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Abstract We introduce an approach to image retrieval and
auto-tagging that leverages the implicit information about
object importance conveyed by the list of keyword tags a
person supplies for an image. We propose an unsupervised
learning procedure based on Kernel Canonical Correlation
Analysis that discovers the relationship between how hu-
mans tag images (e.g., the order in which words are men-
tioned) and the relative importance of objects and their
layout in the scene. Using this discovered connection, we
show how to boost accuracy for novel queries, such that the
search results better preserve the aspects a human may find
most worth mentioning. We evaluate our approach on three
datasets using either keyword tags or natural language de-
scriptions, and quantify results with both ground truth pa-
rameters as well as direct tests with human subjects. Our
results show clear improvements over approaches that ei-
ther rely on image features alone, or that use words and im-
age features but ignore the implied importance cues. Over-
all, our work provides a novel way to incorporate high-level
human perception of scenes into visual representations for
enhanced image search.
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1 Introduction

Images tagged with human-provided keywords are a valu-
able source of data, and are increasingly available thanks
to community photo sharing sites such as Flickr, collabo-
rative annotation games (von Ahn and Dabbish 2004), on-
line captioned news photo collections, and various label-
ing projects in the vision community (Russell et al. 2005;
Deng et al. 2009). While a user’s intentions when tagging
may vary, often the keywords reflect the objects and events
of significance and can thus be exploited as a loose form of
labels and context.

Accordingly, researchers have explored a variety of ways
to leverage images with associated text—including learn-
ing their correspondence for auto-annotation of regions, ob-
jects, and scenes (Duygulu et al. 2002; Barnard et al. 2003;
Gupta and Davis 2008; Berg et al. 2004; Li et al. 2009;
Hwang and Grauman 2010b), using keyword search for in-
expensive dataset creation (Fergus et al. 2005; Li et al. 2007;
Schroff et al. 2007; Vijayanarasimhan and Grauman 2008),
and building richer image representations based on the two
simultaneous “views” for retrieval or clustering (Monay
and Gatica-Perez 2003; Hardoon and Shawe-Taylor 2003;
Quattoni et al. 2007; Bekkerman and Jeon 2007; Quack et al.
2008; Blaschko and Lampert 2008; Yakhnenko and Honavar
2009; Qi et al. 2009). Such methods have shown that learn-
ing with words and images together can yield stronger mod-
els.

However, existing approaches largely assume that image
tags’ value is purely in indicating the presence of certain
objects. As such, for retrieval applications, one scores the
query results according to the number of shared keywords
among the ground truth tags; similarly, for recognition ap-
plications, one scores the label predictions according to their
per-class accuracy. The problem with this assumption is that
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Fig. 1 Illustrative example to convey the role of relative importance in
image retrieval. The left image is a query, and the two rows on the right
are two possible sets of retrieval results. Both rows share similar num-
bers of total objects with the query. However, a human observer may
prefer the top row, since those images contain the same most notice-
able (“important”) objects as the query and roughly agree in terms of
those objects’ relative prominence. These contrasting retrieval results
suggest that a visual index centered solely on the presence of high-level
tokens (e.g., object categories) may fail to capture their perceived rela-
tive importance. Our main contribution is to show how to learn repre-
sentations that respect such cues, and to demonstrate its effectiveness
for content-based and cross-modal search

it ignores the relative importance of different objects com-
posing a scene, and the impact that this importance can have
on a user’s perception of relevance. In particular, we con-
sider an object’s “importance” in a scene to be directly pro-
portional to how likely it would be named early on by a hu-
man describing the image.

Figure 1 illustrates the role of perceived importance in
image retrieval. Suppose the leftmost image is a query, and
the two rows to its right are two sets of retrieved examples.
Although both rows of images have roughly similar numbers
of shared objects with the query, arguably the top row con-
tains better perceptual matches. Intuitively, we see that the
more prominent or noticeable objects of interest from the
query are better preserved. This simple example hints that
a retrieval system may be lacking if it were to care solely
about object presence.

