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Abstract In this work we present a new way of simultane-
ously solving the problems of motion detection and back-
ground image reconstruction. An accurate estimation of the
background is only possible if we locate the moving ob-
jects. Meanwhile, a correct motion detection is achieved if
we have a good available background model. The key of our
joint approach is to define a single random process that can
take two types of values, instead of defining two different
processes, one symbolic (motion detection) and one numeric
(background intensity estimation). It thus allows to exploit
the (spatio-temporal) interaction between a decision (mo-
tion detection) and an estimation (intensity reconstruction)
problem. Consequently, the meaning of solving both tasks
jointly, is to obtain a single optimal estimate of such a pro-
cess. The intrinsic interaction and simultaneity between both
problems is shown to be better modeled within the so-called
mixed-state statistical framework, which is extended here to
account for symbolic states and conditional random fields.
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1 Introduction

The problem of moving object detection from a video se-
quence is an open issue of great interest in image analysis.
Solving it correctly is essential to computer vision systems
that perform diverse and complex tasks as object tracking,
sequence segmentation, object recognition, behavior analy-
sis, and it is a crucial component in surveillance applica-
tions.

One of the most widely used methods for motion detec-
tion is background subtraction. The approach, derived ini-
tially from a thresholding process over the difference be-
tween the observed intensity (or color) at a point of the
image and a reference value representing the background
(Fig. 1), has evolved into more complex schemes where
the shared idea is to consider that a foreground moving ob-
ject does not respond to some representation of the back-
ground. Indeed, the simple inter-frame difference with a
global threshold reveals itself as being very sensitive to usual
phenomena as noise and illumination changes.

The problem consists in obtaining an accurate represen-
tation of the background or reference image and solving for
motion detection by an appropriate comparison of the cur-
rent and reference images. However, a “chicken-and-egg”
situation arises when we want to set an optimal approach
for both tasks: an accurate estimation of the background is
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Fig.1 Motion detection by background subtraction. Moving points are those where the current image and the reference image differ considerably

only possible if we know which regions of the image belong
to it, that is, if we locate the moving objects; conversely, a
correct motion detection is achieved if we have a relevant
background representation.

A simplified approach may be considered by means of al-
ternate decision/estimation steps, allowing one to solve each
task separately and sequentially. This means to solve motion
detection, assuming we know the background, and then up-
dating the background model from points classified as back-
ground. However, there is no warranty that the scheme re-
sults in an optimal solution. Decomposing a simultaneous
problem into a sequence of separate steps, and solving each
of them in a sub-optimal fashion do not necessarily end up
in an optimal solution for the whole problem. Moreover,
the decision step involves a hidden symbolic variable to be
determined. Consequently, it implies an inference process
which may be complex.

We identify the problem as a simultaneous decision-
estimation problem. One deals with a decision process (mo-
tion detection) together with an estimation process (back-
ground recovering). Consequently, we explicitly recognize
two types of intervening values: numeric values to be es-
timated (the background image) and a symbolic value, as-
sociated to the motion detection task and represented by
an abstract label. As separate (alternate) problems, they are
solved in different domains: continuous vs. discrete. How-
ever, if we want to exploit the natural relation and inter-
action that exist between both tasks, we need to solve the
problem in a unified framework involving a single domain,
where symbolic (discrete) and numeric (continuous) states
can be jointly modeled and/or recovered.

In this work, we present a new way of solving the afore-
mentioned coupled problems jointly, based on the so-called
mixed-state statistical framework (Hardouin and Yao 2008;
Bouthemy et al. 2006). A preliminary version has been pub-
lished before in Crivelli et al. (2008). The key of this ap-
proach is to define a single random variable that can take
two types of values, instead of defining a pair of random
variables for each image location, one symbolic and one nu-
meric (Fig. 2). In view of this, we can redefine the problem
of motion detection by background subtraction as the start-
ing point for our proposal. Let us consider that a point in
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Fig. 2 (a) Two separate layers of continuous and symbolic states.
(b) A single layer where both types of values are jointly modeled in
a mixed-state domain

the image is a single process that can take either a symbolic
value (or abstract label) accounting for the presence of mo-
tion, or a continuous numeric value associated to the bright-
ness intensity of the reference image at that location. Con-
sequently, the meaning of solving the motion detection and
the background reconstruction jointly, is to obtain a single
optimal estimate of such a process.

This paper is organized as follows. In Sect. 2 we dis-
cuss the advantages and drawbacks of state-of-the-art meth-
ods for motion detection by background subtraction. This
will serve as a guide for defining our method in the follow-
ing sections. In Sect. 3 the general mixed-state probabilistic
framework is described and then we introduce the concept of
mixed-states conditional random fields (MS-CRF). Then in
Sect. 4 we specify a MS-CREF for the simultaneous problem
of motion detection and background reconstruction. Results
and experimental comparisons are discussed in Sect. 5.

2 Background Subtraction Techniques

For existing background subtraction methods, a necessary
step consists in the learning of the background and this im-
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plies either the availability of training frames with no mov-
ing objects, or the assumption that a point belongs to the
background most of the time. Adaptive schemes have also
been proposed in order to update the model sequentially and
selectively, according to the result of the motion detection
step. Anyway, a general consensus has been established to
estimate a probability density for each background pixel.
The simplest approach is to assume a single Gaussian law
per pixel (see for example, Wren et al. 1997), whose pa-
rameters may be estimated by simple running averages or
median filters. A valid criticism to this hypothesis is that
the distribution of the intensity of a background pixel over
time can vary considerably. In that direction, multi-modal
density models seemed to perform better. Mixtures of Gaus-
sians (Stauffer and Grimson 2000) and non-parametric mod-
els (Elgammal et al. 2000) have shown good results, able to
deal with the variation of the background distribution. Sev-
eral improvements on these ideas have been further devel-
oped (Zivkovic and van der Heijden 2006; Parag et al. 2006;
Mittal and Paragios 2004) on how to efficiently update the
background model. It is also worthy to mention approaches
based on separating large data clusters representing the
background and small clusters representing the foreground
(Wright et al. 2009). Principal component analysis is used
for separating low-rank approximations of the video (the ref-
erence image) from a sparse error component (the moving
object).

However, they suffer several drawbacks. The approach
does not assume spatial correlation between pixels, neither
in the model of the background, nor in the binary detection
map. To cope with this, posterior morphological operations
are applied in order improve the resulting motion detection
map. No regularization is proposed for the reference model.
Also, points detected as foreground are incorporated to es-
timate the background model (called blind update, Elgam-
mal et al. 2000) in order to avoid deadlock situations, where
a badly estimated background value for a pixel results in
a continuously and wrongly detected moving point. This
leads to bad detections as intensity values that do not be-
long to the background are incorporated to the model. Many
heuristic corrections are usually applied in order to alleviate
this drawback, but unfortunately, introducing others. Finally,
these methods are sensitive to the initialization of the back-
ground model, particularly, when an initial image with no
moving objects is not available in the video sequence.

Instead of looking at the temporal variation of point in-
tensity statistics, region-based features, as used in Criminisi
et al. (2006), Ko et al. (2008), are less sensitive to variations
of the textured background, and are more robust in detecting
foreground objects.

Unlike most approaches to moving object detection
which detect objects by building adaptive models of the
background, in Criminisi et al. (2006), Sheikh and Shah

(2005) the foreground is also modeled. This permits to ex-
ploit the temporal persistence of a moving object. True fore-
ground objects, as opposed to spurious noise, tend to main-
tain consistent colors and remain in the same spatial area.
Thus, previous foreground information contains substantial
evidence to be used at the current instant. Other approaches
have proposed to model and infer multiple layers of mov-
ing objects combining deformable masks and foreground
appearance maps (Jojic and Frey 2001).

