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Abstract In this work, we recover fast moving scenes

by exploiting the high-speed illumination “dithering”

of cheap and easily available digital light processing

(DLP) projectors. We first show how to reverse-engineer

the temporal dithering for off-the-shelf projectors, us-

ing a high-speed camera. DLP dithering can produce

temporal patterns commonly used in active vision tech-

niques. Since the dithering occurs at a very high frame-

rate, such illumination-based methods can be “sped up”

for fast scenes. We demonstrate this with three applica-

tions, each of which only requires a single slide to be dis-

played by the DLP projector. The quality of the result

is determined by the camera frame-rate available to the

user. Pairing a high-speed camera and a DLP projec-

tor, we demonstrate structured light reconstruction at

100Hz. With the same camera and three or more DLP

projectors, we show photometric stereo and demulti-

plexing applications at 300Hz. Finally, with a real-time
(60 Hz) or still camera, we show that DLP illumination
acts as a very fast flash, allowing strobe photography of

high-speed scenes. We discuss, in depth, some charac-

teristics of the temporal dithering with a case study of

This is an extension and consolidation of our previous work on
the active vision systems using DLP projectors ([24],[16]).
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a particular projector. Finally, we describe limitations,

trade-offs and other issues relating to this work.
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1 Introduction

Illumination changes create powerful visual cues. These

are widely exploited in computer vision and graphics for

scene analysis. Photometric lighting-based techniques

first choose a reflectance model and then estimate its

parameters from images taken under varying lighting.

This is the basis for classical photometric stereo ([45])
for lambertian scenes, as well as several extensions for
non-lambertian low parameter BRDFs. However, most

of these methods rely on changes in light-source loca-

tion or direction. Instead, there are other approaches

that employ temporal or spatial modulation of the in-

cident light-field. These techniques obtain correspon-

dences between the light source and the camera to re-
cover scene properties (such as scene depths [44]).

In this paper, we are interested in analyzing high-

speed scenes, imaged at faster-than-real-time rates (≥

120Hz). Almost all of the correspondence-based lighting
techniques described above avoid the difficult problem
of tracking moving scene points. Instead, these require

that the illumination modulation occurs at a much faster

rate than scene motion. This means that during image

capture, the scene must be essentially static. Most rea-

sonably fast scenes quickly outpace physical methods of

moving or modulating the light-source, such as hand-

waving or shifting attenuating masks.

This would suggest that high-speed scene analysis

should be performed only with passive techniques, such

as multi-view stereo, by using high-frame rate cameras.
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Although very expensive, today such cameras can cap-

ture video at speeds up to 10000Hz. However, two prob-

lems exist with passive methods. First, there are vari-

ous types of scene information (such as high-resolution

surface normals from photometric stereo, and direct-

indirect components from fast separation [26]) which

cannot be obtained purely by using cameras. Second,

since camera motion would be much slower than scene

motion, multiple viewpoints would be required. This

would imply additional cameras, increasing the already

prohibitive cost.

Therefore, in this work, we focus on speeding up ac-

tive vision techniques for fast scenes. Our approach is

to rely on electronic means of controlling illumination.

Such computer controlled illumination would modulate

the light much faster than the scene motion. One way to
do this would be to use LCDs (liquid crystal displays)
[49] which can modulate illumination at real time (60-

120 Hz) rates. However, for faster scenes, as those de-

picted in our work, most LCDs simply do not change

quickly enough. In addition, at higher speeds, they ex-

hibit SNR issues for image capture, since the incident

light is attenuated.

Recently, a MEMS device called the Digital Mi-

cromirror Device (DMD) has been introduced to mod-

ulate illumination. Each mirror in the DMD is 14× 14

microns and can switch between two orientations, +12o

and −12o [8]. In one orientation, incident light is re-

flected by the mirror toward the outside scene and in

the other, light is reflected onto a black surface within
the projector. These mirrors can switch between orien-
tations in a few microseconds, enabling high precision
control of illumination. As a result, the DMD device

has found applications in areas ranging widely from mi-

croscopy to chemistry to holographic displays [8].

However, DMD kits that allow total control and
programmability of the incident illumination are al-

most as expensive as high-speed cameras, making their
use for high-speed scene analysis difficult. Our key in-
sight was to note that an integral component of all
Digital Light Processing (DLP) technology projectors

(http://www.dlp.com) is also a DMD chip. Therefore

DLP technology has enabled mass production of low

cost DMD chips with one drawback: we cannot directly

control the mirror states of the DMD chip. However,
we can control the slides that the projector will emit.

This paper investigates techniques to reverse-engineer

and exploit cheap, off-the-shelf DLP projectors for fast

active vision.

1.1 Related work

Projectors are commonly used as programmable light

sources for a variety of active vision techniques includ-

ing structured light reconstruction [44,48,7,6,47,37],

photometry-based scene recovery [52,11], relighting [43],

light transport analysis [26,39] and depth from defocus

[50]. The intensity and color of the scene’s illumination

can be controlled over space and time depending on the

task at hand. For instance, projecting a set of colored

striped patterns onto a scene alleviates the problem of

finding correspondences for 3D reconstruction [48].

The operating principle of the DMD device has also

been exploited in computer vision and graphics. Nayar

et al. [25] re-engineer a DLP projector into a DMD-

camera and demonstrate the notion of programmable

imaging for applications including adaptive dynamic

range and optical filtering and matching. Based on the

theory of compressive sampling, a single pixel camera
has been implemented where the DMD device is used
to compute optical projections of scene radiance [40].

Raskar et al [33] and Cotting et al [5] use camera-

projector synchronization to embed illumination pat-

terns in the scene that cannot be observed with the

naked eye. Jones et al. [14] modify a DLP projector us-

ing custom made FPGA-based circuitry to obtain 1-bit

projection at 4800Hz. Using this, they generate high

speed stereoscopic light field displays. McDowall and

Bolas [20] use a specially re-programmed high speed

projector based on Multiuse Light Engine (MULE) tech-

nology to achieve range finding at kilohertz rates.

Our work has the potential to extend any active vi-

sion technique to dynamic scenarios, and we illustrate

this with a few popular applications, such as structured

light reconstruction and photometric stereo. Since illu-

mination dithering can be observed reliably even with

camera frame rates as low as 300 fps, it enables appli-

cations with slower performance requirements. In addi-

tion, with still or 60 Hz cameras, we demonstrate high-

speed photography applications inspired from computa-

tional photography techniques, such as shape time pho-

tography ([9]). Finally, unlike previous work, our tech-

niques do not require any projector-camera synchro-

nization, hardware modification/re-programming of the

DMD device, or the knowledge of proprietary dithering

coding schemes. Thus, we believe this work to be widely

applicable. Better visualizations of all our results

are available through our websites (http://www.

cs.cmu.edu/∼ILIM/projects/IL/dlp-dithering/,

[17], [18]).
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Fig. 1 Reverse engineering a DLP Projector: (a) A DLP projector converts the input intensity received into a stream of light pulses
that is then projected onto a screen. A high speed camera viewing the screen aggregates the brightness over the duration of its
integration time. (b) An image composed of 5× 5 pixel blocks each with a different intensity from 0 to 255 is input to the projector.
(c) The camera records the projector output at 10 kHz. In (d) we show gray-valued intensities measured over time by the high speed
camera for 4 example intensities input to the projector. Notice the significant variations in the plots. In (e), the temporal dithering
for all 256 projector input intensities is collated into an image. This temporal dithering is repeatable and can be used to encode
illumination in a novel way, enabling fast active vision.