Our goal is to discover the underlying importance cues,
and use them to auto-tag or retrieve images with the most
prominent objects or those that best define the scene. In-
terestingly, the abstract nature of the perceived importance
in our illustrative example suggests that neither traditional
measures of low-level saliency (e.g., Kadir and Brady 2001;
Bruce and Tsotsos 2005) nor statistical feature selection
techniques (e.g., the well known tf-idf weighting typically
used in information retrieval Baeza-Yates and Ribeiro-Neto
1999) would be sufficient to capture it.

How can we learn the relative importance of objects and
use this knowledge to improve image retrieval? Our ap-
proach rests on the assumption that humans name the most
prominent or interesting items first when asked to sum-
marize an image. Thus, rather than treat tags as simply a
set of names, we consider them as an ordered list convey-
ing useful cues about what is most notable to the human

viewer. Specifically, we record a tag-list’s nouns, their abso-
lute ordering, and their relative ranking compared to their
typical placement across all images. We propose an un-
supervised approach based on Kernel Canonical Correla-
tion Analysis (KCCA) (Akaho 2001; Fyfe and Lai 2001;
Hardoon et al. 2004) to discover a “semantic space” that cap-
tures the relationship between those tag cues and the image
content itself, and show how it can be used to more effec-
tively process novel text- or image-based queries or auto-
tagging requests.

The semantic space from KCCA is a common repre-
sentation for both modes of the data constructed such that
the correlation between projections from each modality on
the same instance (image+tag cues) is maximized. Having
learned the desired connections on a batch of human-tagged
images, we project all database images into the semantic
space. Then, to process a novel keyword-based or image-
based query, we project the input onto the semantic space,
and find those database items that are nearest. Because we
can project data into the learned representation from ei-
ther visual or text-based features, our method supports three
forms of retrieval: content-based image retrieval, keyword-
based image search, and automatic tag generation for novel
images.

Unlike traditional “appearance only” retrieval systems,
we expect our approach to find images that have more se-
mantic (object-level) relevance to the query. Unlike exist-
ing approaches that learn from both words and images (in-
cluding prior uses of KCCA: Hardoon and Shawe-Taylor
2003; Blaschko and Lampert 2008; Yakhnenko and Honavar
2009), we expect to find images that better capture the hu-
man’s concept of importance and layout. See Fig. 2.

To validate this idea, we perform a series of experiments
with three different datasets of images from consumer photo
collections and benchmark recognition data. To learn the se-
mantic space representation, we use PASCAL (Everingham
et al. 2007) and LabelMe (Russell et al. 2005) images and
gather text annotations from workers on Mechanical Turk.
Posing tasks to test the different types of retrieval supported
by our method, we compare to alternative methods that ei-
ther use only the visual descriptions, or else use the text dur-
ing learning but neglect the implicit importance cues. Fur-
thermore, we perform experiments with hundreds of human
subjects who are asked to judge the extent to which each
method returns images that share the important objects of
an image query, thereby directly testing the intended impact
our learned representation on perceived importance.

Our main contributions are: (1) an approach to learn
the relative importance or configuration of objects that re-
quires no manual supervision beyond gathering tagged im-
ages, and (2) experiments demonstrating that the learned se-
mantic space enhances retrieval, as judged by both quanti-
tative measures of object prominence derived from human-
provided data as well as experiments with human subjects.
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Fig. 2 Main idea and contrasts with alternate representations. (a) Most
content-based retrieval methods search purely in the visual feature
space; this allows one to retrieve similar-looking examples for a query
(bottom left image/denoted with black dots), but can result in seman-
tically irrelevant retrievals (e.g., similar colors and edges, but differ-
ent objects). (b) Some work considers ways to learn a Visual+Words
“semantic space” (e.g., with KCCA), which helps narrow retrievals to
images with a similar distribution of objects. However, the representa-

tion still lacks knowledge as to which objects are more important to a
human viewer. (c) Our idea is to learn the semantic space using the or-
der and relative ranks of the human-provided tag-lists. As a result, we
retrieve not only images with similar distributions of objects, but more
specifically, images where the objects have similar degrees of “impor-
tance” as in the query image. For example, the retrieved image on the
bottom right, though lacking a ‘tree’, is a better match due to its focus
on the cow

