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Abstract The use of ear shape as a biometric trait is a
recent trend in research. However, fast and accurate de-
tection and recognition of the ear are very challenging
because of its complex geometry. In this work, a very
fast 2D AdaBoost detector is combined with fast 3D lo-
cal feature matching and fine matching via an Iterative
Closest Point (ICP) algorithm to obtain a complete, ro-
bust and fully automatic system with a good balance
between speed and accuracy. Ear images are detected
from 2D profile images using the proposed Cascaded
AdaBoost detector. The corresponding 3D ear data is
then extracted from the co-registered range image and
represented with local 3D features. Unlike previous ap-
proaches, local features are used to construct a rejection
classifier, to extract a minimal region with feature-rich
data points and finally, to compute the initial transfor-
mation for matching with the ICP algorithm. The pro-
posed system provides a detection rate of 99.9% and
an identification rate of 95.4% on Collection F of the
UND database. On a Core 2 Quad 9550, 2.83 GHz ma-
chine, it takes around 7.7 ms to detect an ear from a
640× 480 image. Extracting features from an ear takes
22.2 sec and matching it with a gallery using only the
local features takes 0.06 sec while using the full match-
ing including ICP requires 2.28 sec on average.
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1 Introduction

Instances of fraudulent breaches of traditional iden-
tity card based systems have motivated increased inter-
est in strengthening security using biometrics for auto-
matic recognition [31, 45]. Among the biometric traits,
the face and the ear have received some significant at-
tention due to the non-intrusiveness and the ease of
data collection. Face recognition with neutral expres-
sions has reached maturity with a high degree of ac-
curacy [5, 28, 37, 58]. However, changes due to facial
expressions, the use of cosmetics and eye glasses, the
presence of facial hair including beard and aging signif-
icantly affect the performance of face recognition sys-
tems. The ear, compared to the face, is much smaller in
size but has a rich structure [3] and a distinct shape [30]
which remains unchanged from 8 to 70 years of age
(as determined by Iannarelli [24] in a study of 10,000
ears). It is, therefore, a very suitable alternative or
complement to the face for effective human recogni-
tion [6, 9, 23, 28].

However, reduced spatial resolution and uniform dis-
tribution of color sometimes makes it difficult to detect
and recognize the ear from arbitrary profile or side face
images. The presence of nearby hair and ear-rings also
makes it very challenging for non-interactive biometric
applications.

In this work, we demonstrate that the Cascaded
AdaBoost (Adaptive Boosting) [51] approach with ap-
propriate Haar-features allows accurate and very fast
detection of ears while being sufficient for a Local 3D
Feature (L3DF) [37] based recognition. A detection rate
of 99.9% is obtained on the UND Biometrics Database
with 830 images of 415 subjects taking only 7.7 ms on
the average using a C + + implementation on a Core
2 Quad 9550, 2.83 GHz PC. The approach is found
to be significantly robust to ear-rings, hair and ear-
phones. As illustrated in Fig. 1, the detected ear sub-
window is cropped from the 2D and the corresponding
co-registered 3D data and represented with Local 3D
Features. These features are constructed by approxi-
mating surfaces around some distinctive keypoints based
on the neighboring information. When matching a probe
with a gallery, a rejection classifier is built based on the
distance and geometric consistency among the feature
vectors. A minimal rectangular region containing all the
matching features is extracted from the probe and the
best few gallery candidates. These selected and mini-
mal gallery-probe datasets are coarsely aligned based
on the geometric information extracted from the fea-
ture correspondences and then finely matched via the
Iterative Closest Point (ICP) algorithm. While evalu-
ating the performance of the complete system on the
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Fig. 1 Block diagram of the proposed ear detection and recognition system.

UND-J, the largest available ear database, we obtain
an identification rate of 93.5% with an Equal Error
Rate (EER) of 4.1%. The corresponding rates for the
UND-F dataset are 95.4% and 2.3% and the rates for
a new dataset of 50 subjects all wearing ear-phones are
98% and 1%. With an unoptimized MATLAB imple-
mentation, the average time required for the feature
extraction, the L3DF-based matching and for the full
matching including ICP are 22.2, 0.06 and 2.28 seconds
respectively.

The rest of the paper is organized as follows. Related
work and contributions of this paper are described in
Section 2. The proposed ear detection approach is elab-
orated in Section 3. The recognition approach with lo-
cal 3D features is explained in Sections 4 and 5. The
performance of the approaches are evaluated in Sec-
tions 6 and 7. The proposed approaches are compared
with other approaches in Section 8 followed by a con-
clusion in Section 9.

2 Related Work and Contributions

In this section, we describe the methodology and per-
formance of the existing 2D and 3D ear detection and
recognition approaches. We then discuss the motivation
inspired from the limitations of these approaches and
highlight the contributions of this paper.

2.1 Ear Detection Approaches

Based on the type of data used, existing ear detection
or ear region extraction approaches can be classified

as 2D, 3D and multimodal 2D+3D. However, most ap-
proaches use only 2D profile images. One of the earliest
2D ear detection approaches is proposed by Burge and
Burger [6] who used Canny edge maps [8] to find the ear
contours. Ansari and Gupta [2] also used a Canny edge
detector to extract the ear edges and segmented them
into convex and concave curves. After the elimination
of non-ear edges, they found the final outer helix curve
based on the relative values of angles and some prede-
fined thresholds. They then joined the two end points
of the helix curve with straight lines to get the complete
ear boundary. They obtained 93.3% accuracy of localiz-
ing the ears on a database of 700 samples. Ear contours
were also detected based on illumination changes within
a chosen window by Choraś [15]. The author compared
the difference between the maximum and minimum in-
tensity values of a window to a threshold computed
from the mean and standard deviation of that region in
order to decide whether the center of the region belongs
to the contour of the ear or to the background.

Ear detection approaches that utilize 2D template
matching include the work of Yuizono et al. [56] where
both hierarchical and sequential similarity detection al-
gorithms were used to detect the ear from 2D intensity
images. Another technique based on a modified snake
algorithm and an ovoid model was proposed by Alvarez
et al. [1]. It requires the user to input an approximated
ear contour which is then used for estimating the ovoid

model parameters for matching. Yan and Bowyer [54]
manually selected Triangular Fossa and Incisure Inter-
tragica on the original 2D profile image and drew a line
to be used as a landmark. One line was along the bor-
der between the ear and the face, and the other from
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the top of the ear to the bottom. The authors found
this method suitable for PCA-based and edge-based
matching. The Hough Transform can extract shapes
with properties equivalent to template matching and
was used by Arbab-Zavar and Nixon [3] to detect the
elliptical shape of the ear. The authors successfully de-
tected the ear region in all of the 252 profile images of
a non-occluded subset of the XM2V TS database. For
the UND database, they first detected the face region
using skin detection and the Canny edge operator fol-
lowed by the extraction of the ear region using their
proposed method with a success rate of 91%. They also
introduced synthetic occlusions vertically from top to
bottom on the ear region of the first dataset and ob-
tained around 93% and 90% detection rates for 20% and
30% occlusion respectively. Recently, Gentile et al. [19]
used AdaBoost [51] to detect the ear from a profile face
as part of their multi-biometric approach for detecting
drivers’ profiles in a security checkpoint. In an exper-
iment with 46 images from 23 subjects, they obtained
an ear detection rate of 97% with seven false positives
per image. They did not report the efficiency of their
system.

Approaches using only 3D or range data include
Yan and Bowyer’s two-line based landmarks and 3D
masks [54], Chen and Bhanu’s 3D template matching
[10] and the ear-shape-model based approach [12]. Sim-
ilar to their 2D technique [54] mentioned above, Yan
and Bowyer [54] drew two lines on the original range im-
age to find the orientation and scaling of the ear. They
rotated and scaled a mask accordingly and applied it
on the original image to crop the 3D ear data in an
ICP-based matching approach. Chen and Bhanu [10]
combined template matching with average histogram
to detect ears. They achieved a 91.5% detection rate
with about 3% False Positive Rate (FPR). In [12], they
represented an ear shape model by a set of discrete 3D
vertices on the ear helix and anti-helix parts and aligned
the model with the range images to detect the ear parts.
With this approach, they obtained 92.5% detection ac-
curacy on the University of California, Riverside (UCR)
ear dataset with 312 images and an average detection
time of 6.5 sec on a 2.4 GHz Celeron CPU.

