to robustly track objects through
changes in appearance, such as noise disturbance, image
blurring, objects with small apparent sizes, drastic pose
changes, and occlusions. In the experiments, tracker drift
(Matthews et al. 2004; Grabner et al. 2008), that is small
inaccuracies in localization lead to gradual corruption of the
appearance model and loss of track, did not occur for our al-
gorithm. The reasons for robustness of our algorithm to ap-
pearance change and tracker drift are as follows: 1) Our al-
gorithm can provide accurate tensor subspaces which record
the object or background appearances over time. 2) The ten-
sor representation encodes spatial information as well as the
object appearance variations, and thus makes the appearance
model discriminative. Even if the subspace information on
one mode of the tensor is partially lost or drastically varies,
the cues obtained from the subspace information in the other
modes of the tensor can recover the subspace information on
this mode. As a result, small inaccuracies in the location of
the object do not accumulate.

In contrast to our tracking algorithm, the vector subspace-
based tracking algorithm only considers information in one
mode. If there is a change in the appearance of the object,
the vector subspace-based tracking algorithm is more likely
to lose the track. The tensor subspaces obtained by the DTA-
based algorithm are less accurate than those obtained by our
algorithm. The Riemannian metric-based tracking algorithm
does not directly model the changes of each pixel in ob-
ject appearance over time. These problems make these al-
gorithms less robust to appearance changes and tracker drift
than our algorithm.

7 Conclusion

In this paper, we have developed an incremental tensor sub-
space learning algorithm based on subspace analysis within

a multi-linear framework. The appearance of an object or
a scene and the changes in appearance over time are mod-
eled by incrementally learning a low dimensional tensor
subspace representation which is updated incrementally as
new images arrive. We have applied the proposed incremen-
tal tensor subspace learning algorithm to foreground seg-
mentation and object tracking. Our foreground segmentation
algorithms for grayscale image sequences or color image
sequences capture the intrinsic spatiotemporal characteris-
tics of scenes based on a likelihood function which is con-
structed on the basis of the learned tensor subspace model.
Our tracking algorithm captures the appearance character-
istics of an object during tracking, and uses particle filter-
ing to propagate the sample distributions over time. Exper-
imental results show that our proposed algorithms for fore-
ground segmentation and object tracking are robust to noise
or low quality images, occlusions, lighting changes, scene
blurring, objects with small apparent sizes, and object pose
variations. Consequently, our incremental tensor subspace
learning algorithm performs effectively in modeling appear-
ance changes of objects or scenes in complex scenarios.
Our future work will focus on the following aspects:

e We will use something like a wavelet basis, which rep-
resents the image using coefficients that capture the spa-
tial correlations, and then take wavelet-like features into
the incremental subspace learning algorithm which is then
applied to background modeling and object tracking.

We will consider the image a 3D tensor (with color cre-
ated the third axis) and do the fourth order tensor decom-
position to deal with changes in color appearance. Cor-
respondingly, incremental subspace learning for 4-order
tensors should be achieved, especially for the applications
to background modeling and object tracking.
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