2 Related Work

Our approach most relates to work in image auto-annotation,
learning from multiple input channels (text and imagery),
and models of human attention and saliency, as we overview
in the following. For an overview of the wide area of
content-based retrieval, please see reviews by Datta et al.
(2008) and Smeulders et al. (2000).

One way to exploit tagged or captioned photos is to
recover the correspondence (or “translation”) between re-
gion descriptors and the keywords that appear alongside
them (Duygulu et al. 2002; Berg et al. 2004). The idea
is to use the collection of loosely paired data to help re-
solve ambiguities and discover the mapping that is most
consistent. Related approaches develop models for the joint
distribution of words and regions (Barnard et al. 2003;
Monay and Gatica-Perez 2003; Lavrenko et al. 2003) and
scenes (Li et al. 2009). While nearly all such methods fo-
cus on the connection between nouns and image regions,
some recent work further explores how exploiting predicates
(e.g., isAbove(A,B)) can give even stronger cues tying the
two data views together (Gupta and Davis 2008). Having
learned such a model, one can predict the labels for new im-
age examples. Tackling a similar problem in a different way,
Farhadi et al. (2010) show how to generate short descrip-
tive sentences consisting of an object-action-scene triple by
evaluating the similarity between a sentence and image.

Such methods are appealing because they capitalize on
existing sources of multi-modal data, thereby leveraging a
form of “free” (though noisy) labeled instances. Further-
more, their ability to predict text associated with novel ex-
amples is valuable for semantically meaningful keyword
image search. Our work shares these motivating factors

with the above cited techniques. However, beyond learn-
ing the association between visual content and the appro-
priate words, we aim to prioritize their implied importance
according to a human viewer. Furthermore, previous meth-
ods that first decompose images into regions risk missing the
true correspondences due to inevitable flaws in segmentation
techniques. In contrast, we consider image-level descriptors
together with the complete textual description or list of key-
words, which allows us to bypass committing to a bottom-up
division into regions.

As such, our approach also relates to methods that learn
a new image representation (or similarly, a distance func-
tion) that is bolstered by having observed many examples
together with relevant text. A number of learning strategies
have been explored in the literature along these lines, in-
cluding variants of metric learning (Qi et al. 2009; Maka-
dia et al. 2008), transfer learning (Quattoni et al. 2007),
matrix factorization (Loeff and Farhadi 2008), and random
field models (Bekkerman and Jeon 2007). Most relevant to
our method, some previous work has specifically consid-
ered KCCA for this purpose (Hardoon and Shawe-Taylor
2003; Yakhnenko and Honavar 2009; Blaschko and Lampert
2008). The exact details of the objective functions differ, but
in all such cases the underlying idea is to choose parameters
in the new visual representation such that labels or similarity
constraints derived from the text space are also preserved.

Notably, however, previous methods limit the text de-
scription to simple bag-of-words—capturing only “what”
was said. In contrast, our key insight is that rich contextual
information is available in “how” human-provided tags or
descriptions are given, specifically in their order, rank, and
proximity. Thus, whereas prior work learning representa-
tions with accompanying text associates image content with
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an appropriate word or distribution of words (Qi et al. 2009;
Makadia et al. 2008; Quattoni et al. 2007; Loeff and Farhadi
2008; Bekkerman and Jeon 2007; Hardoon and Shawe-
Taylor 2003; Yakhnenko and Honavar 2009), the semantic
space we discover also preserves the relative significance of
the objects present. We expect this difference to be most use-
ful in retrieval applications where one wants to access scenes
that are perceptually similar though not visually identical,
or in auto-tagging applications where very compact focused
descriptions are required.