Among the multimodal 2D+3D approaches, Yan and
Bowyer [55] and Chen and Bhanu [13] are prominent. In
the first approach, the ear region was initially located
by taking a predefined sector from the nose tip. The
non-ear portion was then cropped out from that sector
using a skin detection algorithm and the ear pit was
detected using Gaussian smoothing and curvature esti-
mation algorithms. An active contour algorithm was ap-
plied to extract the ear contour. Using the color and the
depth information separately for the active contour, ear

detection accuracies of 79% and 85% respectively were
obtained. However, using both 2D and 3D information,
ears from all the profile images were successfully ex-
tracted. Thus, the system is automatic but depends
highly on the accuracy of detection of nose tip and ear
pit and it fails when the ear pit is not visible. Chen
and Bhanu [13] also used both color and range images
to extract ear data. They used a reference ear shape
model based on the helix and anti-helix curves and the
global-to-local shape registration. They obtained 99.3%
and 87.7% detection rates while tested on the UCR ear
database of 902 images from 155 subjects and on 700
images of the UND database, respectively. The detec-
tion time for the UCR database is reported as 9.5 sec
with a MATLAB implementation on a 2.4 GHz Celeron
CPU.

2.2 Ear Recognition Approaches

Most of the existing ear recognition techniques are based
on 2D data and extensive surveys can be found in [28,
44]. Some of them report very high accuracies but on
smaller databases; e.g. Choraś [15] obtained 100% recog-
nition on a database of 12 subjects and Hurley et al. [22]
obtained 99.2% accuracy on a database of 63 subjects.
As expected, performance generally drops for larger
databases, e.g. Yan and Bowyer [53] report a perfor-
mance drop from 92% to 84.1% for database sizes of
25 and 302 subjects respectively. Also, most of the ap-
proaches do not consider occlusion in the ear images
(e.g. [21, 35, 11, 22, 57, 16]). Considering these issues
and the scope of the paper, only those approaches us-
ing large 3D databases and somewhat occluded data
are summarized in Table 1 and described below.

Yan and Bowyer [55] applied 3D ICP with an initial
translation using the ear pit location computed during
the ear detection process. They achieved 97.8% rank-1
recognition with an Equal-error rate (EER) of 1.2% on
the whole UND Collection J dataset consisting of 1386
probes of 415 subjects and 415 gallery images. They
obtained a recognition rate of 95.7% on a subset of 70
images from this dataset which have limited occlusions
with earrings and hair. In another experiment with the
UND Collection G dataset of 24 subjects each having
a straight-on and a 45 degrees off center image, they
achieved 70.8% recognition rate. However, the system
is not expected to work properly if the nose tip or the
ear pit are not clearly visible which may happen some-
times due to pose variations or covering with hair or
ear-phones (see Fig. 10 and 12).

Chen and Bhanu [13] used a modified version of ICP
for 3D ear recognition. They obtained 96.4% recogni-
tion on Collection F of the UND database (including
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Table 1 Summary of the existing 3D ear recognition approaches

Publication Methodology Dataset Rec.
Rate
(%)

Name Size
(gallery,
probe)

Yan and
Bowyer,
2007 [55]

3D ICP
UND-J (415,

1386)
97.8

Chen and
Bhanu,
2007 [13]

LSP and
3D ICP

UCR (155,
155)

96.8

UND-F (302,
302)

96.4

Passalis
et al.,
2007 [43]

AEM, ICP,
DMF

UND-J (415,
415)

93.9

Cadavid
and
Abdel-
Mottaleb,
2007 [7]

3D ICP Propri-
etary

(61,
25)

84

Yan and
Bowyer,
2005 [53]

3D ICP UND-F (302,
302)

84.1

occluded and non-occluded images of 302 subjects) and
87.5% recognition for straight-on to 45 degree off im-
ages. They obtained 94.4% rank-1 recognition rate for
the UCR dataset ES2 which comprises 902 images of
155 subjects taken all in the same day. They used lo-
cal features for representation and coarse alignment of
ear data and obtained a better performance than their
helix-anti-helix representation. Their approach assumes
perfect ear detection, otherwise manual extraction of
the ear contour is performed prior to recognition.

Passalis et al. [43] used a generic annotated ear
model (AEM), ICP and Simulated Annealing algorithms
to register and fit each ear dataset. They then extracted
a compact biometric signature for matching. Their ap-
proach required 30 sec for enrolment per individual and
less than 1 ms for matching two biometric signatures on
a Pentium 4, 3 GHz CPU. They computed the full simi-
larity matrix with 415 columns (galleries) and 415 rows
(probes) for the UND-J dataset taking seven hours of
enrolment and few minutes of matching and achieved
93.9% recognition rates.

Cadavid and Abdel-Mottaleb [7] extracted a 3D ear
model from video sequences and used 3D ICP for match-
ing. They obtained 84% rank one recognition while test-
ing with a database of 61 gallery and 25 probe non-
occluded images.

All of the above recognition approaches have only
considered left or right ears. An exception is Choraś [16]
who proposed to pre-classify each detected ear as left
or right based on the geometrical parameters of the
earlobe. The author reported accurate pre-classification
of all 800 images from 80 subjects. Hence, distinguish-

ing left and right ears seems relatively easy. In cases
where both profile images are not available, extracted
ear data from the opposite profile can be mirrored for
matching with still relatively reliable recognition. Yan
and Bowyer [54, 55] experimentally demonstrated that
although some people’s left and right ears have recog-
nizably different shapes, most people’s two ears are ap-
proximately bilaterally symmetric. They obtained around
90% recognition rate while matching mirrored left ears
to right ears on a dataset of 119 subjects. We have
focused on left ears, but the above work suggests our
research can be used in other situations also.

2.3 Motivations and Contributions

Most of the ear detection approaches mentioned above
are not fast enough to be applied in real-time applica-
tions. Viola and Jones have used the AdaBoost algo-
rithm [18, 46] to detect faces and obtained a speed of
15 frames per second while scanning 384 by 288 pixel
images on a 700 MHz Intel Pentium III [51]. For this
extreme speed and simplicity of implementation, Ad-
aBoost has further been used for detecting the ball in a
soccer game [47], pedestrians [40], eyes [42], mouths [34]
and hands [14]. However, existing ear detection using
AdaBoost (see Section 2.1) does not achieve significant
accuracy. In fact, even for faces, Viola and Jones [51]
obtained only 93.7% detection rate with 422 false pos-
itives on MIT+CMU face database. Ear detection is
more challenging because ears are much smaller than
faces and often covered by hair, ear-rings, ear-phones
etc. Challenges lie in reducing incorrect or partial local-
ization while maintaining high correct detection rate.
Hence, we are motivated to determine the right way
to instantiate the general AdaBoost approach with the
specifics required in order to specialize it for ear detec-
tion.

Most of the ear recognition approaches use global
features and ICP for matching. Compared to local fea-
tures, global features are more sensitive to occlusions
and variations in pose, scale and illumination. Although
ICP is considered to be the most accurate matching al-
gorithm, it is computationally expensive and it requires
concisely cropped ear data and a good initial alignment
between the galley-probe pair so that it does not con-
verge to a local minimum. Yan and Bowyer [55] sug-
gested that the performance of ICP might be enhanced
using feature classifiers. Recently, Mian et al. [37] pro-
posed local 3D features for face recognition. Using these
features alone, they reported 99% recognition accuracy
on neutral versus neutral and 93.5% on neutral versus
all on the FRGC v2 3D face dataset. They also obtained
a time efficiency of 23 matches per second on a 3.2 GHz
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Pentium IV machine with 1GB RAM. In this paper, we
adapt these features for the ear and use them for coarse
alignment as well as for rejecting a large number of false
matches. We also use L3DFs for extracting a minimal
set of datapoints to be used in ICP.

The specific contributions of this paper are as fol-
lows:

(1) A fast and fully automatic ear detection approach
using cascaded AdaBoost classifiers trained with
three new features and a rectangular detection win-
dow. No assumption is made about the localization
of the nose or the ear pit.

(2) The local 3D features are used for ear recognition
in a more accurate way than originally proposed
in [37] for the face including an explicit second
round of matching based on geometric consistency.
L3DFs are used not only for coarse alignment but
also for rejecting most false matches.

(3) A novel approach for extracting minimal feature-
rich data points for the final ICP alignment is pro-
posed which significantly increases the time effi-
ciency of the recognition system.

(4) Experiments are performed on a new database of
profile images with ear-phones along with the largest
publicly available dataset of the UND and high
recognition rates are achieved without an explicit
extraction of the ear contours.