2 Temporal Dithering in a DLP projector

In order to project a desired intensity value, the DLP

projector emits a series of light pulses of different time

intervals [8]. A sensor aggregates the pulses of light

over the duration of its integration time (say, 1/30s
in a video camera) to capture the final gray-valued
brightness. This Pulse-Width modulation (PWM) by

the projector is unique for every input intensity and

can be termed as “temporal dithering” of the illumi-

nation. As we shall show, this dithering allows us to

encode scene illumination in novel ways to achieve sig-

nificant speedup in the performance of virtually any

active vision technique.

But how do we capture this high speed dithering?

The exposure time (1/30s) of a video camera is too long

to observe the temporal illumination dithering clearly.

One possibility is to precisely synchronize the camera
with a DLP projector and to expose the camera only
for the duration of a single projected light pulse (for a

few microseconds as in [5]). This would restrict us to

applications with 30-60Hz performance requirements.

In contrast, our work focuses on exploiting the tem-

poral dithering for fast active vision. For this, we use a

novel combination of a high speed camera and an off-

the-shelf DLP projector. Figure 1 illustrates the dither-

ing of an 8-bit InFocus IN38 DLP projector as observed

by a Photron PCI-1024 high speed camera. An image

composed of 5 × 5 pixel blocks each with a different
intensity value from 0 to 255 is input to the projector.

Each intensity at a pixel C in this image is projected

onto a flat screen using a unique temporal dithering

DC(t), over discrete time frames t. The high speed cam-

era observes the projected images at 10 kHz. Notice the

significant variation in the images recorded. The plot in

Figure 1(d) shows the temporal codes emitted by the
projector for 4 input brightnesses (165, 187, 215, 255),
as measured over 100 camera frames. The temporal

ditherings corresponding to all the 256 input intensities

are collated into a photograph for better visualization

of this principle.

Temporal dithering occurring in a commercial pro-

jector is not the only effect measured by the profiles in

Figure 1. The projector has a bulb that is never really
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Fig. 2 Illumination and acquisition setup for structured light

based 3D reconstruction: (a) The Photron high speed camera is
placed vertically above the Infocus DLP projector in our acqui-

sition setup. A vertical plane is placed at known distance be-
hind the scene to enable finding correspondences. (b) The scene
(statue) is illuminated using only a single pattern, as shown on
the right. This pattern is static when viewed directly by unaided
eyes. At high-frame rate, however, it is decomposed into a high-
frequency patterns by the DLP projector.

“turned off” even when projecting black pixels. This is

why all the projectors have a non-zero minima, and can

be easily corrected by subtracting the ambient image
due to a black slide. In addition, we use no synchro-
nization, and therefore the different profiles are mea-

sured across different positions of the color-wheel (since

measuring 100 frames at 10kHz requires a 1

100

th
second,

which is approximately a single color-wheel cycle). This

explains the intensity shift in the profiles, which can be

addressed by using a projector with the color-wheel re-

moved (as in Section 6, [19], [4]). If those two calibration

steps are taken, the profiles in the figure would closely
resemble the binary “step function” codes we would
expect ([8]). Any remaining differences are attributable

to the spatial dithering imposed by the manufacturer

(discussed in Section 7). These differences do not affect

the use of structured light approaches, since the confu-

sion matrices (depicting the closeness of the profiles to
each other) are consistently diagonal, as shown in Fig.
3 and Fig. 17 and discussed in Section 7, where we also
demonstrate the repeatability of these patterns.

The projected temporal dithering codes vary at about

10000Hz, which is faster than most dynamic scenes and,
in our experience, is detectable by high-speed cameras

with a frame-rate of 250fps or more. Consider a dy-

namic scene and a high-speed camera whose frame-rate

is selected such that, over a short interval of measured

frames, the scene appears essentially static. If the cam-

era frame rate is above 250fps, then the illumination in

these frames will vary, even though the scene appears

to have no motion.

This is exactly the assumption made by many active

vision algorithms, and therefore, if we pick an appropri-

ate pattern to project, we can extend these methods to

dynamic scenes. In the next sections, we will exploit this

aspect of DLP illumination to enable dynamic scene re-

covery and capture using well-known techniques such

as structured light reconstruction, photometric stereo,

illumination demultiplexing and strobe-light photogra-

phy. In all our experiments (Sections 3 through 6), each

projector emits a single slide and the selection of the

slide pattern is done heuristically; for example, we se-

lect a random trio set of intensities for the three pro-

jectors in photometric stereo. Designing better patterns

requires understanding different characteristics of the

DLP illumination codes, and in Section 7 we do so for

a particular projector/high-speed camera case. In that

discussion, we also present a brute-force search method

for selecting the pattern of the slide that the projector

will display. We conclude with Section 8 that includes
a description of the limitations, trade-offs and other is-
sues relating to this work.

3 3D Shape Acquisition

Structured light-based triangulation has commonly been

used for 3D reconstruction [44,31,1]. A known set of

patterns that change their intensity spatially and/or

temporally is projected onto a scene and the reflected

images are used to find the corresponding pixels be-

tween the projector and the camera [35]. The corre-

sponding pixels are then triangulated spatially to ob-

tain 3D structure. It is assumed that the scene motion
is negligible or sufficiently small [42] while the patterns
are projected. Since projectors have been operated at
30− 60 Hz, most implementations achieve slower than

real-time performances. Using these same algorithms
with the fast illumination dithering in a DLP projector
should enable high speed reconstruction.

Our goal is to obtain correspondences from cam-

era pixels to projector pixels at high speeds. For con-
venience, the camera and the projector are placed in
a fronto-parallel configuration with a vertical baseline

(see Figure 2). The high speed camera is operated at

3kHz and the projector is reverse engineered at this

speed as described in Section 2. We assume that the

camera and the projector are geometrically calibrated

in advance. In our experiments, the intrinsic parameters

of a camera are estimated by using a planar calibration

pattern [51], and the other parameters are determined

using the homographies between the image planes of

camera and projector [34].