The problem we consider prompts several questions:
what objects do people notice most in an image? what
do they tag first? and do they generally agree on what is
most important? In the image-based ESP “game with a pur-
pose”, von Ahn and Dabbish (2004) show that pairs of peo-
ple who do not know each other can often quickly agree on
the right set of words to describe an image. The work gives
strong evidence that there is some consistency in how peo-
ple attempt to most compactly describe an image, which is
an underlying assumption of the representation we define.

In other studies, researchers have found that there is a
close relationship between the relative semantic importance
or saliency of an object, and in what order a user tags
the image (Spain and Perona 2008; Einhauser et al. 2008;
Elazary and Itti 2008). On the one hand, low-level cues
such as those used in interest operators often coincide with
objects people find interesting Elazary and Itti (2008). On
the other hand, other studies demonstrate that the top-down
saliency of recognized objects clearly directs a viewer’s at-
tention Einhauser et al. (2008).

Spain and Perona (2008) give a specific definition for im-
portance: an object’s importance in an image is the prob-
ability that it would be named first by a viewer. The au-
thors devise a model for this concept, and demonstrate that
one can predict the importance of named objects in an
image via regression on some intuitive image cues (e.g.,
scale, saliency, etc.). Their premise of some objects being
more important than others motivates our idea, and, like
the ESP game results, their empirical findings about agree-
ment across annotators support the feasibility of learning
from human-provided tags. However, the system developed
in Spain and Perona (2008) assumes that all examples (in-
cluding the novel test inputs) are already hand-segmented
and labeled by object category, which prevents its use for
the retrieval applications considered in this work. In con-
trast, our algorithm uses unsegmented, unlabeled data for
both training and testing.

We first began exploring the connection between implicit
tag cues and object localization parameters for the sake of
object detection (Hwang and Grauman 2010b). In that work
we tackle the inverse problem from Spain and Perona: given
a novel test image, its tags are used to prime an object de-
tector. There we train with images for which both tags and

ground truth bounding boxes are available, learning a prior
for the scales and positions of the named objects given a set
of rank and proximity cues extracted from the tag words.
The results indicate that one can exploit the tags as context
to know “where to look” for a given object. This in turn
yields faster object detection, since we can abandon tradi-
tional sliding window search and instead classify windows
in the order indicated by the localization prior. Similarly, it
allows more accurate object detection, since we can inte-
grate the prior with the detector response to refine the clas-
sifier’s responses based on image content alone. See Hwang
and Grauman (2010b) for details.

In this work we also consider ways to elicit the implied
information in textual descriptions of images, and, simi-
lar to Spain and Perona (2008) and Hwang and Grauman
(2010b), we are interested in the order in which people name
objects in a scene. However, our target application is quite
distinct. Our goal is to provide more accurate image retrieval
by virtue of learning about object importance, not to explic-
itly detect objects (Hwang and Grauman 2010b) or sort a
list of pre-recognized objects (Spain and Perona 2008). Fur-
thermore, whereas we separately learn an object localization
priming distribution from tag data in Hwang and Grauman
(2010b), here we instead learn a single shared representa-
tion for the tag and visual data. This is essential to allowing
cross-modal retrieval. Finally, our approach requires signif-
icantly less supervision than Spain’s work or our own work
in detection. During training it only needs access to tagged
images, and at query time it requires only an image or a set
of tags (depending on whether one performs image-to-image
retrieval or a tag-to-image retrieval).

To our knowledge, no previous work attempts to improve
image retrieval based on importance-based semantics au-
tomatically gleaned from tagged images. This article ex-
pands upon our previous conference publication (Hwang
and Grauman 2010a). In this version, we add an entirely
new set of experiments on a new dataset consisting of im-
ages with natural language captions (Sect. 4 and Figs. 7, 16,
and 19), and perform a new human subject experiment to
validate that our method can indeed better find the images
with the query’s important objects as perceived by humans
(Sect. 4.5.1, and Figs. 14, 13, and 15). In addition, we add
several new figures to illustrate the problem and our algo-
rithm (Figs. 1, 3, 4, and 8), provide additional discussion of
the results and related work, and insert new qualitative im-
age retrieval results (Figs. 10 and 11).