3 Automatic Detection and Extraction of Ear
Data

The ear region is detected on 2D profile images using
a detector based on the AdaBoost algorithm [18, 46,
26, 27]. Following [51], Haar-like features are used as
weak classifiers and learned from a number of ear and
non-ear images. After training, the detector first scans
through the 2D profile images to identify a small rectan-
gular region containing the ear. The corresponding 3D
data is then extracted from the co-registered 3D pro-
file data. The complete detection framework is shown
in the block diagram of Fig. 2. A sample of a profile
image and the corresponding 2D and 3D ear data de-
tected by our system is also shown in the same figure.
The details of the construction of the detector and its
functional procedures are described in this section.

3.1 Feature Space

The eight different types of rectangular Haar feature
templates as shown in Fig. 3 are used to construct our
AdaBoost based detector. Among these, the first five
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Fig. 2 Block diagram of the proposed ear detection approach.

(a-e) were also used by Viola and Jones [51] to detect
different types of lines and curves in the face. We de-
vised the later three templates (f-h) to detect specific
features of the ear which are not available in the frontal
face. The center-surround template is designed to de-
tect any cavity in the ear (e.g. ear pit) and the other
two (adopted from [32]) are for detecting helix and the
anti-helix curves. Although (f) is the intersection of (c)
and (e), we use it as a separate feature template be-
cause no linear combination of those features yields (f)
and as will be discussed in the next sub-section, the
AdaBoost algorithm used for feature selection greedily
chooses the best individual Haar features, rather than
their best combination.

(a) (b)

(h)(g)

(d)(c)

(f)

(e)

Fig. 3 Features used in training the AdaBoost (features (f), (g)
and (h) are proposed for detecting specific features of the ear)

.

To create a number of Haar features out of the above
eight types of templates or filters, we choose a window
to which all the input samples are normalized. Viola
and Jones [51] used a square window of size 24 × 24
for face detection. Our experiments with training data
show that ears are roughly proportional to a rectan-
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gular window of size 16 × 24. One benefit of choosing
a smaller window size is the reduction of training time
and resources. The templates are shifted and scaled hor-
izontally and vertically along the chosen window and a
feature is numbered for each location, scale and type.
Thus, for the chosen window size and a shift of one
pixel, we obtain an over-complete basis of 96413 poten-
tial features.

The value of a feature is computed by subtracting
the sum of the pixels in the grey region(s) from that
of the dark region(s) (except in the case of (c), (e) and
(f) in Fig. 3, where the sum in the dark region is mul-
tiplied by 2, 2 and 8 respectively before performing the
subtraction in order to make the weight of this region
equal to that of the grey region(s)).

3.2 Construction of the Classifiers

The rectangular Haar-like features described above con-
stitute the weak classifiers of our detection algorithm. A
set of such classifiers are selected and then combined to-
gether to construct a strong classifier via AdaBoost [18,
46] and a sequence of these are then cascaded following
Viola and Jones [51]. Thus, each strong classifier in the
cascade is a linear combination of the best weak clas-
sifiers, with weights inversely proportional to training
errors on those examples not previously rejected by an
early stage of the cascade. This results in a fast detec-
tion as most of the negative sub-windows are rejected
using only a small number of features associated with
the initial stages.

The optimization of the number of stages, the num-
ber of features per stage and the threshold for each
stage for a target detection rate (D) and false posi-
tive rate (Ft) is obtained similar to [51] by aiming for
a fixed maximum FPR (fm) and a minimum detection
rate (dmin) for each stage. These are computed from the
following inequalities: Ft < (fm)n and D > (dmin)n,
where n is the number of stages, typically 10-50.

3.3 Training the Classifiers

The training dataset to build the proposed ear detec-
tor, their preprocessing stage, the training parameters
chosen and other implementation aspects are described
as follows.

3.3.1 Dataset

The positive training set is built with 5000 left ear im-
ages cropped from the profile face images of different

databases covering a wide range of races, sexes, appear-
ances, orientations and illuminations. This set includes
429 images of the University of Notre Dame (UND)
Biometrics Database (Collection F) [49, 55], 659 of the
NIST Mugshot Identification Database (MID) [41], 573
of XM2VTSDB [36], 201 images of the USTB [50],
15 of the MIT-CBCL [52, 39], and 188 of the UMIST
[20, 48] face databases. It also includes around 3000 im-
ages synthesized by rotating -15 to +15 degrees of some
images from the USTB, the UND and the XM2VTSDB
databases.

Our negative training set for the first stage of the
cascade includes 10,000 images randomly chosen from a
set of around 65,000 non-ear images. These images are
mostly cropped from profile images excluding the ear
area. We also include some images of trees, birds and
landscapes randomly downloaded from the web. Exam-
ples of the positive and negative image set are shown
in Fig. 4. The negative training set for the second and
subsequent stages are made up dynamically as follows.
A set of 6000 large images without ears are scanned
through at the end of each stage of the cascade by the
classifier developed in that stage. Any sub-window clas-
sified as an ear is considered as a false positive and a set
of not more than 5000 such false positives are randomly
chosen to include in the negative set for the following
stages.

Fig. 4 Examples of ear (top) and non-ear (bottom) images used
in the training.

The validation set used to compute the rates of de-
tection and false positives during the training process
includes 5000 positives (cropped and synthesized ear
images) and 6000 negatives (non-ear images). The neg-
atives for the first stage are randomly chosen from a
set of 12000 images not included in the training set.
For the second and the subsequent stages, negatives
are randomly chosen from the false positives found by
the classifier of the previous stage and unused in the
negative training set.

3.3.2 Preprocessing the Data

As mentioned earlier, input images are collected from
different sources with varying size and intensity val-
ues. Therefore, all the input images are scale normal-
ized to the chosen input pattern size. Viola and Jones
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reported a square input pattern of size 24 × 24 as the
most suitable for detecting frontal faces [51]. Consider-
ing the shape of the ear, we instead use a rectangular
pattern of size 16× 24.

The variance of the intensity values of images are
also normalized to minimize the effect of lighting. Sim-
ilar normalization is performed for each sub-window
scanned during testing.

3.3.3 Training the Cascade

In order to train the cascade, we choose Ft = 0.001
and D = 0.98. However, to quickly reject most of the
false positives using a small number of features, we de-
fine the first four stages to be completed with 10, 20,
60 and 80 features. We also performed validation after
adding ten features for the first ten stages and then,
adding of 25 for the remaining stages. The detection
and false positive rates computed during the validation
of each stage follow a gradual decrease to the target.
The training finishes at stage 18 with a total of 5035
rectangular features including 1425 features in the last
stage.

3.3.4 Training Time

The training process involved a huge amount of com-
putation due to the large training set and also for the
very low target FPR, taking several weeks on a single
PC. To speed up the process, we distributed the job
over a network of around 30 PCs. For this purpose, we
used MATLABMPI which is a MATLAB implemen-
tation of the Message Passing Interface (MPI) standard
that allows any MATLAB program to exploit multi-
ple processors [33]. It helped in reducing the training
time to an order of days. An optimized C or C + +
implementation would reduce this time, but since this
training never needs to be done again, our MATLAB
implementation was sufficient.

3.4 Ear Detection with the Cascaded Classifiers

The trained classifiers of all the stages are used to build
the ear detector in a cascaded manner. The detector is
scanned over a test profile image in different sizes and
locations. A classifier in the cascade is only used when
a sub-window in the test image is detected as positive
(ear) by the classifier of the previous stage and accepted
finally only when it passes through all of them.

To detect various sizes of ears, instead of resizing the
given test image, we scale up the detector along with
the corresponding features and use an integral image
calculation. The approach is similar to that of Viola

and Jones [51] who also illustrated this to be more time-
efficient than the conventional pyramid approach.

If the rectangular detector (of 16×24 or its scaled-up
size) matches any sub-window of the image, a rectangle
is drawn to show the detection (See Fig. 5). The inte-
gration of multiple detections (if any) is described in
the following sub-section and the overall performance
of the detector is discussed in Section 6.

As mentioned in Section 3.3, our system is trained
for detecting ears from the left profile images only. How-
ever, if the input image is a right profile and the ear de-
tector fails, then the features constituting the detector
can be flipped to detect the right ears.

Fig. 5 Sample of detections: (a) Detection with single window.
(b) Multi-detection integration (Color online).

3.5 Multi-detection Integration

Since the detector scans over a region in the test image
with different scales and shift sizes, there is the possibil-
ity of multiple detections of the ear or ear-like regions.
To integrate such multiple detections, we propose the
clustering algorithm reported in Algorithm 1.

The clustering algorithm is based on the percentage
of overlap of the rectangles representing the detected
sub-windows. We cluster a pair of rectangles together
if the mutual area shared between them is larger than
a predefined threshold, minOv (0 < minOv < 1). A
higher value of this parameter may result in multiple
detections near the ear. We empirically chose a thresh-
old value of 0.01.