The advantages of incorporating spatio-temporal con-
text and regularization, in the background modeling and
also the foreground one, are demonstrated for example in
Sheikh and Shah (2005), Monnet et al. (2003), Migdal and
Grimson (2005) by means of a Markov random field model
and ARMA processes. In Bouthemy and Lalande (1993), a
Markovian approach for motion detection exploiting tempo-
ral regularization between consecutive frames is proposed.
In Bugeau and Pérez (2007), a technique for motion de-
tection, not based on background modeling, but on cluster-
ing and segmentation of motion and photometric features,
is described, where explicit spatial regularization is intro-
duced through a MAP-MRF approach. Related to the class
of energy-based methods for background subtraction, the
work by Sun et al. (2006) on Object Cut, models the like-
lihood of each pixel belonging to foreground or background
along with an improved spatial contrast term. This term is
a penalty term when adjacent pixels are assigned with dif-
ferent labels (background or foreground), and the amount of
penalization depends on how similar are the colors of the
pixels. The method relies on a known (previously learned)
background model and an adaptive update scheme is neces-
sary. Finally, conditional random fields have been used be-
fore for background-foreground segmentation in Criminisi
et al. (2006), integrating color and motion cues, and a tem-
poral dependency model in the detection process.

Our review of background subtraction techniques has led
us to make the following observations:

e Pointwise motion detection (Elgammal et al. 2000; Stauf-
fer and Grimson 2000) is not enough for a correct seg-
mentation. Spatial coherency and contextual information
is needed (Sheikh and Shah 2005).

e Region-based image features are more robust to local
variations (Migdal and Grimson 2005; Ko et al. 2008).

e Motion cues combined with intensity cues is better than
considering only one or the other (Mittal and Paragios
2004).

e Regularization on the motion detection (symbolic) map
should be enforced on neighboring points with similar in-
tensity (numeric) values (Sun et al. 2006; Criminisi et al.
2006). Thus, it was pointed out in the literature that there
exists a close interaction between the symbolic and the
numeric processes.

@ Springer



298

Int J Comput Vis (2011) 94:295-316

e Results of existing methods depend strongly on a back-
ground-foreground learning stage (Elgammal et al. 2000;
Sun et al. 2006; Criminisi et al. 2006)

In the following sections we propose to deal with each
of these issues by combining the mixed-state framework
with the conditional random fields (CRF) approach (Lafferty
et al. 2001).

3 The Mixed-State Approach
3.1 Related Work and Connections

The concept of a random process that can take different
types of values (either continuous or abstract) includes di-
verse situations. A mixed discrete-continuous Markov ran-
dom field is formulated in Bouthemy et al. (2006) for the
modeling of dynamic or motion textures. It is demonstrated
that the normal flow scalar motion observations extracted
from these video sequences, show a discrete value at zero
(null-motion) and a Gaussian continuous distribution for the
rest of the values. This model was extended in Crivelli et al.
(2006, 2009) and applied to the problems of motion texture
segmentation, recognition and tracking. For these applica-
tions, the issue is different than for simultaneous decision-
estimation problems. The mixed nature operates on the ob-
servation itself.

In previous works on fuzzy pixels classification as
Salzenstein and Pieczynski (1997) and Salzenstein and Col-
let (2006), the authors introduce a class of fuzzy MRF’s or
fuzzy Markov chains where each state variable, or classifica-
tion variable, x; € [0, 1] represents a classification rate. The
fuzzy principle implies that the two hard classification states
x; =0 or x; = 1 have a positive probability while all the soft
classification states, i.e. x; € (0, 1) follow a continuous dis-
tribution. Indeed, fuzzy random fields, concept originally
introduced in Caillol et al. (1993), are instances of spatial
mixed-state models with numeric discrete part. Also a class
of Markov chains with mixed states appeared in Carincotte
et al. (2004, 2006), allowing the coexistence of a hard and
fuzzy segmentation.

We can mention other models that exploit the interaction
between symbolic and numeric values in computer vision
decision problems. The /ine process introduced by Geman
and Geman (1984) is an unobservable binary process L for
edge elements. These authors regard the original image I as
a marginal process from an extended joint field X = (I, L)
which is recovered from image observations. The idea be-
hind this formulation is that the presence of an edge between
two image locations, breaks the link between them and ac-
counts for a discontinuity. Later in Black and Rangarajan
(1996), the line process is viewed as a way of rejecting out-
liers giving an equivalence with robust estimators. In Wu
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and Chung (2007) a more sophisticated line process is used
for image segmentation.

Finally, in hybrid Bayesian networks (Murphy 1999;
Koller et al. 1999) the generalization is that a discrete node
can have continuous parents and a continuous node can have
discrete parents. The first case is useful for modeling thresh-
old phenomena, while the second is associated to a sort of
model selection state. The nature of the values taken by each
random variable (parent or child) associated to a node is
fixed to be continuous or discrete. What this formulation
permits is to model discrete-continuous interaction, but not
to infer if a node is discrete or continuous. Other so-called
hybrid approaches follow a similar formulation as the orig-
inal line process proposed in Geman and Geman (1984), by
performing joint inference of two coupled fields, one dis-
crete and one continuous, by means of an EM-like strategy
(Lu et al. 2009).

3.2 Mixed-State Random Fields

In this work we extend the original idea of Bouthemy et al.
(2006) to more general random fields where the discrete
part may take abstract labels or values related to a decision
problem. Our proposal is different from previous symbolic-
numeric approaches described in the last sub-section. We
deal with a single random field on a lattice, where each point
may display either symbolic or a numeric value. First, this
avoids defining and modeling two different processes as it
was done with the line process in Geman and Geman (1984).
No marginalization is needed to obtain the desired field, no
complementary hidden states have to be introduced. On the
other side, the nature (symbolic or numeric) of each site vari-
able is not fixed as it occurs in hybrid Bayesian networks
(Murphy 1999; Koller et al. 1999). In contrast, determining
the optimum state is what allows us to solve two coupled
problems in a single estimation process.

Definition 1 (Mixed-state random variable) Let {/} be a
symbolic state or label and let Z C R be an interval of the
real line. A mixed-state random variable x is defined as tak-
ing values in a mixed-state space M = {/} U Z and is con-
structed as follows. With probability p € [0, 1], set x =1,
and with probability 1 — p, x is continuously distributed
inZ.

Since symbolic labels such as / do not have any alge-
braic structure, a probability distribution function cannot be
defined to characterize the random variable. One proceeds
directly to define a probability measure for a mixed-state
random variable, resorting on the theory of measure and in-
tegration (Cernuschi-Frias 2007). We can then construct a
probability density for x, defined as

p(x) = pli(x) + ™1} (x) p°(x), ey
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with p € [0, 1], p* =1 — p and where we define the charac-
teristic functions

1 ifx =1,
ll(x)_{o if x #£1,

and p°(x) is a continuous probability density function. The
density p(x) in (1) is given with respect to a reference mea-
sure m(dx) = m;(dx) + A(dx), where m;(dx) is a counting
measure for the value [ and A(dx) is the usual Lebesgue
measure, i.e. the length of the interval in the real line. In-
terpret this equation as follows: the density function p(x)
assigns a probability mass p to the discrete value, and acts
as a continuous density function p°(x) for the continuous
values.

Let us pin things down and consider a first approach to
the problem of motion detection and background reconstruc-
tion with a mixed-state model. Define a mixed-state random
variable x; for each location i of the image plane. Define /
as the symbolic state that indicates a detected moving point,
and consider the interval of the real line 7 = [0, 255], i.e.,
the range of gray level intensity values for the background
image.

We are now ready to propose a first very simple mixed-
state model. Following equation (1) we write:

() =1-1() ©))

_ (x; 77111-)2

pxi) = pily(xi) + pF 1} (x; wf 3)

) 1
Varor

With probability p;, x; =1, i.e., the location corresponds
to a moving point, and with probability o =1 — p;, the
location corresponds to a background intensity value per-
turbed by Gaussian noise. We may thus estimate the value
of x; by point-wise maximization of (3). Note that assign-
ing an intensity value implies considering the point as back-
ground, so that (background) estimation is performed simul-
taneously with (motion) detection.

It should be clear that this simple model will be far from
performing well in most of the situations and that we need
to incorporate a more complex scheme that allows us to in-
troduce spatial interaction, and to enforce correlation within
the random field and between continuous and symbolic val-
ues, as we describe in the next section.