3 Approach

Our goal is to provide an image retrieval and auto-tagging
system that accounts not only for the objects present in the
images, but also their relative significance within the scene.
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If it works well, then a user’s query should map to images
where the most important components of the scene are pre-
served, and similarly, auto-generated tags should name the
most defining objects first. Recall from the introduction that
we will consider the more “important” objects to be those
that a human would mention earlier when asked to describe
the contents of an image.

A naive approach might be to run a bank of object de-
tectors on all database images, and then filter retrieval re-
sults according to the predicted objects’ sizes and positions.
However, such a technique would entail manually specify-
ing global rules about preferred scales and knowing what
preset list of detectors is relevant, and would quickly be-
come unaffordable for large databases.

Instead, we propose a lightweight approach that directly
learns the implicit cues about importance from human-
tagged image data. First, we collect images of the sort an
ordinary user might want to search and organize based on
content. Then, we obtain tags for these photos via online an-
notators, whom are simply asked to name the objects in the
scene, but with no requirements as to the number or order in
which those tags should be provided. We treat the ordered
tag words and the image’s visual descriptors (color, local
features, etc.) as two views stemming from the common se-
mantics of the image content. To learn a representation that
exploits both views and allows us to compute similarities
across the two views (i.e., so that we may support not only
image-to-image retrieval, but also tag-to-image retrieval or
image-to-tag auto-annotation), we employ Kernel Canonical
Correlation Analysis (KCCA). This algorithm essentially
learns two sets of basis functions, one per view, such that
correlation is maximized for projections of either view of
the same instance. Finally, at test time, we project the novel
image or tag query onto this learned semantic space, and
rank the database images according to their semantic feature
similarity.

Our approach makes two key assumptions: (1) people
tend to agree about which objects most define a scene, and
(2) the significance and prominence of those objects in turn
influence the order in which a person provides image tags.
Though difficult to state in the absolute, a number of previ-
ous studies lend support for both points (von Ahn and Dab-
bish 2004; Spain and Perona 2008; Einhauser et al. 2008;
Elazary and Itti 2008; Tatler et al. 2005; Hwang and Grau-
man 2010b), as does our own experimental data.

We next define the features and KCCA algorithm (Sects.
3.1 and 3.2), and then describe how we use the combined
semantic representation to process three types of queries
(Sect. 3.3).

3.1 Tag and Image Features

We examine three types of tag-based features, which to-
gether capture the objects present as well as an indirect sig-
nal about their inter-relationships in the scene.

3.1.1 Word Frequency

This feature is a traditional bag-of-words. It records which
objects are named, and how many times. Supposing V to-
tal possible words in the text vocabulary, each tag-list is
mapped to an V -dimensional vector

W = [w1, . . . ,wV ], (1)

where wi denotes the number of times the i-th word is men-
tioned in the list. For tag lists, usually counts are simply 0 or
1. This feature serves to help learn the connection the low-
level image features and the objects they refer to, and has
been used previously in applications of KCCA (Hardoon
and Shawe-Taylor 2003; Yakhnenko and Honavar 2009;
Blaschko and Lampert 2008).

The motivation for using word frequency is to learn from
both which objects were and were not mentioned. Several
objects mentioned together clearly give some scene context,
as well as a probable constraint on relative scales. For ex-
ample, visualize an image that might prompt the descrip-
tion “computer”, “mouse”, “stapler”, versus one that might
prompt the description “computer”, “chairs”, “desk”; we get
a cue about the image field of view and the focus point
within the scene. In addition, given the tendency to name
prominent or large objects in favor of smaller ones Spain and
Perona (2008), this feature can help us discover the connec-
tion between the “right” visual features when learning the
semantic space.