Based on the observation that the number of true
detections at different scales over the ear region is larger
than the false detections on ear-like region(s) (if any),
we added an option in the algorithm to avoid such false
positive(s) by only taking the one that clusters the max-
imum number of rectangles. This is appropriate when
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only one ear needs to be detected which is the case for
most recognition applications.

An example of integrating three detection windows
is illustrated in Fig. 5(b). Each of the detections is
shown by a rectangle in yellow lines while the integrated
detection window is shown by a rectangle in bold dotted
cyan lines.

Algorithm 1. Integration of multiple ear detections

0.  (Input) Given a set of detected rectangles rects, the 

     minimum percentage of overlap required minOv and    

     option for avoiding false detection opt.

1.  (Initialize) Set the intermediate

     rectangle set tempRects empty.

2.  (Multi-detection integration procedure)

     2.a While number of rectangles N in rects> 1

          i. Find areas of intersection of the

             first rectangle in rects with all.

          ii. Find the rectangles combRects

              and their number intN for whose percentage of 

              overlap>= minOv.

          iv. Store the mean of combRects and intN in 

tempRects.

          v.  Remove the rectangles in combRcts  from  

rects.         

     2.b If intN>1 and opt = = 'yes'

          i. Find the rectangle fRect in tempRects

              for which intN is maximum.

          ii. Remove all the rectangle(s)

               except fRect from tempRects.

          End if

3.  (Output) Output the rectangle in tempRects.

3.6 3D Ear Region Extraction

Assuming that the 3D profile data are co-registered
with corresponding 2D data (which is normally the case
when data is collected with a range scanner), the loca-
tion information of the detected rectangular ear region
in the 2D profile is used for 3D ear data extraction. To
ensure that the whole ear is included and to allow the
extraction of features on and slightly outside the ear
region, we expanded the detected ear regions by an ad-
ditional 25 pixels in each direction. This extended ear
region is then cropped to be used as 3D ear data. Fig. 9
illustrates the original and expanded region of extrac-
tion. If our ear detection system indicates that a right
ear is detected, we flip the 3D ear data to allow it to be
matched with the left ears in the gallery.

3.7 Extracted Ear Data Normalization

Once the 3D ear is detected, we remove all the spikes by
filtering the data. We perform triangulation on the data
points, remove edges longer than a predefined threshold
of 0.6 mm and finally, remove disconnected points [38].

The extracted 3D ear data varies in dimensions de-
pending on the detection window. Therefore, we nor-
malize the 3D data by centering on the mean and then
sampling on a uniform grid of up to 132 mm by 106 mm.
The resampling makes the datapoints more uniformly
distributed and fills up the holes if any. Besides, it
makes the local features more stable and increases the
accuracy of ICP based matching.

We perform a surface fitting based on the interpo-
lation of the neighboring data points at 0.5 mm reso-
lution. This also fills holes or missing data (if any) due
to oily skin or sensor error [54, 55] (as shown in Fig. 17
and 20).

4 Representation and Extraction of Local 3D
Features

The performance of any recognition system greatly de-
pends on how the relevant data is represented and how
the significant features are extracted from it. Although
the core of our data representation and the feature ex-
traction technique is similar to the L3DFs proposed for
face data in [37, 29], the technique is modified to make
it suitable for the ear as preliminarily presented in our
previous work [29] and further enhanced as described
in this section.

4.1 KeyPoint Selection for L3DFs

A 3D local surface feature can be depicted as a 3D
surface constructed using data points within a small
sphere of radius r1 centered at a keypoint p. An ex-
ample of a feature is shown in Fig. 6. As outlined by
Mian et al. [37], keypoints are selected from surfaces
distinct enough to differentiate between range images
of different persons.

5
10

15
20

5
10

15
20

5

10

15

20

Fig. 6 Example of a 3D local surface (right image). The region
from which it is extracted is shown by a circle on the left image.
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Fig. 7 (a) Location of keypoints on the gallery (top) and the probe (bottom) images of three different individuals (Color online). (b)
Cumulative percentage of repeatability of the keypoints.

For keypoints we only consider data points that lie
on a grid with a resolution of 2 mm in order to increase
distinctiveness of the surface to be extracted. We find
the distance of each of the data points from the bound-
ary and take only those points with a distance greater
than a predefined boundary limit. The boundary limit
is chosen slightly longer than the radius of the 3D lo-
cal feature surface (r1) so that the feature calculation
does not depend on regions outside the boundary and
the allowed region corresponds closely with the ear. We
call the points within this limit seed points. In our ex-
periments, a boundary limit of r + 10 was found to be
the most suitable.

To check whether the data points around a seed
point contain enough descriptive information, we adopt
the approach of Mian et al. [37] discussed in short as
follows. We randomly choose a seed point and take
a sphere of data points around that point which are
within a distance of r1. We apply PCA on those data
points and align them with their principal axes. The
difference between the eigenvalues along the first two
principal axes of the local region is computed as `. It
is then compared to a threshold (t1) and we accept a
seed point to be a keypoint if ` > t1. The higher t1 the
less features we get, but lowering t1 can result in the se-
lection of less significant feature points with unreliable
orientations. This is because, the value of ` indicates
the extent of unsymmetrical depth variations around a
seed point. For example, t1 of zero for a point cloud
means it could be completely planar or spherical.

We continue selecting seed points as keypoints until
nf number of features are created. For a seed resolution
(rs) of 2 mm, r1 of 15 mm, t1 of 2 and nf of 200,
for most of the gallery and the probe ears, we found

200 keypoints. We found however, as low as 65 features
particularly for cases where missing data occurs.

The values of all the parameters used in the feature
extraction are empirically chosen and the effect of their
variation is further discussed in the Appendix. Our ex-
periments with ear data and those with face data by
Mian et al. [37] show that the performance of the key-
point detection algorithm and hence 3D recognition do
not vary significantly with small variations in the values
of these parameters. Therefore, we use the same values
to extract features from all the ear databases.

The suitability of our local features on the ear data
is illustrated in Fig. 7a. It shows that keypoints are
different for ear images of different individuals. It also
shows that these features have a high degree of re-
peatability for the ear data of the same individual.
By repeatability we mean that the proportion of probe
feature points that have a corresponding gallery fea-
ture point within a particular distance. We performed
a quantitative analysis of the repeatability similar to
[37]. The probe and the gallery data of the same in-
dividual are aligned using the ICP algorithm in order
to allow computation of repeatability. The cumulative
percentage of repeatability as a function of the nearest
neighbor error between gallery and probe features of ten
different individuals is shown in Fig. 7b. The repeata-
bility reaches around 80% at an error of 2 mm which is
the sampling distance between the seed points.

4.2 Feature Extraction and Compression

After a seed point qualifies as a keypoint, we extract a
surface feature from its neighborhood. As described in
Section 4.1, while testing for the suitability of the seed
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point we take a sphere of data points with a radius of r1

from that seed point and align them to their principal
axes. We use these rotated data points to construct the
3D local surface feature. Similar to [37], the principal
directions of the local surface are used as the 3D coor-
dinates to calculate the features. Since the coordinate
basis is defined locally based on the shape of the sur-
face, the computed features are mostly pose invariant.
However, large changes in viewpoints can cause differ-
ent points of the ear to occlude and cause perturbations
in the local coordinate basis.

We fit a 30×30 uniformly sampled 3D surface (with
a resolution of 1 mm) to these data points. In order
to avoid boundary effects, we crop the inner region of
20×20 datapoints and store it as a feature (see Fig. 6).

For surface fitting, we use a publicly available sur-
face fitting code [17]. The motivation behind the selec-
tion of this algorithm is that it builds a surface over
the complete lattice approximating (rather than inter-
polating) and extrapolating smoothly into the corners.
Therefore, it is less sensitive to noise, outliers and miss-
ing data.

In order to reduce computational time and memory
storage and to make features more robust to noise, we
apply PCA on the whole gallery feature set as in [37],
after centering on the mean. The top 11 eigenvectors
are then used to project gallery and probe features into
vectors of dimension 11. Unlike [37], we do not normal-
ize the variance of the dimensions, nor the size of the
features. Instead, we preserve as much as possible of the
original geometry in the features.

5 L3DF Based Matching Approach

In this Section, our method of matching gallery and
probe datasets is described. We establish correspon-
dences between extracted L3DFs [29] similar to Mian
et al. [37] for face. However, we use geometric consis-
tency checks [25] to refine the matching and to calculate
additional similarity measures. We use the matching in-
formation to reject a large number of false gallery can-
didates and to coarsely align the remaining candidates
prior to the application of a modified version of ICP
algorithm for fine matching. The complete matching
algorithm is formulated in Algorithm 2 and discussed
as follows.