3.3 Mixed-State Auto-Models with Symbolic Values

Markov random field models have been applied successfully
to estimation problems (e.g. texture modeling and analy-
sis, Lorette et al. 2000, optical flow estimation, Heitz and
Bouthemy 1993; Li and Huttenlocher 2008, image restora-
tion and denoising, Chen and Tang 2007; Geman and Geman
1984) as well as decision problems (e.g. image segmenta-
tion, Collet and Murtagh 2004; Salzenstein and Collet 2006;
Crivelli et al. 2006; Benboudjema and Pieczynski 2007;

Blanchet and Forbes 2008, motion detection, Benedek et al.
2007; Bouthemy and Lalande 1993, edge detection, Wu
and Chung 2007, structural change detection, Kasetkasem
and Varshney 2002). Our motivation have been to exploit
the power of mixed-state MRF’s for simultaneous decision-
estimation problems.

How can we formulate a mixed-state Markov random
field in order to include continuous and symbolic states
within a single random field model?

Let S ={1...N} be a lattice of points or image loca-
tions such that x = {x;};es. Define xx; as the set of ran-
dom variables in a neighborhood N; of location i, i.e.,
X\, = {Xi}ien;. Then the Markovian property is expressed
in the mixed-state conditional densities:

p(xi | Xs\(i})
= p(x; | Xn7)
= p (XN (xi) 4+ " (XA)1] () p(xi | Xp7), 4)

where p(xp;) = P(x; =1 | xp;). Equation (4) defines the
local characteristics of a mixed-state random field with a
symbolic discrete state. However, they cannot be chosen ar-
bitrarily for every point as they must comply with a well-
defined joint distribution p(x).

We adopt the formulation introduced by Hardouin and
Yao (2008), who generalize the auto-models of Besag
(1974) to the so-called multiparameter auto-models. Ac-
cording to these authors, if p“(x; | Xp;) belongs to the
d-parameter exponential family of distributions, the mixed-
state conditional density (4) belongs to the (d + 1)-parameter
exponential family. This leads to:

log p°(x | Xa0) = —{ @] (xA0)S: (x) + C; (x) + Dy (x0)}
)

with S; (x;) € RY, ©;(xp;) € R?, C;(x;) and D;(xp;) € R.
It then results that

log p(x; | Xp7) = —{OF (xA1)S; (x;) + Ci (x;) + Di (X))
with
S (%) = [1} (xi), 1 (x)Si (217

Pi (XA;)

Ci(x) =17 (x)Ci (x),
Di(xp;;) = log pi (Xp7)-

T
~ ~T
Di(x\7), ©; |,
+ D;i(xn7) ,(XN,)] ©)

The second assumption is that the family of conditional
densities in (4) correspond to a second-order mixed-state
Markov random field, i.e. p(x) =exp—Q(x)/Z with

Q) = _Vi(xi) + Y _ Vij(xi, x)). (7)

i,j

@ Springer



300

Int J Comput Vis (2011) 94:295-316

With the aforementioned hypothesis it was shown in
(Bouthemy et al. 2006; Hardouin and Yao 2008) that

Vi) =] -Si(xi) + Ci(x;), ®)
Vij(xi,xj) =Si(x)" B;;S;j(x)) ©9)
with B;; € RUTD*@HD and a; = [ar; ... g 4117 € RIFL

Discussion A mixed-state auto-model is defined by either
the conditional densities (4) or by the potential functions
(8) and (9). Both are in turn defined by the parameters «;
and B;;. Now, let us decompose these parameters by writing

dij lT, D ~T4T
o i), = &7, 10
ﬂ,] (Yij .Bij o =[o;] o] (10)

where YiT. is the first row of B; j minus the first element, d;;,
and Y;; is the first column of B; ; minus the first element.
,E,- j 1s the lower-right d x d submatrix of B;;. Equivalently,
o; is a d-dimensional vector, and aiD the first element of «; .

In view of this, we can write the shape of the mixed-state
Gibbs energy as follows:

Q) =Y aP1; () + & 17 (x)Si (i) + Ci (x)

+ Y dij1f ()1 (x))

(i.j)

+ ) YL ()S;(x)
(i,7)

+ ZYile;k(xj)lzk(xi)Si (xi)
(i,7)

+ Y 1)1 S ()T By S (x)). (11)

(i.j)

Note that this model allows us to introduce differ-
ent types of terms in the mixed-state Gibbs energy func-
tion. On one side we have purely discrete terms of
the form (xile(x,-) or dij1f(x;)1f(x;) as in a discrete
Markov random field. On the other side, we can include
unary continuous terms EZZ.TI?‘(xi)Si (x;) or second-
order terms as 17(x,~)17(x,)§,~ (xi)TﬁijS/ (x;). Si(xi) is
a function of the continuous values of x;. Finally, we
are able to include mixed-state second-order terms as
YiTj 17 (x,-)lj‘ (x j)S j(x;). In this latter case, the model is able
to exploit the interaction between continuous and symbolic
states of neighboring points.

Indeed, many applications in computer vision are for-
mulated directly as an energy-maximization problem where
the energy terms are Gibbs potentials, usually up to second
order cliques (Fablet and Bouthemy 2003; Wu and Chung
2007; Heitz and Bouthemy 1993; Elfadel and Picard 1994,
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Kumar and Hebert 2006; Lafferty et al. 2001). In these cases,
the model is completely designed through the energy func-
tion, although the conditional densities can be eventually
obtained, for example when applying certain optimization
methods (e.g. ICM, Besag 1974). For us, (11) is the basis for
designing a mixed-state energy that corresponds to a mixed-
state Markov random field.

3.4 Conditional Random Fields with Mixed-States

In the MRF framework, the problem of estimating a random
field x from a set of (image) observations y is expressed us-
ing the Bayes rule as

max p(x | y) occmax p(y | X) p(x). 12)

For classical MRFs models (Besag 1986; Geman and Ge-
man 1984; Chellappa 1985), the prior knowledge on x is
modeled as a Markov random field and p(y | X) is the obser-
vation model. In order to obtain a computationally tractable
(also Markovian) posterior distribution, some restrictive as-
sumptions need to be imposed on defining p(y | x). For ex-
ample, assuming a factorized form p(y | x) =[]; p(yi | xi)
the markovianity is assured. However, this is a strong re-
striction that may not be able, for example, to account for
textured patterns.

As pointed out in Pieczynski and Tebbache (2000), what
one usually seeks is the markovianity of p(x | y). This
can be guaranteed by directly assuming the markovianity
of p(x,y) in the form of pairwise Markov random fields
(PMRF) (Pieczynski and Tebbache 2000). Thus, p(x) need
not be Markovian. This relaxes the restrictions of classical
MRFs and permits to build more complex, and yet tractable,
models. This approach was later extended in the triplet
Markov field (TMF) model (Benboudjema and Pieczynski
2007; Blanchet and Forbes 2008) introducing a third (aux-
iliary) process u and assuming (x,y, u) is now Markovian.
This allows having a non-Markovian (x, y) and thus, a more
general setting.

The latter approaches require modeling the observation
process y, either in the form of p(y | x) or through the joint
distributions p(x,y) or p(x,y,u). This can sometimes be
viewed as a limitation if one wants to introduce arbitrary
observations in the inference process of x.

A different approach which avoids modeling y is given
by the so-called conditional random fields (CRF’s) frame-
work (Lafferty et al. 2001; Kumar and Hebert 2006; Wang
et al. 2006) which has gained interest in the last years. It
considers a different point of view in estimating the poste-
rior probabilities over x given the observations. The idea is
to directly model the posterior p(x | y) and directly impos-
ing its Markovian form. As a consequence, this conditional
probability can depend on arbitrary features y without mak-
ing any model approximations as one does not have to take
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care of its distribution (Kumar and Hebert 2006). This of
course permits to relax any independence assumption. Fur-
thermore, it allows us to define these models in a flexible
way, in particular it enables to exploit a large set of observa-
tions (e.g., a block) at each site, something that in the clas-
sical MRFs notably increases the complexity of the model.
That is, it is able to integrate at an image location any in-
formation extracted from the input data and obtained across
any spatial or temporal (or both) neighborhoods, or infor-
mation from previously reconstructed variables, or even the
association of both.