3.1 Illumination Pattern

The differences the among existing techniques of struc-

tured light-based triangulation lie in the illumination
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(a) dot-product of intensity (b) worst match of gradient (c) dot-product of gradient

(d) histograms of function values

Fig. 3 Confusion matrices of correlation functions: The correlations between all pairs of dithering patterns of a DLP projector are
computed using three distance functions: (a) the dot-product of normalized intensities, (b) the worst match of gradient components
(similar in spirit to the function proposed by Zhang et al. [48]), and (c) the dot-product of normalized gradients. The axes of each figure
denote the 8-bit gray values input to the projector. The correlation is normalized into 0.0-1.0 for comparison and encoded in color for
illustration. Figure (d) shows the distributions of the correlation. The dot-product of normalized gradients yields low correlation when

two vectors differ, and therefore is suitable to determine the identify of two vectors from the correlation.

patterns used to find correspondences between the cam-

era and projector. The patterns can be classified into
three categories according to their coding strategy. The
first class of techniques uses time-multiplexing to encode

the temporal location of the projector pixels and group
the pixels over time. Sato and Inokuchi [36] proposed
the shape acquisition system that uses binary illumina-
tion patterns. To achieve more efficiency and robustness

a variety of improved patterns, such as gray codes [2], n-
ary codes [12], or stripe boundary codes [10], have been

proposed. The second class of the techniques, neigh-

borhood codification, encodes information into a single

image using spatial coherence. Boyer and Kak [3] pro-

posed a color coding of adjacent stripes to identify the

projector pixels. Zhang et al. [48] and Morita et al. [23]

used respectively 1D and 2D color stripes defined by the

pseudo random sequences that guarantees the unique-

ness of local adjacency. The third class of techniques

are direct codification where the locations of projector

pixels are encoded into gray-level or color values of a

single image [21]. There are also combinations of these

three coding strategies to improve the speed, accuracy,
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(a) Illumination pattern

(b) Temporal dithering (c) Confusion matrix

Fig. 4 The illumination pattern for 3D shape acquisition. (a)
We generated a color stripe pattern composed of size 512 distinct
colors (w = 512). (b) The temporal dithering patterns of a DLP

projector for the colors used in the stripes. (c) The confusion
matrix of the dithering patterns, showing high correlation only

along the diagonal.

and robustness of 3D reconstruction. Refer to [35] for

a comprehensive survey.

In theory, any of these illumination patterns can be
used for high-speed shape acquisition. The existing al-

gorithms of 3D shape reconstruction can be applied di-
rectly to high-speed systems. In practice, however, gen-
erating arbitrary illumination patterns requires a DMD
kit, which is prohibitively expensive. One possible way

to overcome the limitation is to modify the projector

hardware to generate arbitrary binary patterns at high

speed [20,14]. Instead, we propose to use the dithering

patterns from DLP projectors.

The dithering function transforms the 24-bit RGB
color input, sent to the projector, into a binary se-

quence. It is then converted into a sequence of gray-

valued intensities due to the mismatch of the synchro-

nization between camera and projector, and the inten-

Fig. 5 Results of 3D reconstruction using the DLP projector for
a static venus bust: (a) Three frames captured by the high speed

camera illustrate the fast modulation of illumination incident on
the scene. 20 continuous frames are used to match the intensity
variation observed on the scene point against the normalized in-
tensity variation observed on the vertical plane behind the object.
(b) The best match finds correspondences between projector and
camera pixels. The error map is shown in (c). The (d) dispar-
ity and (e) recovered shape of the object is shown from different

viewpoints.

sity leakage between adjacent frames. Let I(v, t) be the

intensity of a scene point on a white plane, illuminated

by a projector with the input intensity v, and observed

by a high-speed camera at time frame t. The inten-

sity vector I(v) = (I(v, t0), . . . I(v, t1)) acquired for a
projector-frame cycle t = t0, . . . , t1 characterizes the

image intensity at a scene point illuminated by a projec-

tor pixel with intensity v. Conversely, when we obtain

an intensity vector at another scene point, the corre-

sponding projector input v′ can be identified by finding

the maximal correlation between I(v) and I(v′) for all

v.

Ideally, the correlation between two vectors v and

v′ would be maximum when v = v′, and would become

as low as possible when v 6= v′. It is also desirable that

a large number of pairs (v, v′) yields low correlations in

order that each projector intensity in a stripe pattern

be robustly distinguished. Since the optimal correla-

tion function depends not only the dithering function of

the projector, but also the performance of a high-speed

camera, we have investigated three different functions:
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(a) Normalized dot-product of intensities:

Da(v1, v2) =
I(v1) · I(v2)

‖I(v1)‖‖I(v2)‖
(1)

where v1 and v2 are intensities input to a projector.
(b) Worst match of image gradients :

Db(v1, v2) = max
t0,...,t1−1

−G(v, t) (2)

where G(v, t) = I(v, t+ 1)− I(v, t).

(c) Normalized dot-product of gradients:

Dc(v1, v2) =
G(v1) ·G(v2)

‖G(v1)‖‖G(v2)‖
(3)

where G(v) = (G(v, t0), . . . G(v, t1 − 1))

The normalized dot-product of intensities is one of
the simplest and commonly-used correlations of two

vectors. It, however, has high correlation values for a

large number of pairs as illustrated in Figure 3 (a),

which implies potential ambiguity in correspondence at

these pair of intensities. The worst match of gradient

components is similar in spirit to the correlation func-

tion used by Zhang et al. [48] It penalizes the disagree-

ment of sign in gradient components, and takes a large

value only when all components have consistent signs.

However, as shown in Figure 3 (b), this function also has

considerable ambiguity because the camera and projec-

tors are not perfectly synchronized and the high-speed

camera suffers from the noise due to the temporal blur-

ring between frames. The effect of temporal blurring
can be seen in Figure 1 (d). The observed image inten-
sities have continuous distribution whereas the output

of a DLP projector is originally binary. Accordingly,

we decided to use the normalized correlation of gradi-

ents to compute the correlation between the observed

intensity vectors (Figure 3 (c)). Figure 3 (d) shows the

distributions of the three correlations. The dot-product

of normalized gradients yields low correlation when two

vectors differ, and therefore is suitable to determine the

identify of two vectors from the correlation.

Note that we computed the correlation only between

8-bit gray values, while ideally all pairs of 24-bit RGB

colors should be compared. We simplified the experi-

ment based on the following consideration: The tempo-

ral dithering pattern in each color channel looks simi-

lar to that of gray values. The global optimality is not

required either; In fact, we used the normalized corre-

lation of intensity in our earlier work [24].

The illumination pattern is then created by choos-

ing the projector intensities that can be robustly distin-

guished by the correlation functionDG. Since we do not

have the confusion matrix of full 24-bit RGB colors, the

stripe pattern is generated by randomly choosing dis-

tinct RGB colors such that the correlation of any pair

of the colors is less than a certain small number. Fig-

ure 4 shows the illumination pattern we used in our

experiments. The number of the stripes in the pattern

is w = 1024, but is reduced to 256 in the figure for vi-

sualization purpose. Each RGB color v = (r, g, b) of the
stripe is generated such that r, g, b ∈ [100, 255] because

dark illumination leads to low signal-to-noise ratio of

camera images and causes unreliable decoding.