3.1.2 Relative Tag Rank

This feature encodes the relative rank of each word com-
pared to its typical rank:

R = [r1, . . . , rV ], (2)

where ri denotes the percentile of the i-th word’s rank rel-
ative to all its previous ranks observed in the training data.
Specifically,

ri = 1 −
∑J

k=1 wik
∑N

k=1 wik

, (3)

where wik is the number of times the i-th word has the k-
th absolute rank in the training instances, J = min(ai,N),
where ai refers to the average absolute rank of the i-th word
in the given image’s tag-list.1 In short, the higher the value
of ri , the more this word tops the list relative to where it

1It is the average because the same word may appear more than once
in some tag-lists. We use N = 50 as a cap on the maximum absolute
rank, in order to ignore tags that appear late in unusually long lists. On
average most have only 5–23 tags; see Sect. 4.2.



Int J Comput Vis (2012) 100:134–153 139

typically occurs in any other tag-list; if absent, the percentile
is 0.

The motivation for using tag rank as a feature is to cap-
ture the correlation between order of mention and objects’
prominence within the scene. The sequence of the words
given by a human tagging an image is revealing; when form-
ing a compact description of an image we are influenced
by objects’ scales, centrality within the image, significance,
and other attentional cues (Einhauser et al. 2008; Tatler et
al. 2005; Elazary and Itti 2008; Wolfe and Horowitz 2004;
Spain and Perona 2008). In particular, people exhibit a cen-
tral fixation bias (Tatler et al. 2005) which means a priori we
may tend to mention the central object framed in the shot
early in the tag list. The purpose of using the percentile rank
rather than the raw rank is to distinguish those words (ob-
jects) that may be atypically prominent.

3.1.3 Absolute Tag Rank

This feature encodes the absolute rank of each word:

A =
[

1

log2 (1 + a1)
, . . . ,

1

log2 (1 + aV )

]

, (4)

where ai denotes the average absolute rank of the i-th word
in the tag-list. Note that A will be 1 if the object is mentioned
first, and will drop exponentially towards 0 for lower ranked
or absent words.

This feature has a similar motivation to relative rank de-
fined above. However, in contrast to the relative rank, it more
directly captures the importance of each object compared to
the others in the same scene. We expect the relative rank to
be more indicative of the scale and position of each object,
while we expect the absolute rank to be more indicative of
its semantic importance for that image instance.

For example, suppose an image has the following tag list:
{car, stop sign, person, tree}. Here, ‘stop sign’ and ‘person’
occupy the second and third place in the list, respectively,
and thus will have higher absolute rank than ‘tree’, which
appears fourth. However, if the person and stop sign tags
typically occur first in the training data, and tree typically
occurs seventh, then the relative rank of tree would be higher
than the relative rank for the other two. The relative rank
essentially normalizes for the inherent semantic importance
of each object (i.e., ‘person’ is often tagged early no matter
what), and so our two variants of rank give slightly different
information.

3.1.4 Visual Descriptors

We extract three visual features for every image: a Gist de-
scriptor, a color histogram, and a bag-of-visual-words his-
togram.

The Gist is a 512-dimensional vector recording the
pooled steerable filter responses within a grid of spatial cells
across the image (Torralba 2003). It captures the total scene
structure.

The color histograms capture the global distribution of
colors, and can also be useful to describe overall scene type
(e.g., green vegetation, gray urban areas, multi-colored in-
door scenes, etc.). We use 64-dimensional HSV color his-
tograms, with 8, 4, and 2 bins for hue, saturation, and value,
following Blaschko and Lampert (2008).

The bag-of-words (BOW) summarizes the frequency
with which each of a set of prototypical local appearance
patches occurs; we use DoG interest point selection and
SIFT descriptors (Lowe 2004), and form 200 words with
k-means. These local features are useful to capture the ap-
pearance of component objects, without the spatial rigidity
of Gist.