It is not our intention to extensively describe the con-
ditional random fields theory but to exploit its advantages
within the mixed-state framework. Then, it is enough to give
the following extension to the definition given in Lafferty
et al. (2001):

Definition 2 (Mixed-state Conditional Random Field (MS-
CRF)) Let x be a mixed state random field and y an obser-
vation process. Then (x,y) is said to be a mixed-state con-
ditional random field if x conditioned on y is a mixed-state
Markov random field.

In addition, this framework will permit to involve not
only the comparison between the current image and the ref-
erence image but to explicitly integrate motion measure-
ments obtained between consecutive images, contributing to
make the overall scheme complete, accurate and powerful.

Introducing the observations y in the mixed-state auto-
model is straightforward, by making the parameters depend
ony, i.e. otl.T(y) and B;;(y), and in turn, oz,.D(y), &'l.T(y),

dij (), YL, Bij(y)-

4 A MS-CREF for Simultaneous Motion Detection
and Background Reconstruction

4.1 Our Method

Recall Sect. 2 where we have discussed several aspects that
the method has to take into account in order to solve the
problems of motion detection and background estimation.
Now, we are ready to deal with each of these issues:

e We introduce spatial context and correlation in both types
of values by exploiting a random field model with second
order potentials as in (11).

e We exploit both image intensity and motion observations
as input for the inference process. This can be done thanks
to the Conditional Random Fields framework.

e We exploit the interaction between estimation (back-
ground intensity) and detection (moving points). The
mixed-state approach allows us to achieve this joint mod-
eling by designing the continuous, discrete and mixed po-
tentials involved in (11).

e We solve the two problems in a single inference step.
Optimization of mixed-state fields implies obtaining both
types of values at the same time and in a unified way.

We now specify the MS-CREF that is able to handle simul-
taneously the problems of motion detection and background
reconstruction. As mentioned before, there is a strong cou-
pling between the two tasks.

4.2 Definitions

Let us call I(t) = {I;(t)}ics the intensity image at time f,
where [; (t) € [0, 255] is the brightness intensity value at lo-
cationi € S ={1... N} of the image grid. Then I; = {I(¢)};
is a sequence of images that we call observations. We de-
fine a mixed-state random field x; = {xf }ies for time instant
t, where xl.' e M = {I} U [0, 255] is a mixed-state random
variable.

4.3 Background Update Strategy

Suppose we have an estimate of the mixed-state field x; for a
given instant ¢, that is, the location of the moving points and
the estimated intensity values for the background at the non-
moving points. We can use this information and the past es-
timated x;/ (for ¢’ < 1) to reconstruct the reference image at
t, that we call z; = {Zf' }ies. We propose to update the back-
ground image as follows:

xb it xl £,
o 13)
; otherwise.

~

;i =
Z:

The rationale of this rule is that when we do not detect
motion, we have a good estimation for the reference inten-
sity value at a given point, so we can keep this value as
a background intensity value. As the objects in the scene
move, we can progressively reconstruct the background for
different parts of the image. In other words, we can fill the
gaps at those moments where the background is not oc-
cluded.

4.4 Design of the Energy Terms

Let us call Q(x; | I;+1, z,—1) the energy function associated
to a conditional mixed-state Markov random field, given the
observations I, 1 ! and the previously available background
image z;_1. In the sequel we define the mixed-state energy
terms.

We will consider three types of energy terms. The dis-
criminative term, which plays a role in the decision pro-
cess, penalizing or favoring the presence of motion at a point

"We will see shortly why we use images up to ¢ + 1.
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Table 1 Energy potentials of
the conditional mixed-state @
model for the motion detection
and background reconstruction

VP (e L) = P @)1 (x])

aP (I1) = —1og NFAR;)  (see (17))

method

[x!
(b) VRG] 1T, 20m0) = y [1 () 2

1 7{—1 I 2
B MO 4y eaf (0. 2-1)]

ORI A VD DINVI ARy 1))

mE@ L) =T+ A — o L)

© Ve 1) = gy 1 6D 1 G

(Xl{ —x')2—K m ' '
] = Gk VDL )

& (VI(®) =max(l, | VL) |I*)

given the observations; the reconstruction terms, involved
in the estimation of the background intensity values, which
also affects the motion detection decision process by means
of background subtraction; and the regularization terms, re-
lated to the smoothing of the mixed-state field. In Table 1
we give the complete expressions. The mixed-state energy
is therefore given by:

O | L z1) =Y _ VP! Ty
i
+ Z V,-R(xf [L41,2-1)

l
+ Y VSl X ). (14)
(i, J)

The objective is to minimize this expression with respect

to the mixed-state field x; at each time instant. This implies
minimizing the contribution of the potentials V[.D ! 1 Lg1),
VRO 1 Tigr, ze-1) and V5 O x8 [ Tepn).
Discriminative Term The discriminative term ViD (xi’ |
I,+1) (Table 1a) is related to the symbolic part of the field,
which can be associated to the motion detection map. The
weight oziD (Ir+1) depends on the observations and aims at
tuning the belief of presence of motion at a point. The idea
is that, when motion is present, oe,.D (I;41) should take a large
value so that we penalize that 1;(x/) =1 (or equivalently,
we favor xl? =1). Conversely, a low value of oziD (I;41) favors
xl #L

Here we adopt the a-contrario decision framework (Veit
et al. 2006) for obtaining al.D (I;41). In this method mov-
ing regions appear as low probability events in a model cor-
responding to the absence of moving objects in the scene,
namely a model of the background.

In general terms, a point in the image is likely to corre-
spond to a moving object if its local normal flow magnitude
is important, which is defined as

a1 (@)
| ot |

_— 15
VL (1>

v (1) =
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This quantity is computed between two consecutive
frames of the sequence: I(r — 1) and /(¢). In order to deal
with occlusion and disocclusion of the scene background
by moving objects, a three-image scheme is considered.
Taking 7(t) as the central image, the normal flow magni-
tude map is obtained for the pair I(+ — 1), I (¢) and for the
pair 1(t), 1(t + 1). Then, the minimum value ul.(”’mi")(t) =
min[vi(n)(t), Ui(”)(t + 1)] is kept as the considered measure.
Looking forward and backward in time ensures that a mean-
ingful motion observation is obtained, since the two pairs
of images cannot be simultaneously affected by an occlud-
ing situation at the same time. Taking the minimum avoids
assigning high motion values to the static background.

In an image with no moving objects present, the local mo-
tion measures can be assumed to derive from an independent
and identically distributed temporal noise. The background
is assumed to dominate the foreground, and thus, th(; inverse
cumulative distribution function F(u) = P(vl.("’m'”)(t) >
) of the normal flow magnitude for the background can be
learned empirically from the whole image. Now, consider
a region R; around image location i and let k;, denote the
observed number of pixels at which the motion measure ex-
ceeds the threshold w. According to the learned background
distribution, the probability that k,, or more motion values
of a total of n, exceed w is the tail of a binomial distribution:

n

Bk, n, F) =) (’]’.)WU —F)"/. (16)

j:ku

This probability measures how likely the background
model is for displaying an observation of at least k,, exceed-
ing motion values. It corresponds to the probability of reject-
ing the hypothesis of no-motion although it is true, when &,
is viewed as a threshold for detecting a moving point. Then,
it can be interpreted as a false alarm rate for region R;.

Setting the threshold p arbitrarily may be problem-
atic as a suitable value may depend on the image and
the region. To avoid this, a set of N, thresholds w; are
tested and the minimum false alarm probability PFA(R;) =
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Fig. 3 Initial motion detection by computing the Number of False
Alarms. The motion map is obtained by thresholding this quantity as
explained in Veit et al. (2006). From left to right: the results are shown
for the sequences Basketball, Forest, Traffic Circle, Route and Van.

minjzlnNM B(k,“ ,n, F(u;)) is computed. Taking the mini-
mum means that it is sufficient that one of the probabilities
B(ky;,n, F(uj)) is low to consider that the region R; does
not correspond to the background model.