3.2 Reconstruction Algorithm

Given the high-speed images of an object illuminated

by a DLP projector, the correspondence from camera

pixels to projector pixels can be determined by com-

puting the correlation functions described in Section

3.1. It would seem that simply knowing both the slide

sent to the projector and the ditherings from Figure

1 would be sufficient for finding camera-projector cor-

respondences. However, this method does not result in

correct correspondences since the camera and projector

are not synchronized. Finding the exact phase differ-

ence between the camera and projector would result in

a large search problem, which we wish to avoid. How do

we synchronize the frames from the projector and the

camera? One approach is to include a small, diffuse pla-
nar patch in the scene where correspondence between
the corners of the patch can be easily established (say,
manually). This correspondence allows us to synchro-

nize the measured intensity vector with the temporal

dithering.

3.3 Results

Consider a high speed camera viewing a dynamic scene

that is illuminated by a DLP projector. We use a single

image composed of 1D patterns as the input to the

projector. The correspondences from camera pixels to

the stripe are sought using the epipolar constraints of

the camera and projector.

We performed several experiments with both static
dynamic objects: a static statue, a waving cloth, a grasp-

ing hand, a face, and a hand spinning a pen. A homoge-

neous vertical plane is used as the background behind

the scene. The dithering DI(t) can be captured from

the pixels on this plane and simultaneously with the

object. Hence, in this setting, we simply correlate the

normalized brightness vector I(t) of a point on the ob-

ject with the dithering vector DI(t) at every pixel C on

the background plane and no additional synchroniza-

tion is needed.

Here, twenty frames were used to obtain correspon-

dences, taking 20/3000 = 1/150s . In general, the num-
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Fig. 6 Results of 3D reconstruction using the DLP projector for dynamic objects: a waving cloth, a grasping hand, a face, and a hand

spinning a pen. Each depth map is reconstructed using successive 25 frames in the high-speed images captured at 3000Hz.

ber of frames necessary depends on the desired match-

ing accuracy and the SNR of the acquired images. By

sliding the 20 frame window across the full image se-

quence, 3D reconstruction can be obtained at rates as

high as 3 kHz (speed of camera). However, in practice,

the rate of reconstruction is lower considering the speed

of the object’s motion.

Figure 5 shows the correspondences, the disparity
and the reconstructions obtained for a venus bust. Any

holes are only due to stereo shadowing. This example,

although static, was chosen to highlight the quality of

our stripe correspondences, which match (with low er-

ror) the horizontal lines of the pattern, as shown in

Figure 5 (b). Figure 6 shows the reconstructed shapes

of dynamic objects. In the top row we show a flapping
cloth, and note that we are able to reconstruct very fast
moving features such as folds and creases. The second

row shows fast hand-motions, where we have been able

to capture the muscle deformations and stretching of

the fingers and palm. In the third row we show a hu-

man ’making faces’ and sticking out his tongue. Again,

facial features whose detection requires fast reconstruc-
tion, such as fine wrinkles, are clearly recovered. In the
last row we show a hand spinning a pen. This is the

most difficult case, since the pen is a long thin struc-

ture and its edge moves at almost the camera frame

rate. Still, our matching is robust and we are able to

reconstruct the scene reasonably well.

Camera frame-rates: We note that the dithering can
also be observed at lower frame rates and hence a lower

cost camera may be used for slower reconstructions. We
repeated our experiments for the same scene at four
lower frame rates — 1500Hz, 600Hz, 300Hz and 120Hz.
Figure 7 shows the reconstructions obtained. The frame

rate of 120Hz is too low to capture the required in-

tensity variation and hence, the projector-camera pixel

correspondences are unreliable. However, at 500Hz, the

reconstruction quality is still acceptable indicating that
the temporal dithering can be exploited even at this
frame rate.

4 Illumination De-multiplexing for Appearance

Capture

Acquiring scene appearance from multiple lighting di-

rections is necessary for image-based relighting and pho-

tometric recovery of scene properties (BRDF and 3D

structure). In most works, the scene is assumed to be

static and the acquisition can take any where from a few
seconds to several minutes. Using DLP illumination, we
capture the appearances of a dynamic scene from mul-

tiple lighting directions. For this, we draw upon the idea

of illumination de-multiplexing [38], where the images
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120Hz 500Hz 1000Hz 3000Hz

Fig. 7 Reconstructions obtained using videos captured

at reduced frame rates. Even at 500Hz, the quality of the
reconstruction obtained remains acceptable indicating that tem-
poral dithering can be exploited at this frame rate.

of the scene are simultaneously captured from multiple

source directions and de-multiplexed in software to ob-

tain the desired images under each lighting direction.

This technique increases the signal-to-noise of the cap-
tured images while keeping the number of captured im-
ages unchanged.

The difference between Schechner et al. [38] and our

technique is in the coding: they use binary Hadamard

codes, whereas we rely on the temporal dithering of

DLP illumination. The acquisition setup consists of three

DLP projectors (Infocus IN38 and LP120, and Sony

XGADataProjector) that simultaneously illuminate the
scene from different directions. Since we wish to illumi-
nate the scene uniformly, a single constant brightness
image is input to each of the projectors.

The three projectors differ in their brightness and

contrast ratings and dithering behaviors. The captured
intensity at time instant t is written as a sum of ir-

radiances due to the illuminations from all projectors

(k = 1 . . . 3):

I(t) =

3
∑

k=1

Dk(t)Ek(t) (4)

where, Dk(t) is the dithering intensity of the projector

k at time t and Ek(t) is the irradiance due to the scene

as if illuminated only from projector k but with unit

intensity. The intensities Dk(t) can be obtained by ob-
serving a calibration object; this could either be a sta-

tionary mirror/lambertian sphere placed in the scene,

or a diffuse lambertian background plane placed such

that the edges of the three projector’s FOV are visible.

The observed irradiances I(t) over time form a linear

system which is solved to obtain the appearances Ek(t)
of the scene from each individual lighting direction. In

practice, since the projectors are not synchronized when

they illuminate the scene, the dithering intensities Dk

vary significantly over time, and hence the linear system

is well-conditioned.

Figure 8 shows the results of applying the above ap-

proach to a scene with a falling wiry ball. Notice the

3 shadows of the ball and the mirror sphere that ap-

pear mixed in the multiplexed image I(t). For robust-

ness, we use 10 frames to solve the above linear system.

Notice separation of the shadows in the demultiplexed

images. As before, the effective rate of demultiplexing

depends on the SNR in the high speed camera. We have

thus far ignored color information, however, when the
three DLP projectors emit intensities in different spec-
tral bands, the de-multiplexing algorithm can be used

to colorize the acquired high speed gray-scale video.