5.1 Finding Correspondence Between Candidate
Features

The similarity between two features is calculated as
the Root Mean Square (RMS) distance between cor-
responding points on the 20 × 20 grid generated when

Algorithm 2. Matching a probe with the gallery

0. (Input) Given a probe, gallery data and features,  distance thresholds th1 

and , angle threshold th2 and minimum number of match m.

1. (Matching based on local 3D features)

     1.a (Distance check) For each feature of the probe and all features of a  

           gallery:    

          (i) Discard gallery features with distance from the probe feature 

                location> th1.

          (ii) Pair the probe feature with closest gallery feature, by feature 

                distance.

     1.b (Distance consistency check)

          (i) For each of the matching feature pairs count how many other 

              matches satisfy Eqn. (1) with .

          (ii) Choose T as the match pair with highest count, T.

          (iii) Compute percentage of consistent distance ( d = T / |matches|).

    1.c (2nd stage of matching)

          (i) For all the gallery features repeat step (1.a) but do not allow 

              matching which are inconsistent with T.

          (ii) Compute the mean of the feature distance of the matching feature 

               pairs ( f).

          (iii) Discard the gallery if there is less than m feature pairs. 

   1.d (Calculating rotation consistency measure)

          (i) For each of the selected matching pairs count how many other 

              matches have rotation angles within th2.

          (ii) Choose R as the rotation for the pair with the highest count, R.
          (iii) Compute percentage of consistent rotation ( r = R / |matches|).

   1.e (Calculating keypoint distance measure)

          (i) Align the keypoints of the matching probe features to those of the 

              corresponding gallery features using ICP.

          (ii) Record the ICP error as keypoint distance measure ( n).

2. Repeat step (1) for all galleries.

3. (Rejection classifier)

    3a. For each of the gallery candidates:

          (i) For each of the similarity measures ( f, d, r, n), compute the 

              weight factor ( x). 

          (ii) Compute the similarity score according to Eqn. (2). 

    3b. Rank the gallery candidates according to and discard those having 

              rank over 40.

4. (ICP-based matching) For each of the selected gallery candidates:

          (i) Extract a minimum rectangle containing all matches from both     

              gallery and probe data. 

          (ii) Align the extracted probe data with the gallery data using T and R.

          (iii) Align the extracted probe data with that of the gallery using ICP.

5.  (Output) Output the gallery having minimum ICP error as the best match 

     for the probe.

the feature is created (aligned following the axes in the
PCA). The RMS distance is computed from each probe
feature to all the gallery features. Matching gallery fea-
tures which are located more than a threshold (th1)
away are discarded to avoid matching in quite different
areas of the cropped image. The gallery feature with the
minimum distance is considered as the corresponding
feature for that particular probe feature. When multi-
ple probe features match the same gallery feature we
retain the best match for that gallery feature as in [37].

5.2 Filtering with Geometric Consistency

Unlike previous works on L3DFs for the face [37], we
found it necessary to improve our matches for the ear
using geometric consistency. We add a second round of
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Fig. 8 Feature correspondences after filtering with geometric consistency (Color online).

feature matching each time a probe is compared with a
gallery that uses geometric consistency based on infor-
mation extracted from the feature matches generated
by the first round. The first round of feature matching
is done just as described in Section 5.1, and we use the
matches generated to identify a subset that are most
geometrically consistent.

For simplicity, we measure geometric consistency of
a feature match by counting the number of the other
feature matches from the first round yield consistent
distances on the probe and gallery. More precisely, for
a match with locations pi, gi we count how many other
match locations pj , gj satisfy Eqn. (1).

||pi − pj | − |gi − gj || < rs + κ
√
|pi − pj | (1)

The right hand side of the above equation is a func-
tion of the spacing between candidate keypoints or the
seed resolution rs, a constant κ and the square root of
the actual probe distance that accounts for minor de-
formations and measurement errors. The constant κ is
determined empirically as 0.1.

We then simply find the match from the first round
that is the most ‘distance-consistent’ according to this
measure. In the second round, we follow the same match-
ing procedure as in round-1 but only allow feature matches
that are distance-consistent with this match. Fig. 8 il-
lustrates an example of the matches between the fea-
tures of a probe image and the corresponding gallery
image (mirrored in the z direction) in the second round.
Here the green channel is used to indicate the amount
of rotational consistency for each match (best viewed
in color, although in grey scale the green channel gen-
erally dominates). It is clear that a good proportion of
these matches involve corresponding parts of the two
ear images.

5.3 Other Similarity Measures Based on L3DFs

In addition to the mean feature distance for all the
matched probe and gallery features (εf ) used in [37],
we also derive three more similarity measures based on
the geometric consistency of matched features as dis-
cussed below.

We compute the ratio of the maximum distance con-
sistency to the total number of matches found in the
first round of matching and use that as a similarity
measure, proportion of consistent distances (αd).

We also include a component based on the consis-
tency of the rotations implied by the feature matches in
our measure of similarity between probes and galleries.
Each feature match implies a certain 3D rotation be-
tween the probe and gallery, since we store the rotation
matrix used to create the probe feature from the probe
(calculated using PCA), and similarly for the gallery
feature, and we assume that the match occurs because
the features have been aligned in the same way and
come from corresponding points. We can thus calculate
the implied rotation from probe to gallery as Rg

−1Rp

where Rp and Rg are the rotations used for the probe
and gallery features.

We calculate these rotations for all feature matches,
and for each, we determine the count of how many of
the other rotations it is consistent with. Consistency
between two rotations R1 and R2 is determined by
finding the angle between them, i.e., the rotation an-
gle of R−1

1 R2 (around the appropriate axis of rotation).
We consider two rotations consistent when the angle
is less than 10◦ (th2). We choose the rotation of the
match that is consistent with the largest number of
other matches, and use the proportion of matches con-
sistent with this as a similarity measure called the pro-
portion of consistent rotations (αr). As we shall see in
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Section 7, this measure is the strongest among the mea-
sures used prior to applying ICP in our ear recognition
experiments and fusing with the other measures pro-
vides only a modest but worthwhile improvement. We
also use the rotation with the highest consistency for
ICP coarse alignment as described in Section 5.6.

Lastly, we develop another similarity measure called
keypoint distance measure (εn) based on the distance
between the keypoints of the corresponding features. To
compute it, we apply ICP only on the keypoints (not
the whole dataset) of the matched features (obtained
in the second round of matching). This corresponds to
the ‘graph node error’ described in Mian et al. [37] for
the face.

5.4 Building a Rejection Classifier

As in [37], the similarity measures (εf , αr, αd and εn)
computed in the previous sub-section are first normal-
ized on the scale from 0 to 1 and then combined using
a confidence weighted sum rule as shown in Eqn. (2).

ε = ηf εf + ηr(1− αr) + ηd(1− αd) + ηnεn (2)

The weight factors (ηf ,ηr,ηd,ηn) are dynamically com-
puted individually for each probe during recognition as
the ratio between the minimum and second minimum
values, taken relative to the mean value of the similarity
measure for that probe [37]. Therefore, the weights re-
flect the relative importance of the similarity measures
for a particular probe based on the confidence in each
of them. Note that the second and the third similarity
measures (αr and αd) are subtracted from unity before
multiplication with the corresponding weight factor as
these have a polarity opposite to other measures (the
higher the values the better is the result).

We observe that the combination of these similarity
measures provides an acceptable recognition rate and
most of the misclassified images are matched within
the rank of 40 (see Section 7.7). Therefore, unlike [37],
we use this combined classifier as a rejection classifier
to discard the huge number of bad candidates retain-
ing only the best 40 identities (sorted according to this
classifier) for fine matching using ICP as described in
the following sections.

5.5 Extraction of a Minimal Rectangular Area

We extract a reduced rectangular region (containing
all the matching features) from the originally detected
gallery and probe ear data. This region is identified
using the minimum and maximum co-ordinate values
of the matched L3DFs. Fig. 9 illustrates this region

in comparison with other extraction windows (see Sec-
tion 3.6).

Extended extraction window 

used for feature extraction

Original detection window

Minimal extraction window 

used for ICP

Fig. 9 Extraction of a minimal rectangular area containing all
the matching L3DFs.

L3DFs do not match from regions with occlusion
or excessive missing data. By selecting a sub-window
where the L3DFs matches, such regions are generally
excluded. Besides, this smaller but feature-rich region
reduces the processing time as described in Section 7.6.