Instead of considering the false alarm probability as in
usual hypothesis testing, the method proposes to compute
the average number of occurrences of the motion detection
event under the hypothesis of the background model, termed
Number of False Alarms (NFA) and defined as

NFA(R;) = Ng, - N, - PFA(R;)
=Np-Ny- —HlurIlV B(ky;,n, F(uj)) a7
=1..N,

J

where Ng is the number of tested regions in the image and
N, the number of tested thresholds. In Veit et al. (2006)
the number of candidate regions Nk can vary across the
sequence by applying a meaningful region extraction al-
gorithm. In our case, we have implemented the simplest
scheme where we compute the value of NFA(R;) for each
image location over square regions of a fixed size and thus
Npg and N, are constants so that NFA(R;) depends essen-
tially on PFA(R;). We fix Ny, = 10 where the tested u;
are those corresponding to regularly spaced probabilities
N,—j+1

F(u j )=p-*~ N,
ability associated to a minimal threshold @1 = 0.2. The se-
quence pj is thus increasing and &y, ; is decreasing. In other
words, the method tests N, = 10 different thresholds start-
ing from w1 = 0.2. This results in a non-parametric and un-
supervised approach.

Note that the value of NFA;(R;) constitutes a measure
of the belief that a point belongs to the background (or
conversely, to moving objects). As explained in Veit et al.

,j=1...N, with p= F(j1) the prob-

Note that this quantity, with the basic implementation used here, over-
regularizes the motion detection map at that stage, as it is a block-based
detection strategy

(2006) one can apply a detection test specified as follows:
accept the motion hypothesis for region R; if NFA;(R;) < 1
and reject it otherwise. This results in less than one false de-
tection on average. In Fig. 3 this rule was applied for com-
puting an initial motion detection map. Note that the dis-
criminative term alone is not able to correctly detect the
moving regions, nonetheless providing valuable informa-
tion. We then set

o (Ii11) = —log NFA(R;) (18)

where a low value of log NFA; favors x| =1.

Our method does not rely only on the comparison be-
tween the current image and the reference image but explic-
itly introduces (normal flow) motion measurements as ex-
plained above. The overall scheme gains accuracy and com-
pleteness, integrating this low-level feature in the decision
process.

Reconstruction Terms We elaborate now the potential
ViR (xl? | I;+1,2,—1) in Table 1b. On one side, it aims at es-
timating the intensity values of the background (reference)
image, taking into account their interactions with the sym-
bolic values. On the other side, it exploits the information of
the intensity difference between the current image and the
reconstructed reference image, which provides the basis for
the decision process in a background subtraction method.
The first term of Table 1b,

! —m( L)1

1
2
0;

1)

favors that, when there is no motion, i.e. lf (xf ) =1, the es-
timated intensity value for a point is close to the previous
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estimated reference intensity value. Simultaneously, it pe-
nalizes the absence of motion if this difference is eventually
large.” Both types of values interact consequently, in order
to minimize the energy. Note that this term also performs
a temporal smoothing of the reference estimates zlt. by the
interpolation form of the m(-) function. Furthermore, it is
normalized by a local variance aiz estimated over a 9 x 9
window centered at location i in I;. The second term of Ta-
ble 1b,

LGeDaf @), z-1)

results in a penalization of the presence of motion when the
difference of intensity between the observation and the refer-
ence image is small. A local average of intensity differences
is introduced in order to reduce the effect of the observation
noise. The parameter y controls the influence of the recon-
struction term in the total energy.

Regularization Terms The potentials introduced so far are
first-order terms, that relate the random variable at a point
i w.r.t. the observations. Next, we introduce terms related
to the regularization of the field. The objective is to have
connected regions for the motion detection map, and a re-
constructed background with a reduced amount of noise, but
preserving edges and contrast of the image.

A combined spatial regularization of both types of values
is achieved through the energy potential in Tab. 1c. First, a
Gaussian term,

/3(,‘

(x] — x;)2 - K
&i(VI(@)) }

lf(xl-’)l;"(x;-)[ 5

9;
is introduced in order to obtain homogeneous intensity re-
gions for the objects in the background. This regulariza-
tion is only done when both points are not in motion and is
stronger for those points where the image gradient is small,
in such a way that we avoid the blurring of edges. Then,
regarding the motion detection map,® we observe that the
amount of regularization depends as well on the continuous
part, that is, is favored in homogeneous intensity regions.
The constant K is set to the value K = %(xmax — xmin)2 =
(255)%/2, centering the range of values for this term, and
is introduced to favor this regularization when two neigh-
boring points tend to have similar intensities. If K = 0,
the whole term can become null in that case, suppressing
the regularization between adjacent points over non-moving
regions. Another term for the smoothness of the moving
points is added as well in Table lc, in order to improve

2We set m(zf_1 , I; (t)) = I;(¢) if we do not have an available previously
estimated value for the reference image at that point.

3More precisely, its complement, the non-motion map.
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regularization and reduce false negative detections. The pa-
rameters involved in Table 1 are set to achieve a correct
regularization in both the motion detection map and the
background intensity values. Their influence is analyzed in
Sect. 5.4.

4.5 Estimation

The problem reduces to the task of estimating the field x;
by minimizing Q(X; | I;+1,2z,—1). The ICM (Iterated Con-
ditioned Modes) algorithm (Besag 1974) is used for this
task which is an iterative procedure for maximizing p(X; |
I;41,2z:—1). By choosing the value of xi’ at site ¢ that maxi-
mizes the conditional probability p(x] | X, n;, Li11,2:—1), it
results that p(x; | I;4+1, z;—1) increases (Guyon 1995). Pass-
ing by each point a sufficient number of times, an optimal
solution is obtained. Then, we only have to compute the con-
ditional mixed-state density at each location, which can be
derived directly from (14).

Defining H (x}) = V" (! | L) + VR (! [ Tgr.zeo0) +
> jeN: sz (x] ,x;. | I,+1) this conditional density is given
by:

exp—H (x})

Z ; 19)

P I %e N L1, 2i1) =
where Z; is a normalization factor that does not depend
¢ . . . s

on x;. Then, for each point the following rule is applied:
: r_ r_
xz.[: l* if H(.xl—l) <H(xi _x;k)’ (20)
x! otherwise,
where x[" is the continuous value that maximizes the contin-
uous part of (19), i.e. when x #[:

_ gi<€)(z>> 2 jen; X1 () + ymG 5 (0) (1)
- - ,
Ty 2jeN: () +

*
Xi

Note that when xi’ # [, the conditional distribution of xl?
given its neighbors is Gaussian as one can infer from the
quadratic terms in Vl.‘j.(xf, x;. |I;+1) and ViR O D1, Ze—1).
Thus the maximizing value x; coincides with the mean
of this conditional continuous density, and is the estimated
value for the reference image at point ;.

4.6 Discussion

As said before, the proposed mixed-state formulation intro-
duces a new way of dealing with simultaneous decision-
estimation problems and provides key advantages with re-
spect to more conventional approaches.

Classical robust estimation methods could also be ap-
plied for estimating the background image, while consid-
ering foreground moving points as outliers. It is somehow
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true that they would permit to reject the outliers while re-
covering the background at the same time. But this ap-
proach only considers that most of the time, the background
is not occluded. In essence, the nature of the outlier is not
taken into account: it is just a point that does not respond
to an assumed model as, for example, also a noisy inten-
sity value can be. By nature, robust approaches are not able
to detect the moving points as belonging to a particular
class.

If we want to introduce specific information for what we
want to detect (the class of moving points), a CRF has shown
to be a useful discriminative model. The presence (not the
intensity) of a moving point is explicitly modeled using
(spatio-temporal) motion and intensity information. Conse-
quently, there is no assumption of a predominant model, but
a joint process of detection and estimation. The result is that
there is no need to estimate a model assuming that the num-
ber of outliers is small. If a point is in motion, the discrim-
inative terms of our approach will detect it “just because it
moves”, not as a rejected outlier.

Other authors apart from us have successfully applied
conditional random fields for background/foreground seg-
mentation (and many other problems) as the method by Cri-
minisi et al. (2006), here tested and compared to our method.
But CRFs used before were applied for solving a decision
(discrete) problem alone or an estimation problem alone, but
separately. We thus have adopted a CRF with its strengths,
and combined it with a mixed-state field. Now we were
able to solve both problems jointly, determining the mov-
ing points and the intensity of the non-moving (background)
points through the inference of a single random (mixed-
state) field.