4.1 Colorizing High-speed Video by Demultiplexing

In the previous section we showed how choosing the

right projector intensities can enable fast illumination

demultiplexing for dynamic scenes. In this section, we

show one application of demultiplexing to colorize a

high speed video. In Figure 9 we show our setup in (a),

where three DLP projectors are used to illuminate a

scene and their centers of projection are kept close to

minimize scene shadows. Instead of a reflective sphere,

we use a diffuse background to estimate the intensities,

as explained in the next section. Each projector is fit-

ted with a color filter, and the demultiplexed images

obtained are the response of the scene to red, green

and blue illumination. We can, therefore, create a color

image of the scene as shown in the figure. Since we re-

quire 30 images for the demultiplexing, and the frame

rate of the camera was 3000hz, the effective frame rate

of the color video is 100hz.
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Fig. 8 Demultiplexing illumination from three projectors to create appearances under each lighting direction: The scene consists of
a wiry polyhedral ball falling vertically. Notice the mixing of the shadows in the multiplexed images in (a). A mirror sphere is placed
in the scene to measure the dithering intensities Dk from the three projectors. (b) The results of demultiplexing for two frames in
the video sequence. A total of 10 frames are used to demultiplex. Some ghosting artifacts are due to the noisy estimation of source

intensities Dk. The variation in the contrast and brightness of the three demultiplexed images are due to the quality of the three
projectors. Projector 2 (InFocus IN38) is the most recent one and has the highest quality.

Our Photron PCI-1024 camera produces black and
white images, while a similar color high speed would

cost almost double this. Therefore we believe our method

is extremely practical and useful. One issue of our ap-

proach is that commercial DLP cameras have a color

wheel inside them, that have red, green, blue and white

filters turning at about 120hz. This violates our as-

sumption that each projector corresponds to only one
component of the spectrum. Therefore, we have removed
the color-wheel in the DLP projectors before perform-

ing the experiment. In the last row of Figure 9 we show

one colored frame, but please view the video on the

website ([18]) for a full length clip.

5 Illumination Multiplexing for Photometric

Stereo

Photometric stereo is a widely used method to recover

the surface normals and albedos of objects that are pho-

tographed under different lighting directions. There are

many variants of this approach and we chose the classic

algorithm by Woodham [45] for its simplicity. In that

work, the appearance of the scene under three indepen-

dent distant illumination directions is used to obtain

the surface normal of the scene point. We will extend

this approach for fast moving scenes that are simulta-

neously illuminated from different directions.

The scene in our experiments consists of a mirror
sphere, a white diffuse background plane and a flutter-

ing white cloth flag (Figure 10). These are illuminated

by three DLP projectors simultaneously from different

directions and viewed by a high speed camera recording

images at 3 kHz. Since each projector must uniformly il-

luminate the scene, we provide a single constant bright-
ness image as input to each projector (with different
brightness values). The projectors are de-synchronized

and hence, the “multiplexed illumination” results in

significant variation in the observed intensities. In ad-
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Fig. 9 Colorizing a high-speed video: Here we apply the demultiplexing technique, where red, green and blue color filters have
been applied to the projectors. The projector color-wheels were removed before this experiment was run. The input images show the
white cardboard at the right of the scene, on which the edges of the three projected slides are visible. These three edges are clearly
demarcated in the demultiplexed images. The intensities of these demultiplexed images are the responses to the red, green and blue
components of the scene albedos (up to a scaling factor). These are concatenated to produce a color high-speed video. Note that while
off-the-shelf DLP projectors are available on the order of 100s of dollars, a color high speed camera would price an order of magnitude
higher.

dition, the projectors and camera are far enough away

from the scene to assume orthographic viewing and dis-

tant lighting.

Each projector has a different field-of-view (FOV)

and therefore (in Figure 10) different parts of the back-

ground plane are illuminated by different projectors.

This allows the edges of each projector FOV to be per-

ceived, as can be seen in the figure. The patches around

these edges are illuminated by different pairs from the

three individual projectors. We use the normalized in-

tensities of these patches as estimations of combinations

of projector intensities and demultiplex the scene. We

then apply classical lambertian photometric stereo to

the demultiplexed video to obtain the surface normal,

using a mirror sphere that provides the projector di-

rections. A window of length 10 frames achieved robust

results. A sliding window of 10 frames can be used to

generate the normals up to a rate of 3 kHz. As before,

the speed of the object determines the effective perfor-

mance rate. Figure 10 shows the reconstructed shape
from the surface normals. Note the creases and folds in
the flag that are faithfully reproduced.

6 Flutter Flash: Motion-blur under DLP
Illumination

Motion-blur occurs when the scene moves more than

a pixel within the integration time of a camera. The

blur is computed as the convolution of the scene mo-

tion with a box filter of width equal to the camera in-

tegration time. Thus, images captured of fast moving

objects cause a smear across the pixels losing signifi-

cant high frequencies. Deblurring images is a challeng-

ing task that many works have addressed with limited

success. A recent approach by Raskar et al. [32] uses

an electronically controlled shutter in front of the cam-

era to modulate the incoming irradiance at speeds far

greater than the motion of the object. In other words,

the box filter is replaced by a series of short pulses of

different widths. The new convolution between the ob-

ject motion and the series of short pulses results in

images that preserve more high frequencies as com-

pared to the box filter. This “Flutter Shutter” approach

helps in making the problem better conditioned. Our

approach is similar in spirit to [32] with one difference:

the fast shutter is simulated by the temporal dithering

of the DLP illumination. Note that the DLP illumi-

nation dithering is significantly faster than mechanical

shutters 1.

In Figure 11(a)-(c), we show images taken under

DLP, skylight and fluorescent illumination. The object

is a cardboard sheet translating from left to right with

the PSF approximated by a small white dot placed

on the sheet. We use this as a good starting point for

blind deconvolution methods. For skylight and fluores-
cent light, we also tried the ’box’ PSF which assumes

1 Faster shutters can be realized by electronically triggering

the camera.
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Fig. 10 Photometric stereo: The scene consists of a fast moving fluttering cloth flag, a background diffuse plane and a mirror sphere.
Three DLP projectors simultaneously illuminate the scene and the camera operates at 3000Hz. The projectors and camera are far

enough away from the scene to assume orthographic viewing and distant lighting. The patches on the calibration plane correspond to
combinations of different pairs of the three projectors. We use these to demultiplex the scene and calculate the surface normals from

the demultiplexed frames by classical photometric stereo. A window length of 10 frames achieved robust results.

Fig. 11 DLP photographs contain higher frequencies compared to other types of illumination: In (a) and (b) we show

deconvolution results with skylight and fluorescent illumination. The blind deconvolution algorithm was given the intensity profile of
a white dot as a starting point. The result for deblurring the same motion under DLP illumination (c) can be read easily. Analysis of
frequencies in the recovered PSF shows DLP illumination preserves high frequency information.

constant incident illumination during exposure. Note

that the best deconvolution occurs with the DLP pho-

tograph. In Figure 11(d) we show the frequencies of the

PSFs. Note that the highest frequencies are due to the
DLP illumination. Although previous work has either
used camera apertures to create similar images ([32])
or shown some deblurring results ([24]), we are the first

to analyze and compare the frequencies of DLP illumi-

nation to other types of lighting.