5.6 Coarse Alignment of Gallery-Probe Pairs

The input profile images of the gallery and the probe
may have pose (rotation and translation) variations.
To minimize the effect of such variations, we apply the
transformation in Eqn. (3) to the minimal rectangular
area of the probe dataset.

P ′ = RP + t (3)

where, P and P ′ are the probe dataset before and
after the coarse alignment. We use the translation (t)
corresponding to the matched pair with the maximum
distance consistency and the rotation (R) correspond-
ing to the matched pair with the largest cluster of con-
sistent rotations for this alignment. Our results show a
better performance with this approach compared to an
alternative of minimizing the sum of squared distance
between points in the feature matches.

5.7 Fine Alignment with the ICP

The Iterative Closest Point (ICP) algorithm [4] is con-
sidered to be one of the most accurate algorithms for
registration of two clouds of data points provided the
datasets are roughly aligned. We apply a modified ver-
sion of ICP as described in [38]. The computational
expense of ICP is minimized using the minimal rectan-
gular area as described in Section 5.5. The final decision
regarding the matching is made based on the results of
ICP.
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Table 2 Ear detection results on different datasets

Name of the
database

No. of
images

Description of the test images including challenges in-
volved

No. of un-
detected
image(s)

Detection
rate (%)

UND-F 203 Not used in training and validation of the classifiers 0 100

UND-F 942 Images from 302 subjects including some partially oc-
cluded images

1 99.9

UND-J 830 2 images from each of 415 subjects including some par-
tially occluded images

1 99.9

UND-J 146 54 images are occluded with earrings and 92 images are
partially occluded with hair

1 99.1

XM2VTSDB 104 Severely occluded with hair (see Fig. 11) 50 51.9

UWADB 50 All images are occluded with ear-phones 0 100

6 Detection Performance

In this section, we report and discuss the accuracy and
speed of our ear detector.

6.1 Correct Detection

We performed experiments on seven different datasets
with different types of occlusions. The results are sum-
marized in Table 2 which show the high accuracy of our
detector.

Test profile images in the first dataset in Table 2 are
carefully separated from the training and validation set.
Images in the fourth and fifth datasets are partially oc-
cluded with hair and ear-rings and those in the sixth
dataset are severely occluded with hair. Some exam-
ples of correct detection of such images are shown in
Fig. 10. The detector failed only for the images where
hair covered most of the ear (see Fig. 11). However, such
occluded ear images may not be as useful for biometric
recognition anyway, as they lack sufficient ear features.

Fig. 10 Detection in presence of occlusions with hair and ear-
rings (the inset image is the enlargement of the corresponding
detected ear).

Fig. 11 Example of test images for which the detector failed.

Fig. 12 Example of ear images detected from profile images with
ear-phones.

For some applications, another kind of occlusion is
likely to be common: occlusion due to ear-phones, since
people are increasingly using ear-phones with their mo-
bile phones or to listen to music. Therefore, we collected
images from 50 subjects in our laboratory using a Mi-
nolta Vivid 910 range scanner each of whom were re-
quested to wear ear-phones (see Fig. 12). Correct detec-
tion of ears in these images, confirms that our detection
algorithm does not require the ear pit to be visible. To
the best of our knowledge, we are the first to use an ear
dataset with ear-phones on.

In order to further analyze the robustness of our
ear detector to occlusion, we synthetically occluded the
ear region of profile images similar to Arbab-Zavar and
Nixon [3]. After correctly detecting the ear region with-
out occlusion, we introduced different percentages of
occlusion and repeated the detection. During each pass
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of the detection test, occlusion was increased vertically
(from top to bottom) or horizontally (from right to left)
by masking in increments of 10% of the originally de-
tected window. The results of these experiments applied
on the first dataset in Table 2 are shown in Fig. 13. The
plots demonstrate a very high detection rate until an oc-
clusion level of 20% and 30% is reached, which sharply
decreases with 40% and 50% occlusion for vertical and
horizontal occlusion respectively. A better performance
is obtained under horizontal occlusions which are the
most common types of occlusion caused by hair.
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Fig. 13 Detection performance under two different types of syn-
thesized occlusions (on a subset of the UND-F dataset with 203
images).

To evaluate the performance of our detector under
pose variations, we performed experiments with a sub-
set of Collection G of the UND database. It includes
straight-on, 15◦ off center, 30◦ off center, and 45◦ off
center images. For each of the poses, there are 24 im-
ages (details of the dataset can be found in [55]). Our
detector successfully detected ears in all of the images
proving its robustness up to 45 degrees of pose varia-
tion.

We also found that our detector is robust to other
degradations of images such as motion blur as shown
in Fig. 14.

Fig. 14 Detection of a motion blurred image.

6.2 False Detection

On the first dataset in Table 2, for a scale factor of
1.25 and step size of 1.5, our detector scanned a total
of 1308335 sub-windows in 203 images of size 640×480.
Only seven sub-windows were falsely detected as ears,
resulting in a false positive rate (FPR) of 5 × 10−6.
These seven false positives were easily eliminated using
the multi-detection integration as mentioned in Sec-
tion 3.5. The relationship between the FPR and the
number of stages in the cascade is shown in Fig. 15(a).
As illustrated, the FPR decreases exponentially with an
increase in the number of stages following the maximum
FPR set for each stage, fm = 0.7079. This is because
the classifiers of the subsequent stages are trained to
classify correctly the samples misclassified by the pre-
vious stages.

In order to evaluate the classification performance
of our trained strong classifiers, we cropped and syn-
thesized (by a rotation of -5 to +5 degrees) 4423 ear
and 5000 non-ear images. The results are illustrated
in Fig. 15(b). Although the correct classification rate
is 97.1% with no false positive (see the inset plot of
Fig. 15(b)), we achieve a very high classification accu-
racy with very low false positive rate. In fact, we ob-
tained 99.8% and 99.9% classification rates at 0.04%
and 0.2% FPRs respectively. These correspond to false
positives of only 2 and 12 respectively.

6.3 Detection Speed

Our detector achieves extremely fast detection speeds.
The exact speed of the detector depends on the step
size, shift and scale factor and the first scale. With an
initial step size of 1.5 and scale of 5 with a scale factor
of 1.25, the proposed detector can detect the ear in
a 640 × 480 image in 7.7 ms on a Core 2 Quad 9550,
2.83 GHz machine using a C ++ implementation of the
detection algorithm. This time also includes the time
required by the multi-detection integration algorithm
which is 0.1 ms on the average.

7 Recognition Performance

The experimental results of ear recognition using our
proposed approach on different datasets are reported
and discussed in this section. The robustness of the ap-
proach is evaluated against different types of occlusions
and pose variations. The effect of using L3DFs, geo-
metric consistency and the minimal rectangular area of
datapoints for ICP are also summarized in this section.



15

2 4 6 8 10 12 14 16 18
0

1

2

3

4

5
x 10

−3

Number of Stages

F
al

se
 P

os
iti

ve
 R

at
e

0 0.1 0.2 0.3 0.4 0.5
0.97

0.975

0.98

0.985

0.99

0.995

1

C
or

re
ct

 C
la

ss
ifi

ca
tio

n 
R

at
e

False Positive Rate

0 0.005 0.01
0.97

0.98

0.99

(a) (b)

Fig. 15 False detection evaluation: (a) FAR (on number of profile images) with respect to number of stages in the cascade. (b) The
ROC curve for classification of cropped ear and non-ear images (Color online).

7.1 Datasets

Collections F, G and J from the University of Notre
Dame Biometrics Database [49, 55] are used to perform
the recognition experiments of the proposed approach.
Collection F and J include 942 and 830 images of 302
and 415 subjects respectively collected using a Minolta
Vivid 910 range scanner in high resolution mode. There
is a wide time lapse of 17.7 weeks on average between
the earliest and latest images of subjects. There are
also variations in pose between them and some images
are occluded with hair and ear rings. The earliest im-
age and the latest image for each subject are included
in the gallery and the probe dataset respectively. As
mentioned in Section 6.1, Collection G includes images
from 24 subjects each having images at four different
poses, straight-on, 15◦ off center, 30◦ off center and 45◦

off center. We keep images with straight-on pose in the
gallery and others in the probe dataset.

We also tested our algorithm on 100 profile images
from 50 subjects with and without ear-phones on. The
images were collected at the University of Western Aus-
tralia using a Minolta Vivid 910 range scanner in low
resolution mode. There are significant data losses in the
ear-pit regions of the images as shown in Fig. 17(c). Im-
ages without ear-phones are included in the gallery and
others in the probe dataset.

All the ear data were extracted automatically as
described in Section 3 except for the following.