Summarizing: robust methods can perform a simultane-
ous labeling and estimation, but are not able to introduce
useful information for the detection process; meanwhile,
CREFs are able to introduce arbitrary information for a de-
cision or an estimation process, but they had never been de-
fined before within a truly simultaneous scenario. A MS-
CRF possesses both attributes.

5 Results and Experimental Comparisons
5.1 Mixed-State Field

For our method, we use the 8-point nearest neighbor set
as the neighborhood A; for the mixed-state Markov ran-
dom field. The parameters of the model were set as fol-
lows: y =8, B¢ =1, B, =5 and ¢ = 0.7. For all the se-
quences these same values were used. This is justified ob-
serving (21). Assume all neighbor points are not in motion,
then the estimated value for the background intensity is a
weighted average between the 8 neighbors and the previ-
ous estimated background. Setting 8¢ =1 we get a total

weight of 8 for the surrounding points (if the local gradi-
ent is small), and then with y = 8, we give the same weight
to the previous estimated value. This situation establishes
an equilibrium working point of the algorithm, from which
we derived the order of magnitude of the parameters. 8™
was set empirically in order to effectively remove isolated
points. A complete analysis of the parameter values is left
for Sect. 5.4.

Let us first present the result of applying our method to
the sequences Parking and Tennis as depicted in Fig. 4. In
the figure we observe the process of joint motion detection
and background reconstruction at different frames. These
examples illustrate how the algorithm works. Figures 4b
and 4e contain the estimated mixed-state fields where for
some points the mixed-state variable x; takes the symbolic
value (red in the figure) indicating a detected moving point
and for the rest, an intensity value is assigned as the back-
ground intensity estimate. This is the single output of the es-
timation process in (20). The background update rule (13) is
then applied to recover the reference image at those points
where motion is absent. Observe in Fig. 4c how the mov-
ing car is detected and the background is gradually recon-
structed. At the first frame, on the region where the car
is detected, there is no information of the background im-
age. This is shown as a black hole in the estimated im-
age.

5.2 Focus on the Motion Detection Performance and
Comparisons

We have applied our motion detection method to real se-
quences consisting of rigid and articulated motion. We com-
pare the results with the standard methods of Stauffer and
Grimson (2000) and Elgammal et al. (2000). We also con-
sider two more recent methods. The one by Zivkovic and
van der Heijden (2006) which exploits the unsupervised
learning method introduced in Zivkovic and van der Heij-
den (2004). The other by Criminisi et al. (2006) employs,
as in our approach, a conditional random field which in-
cludes a temporal persistency model of the labels and a
contrast-dependent regularization term. However, the tem-
poral model has to be learned from ground truth data for the
processed sequences and the background model is learned
adaptively using color histograms by processing an initial
extended observation of the background. Then, its distribu-
tion is static over time.

Additionally, we compare the performance of the full
mixed-state model, with two sequential implementations
based on non-mixed versions of the proposed energy poten-
tials (Algorithms 1 and 2), in order to show the importance
of the mixed-state terms and the simultaneous approach. In
both latter cases, the first step is to estimate the moving
points and then, with a fixed detection map, the background
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Fig. 4 (Color online) Simultaneous motion detection and background
reconstruction with our MS-CRF method. (a) Frames 2, 22, 42, 62,
72 of the Parking sequence. (b) Mixed-state field estimated for each
frame. Red indicates a detected moving point (xlf =1). (c¢) Background
reconstruction process (image {Zzt' }). As the sequence advances, re-
construction of the non-moving regions is performed to obtain the

is reconstructed and updated. In Algorithm 1 we have only
left the unary and purely discrete terms, not including any
type of spatial regularization. In Algorithm 2, we add the
spatial regularization terms for the discrete states, and for
the background reconstruction as well. In other words, we
take out the mixed potentials from the energy.

Next, we compare the motion detection performance of
each of the six methods considered here (Stauffer-Grimson,
Elgammal et al., Zivkovic, Criminisi et al., Seql, Seq2 and
MS-CRF) and display the values for: Precision, Recall and
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complete background image. Note how the car virtually disappears.
(d) Frames 20, 30, 40, 46, 77 of the Tennis sequence. (e) Mixed-state
field and (f) reconstructed background. The player is replaced along
the sequence by the reference image estimates though the background
is never completely uncovered

the so-called F-score. The latter is computed as the harmonic
mean of precision and recall, and is a global measure of the
method accuracy. These quantities are defined as

. #true positives
precision = — —,
#true positives + #false positives
#true positives
recall = P (22)

#true positives + #false negatives’

precision - recall
F-score=2 - ——.
precision + recall
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Algorithm 1 Sequential without spatial regularization
(Seql)
for each ¢ do
minimize w.r.t. all w; € {0, 1}

ZaiD(l —w;) + ywiaiR

1

for each i do
if w; =0 then
e mE L L)
else
b zl”
end if
end for
end for

1

Algorithm 2 Sequential with spatial regularization (Seq2)
for each ¢ do
minimize w.r.t. all w; € {0, 1}

D R B"
of (1 —w;) +ywia; — ———Ww;W;
,Z ’ ’ o ,.Xj:gxwm) o

for each i do
if w; =0 then
zﬁ <~ (21)
else
b zl”
end if
end for
end for

1

They were computed with respect to the ground-truth de-
tection map, which we have determined by manual segmen-
tation of the video sequences. We have tested the video se-
quences Basket, Forest, Tennis, Van and Traffic Circle.

Basketball Sequence InFig. 5 we present the results for the
Basketball sequence. The method by Stauffer and Grimson
(Fig. 5b) yields wrongly detected moving points in the back-
ground. The method by Elgammal et al. (Fig. 5c¢) performs
better, but has some problems to correctly recover con-
nected regions. The result applying the method of Zivkovic
(Fig. 5d) shows less false positives but the segmentation is
not that smooth. The approach of Criminisi et al. (Fig. Se)
yields a good segmentation, though it seems oversmoothed.
It is important to point out that for these last methods, there
are images available without moving objects for estimat-
ing the background model. Finally, the mixed-state method
(Fig. 5h) shows an improved regularization of the motion
map, reducing false positives and false negatives, also com-
pared with the sequential non-mixed versions of the algo-

rithm (Figs. 5f and 5g). In the comparative table given in
Fig. 5a) we observe that the methods by Stauffer-Grimson,
Elgammal et al. and Zivcovic show a better Precision but
at a cost of numerous false negatives. This is reflected in
the Recall rate which is poor compared with MS-CREF, Seql
and Seq2. At the same time, MS-CRF shows less false pos-
itives than Seql and Seq2, with a similar Recall value. The
method by Criminisi et al. also shows a high F-score due to
a high Recall, but diminished by a lower Precision. Overall,
our method has the best F-score.

Forest Sequence The Forest sequence (Fig. 6) depicts a
complex scene of two men walking through the woods.
In this example the background is not completely static as
there is swaying vegetation. Our method (Fig. 6h) supplies
very good results discarding practically all the background
motion, even compared with multi-modal density models
(Figs. 6b and 6¢). The proposed motion-based measures
NFA(R;) (17) introduced in the discriminative term are in
theory able to cope with this kind of background dynamics.
However, by themselves they generate many false detections
as shown in Fig. 3 in the case of the Forest sequence. Em-
bedding these observations in the mixed-state conditional
random field notably improves the overall motion detection.

The performance of MS-CRF is clearly better in Preci-
sion (Fig. 6a) w.r.t. the other methods. This is a consequence
of a large reduction of false positives, as one can confirm vi-
sually. Seql and Seq2 show a high Recall, but are not able
to correctly segment the two men from the background. Cri-
minisi et al. again oversmoothes the detection map but per-
forms very well giving the best F-score.

Van Sequence 1In the Van sequence (Fig. 7), the video is
shot on a rainy day and thereby the background contains
again some variation. In this case, the variation is more uni-
form and weaker than for the Forest sequence, so that the
methods by Elgammal et al. (Fig. 7c) and Stauffer-Grimson
(Fig. 7b) gave satisfactory results in this sense. However, our
method (Fig. 7h) delivers a reduced amount of false nega-
tives (note the windows of the van) and more compact de-
tected moving regions. Meanwhile, the method by Crimin-
isi et al. is not able to achieve a good Precision with many
false positives. The algorithms Seql and Seq2 show many
artifacts around the Van which is also reflected in a low Pre-
cision (Fig. 7a).