Deblurring images using flutter-flash (or, as in [32],

flutter-shutter) makes some assumptions about the scene;

for example, we require uniform motion of a rigid body.

For scenes with articulated and deformable objects, a

global flutter does not help to estimate the blurring

function. This is because the blur kernel is local and

can be different at each pixel, making the deblurring

problem hard. Instead of tackling this tough problem,

in this section, we take a alternative approach. We will

demonstrate how to present the high-frequency motion

information available in the DLP photographs, without

deblurring them. This approach is inspired from compu-

tational photography techniques that complement de-

blurring methods.

6.1 The DMD-Colorwheel Effect

Projecting color images involves synchronized control

between the DMD chip, which has a frequency of a

106Hz, and the color wheel, which rotates at 120Hz and
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is divided into red, green and blue filters. This ‘rainbow

effect’ is well-known to display researchers who wish to

remove or reduce it ([29],[15],[30],[41], [13], [28], [22]).

Many researchers even remove the color wheel to in-

crease the projector contrast in their experiments ([19],

[4]). Instead of treating this effect as a problem that

must be compensated for, the DLP illumination can

be exploited to photograph dynamic scenes. Therefore

DLP illumination can produce strobing effects for both
real-time and high-speed scenes, and we term this the

DMD-Colorwheel effect.

This strobing effect is special for two reasons. First,

at high-speeds (the DMD part of the effect), the dither-

ing is due to binary switching of a MEMSmirror. There-

fore, the illumination changes sharply, almost as a delta

or step function. This is in contrast to the closest com-

petitor in illumination devices, which are high-speed

LEDs. These solid state devices have a ‘ramp-up’ time,

and would cause blurring in strobe-photography of the

very fast events that we capture, such as an air-balloon

bursting or slingshots. In addition these devices are

more expensive that off-the-shelf DLP projectors. Sec-

ondly, at real-time speeds (the colorwheel part of the ef-

fect), the strobe effect creates multiple colored copies of

the object. This allows interesting color demultiplexing

effects that can illustrate the motion. These are difficult

to perceive as images, and so we only include them as

videos on our DLP photography website, [17]. Instead,

in this section, we will focus on motion illustrations

that can be displayed as still photographs. We call im-

ages of scenes under DLP illumination taken by still or

low-frame rate cameras, as DLP photographs.

6.2 DLP Photography

The DMD chip has a frequency of a 106Hz, but the

dithering in a commercial projector occurs at around

f = 10000 Hz ([24]). This allow us to capture very

high-frequency events such as the air balloon bursting
as showing in Figure 12. Note that most other forms

of illumination would cause blurring in this image. As
an example, we show that under fluorescent lighting,
viewed at 1000fps, the balloon is smeared in a single
frame, and this high-speed event is lost. However, when

viewed under DLP illumination, the images at 1000fps

show copies of the edge of the balloon. We used an

Infocus In38 projector projecting a plain gray image

of intensity 192 of 3000 lumens, viewed by a Photron
PCI-1024 high-speed camera. Our setup enables pho-
tography of an event occurring at 10 times the frame

rate of the viewing camera. Finally in the figure, we

use three projectors that are unsynchronized creating

a higher strobing frequency and therefore obtaining a

similar photograph at a lower frame rate of 500Hz.

In contrast to the very high-speed events described
above, the color component of the DMD-colorwheel ef-

fect is clearly visible for scenes with ’real-time’ move-

ments such as fast human motion. In Figure 13 we show

pictures of a tabla (hand drum) being played, as well

as a ballet dancer performing. Note that the copies ap-

pear at different colors, since they are illuminated when
the color wheel turns the red, green or blue filters. We
also show an image of a water-balloon bursting. The

specularities of the water droplets are clearly colored

red, green and blue, and these would have been blurred

under fluorescent illumination.

6.3 Summarizing Fast Events

An image summarizing a video sequence can be created

by stitching important frames together, as in shape-

time photography ([9]). However, the object must move

slowly since otherwise motion blur will render the final

result difficult to interpret. DLP photographs already

summarize a short burst of action, since they contain

multiple copies of moving objects. Applying a similar

method as shape-time photography to a collection of

DLP photographs creates a summary image for fast mo-

tion.
In Figure 14 we show images created by process-

ing a volume of DLP photographs of a tabla player

and a ballet dancer. We first separate the images ap-

proximately into the strobed and non-strobed part us-

ing a well-known intensity-based segmentation method

([46]). Except for the first image, the rest of the im-

ages are strobed. The top image is created by taking

the intensity maxima of each pixel over all the pho-

tographs, which produces the effect of combining the
different copies and gives a summary of the motions
that occurred. In contrast, the bottom of the figure is
creating by masking the high intensity portions of each

image and pasting them on top of each other. Instead of

blending the outputs, these summaries enforce an order

into the images.

While the previous examples showed images taken

at ’real-time’ rates (such as a human dancing or mov-

ing) with the colorwheel effect, now we look at strob-

ing created by fast moving scenes with the DMD chip.

In Figure 15 we show image summaries of a slingshot

shooting a rock at high speeds. This summaries were

created by applying the method of [9] to high-speed

frames. The first result taken under fluorescent illu-

mination with a 1000Hz camera, clearly shows high-

frequency information. The same experiment taken with

a 250Hz camera shows motion blur. However, replacing
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Fig. 12 DLP photographs of a bursting balloon: An air balloon bursting can be captured fully using a 10000hz camera. In the

first image we show what happens when the event is captured under fluorescent illumination, with a lesser rate of 3000hz. In one frame
the event is lost in motion blur. In the next two images, we show images taken under 3000hz, but this time with DLP illumination.
Notice the multiple copies of edge of balloon as it moves. We are able to capture images of this high-speed event, due to the temporal

dithering of the DMD device in the projector. Similarly in the last image, we use three DLP projectors, which are not synchronized.
We are able to capture a balloon bursting with a 500hz camera, which is much slower than the speed of this fast event.

Fig. 13 Selected DLP photographs: We photographed two artists, a ballet dancer and a tabla (hand drum) player, under DLP

illumination. Both activities are ’real time’ and the color wheel effect dominates the images. The camera exposure was 1 second. We
also show a balloon bursting, where the specularities of the water droplets are clearly colored red, green and blue. These would have
been blurred under fluorescent illumination.

the fluorescent light with a DLP projector, creates an

image on the right with the same high-frequency infor-

mation obtained by a 1000Hz, but done with a 250Hz

camera. Therefore, fast strobing of a DLP projector can

enhance the effective frame rate of a camera by allow-

ing to capture scenes moving faster than its frame rate.