3.2 Kernel Canonical Correlation Analysis

Given the two views of the data, we are ready to construct
their common representation. Canonical Correlation Analy-
sis (CCA) uses data consisting of paired views to simulta-
neously find projections from each feature space such that
correlation between projected features originating from the
same instance is maximized (Hotelling 1936). The algo-
rithm learns two semantic projection bases, one per descrip-
tor type.

Formally, given samples of paired data {(x1, y1), . . . ,

(xN , yN)}, where each x ∈ R
m and y ∈ R

n denote the two
views, the goal is to select directions wx ∈ R

m and wy ∈ R
n

so as to maximize the canonical correlation:

w∗
x,w

∗
y = arg max

wx,wy

Ê[〈x,wx〉〈y,wy〉]
√

Ê[〈x,wx〉2]Ê[〈y,wy〉2]

= arg max
wx,wy

wT
x Cxywy

√
wT

x CxxwxwT
y Cyywy

, (5)

where Ê denotes the empirical expectation, Cxy denotes the
between-sets covariance matrix, and Cxx and Cyy denote
the auto-covariance matrices for x and y data, respectively.
Note that in our case, the x view is the visual cue, and the
y view is the tag-list cue. The solution can be found via a
generalized eigenvalue problem. The CCA method has of-
ten been used in cross-language information retrieval, where
one queries a document in one language to retrieve relevant
documents in another language (Li and Shawe-Taylor 2006).

Kernel CCA is a kernelized version of CCA. Given kernel
functions for either feature space:

kx(xi, xj ) = φx(xi)
T φx(xj ),

ky(yi, yj ) = φy(yi)
T φy(yj ),

(6)
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Fig. 3 Schematic illustrating Kernel Canonical Correlation Analysis
(KCCA) for our two-view data consisting of visual and tag-based de-
scriptors. The projections learned from the paired training instances
map data from either space into a common “semantic space”, such that
the correlation between the two views is maximized. Here the symbol
shapes (star, square, etc.) denote a single instance

one seeks projection vectors in the kernels’ implicit feature
spaces, which may only be accessed through kernel function
evaluations. The solution for wx and wy must lie in the span
of the N training instances φx(xi) and φy(yi):

wx =
∑

i

αiφx(xi),

wy =
∑

i

βiφy(yi),

(7)

where 1 ≤ i ≤ N .
The objective in the kernelized form is thus to identify

the weights α,β ∈ R
N that maximize

α∗, β∗ = arg max
α,β

αT KxKyβ
√

αT K2
xαβT K2

yβ
, (8)

where Kx and Ky denote the N × N kernel matrices over a
sample of N pairs. This can also be formulated as an eigen-
value problem (with additional regularization modifying the
above to avoid degenerate solutions), and the top T eigen-
vectors yield a series of bases (α(1), β(1)), . . . , (α(T ), β(T ))

with which to compute the T -dimensional projections for an
input x or y. See Hardoon et al. (2004) for more details.

We use χ2 kernels for all component visual and tag-based
features:

Kχ2(hi, hj ) = exp

(

− 1

2Ω

d∑

k=1

(hi(k) − hj (k))2

hi(k) + hj (k)

)

, (9)

where Ω denotes the mean of the χ2 distances among the
training examples, and d denotes the dimensionality of the
descriptor. We average the Kχ2 kernels for the image fea-
tures, i.e., kx(xi, xj ) is an average of the respective Kχ2

kernels for Gist, color, and BOW. For the tag-based kernel

ky(yi, yj ), we average the Kχ2 kernels for our tag features
R and A. We use only W for the Visual+Word baseline (see
Sect. 4).

Figure 3 illustrates how the learned KCCA kernel-space
projections map data from either the visual descriptor space
or the tag-based feature space into a common semantic
space. Note that once this space has been learned, we can
project novel data from either view independently into the
shared space.