1. For the purpose of evaluating the system as a fully
automatic one, we considered the undetected probe
(see Section 6) as a failure and kept the number of
probes as 415 in the computation of the recognition
performance on the UND-J dataset.

2. There are three images in the 75◦ off center sub-
set of the UND-G dataset where the 2D and 3D

data clearly do not correspond. For these images,
we manually extracted the 3D data.

We also used the same values of the parameters in
the matching algorithm for all experiments across all
the databases.

7.2 Identification and Verification Results on the UND
Database

On the UND Database Collection-F and Collection-
J, we obtained rank-1 identification rate of 95.4% and
93.5% respectively. The Cumulative Match Character-
istic (CMC) curve illustrating the results for the top 40
ranks for UND-J dataset is shown in Fig. 16(a). The
plot was obtained using ICP for matching a probe with
the selected gallery dataset after being coarsely aligned
using L3DFs only. The little gain in accuracy up to
rank-40 shows that the ICP algorithm is very accurate
when the correct gallery passes the rejection classifier.

We also evaluated the verification performance in
terms of the Receiver Operating Characteristic (ROC)
curve and the Equal Error Rate (EER). We obtained a
verification rate of 96.4% at an FAR of 0.001 with an
EER of 2.3% for the UND-F dataset. On the UND-J
dataset, we obtain 94% verification at an FAR of 0.001
with an EER of 4.1% (see Fig. 16(b)).

7.3 Robustness to Occlusions

To evaluate the robustness of our approach to occlu-
sions, we selected occluded images from various databases
as described below.

(1) Ear-rings: We found 11 cases in UND Collection-
F where either the gallery or the probe image is
with ear-rings. All these were correctly recognized
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(a) (b)

Fig. 16 Recognition results on the UND-J dataset: (a) Identification rate. (b) Verification rate.

(a) (b) (c)

Fig. 17 Examples of correct recognition in presence of occlusions: (a) With ear-rings and (b) With hair (c) With ear-phones (2D and
the corresponding range images are placed in the top and bottom row respectively (Color online)).

by our system. Some of the examples are illustrated
in Fig. 17a. Although we used 3D data for recogni-
tion, 2D images are shown for a better illustration.

(2) Hair: Our approach is also significantly robust to
occlusion with hair. Out of 59 images with partial
occlusion with hair in the UND-F dataset, 54 are
correctly recognized yielding a recognition rate of
91.5% (see Fig. 17b). The misclassified examples
also have some other problem as discussed in Sec-
tion 7.5.

(3) Ear-phones: Experiments on 50 probe images with
ear-phones from the UWADB provide a rank-1 iden-
tification of 98% and verification of 98% with an
EER of 1%. These results confirm the robustness
of our approach to occlusions in the ear pit region
(see Fig. 17(c)).

7.4 Robustness to Pose Variations

Pose variations may occur during the capture of the
probe profile image or during the detection phase choos-

ing the detection rectangle in different positions. Large
variations in pose (particularly in the case of out-of-
plane rotations) sometimes introduce self-occlusions that
decrease the repeatability of local 3D features in a gallery-
probe pair. Therefore, although the local 3D features
are somewhat pose invariant due to the way they have
been constructed (see Sections 4.2), we noticed some
misclassifications when using only local 3D features.
However, with the finer matching via ICP, most of such
probe images in the UND-F and UND-J datasets are
recognized correctly. The results on UND-G dataset
having probes with pose variations up to 45◦ are plotted
in Fig. 18. We achieved 100%, 87.5% and 33.3% rank-1
identification rates for 15◦, 30◦ and 45◦ off center pose
variations respectively. Our results are comparable to
those of Yan and Bowyer [55] and Chen and Bhanu [13]
for up to 30◦. Some examples of accurate recognition
under large pose variations are illustrated in Fig. 19.
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(a) (b)

Fig. 18 Recognition results on the UND-G dataset: (a) Identification rate for different off center pose variations. (b) CMC curves for
30◦ and 45◦ off center pose variations.

(a) (b)

(c) (d)

Fig. 19 Examples of correct recognition of four gallery-probe
pairs with pose variations (Color online).

7.5 Analysis of the Failures

Most of the misclassifications that occurred in all our
experiments involve missing data (inside or very close
to the ear contour) in either the gallery or the probe im-
age. The remaining ones involve large out-of-plane pose
variations and/or occlusions with hair. Some examples
are illustrated in Fig. 20.

(a) (b)

Fig. 20 Examples of failures: (a) Two probe images with missing
data. (b) A gallery-probe pair with a large pose variation.

7.6 Speed of Recognition

On a Core 2 Quad 9550, 2.83 GHz machine, an un-
optimized MATLAB implementation of our feature ex-
traction algorithm requires around 22.2 sec to extract
local 3D features from a probe ear image. A similar im-
plementation of our algorithm for matching 200 L3DFs
of a probe with those in a gallery requires 0.06 sec on
average. This includes 0.02 sec required by the compu-
tation of geometric consistency measures. For the full
algorithm, including L3DF as rejection classifier, fol-
lowed by coarse alignment and ICP on a minimal rect-
angle, the average time to match a probe-gallery pair in
the identification case is 2.28 sec on the UND dataset.
Timing for different combinations of our recognition al-
gorithms are given in Table 3.

7.7 Evaluation of L3DFs, Geometric Consistency
Measures and Minimal Rectangular Area of Dataset

We obtain improved accuracy and efficiency using the
local 3D feature based rejection classifier and extract-
ing the minimal rectangular area prior to the applica-
tion of ICP. The improvements are summarized in Ta-
ble 3 where numbers within parenthesis following the
database name are the number of images in the gallery
and probe set respectively.

Results in the first row in the above-mentioned table
are computed using the same ICP implementation as in
our final approach but without using L3DFs and corre-
sponding minimal rectangular area of data points. The
wider detection window with hair and outliers and the
absence of proper initial transformation caused ICP to
yield very poor results compared to our approach with
L3DFs. In all the cases, our method is significantly more
efficient than the raw ICP algorithm.

As shown in Table 3, using geometric consistency
measures improved the accuracy of identification sig-
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Table 3 Performance variations for using L3DFs and geometric
consistency measures

Approach Rank-1 identification rate (%) Avg.
UWADB
(50-50)

UND-
F
(100-
100)

UND-
F
(302-
302)

UND-
J
(415-
415)

matching
time
(sec)

ICP only 98 80 - - 58.09

L3DF
without
geometric
consistency

86 89 76.8 71.6 0.04

L3DF using
geometric
consistency

88 92 83.44 79.8 0.06

ICP and
L3DF
without
geometric
consistency

96 98 93.7 81.6 2.43

ICP and
L3DF using
geometric
consistency

98 98 95.4 93.5 2.28

nificantly especially for the larger datasets. Improve-
ments using these consistency measures for other bio-
metric applications are described in detail in [25]. The
performance of these measures on the UND-F database
is shown in Fig. 21. The legends errL3DF , perRot,
propDist and errDist are used for similarity measures
εf , αr, αd and εn respectively as described in Section 5.3).
The CMC curves show the significance of the rotation
consistency measure compared to other similarity mea-
sures.
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Fig. 21 Comparing identification performance of different
L3DF-based similarity measures (without ICP on the UND-F
dataset).

8 Comparison with Other Approaches

In this section, our detection and recognition approaches
are compared with similar approaches using 3D data
and reporting performance on the UND datasets. Ta-
ble 4 and 5 summarize the comparisons. Matching times
are computed on different machines in different ap-
proaches. A dual-processor 2.8 GHz Pentium Xeon, a
1.8 GHz AMD Opteron and a 3 GHz Pentium 4 are
used in [55], [13] and [43] respectively.

8.1 Detection

The ear detection approaches in [43] and [53] are not au-
tomatic. The approaches in [13] and [55] use both color
and depth information for detection. The latter achieves
a low detection accuracy (79%) using only color infor-
mation which also depends on the accuracy of nose tip
and ear pit detections. So these approaches of detection
are not directly comparable to ours since we only use
grey scale information.

Unlike other approaches, we have performed exper-
iments with ear images of people with ear-phones on
and observed that our detection rate does not vary
much if the ear pit is blocked or invisible. Our experi-
ments with synthetic occlusion on the ear region of in-
terest, demonstrate better results than those reported
by Arbab-Zavar and Nixon [3] for vertically increasing
occlusions up to 25% of the ear.

Table 4 Comparison of the detection approach of this paper
with the approaches of Chen and Bhanu [13] and Yan and
Bowyer [55]

Approach Ear
pit
de-
tected?

Nose
tip
de-
tected?