In the second row, we show a more interesting scene in-

volving a collision of a slingshot rock and a stationary

plastic pear. By applying [9]’s method to different sub-

sets of the video, we can summarize different aspects of
the event.

7 Temporal Dithering Characteristics: A Case
Study

In the previous sections, we have shown how the tempo-

ral dithering of a DLP projector can be used to extend

any active vision technique to dynamic scenes. In all

our experiments, we used patterns that were selected

heuristically to provide best results. Providing a more
theoretical analysis is difficult, since, in our experience,
the dithering codes drastically differ with small changes

in projector controls (such as contrast or brightness)

and environment (such as temperature) as well as be-
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Fig. 14 Colorwheel motion summaries: By combining DLP photographs in different ways we can summarize events. For both
the tabla player, (a), and the ballet dancer, (b), we show summaries created by taking pixel maxima as well as by masking and
superimposing the images. In the maxima case, no image ordering exists and all edges are blended. In the masking case, image order

matters and edges exist between different stages of the action.

tween projectors of different manufacture. Still, we be-

lieve it would be useful to perform a broad empirical

evaluation of a particular case, involving the InFocus

IN38 DLP projector as observed by a Photron PCI-

1024 high-speed camera. In this section, we perform

such experiments to investigate two important tempo-

ral dithering characteristics.

First, the dithering codes must be reliable and should

not change arbitrarily. This would enable robust be-

havior for a vision system calibrated with a particular

projector. Secondly, there must not be a large extent

of overlap or redundancy in the dithering codes since

this will constraint the possible set of illumination pat-
terns. Finally, we will discuss a brute-force method to
find incident illumination patterns from the measured

profiles. We will begin here by describing experiments

investigating the reliability and redundancy of tempo-

ral dithering codes:

Reliability: The temporal dithering is stable and
repeatable but varies for each projector-camera system.

Figure 16 investigates the consistency of the pattern

for pixel intensity 250 at 10000Hz. We can see that the

code varies periodically and repeats itself. This tempo-

ral dithering is the code that the projector uses to rep-

resent the intensity 250. We can also observe that the

standard deviation of the repeated values is not high

(≤ 1

5
of the intensity). This means that the temporal

dither that we measure is reliable, in the sense that
it preserves maxima and minima (peaks and troughs)

from cycle to cycle. We have found that this holds for all
the 255 pixel values for frame-rates of 10000Hz, 3000Hz
and a 500Hz.

In addition to the repeatability of the dithering, we

have also found dynamic range issues in this particular
projector-camera pair. The image shown in Figure 1 is
dark for the input brightness range of 0 to 90. Despite

the claim from manufacturers that the projector dis-

plays 8-bits of information, only about 160 patterns are

usable for our experiments. To compensate for this, the

projector performs spatial dithering in addition to tem-

poral dithering in a few pixel blocks. This is an almost
random effect that is not possible to reverse engineer
without proprietary information from the manufactur-

ers. We smooth out this effect by simply averaging over

a small neighborhood for our processing.
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Fig. 15 DMD motion summaries: Here we show experiments with a slingshot, which moves fast enough that the strobing effects
are due to the DMD dithering and not the colorwheel. In the top row we demonstrate how DLP illumination allows the image capture

of dynamic scenes with a low frame rate camera. In the bottom row we show how applying the method of [9], allows the summary of
different aspects of a fast moving event, again with a low-frame rate camera.

Redundancy: In Figure 17, we show confusion ma-
trices for all 256 patterns for three frame rates and for

three metrics, euclidean, dot-product and KL-divergence.
From the strong diagonal in these matrices, it is clear
that each pixel has a unique encoding, and the profiles
for three randomly selected intensities in the fifth col-

umn demonstrate this. The independence of these pro-

files is expected, since otherwise the projector would

not be able to produce different emitted intensities.

However, if we observe the fourth column in the figure,
where one of the confusion matrices is thresholded, we
observe that while most of the energy in the matrices

is along the diagonal, there are many off diagonal ele-

ments, implying that clusters exist in the pattern. An

intuitive explanation of this is that since the dithering

code is integrated to provide the final pixel intensity,

only a few mirror states need to be altered to move from
one pixel intensity to one that is only slightly greater
or lesser.

The reliability of the temporal codes opens up their

use in active vision applications. However, the implica-
tions of their redundancy require careful selection of the
codes and the illumination pattern that they imply. In
this paper, we have empirically selected patterns, and

we leave a more principled analysis for future work.

However, we can suggest a simple brute-force approach

for pattern design.

Designing an illumination pattern through

brute-force search: Consider the toy problem in Fig

18, where we wish to project a 2x2 alternating checker-

board pattern onto the scene. Since the diagonal inten-

sities of the checkerboard must be consistent, we must

choose two values to make up the 2x2 checker board. At

the right of the figure, we show the profiles for the in-
tensities 200 and 230 at 10kHz. In the 100 frame cycle,
there are only two frames where the projected inten-

sities at different enough to appear as a checkerboard

pattern. If we pick these, we obtain the desired checker-

board pattern, but at a reduced 100Hz. The bottom row

shows the projected intensities on a scene for these two

frames, showing the checkerboard pattern.

Therefore to obtain a desired pattern, we must first,

pick the static pattern to project (in the previous case

it was alternating squares of value 200 and 230) and

second, pick the frames to consider (such as frames

1 and 100 in the figure). Let the desired pattern be

APQR, which is essentially an R length sequence of

PxQ frames. In the previous example, this would be

A222 where the 2x2 pattern at R = 1 is a checkerboard

and the 2x2 pattern at R = 2 is the inverse checker-

board. Now consider the dithering codes, as arranged

in Figure 1(e). That image can be denoted as an ar-
ray Tij where i is the pattern index (0-255) and j is

the frame number in the periodic cycle (for 10kHz in

the figure, j varies from 1 to 100). We wish to extract

APQR from Tij .

First we must compute the static pattern to project.
Since there are PxQ slots, there are 255PQ choices. If we

can reduce these choices, by enforcing a spatial relation-

ship between the patterns (such as alternate squares
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Fig. 16 How reliable is the dithering code?: In the first column we show the temporal dithering observed at a pixel of intensity
250, captured at 10000Hz. Note that after a few frames the illumination code starts to repeat. We accumulated ten such patterns
and superimposed them on each other, shown in the center column. These qualitatively show that the dithering code is consistent. A

quantitative measure showing standard deviation is shown in the third column, and similar results hold for other pixel intensities at
different frame-rates.

must be identical), we have a reduced space. For the
checkerboard example, this is 2552. Every candidate in

such a reduced exponential space creates a pattern of
size PxQxN , where N is the periodicity, and for 10kHz

is N = 100.