Tennis Sequence For the Tennis example (Fig. 8), the al-
gorithms Seql, Seq2 and MS-CRF have shown a similar
performance yielding the best results compared to the other
methods. This can be observed in both the motion detec-
tion map and the values of Precision, Recall and F-score
(Fig. 8a). As for Elgammal et al. (Fig. 8c), the background
model is wrongly estimated since it includes the player at
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Fig. 5 Basketball sequence:
motion detection results for
different algorithms compared
to our method

Fig. 6 Forest sequence: motion
detection results for different
algorithms compared to our
method

@ Springer

Method Precision (%) | Recall (%) | F-Score (%)
Elgammal et al. 80.7 65.2 72.1
Stauffer-Grimson 83.1 55.3 66.4

Ziveovic 82.5 66.3 73.5
Criminisi et al. 71.2 100 83.1
Seq. 1 (No Reg) 57.4 89.8 70.1

Seq. 2 64.6 88.7 74.8

MS-CRF 79.2 8B.8 83.7

a) Performance of each method

b) Stauffer-Grimson ¢) Elgammal et al. d) Zivkovic e} Criminisi et al.

f) Seql

g) Seq2 h) MS-CRF

Method Precision (%) | Recall (%) | F-Score (%)
Elgammal et al. 34.7 50.8 41.2
Stauffer-Grimson 222 57.6 32.1
Ziveovic 30.1 46.2 36.4
Criminisi et al. 75.9 90.5 82.4
Seq. 1 (No Reg) 35.1 91.6 50.8
Seq. 2 50.1 86.1 63.3
MS-CRF 85.6 72.9 78.7

a) Performance of each method

b) Stauffer-Grimson

d) Zivkovic

c) Elgammal et al. e) Criminisi et al.

f) Seql g) Seq2 h) MS-CRF
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Fig. 7 Van sequence: motion
detection results for different
algorithms compared to our
method

b) Stauffer-Grimson

f) Seql

different frames as part of it, resulting in a ghost effect. The
method by Stauffer-Grimson (Fig. 8b) gave a satisfactory
result but with a lower Recall rate, which is related to its in-
ability of obtaining compact and smooth segments. Notice
that the missed detections in the segmentation obtained with
the method by Criminisi et al. (Fig. 8e) is a consequence
of a behavior observed also in the previous examples. Ba-
sically, it is unable to segment small moving structures, as
for example the tennis ball, due to an oversmoothing ef-
fect.

Traffic Circle Sequence Finally, in the Traffic Circle se-
quence (Fig. 9) we have multiple rigid motions. In this case,
a complete background image is never available during the
sequence. The cars continuously pass around the square en-
tering and leaving the scene. The method by Stauffer and
Grimson (Fig. 9b) is affected by a deadlock situation due
to the lack of training samples. Initially the algorithm in-
cludes in the background some of the moving cars, resulting
in a continuously wrong detection for subsequent frames It
takes too long for the model to remove them from the ref-
erence image. Moreover, some regions of the background
are never correctly updated. For the same sequence the
non-parametric method of Elgammal et al. (Fig. 9c) failed
in generating valid results, yielding absence of motion for
mostly every point and every frame. The lack of training
samples for the background, on which the method relies,
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Method Precision (%) | Recall (%) | F-Score (%)
Elgammal et al. T6.1 85.6 80.5
Stauffer-Grimson 91.0 65.1 75.9
Ziveovic 69.7 64.0 66.7
Criminisi et al. 68.1 96.3 79.8
Seq. 1 (No Reg) 66.1 88.9 75.8
Seq. 2 61.6 91.9 73.7
MS-CRF 84.5 90.2 87.3

c) Elgammal et al.

a) Performance of each method

d) Zivkovic e} Criminisi et al.

h) MS-CRF

is likely to be the cause of the failure. Also for Criminisi
et al. (Fig. 9e) this is a problem as the color likelihoods for
the background cannot be learned and thus computed cor-
rectly.

For our method (Fig. 9h), these problems are not present.
The cars are well detected with less false positives for the
mixed-state method. The algorithm is not able to distin-
guish the small cars entering the scene from the street in
the top, grouping all in a single connected region. In this
case, the separation between the cars in that region is about
4 pixels (the image is of size 256 x 256), which is in the
order of the size of the considered neighborhoods used in
the regularization terms. Nevertheless, it results in a well
segmented scene where the regions occupied by the mov-
ing objects are obtained compactly. Note how most of the
cars are indeed detected as uniformly connected regions.
From the table in Fig. 9a) we deduce that MS-CRF gave
the best F-score, basically due to a notably better Preci-
sion. Meanwhile, for Seql and Seq?2 this value is lower as
a consequence of the many artifacts that appear around the
car.

Regarding the computation time for processing the tested
sequences, the algorithm solves the motion detection and the
background reconstruction at a rate of 1 frame/sec on aver-
age, for 320 x 240 gray-scale images. This was obtained
with a non-optimized implementation in C++4-, running on
a standard desktop PC.
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Fig. 8 Tennis sequence: motion
detection results for different
algorithms compared to our
method

Fig. 9 Traffic Circle sequence:
motion detection results for
different algorithms compared
to our method. The method by
Elgammal et al. (¢) did not give
valid results

@ Springer

Methad Precision (%) | Recall (%) | F-Score (%)
Elgamimal et al. 39.9 51.2 44.9
Stauffer-Grimson 86.2 G6.1 74.9

Ziveovic 88.1 67.9 T6.7
Criminisi et al. 89.0 72.6 79.9
Seq. 1 (No Reg) 84.4 84.0 84.2

Seq. 2 86.3 79.9 83.0

MS-CRF 90.7 76.7 83.1

b) Stauffer-Grimson

a) Performance of each method

¢) Elgammal et al.

g) Seq2

d) Zivkovic

e) Criminisi et al.

h) MS-CRF

Method

Precision (9

Recall (%)

F-Score (%)

Elgammal et al.

Stauffer-Grimson 54.8 63.9 59.0
Ziveovic 64.8 85.1 73.6
Criminisi et al. 38.0 26.5 31.2
Seq. 1 (No Reg) 49.2 88.5 63.3
Seq. 2 57.1 86.3 68.7
MS-CRF 68.9 85.2 76.2

a) Performance of each method

N/A

c) Elgammal et al.

h) MS-CRF
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Fig. 10 Top row: original
sequences. Center row:
background images estimated
with our method. Bottom row: a
close-up over a small region of
the original (/eft) and
reconstructed (right) images.
The spatio-temporal
reconstruction of the
background is achieved jointly
with motion detection, resulting
in virtually removing the
moving objects from the scene.
The reference image is also
filtered over homogeneous
intensity regions in order to
reduce noise, while preserving
borders

5.3 Focus on Background Reconstruction

The proposed algorithm generates, at each time instant, es-
timates of the background image, not a model of it. We have
really tackled a problem of reconstruction. The approach
uses all the information about the background across time to
build a complete image. In this case, moving objects can be
removed from the scene as shown in Fig. 10. Moreover, this
reconstruction also involves smoothing of the background
image, over homogeneous intensity regions, filtering out the
observation noise, but preserving the edges. In the third row
of Fig. 10 we display a small region for each sample, in order
to more clearly observe the effect of the background recon-
struction. In Fig. 10a, the basketball court is smoothed, and
the lines are well preserved. In the Forest sequence 10b, we
see how the algorithm preserves the texture of the trees and
does not blur the intensity borders. In c, d and e, the cars
are correctly removed even in a complex situation where the
background partially occludes the moving object, as in e,
and the image noise is reduced as well.