Data
type

Dataset
(#im-
ages)

Det.
rate
(%)

Det.
time
(sec)

This
Paper

No No Intensity UND-F
(942)

99.9 0.008

UND-J
(830)

99.9

Chen
and

No No Color
and

UND-F
(700)

87.7 N/A

Bhanu
[13]

depth UCR
(902)

99.3 9.48

Yan Yes Yes Color UND-J 79 N/A
and Depth (1386) 85
Bowyer
[55]

Color
and
depth

100

Regarding robustness to pose variations, unlike other
reported approaches, we performed experiments sepa-
rately for profiles with various levels of pose variations
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Table 5 Comparison of the recognition approach of this paper with others on the UND database

Approach Manually
cropped
images

Conciseness of the
cropping window
around the ear

Features
used

Rejection
classifier
used?

Initial
transfor-
mation for
ICP

Feature matching time

This Paper Nil A flexible rect-
angular area is
cropped

Local Yes Translation
and rota-
tion

L3DF-0.06 sec
(MATLAB)

Chen and
Bhanu [13]

12.3% A concise rect-
angular area is
cropped

Local No Translation
and rota-
tion

LSP- 3.7 sec,
H/AH- 1.1 sec
(C + +)

Yan and
Bowyer [55]

Nil Very concise crop
along the contour

Global No Translation N/A

Passalis et
al. [43]

All Very concise crop
around the concha

Global No N/A Less than 1 ms
(enrolment-15-30 sec)

and obtained 100% detection accuracy. The approach
of Yan and Bowyer [55] greatly depends on the accu-
racy of the ear pit detection which can be affected by
large pose variations.

Also, none of the above approaches reports the time
required for ear detection on the UND dataset (although
Chen and Bhanu [13] reports 9.48 sec for detection on
the UCR database). In [55], an active contour algorithm
is used iteratively which increases the computational
cost. It also uses skin detection and constraints in the
active contour algorithm for a concise cropping of the
3D ear data. Chen and Bhanu [13] also use skin detec-
tion and edge detection for finding the initial Regions of
Interest (ROI), RANSAC-based Data-Aligned Rigidity-
Constrained Exhaustive Search algorithm (DARCES)
for initial alignment and the ICP for fine alignment of
a reference model on to the ROIs and the Thin Plate
Spline Transformation for the final ear shape matching.
On the other hand, we use the AdaBoost algorithm,
whose off-line training is expensive but the trained de-
tector is extremely fast.

On the basis of the above, our approach of ear de-
tection is faster than all other above approaches while
maintaining high accuracy, and producing boundaries
consistent enough for recognition.

8.2 Recognition

In our approach, an extremely fast detector is paired
with fast matching using 3D local features which allows
us to extract a minimal rectangular area from a flexibly
cropped rectangular ear region sometimes with other
parts of the profile image (e.g. hair and skin). However,
recognition performance depends on how concisely each
ear has been detected, especially when using the ICP
algorithm. This is because the hair and skin around
the ear makes the alignment unstable. This explains

the high recognition results in [55] where ICP is used
for matching concisely cropped ear data with a penalty
in time. Similarly, the slightly better result in [13] is
explained through the fine manual cropping of a large
number (12.3%) of ears which could not be detected
by their automatic detector. Also, in [55, 13] ICP is
applied on every gallery-probe pair whereas our use of
L3DF allows us to apply ICP on a subset (best 40) of
pairs for identification.

Unlike the approaches in [43], [53] and [55], we and
Chen and Bhanu [13] use local features for recognition.
However, the construction of their local features is quite
different than ours and they use these for coarse align-
ment only and not for rejecting false matches. We use
the local 3D features for the rejection of a large num-
ber of false matches as well as for a coarse alignment
of the remaining candidates prior to the ICP matching.
This considerably reduces our computational cost since
we apply ICP on a reduced dataset. However, similar
to them, we use both rotation and translation for the
coarse alignment whereas Yan and Bowyer [55] use only
translation (no rotation). For matching local features,
Chen and Bhanu [13] use a geometric constraint sim-
ilar to ours but without a second round of matching.
Our experiments show that matching is improved by a
second round (see Section 7).

Although the final matching time in [43] is very
low (less than 1 ms per comparison), its enrolment
and the feature extraction modules using both ICP and
Simulated Annealing are slightly more computationally
expensive (30 sec compared to 22.2 sec in our case).
The approach has an option of omitting the deformable
model fitting step which can reduce the enrolment tim-
ing to 15 sec, however, with a penalty of 1% in recogni-
tion performance. Unlike our approach, it also requires
that the ear pit is not occluded because the annotated
ear model used for fitting the ear data is based on this
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area. Moreover, the authors mention that the approach
fails in cases of ears with intricate geometric structures.

9 Conclusion

In this paper, a complete and fully automatic approach
for human recognition from 2D and 3D profile images is
proposed. Our AdaBoost-based ear detection approach
with three new Haar feature templates and the rect-
angular detector is very fast and significantly robust
to hair, ear rings and ear-phones. The modified con-
struction and efficient use of local 3D features to find
potential matches and feature-rich areas, and also for
coarse alignment prior to the ICP, makes our recogni-
tion approach computationally inexpensive and signif-
icantly robust to occlusions and pose variations. Using
two-stage feature matching with geometric consistency
measures significantly improved the matching perfor-
mance. Unlike other approaches, the performance of our
system does not rely on any assumption about the lo-
calization of the nose or the ear pit. The speed of the
recognition can be improved further by implementing
the algorithms in C/C + + and using faster techniques
for feature matching like geometric hashing as well as
faster variants of ICP.

Appendix: Parameter Selection

The parameters used in the implementation of our de-
tection, feature extraction and matching algorithms are
listed below with a short description of the effect of the
variation of their values. All the values are determined
empirically using the training data.

Detection Related Parameters:

1. Target false positive rate (Ft): We chose Ft = 0.001.
Increasing its value will decrease the number of stages
of the cascade for ear detection, but will reduce the
accuracy.

2. Target detection rate (D): We chose D = 0.98. In-
creasing its value will increase the number of stages
in the cascade or the minimum detection rate per
stage, which will necessitate more features to be in-
cluded in each stage of the cascade.

3. Minimum overlap (minOv): We used minOv = 0.1
in our multi-detection integration algorithm. Using
a higher value for this parameter may result in mul-
tiple detections near the ear.

Feature Extraction Related Parameters:

1. Inner radius of the feature sphere (r1): It is the ra-
dius of the sphere within which data points are used

to construct the 3D local features. For a larger value
of r1, a feature becomes more global and hence,
more descriptive. However, locality is also impor-
tant to increase robustness to occlusion. Its value
is chosen relative to the average ear size. We tested
with values 10, 15, 20 and 30 mm and the best re-
sults were obtained with r1 = 15 mm.

2. Boundary limit (r1 +x): It is a function of the inner
radius and is used to avoid the boundary effect. We
chose x = 10 mm. A higher value of x will reduce
the number of seed points and hence the keypoints.
A lower value may result in having some keypoints
outside the reliable and feature-rich area of the ear,
likely including hair.

3. Threshold for choosing the keypoints (t1): We chose
t1 = 2 to have around 200 significant features in
most cases. The higher the value of t1, the fewer
features we get. However, lowering t1 can result in
the selection of less significant feature points. For
example, t1 = 0 will allow constructing a feature
from a completely planar or spherical surface.

4. Seed resolution (rs): It defines how close we chose a
seed point. In our experiments we chose rs = 2 mm.

5. Number of features per ear (nf ): This parameter
determines the maximum number of features to be
created per ear. We chose nf = 200. The higher
value of this will increase the possibility of getting
more feature points resulting in more computational
cost. However, the recognition becomes critical for
candidates having fewer features.

Matching Related Parameters:

1. The threshold limiting distance between feature lo-
cations (th1): It controls the number of matches to
be discarded. The higher its value, the more but
less significant matches will be included. On the
other hand, a smaller value will reduce the num-
ber of matches. In our experiments th1 = 45 mm

provided better results.
2. The distance multiplier (κ): This parameter is part

of the threshold to determine the distance consis-
tency. We empirically determine its value as 0.1. A
higher value will allow less consistent matches to be
used in constructing the rejection classifier.

3. The threshold for rotation consistency (th2): We
chose th2 = 10◦. A higher value will allow consider-
ing matches having higher rotation variations in the
calculation of rotation consistency. However, smaller
values may discard potentially correct matches.

4. The minimum number of matches (m): This param-
eter limits the number of gallery candidates having
enough matching features with a probe. We chose
m = 10. A higher value may discard potential matches
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while a lower value would not allow the keypoint
distance measure computation to be performed.
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