From each candidate pattern of size PxQxN , we

must specify the R ≤ N frames from these such that

the resulting, smaller sub-set best matches APQR. Since

no two frames can share the same N , this takes (using
combination notation) nCr steps, if order in A is unim-

portant. This scenario is true for many applications
such as photometric stereo or illumination multiplex-
ing. If the order in A is important, then each selection

of r reduces the space of possible further frames. This

can be denoted by a summation of permutations given
by Σi ni

Cr starting with n1 = n. A brute force method

would be to calculate the SSD distance between APQR

and these candidates, and select the candidate with the
smallest error.

Detecting the illumination pattern: Consider

an active vision system for a dynamic scene where the

fastest object in the scene moves with an image-plane

speed v , the frame rate of the camera is f and n is
the minimum number of images required to extract

some scene property. For example in classical lamber-

tian photometric stereo, we require three images under

non-collinear distant lighting and n = 3. One way to

extend such techniques to dynamic scenes is to rapidly

vary the lighting such that the apparent object motion

in the time interval n
f
is zero. Since we would like the

object to appear to be static, we wish to minimize the
error e given by the object motion in the image plane,

e = v.
(

n
f

)

. To get effective performance we would ide-

ally like e to be zero or at least sub-pixel. Since we can-

not control the object motion v and, usually, the frame

rate f of the camera is fixed, we must vary n. However,

n depends on the requirement of the algorithm.

For example, in reconstruction algorithms, n must

be large enough to enable correspondence matching.

There exists a trade-off between the number of frames

needed for robust matching (larger n) and the ability
to reconstruct fast objects (smaller n). A simple sim-

ulation using the codes taken at 10000Hz is shown in

Figure 19, where the confusion matrices become less di-

agonal as the number of frames becomes low. One final

issue is the nCr selection step in the pattern design.

As shown in Figure 18, a 10000Hz camera reduces to a

100Hz system, since a checkered pattern was required.

Therefore the choice of pattern can render most of the

intensities in the dithering codes as ’useless’ and reduces

the effective frame rate of the system by the number

of correct matches found. Such wasted ditherings are

shown by the gaps between the yellow vertical lines in

the graph in Figure 18.

8 Discussion

We have demonstrated that illumination from DLP pro-

jectors shows flickering or dithering due to the effect of

the DMD chip and shown how to exploit this effect to

extend active vision techniques to dynamic scenes. We
conclude here by providing a brief discussion of some
trade-offs and limitations of our technique:

Speed vs. accuracy trade-off: One limitation of
our approach is the requirement of a high speed camera.
The acquisition speed of the camera and the effective

speed of performance achieved depend on the task at

hand and the signal-to-noise ratio of the captured im-
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Fig. 17 Confusion matrices for temporal dithering patterns: Here we show the confusion matrices for 255 emitted intensities,
for three distance metrics. Reddish colors imply a high value while blueish colors denote a lower value. Note that while the matrices are

mostly diagonal, there exist large off-diagonal patches of high correlation. This is very evident from the thresholded matrices, which
show strong off diagonal components. The smoothing effect of camera integration can be seen with the trend from top to bottom,
where low camera frame-rate smooths out differences creating stronger clustering, whereas high-frame rate creates stronger diagonal
responses. Overall, these matrices show that the dithering codes are independent, which is expected since these denote different
projected pixels. The profiles of three randomly selected pixel intensities are plotted, showing their differences.

ages. For instance, the decision to use 10 frames for

demultiplexing illumination or photometric stereo, or

to use 20 frames for structured light, was mainly in-

fluenced by the noise characteristics of the camera. A

more scientific exploration of this trade-off is required

to better understand the benefits of our approach to
each technique. A future avenue of research is to de-
sign 2D spatial intensity patterns that create temporal

dithering codes that are optimal for the task at hand.

Extensions to flutter-flash and other illumina-

tion modulations: We believe that the temporal illu-

mination dithering can be applied to a broader range

of methods including pixel-wise optical flow estimation

and tracking, projector defocus compensation and depth

from defocus [50] and spectral de-multiplexing. While
we exploit the temporal dithering already built-in to the
projector, we do not have a way of controlling it explic-

itly. Better control is obtained by using a more expen-

sive and special high speed MULE projector [20], per-

haps for applications where the strobing varies across

time, such as in Figure 20. Strobe lighting, fast LED

[27] and flash modulation are also effective in tempo-

rally varying (not dithering) the illumination.

Implementation Issues: The selection of the pat-

tern decides the frame-rate at which reconstruction can

occur. This can easily be done using the calibration

method of Figure 1. However, non-DMD factors such

as projector heat, time-cycle, color-wheel start position

etc seem to severely effect the calibration. Therefore, we

suggest that the pattern be selected and used during or

just previous to the experiment. Since we are dealing

with active vision techniques, ambient light may cause

issues with low dynamic range cameras. All our experi-

ments were performed in the dark, but DLP projectors

are bright enough to be detected in a variety of settings,
such as underground, underwater and outdoor scenes
at night. The most powerful DLP projectors for cin-

ema can project over several meters, and therefore our

techniques have application for a variety of long-range
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Fig. 18 Patterns selected by brute-force for temporal dithering at 10000Hz: If we desire a particular ordered pattern as
shown in the top row, where a single projector sends out a checkerboard pattern, we need to find two intensities to fit the pattern.
The profiles of the two selected intensities are shown, and they occur in the required configuration only twice, allowing scenes that

move only at 100Hz. The bottom row shows two frames of the pattern, projected onto a scene.

tasks. However, for applications requiring even longer
ranges, passive techniques should be used instead.

In summary, in this work, we have discussed how

to calibrate the dithering patterns from an off-the-shelf
DLP projector using a high-speed camera. We have no-
ticed that dithering is only observable with cameras

of frame-rates of 250Hz and higher, which are getting
more reasonably priced (currently around $1000). The
dithering codes have been shown to be both reliable,

but contain a redundancy that limits the types of pat-

terns that are possible. We demonstrated a brute-force

search method to design the slide that must be sent

to the projector, and discussed the implications for the

speed of the scene that can be handled by the system.

We have also shown applications of temporal dithering

on well-known active vision methods, such as structured

light reconstruction, illumination demultiplexing, pho-

tometric stereo and high-frequency strobe photography.

Fig. 20 DLP illumination as a programmable aperture:

On the left we show a balloon illuminated by a striped pattern
from a DLP projector. Each stripe dithers at a different rate.
We show two instances just after the balloon is burst, showing
the edge of the contracting balloon in two different positions. If
the pattern was uniformly set to either the first or second stripe
value, one of these events would have been missed.
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Fig. 19 Diagonality of confusion matrices as a function of frame-rate: We simulate reduced frame-rate by first sampling

the dithering code at 10000Hz and then dropping every 50th, 20th and 5th frame. Note that this excludes the smoothing effect of
camera integration, which further reduces the diagonality of the matrices. The figure shows that the fastest scene on which this code
is detectable is at 10000

20
= 500Hz.
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