Finally, in order to assess the efficiency of the algorithm
in obtaining the background, we have computed the percent-
age of the reference image left to be reconstructed until each
frame in the video sequence. We compare the full MS-CRF
algorithm with the sequential algorithms Seql and Seq2 on
the sequences Traffic Circle and Highway (Fig. 11). Observe
that for the MS-CRF method it takes less video frames to
perform the reconstruction, that is, at a particular instant ¢
it has estimated a larger part of the background. It means
that our method for reconstructing the background image
can also be viewed as properly addressing the video inpaint-
ing issue.

5.4 Experimental Parameter Analysis

The parameters involved in the MS-CRF model were set to
fixed values for all the experiments. They were obtained by

an experimental analysis of the motion detection and back-
ground reconstruction results, which is presented in what
follows. One could say that it would be more appropriate
to learn or estimate them from ground truth data. However,
our methodology permits us to sweep a range of values and
observe the performance of the method in order to establish
how sensitive it is to their values.

The first parameter we analyze is the size of the regions
R; where NFA(R;) is computed in (17). This determines the
motion likelihood for the discriminative term (Table 1a) in
our mixed-state energy function. As in Fig. 3, we can thresh-
old log NFA; computed using different region sizes to obtain
the detection maps depicted in Fig. 12a. Note that this is
done only for visualization in order to clearly distinguish
where the motion likelihood is high or low, but it is not the
result of the MS-CRF method. For a small region size as
4 x 4, we can see that the discriminative term is not suffi-
ciently reliable, giving a low likelihood to a big proportion
of the moving region. Consequently, the final result of the
MS-CRF method in Fig. 12b is poor. As the region size
increases, the discriminative term overestimates the mov-
ing regions but thanks to the reconstruction and smoothing
terms (Table 1a-b), the result of the detection improves no-
tably. On the other side, taking bigger regions R; implies
that the learning of the background is slower (Fig. 12¢) and
the initial detection performance is lower (Fig. 12d). As
the background is learned, the F-score values grow up to
a steady state. Indeed, at the beginning of the sequence the
detection relies mostly on the motion likelihoods, as there
is no background information. Of course, for regions of size
4 x 4, though the learning process is faster, the background
is wrongly estimated. At the same time, if the regions are
too big, this affects the detection precision as we can see
in the F-score curves (Fig. 12d). A value of 20 x 20 have
shown to be the best choice, and it was applied to all the
tested sequences. Note that between 12 x 12 and 32 x 32
the performance does not vary drastically.
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Fig. 11 The plots show the percentage of the background image that
remains to be reconstructed for the algorithms MS-CRF, Seql and
Seq2 and for the sequences (a) Traffic Circle and (b) Highway. The

Next, we analyze the effect of the parameters involved in
the reconstruction and smoothing terms (Table la—b), that
is, ¥, B¢ and B™. The values chosen for all the processed
sequences in the previous sections were y = 8, € =1 and
Bm = 5. As mentioned in Sect. 5, this sets an equilibrium
working point for the algorithm.

In order to observe the sensitivity of the method to vari-
ations of the parameters, we have swept their values around
the working point. We have tested y € {2, 6, 10, 14}, B¢ €
{0.2,0.6, 1, 1.4} and B™ € {2, 4, 6, 8}. The results are shown
in Fig. 13. We have chosen the Forest sequence given its
complexity due to the presence of a noisy and highly dy-
namic background. This will permit us to have a better view
of the performance variations.

In the first row we observe the effect of a varying y.
This parameter weights the reconstruction potential. Thus,
for low values the information given by the reconstructed
background image is underestimated and the motion likeli-
hood governs the energy. As a result the detection is incor-
rect, similarly to what is shown in Fig. 3. With increasing
y the improvement is clear. However, taking a high value
may mask the effect of the smoothing terms and one obtains
a noisy detection map, as seen in the last image of the first
TOW.

@ Springer

values represent the proportion of the reference image that each algo-
rithm was not able to reconstruct during the elapsed time

In the second row we vary 8¢, related to the mixed-state
term, and which affects the joint spatial regularization of the
background estimates and the non-moving regions. Increas-
ing this value permits to obtain more compact regions. How-
ever, if this value is too big, the number of false negatives
may also increase as observed in the last figure of the row.

Finally, in the third row we observe the effect of 8. This
parameters is involved in the regularization of the motion de-
tection map and, as we can see in the figures, a high value
gives more compact regions at the risk of an increased num-
ber of false positives.

This same behavior, exemplified here for the Forest se-
quence, was observed in all the cases. As said before, we
have obtained good results for y =8, =1 and 8,, =5
and in general, the performance did not decreased consider-
ably for y € [8, 12], B¢ €[0.6, 1.2] and 8™ € [4, 6.5].

5.5 Discussion

The ability of incorporating arbitrary information (here
spatio-temporal motion and intensity information) is a gen-
eral characteristic of conditional random fields, not only of
mixed-state models. We could have chosen different energy
terms or used CRF terms designed in other approaches, em-
bedding them into our decision-estimation framework. What
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Fig. 12 Detection and reconstruction performance as a function of the
region size in (17). (a) Motion map obtained by thresholding log NFA; .
(b) Result of the MS-CRF method for different region sizes. (c¢) Per-

we claim is that both the discrete (discriminative) part of the
problem, and the estimation part of the problem, can bet-
ter be solved simultaneously (besides the particular energy
design) inferring a mixed-state field. And for showing this,
we have considered sequential versions of the method (al-
gorithms Seql and Seq?2) that apply a sequential decision-
estimation strategy. Note that the difference between the
mixed-state method and the sequential implementations is
not the design of the energy terms, but the assumption of
a mixed-state field which is inferred at a single step in-
stead of solving two problems in two steps (estimation af-
ter decision). Other previous related methods assume the
background is known (normally from a training stage, then
adapted in time) and then they solve a discrete field for the
problem of foreground segmentation (see Criminisi’s CRFs,
Criminisi et al. 2006, Grimson’s parametric models, Stauffer
and Grimson 2000, Elgammal’s non-parametric models, El-
gammal et al. 2000, and Zivcovic’s improved learning strat-
egy, Zivkovic and van der Heijden 2006). We have provided
several experimental results, showing that the truly simulta-

#R; = 32x 32 #R; = 40 x 40

80
75+t
70+
65}
60
55t
50+
45+
40+
35 4x4

F-Score

2 4 6 8 10 12 14 16 18

centage of the background image remaining to be learned as a function
of the frame number. (d) F-score for the motion detection result as a
function of the frame number

neous mixed-state performs better, both for motion detection
and background reconstruction.

6 Conclusion

We have proposed a simultaneous motion detection and
background reconstruction method using a mixed-state con-
ditional random field. The algorithm outperforms state-of-
the-art motion detection methods, as confirmed by the ex-
periments. As well, it improves the performance compared
with algorithms that follow a sequential strategy, both for the
motion detection map and the reconstructed background.

We have adopted the conditional random field framework
given its flexibility and its demonstrated good performance
against other statistical methods. We have combined CRFs
with mixed-state fields as a new way of investigating simul-
taneous decision-estimation problems. A formal demonstra-
tion of the optimality properties of the mixed-state approach
will be part of a more theoretical study. It is not within the
scope of this work.
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Fig. 13 Motion detection maps
obtained with varying y (fop
row), B¢ (middle row) and 8"
(bottom row)

y=8p3°=1,8m=4

It is worthy to say that the parameters involved in the
energy terms were set empirically, in order to obtain a cor-
rect motion detection and background estimation. The val-
ues were the same for all the experiments, though it is fair
to emphasize the necessity of studying the problem of on-
line optimal parameter estimation, making the method fully
unsupervised. This will be studied in a future work.

In summary the method has the following characteris-
tics:

— Reduction of false positive and false negatives Through a
more complex regularization of the motion detection map,
exploiting spatial priors, and the interaction between sym-
bolic and continuous states.

— Reconstruction of the background Obtaining a recon-
structed reference image, not just a model of it, allowing
us to exploit the local information of the intensity differ-
ence between the true background and a foreground mov-
ing object.

— No need of training samples Through a temporal update
strategy which can be adopted thanks to a correct regu-
larized estimation of the motion map, the reference image
is reconstructed on-the-fly in the regions not occluded by
the moving objects.

— Joint decision-estimation solution Exploiting simultane-
ously the information that the reference image provides
for motion detection, and vice versa.
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