3.3 Processing Novel Queries

KCCA provides a common representation for the visual and
tag features. Given a novel visual input qx , we project onto
a single basis specified by α as:

wT
x φx(qx) =

N∑

i=1

αiφx(xi)
T φx(qx)

=
N∑

i=1

αikx(xi, qx). (10)

Thus projecting a novel image descriptor requires evaluating
the kernel function on it and those of the N training points
which have nonzero weights. Similarly, the projection of a
novel tag-list input qy is given by:

wT
y φy(qy) =

N∑

i=1

βiky(yi, qy). (11)

The final projection of qx or qy onto the T -dimensional se-
mantic space is formed by the vector of these values for
α(1), . . . , α(T ) or β(1), . . . , β(T ), respectively.

After projecting all database images onto this learned se-
mantic space, there are three tasks we can perform, as we
outline in the following and depict in Fig. 4.

3.3.1 Image-to-Image Retrieval

The first task is content-based image retrieval. Given a novel
query image, we use its image features only (φx(x)) to
project onto the semantic space, and then sort all database
images relative to it based on their normalized correlation in
that space. Figure 4(a) illustrates the retrieval process.

Compared to the results we would expect using the
database’s image features alone to rank the data, the results
should be favorably skewed towards showing scenes with
similarly relevant objects when using our approach.

3.3.2 Tag-to-Image Retrieval

The second task is keyword-based image retrieval. Given a
novel tag-list query (φy(y)), we project onto the semantic
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Fig. 4 Illustration of the three types of query tasks performed by our approach. See text for details

space, and again sort the database images by correlation.
Figure 4(b) illustrates the retrieval process.

Compared to traditional keyword-based image search, we
can now expect to retrieve images where not only are objects
shared with the query, but they are also of similar relative
importance.

3.3.3 Image-to-Tag Auto-Annotation

The third task is auto-annotation. Given a novel query im-
age, we project onto the semantic space, identify its K near-
est examples among those that are tagged, and merge their
keywords to create an output tag-list. Specifically, we merge
all tag occurrences on the K retrieved tag-lists, and then re-
order the tags by their frequency to produce the output. Fig-
ure 4(c) illustrates the auto-annotation process.

Compared to existing approaches that auto-annotate by
predicting labels for each blob in the image, this strategy at-
tempts to provide the most important tags based on all avail-
able image features.

3.3.4 Computational Cost

The primary offline training cost is solving the eigenvalue
problem for KCCA. Note that the image database may be
a superset of the N images used to train KCCA, and need
not be fully tagged, since any novel untagged image can be
projected onto the learned semantic space.

To retrieve the nearest neighbors given a query for any
of the three query types outlined above, we simply compute
a linear scan of the database. A faster sub-linear time im-
plementation could also easily be incorporated, for exam-
ple, with Kernelized Locality Sensitive Hashing (Kulis and
Grauman 2009).

4 Experimental Results

In this section, we apply our method for each of the three
scenarios outlined above. The primary goal of our exper-
iments is to demonstrate that retrieval quality and auto-
annotation accuracy can be enhanced by accounting for the
relative importance of objects. We compare our algorithm to

the most relevant baseline approaches—including an alter-
native KCCA baseline that uses unordered keywords—and
show results on three different challenging datasets.

4.1 Baselines

We compare our approach to three baselines:

– Visual-only, which ranks images relative to an image
query according to their visual descriptors only,

– Word-only, which ranks tagged images relative to a key-
word query according to tag similarity only,

– Word+Visual, a strong baseline that builds a KCCA
semantic space using the image cues plus a bag-of-
keywords W . This approach is very similar to multi-view
retrieval frameworks developed in previous work (Yakhnenko
and Honavar 2009; Hardoon and Shawe-Taylor 2003),
and therefore is a good representative of how existing
techniques would integrate words when learning a visual
representation.

While a wealth of image retrieval techniques have been
explored in the literature (Datta et al. 2008; Smeulders et al.
2000), to our knowledge none is concerned with retrieving
images that share the most important objects with a query,
nor do any previous methods aim to auto-tag in the appro-
priate order so as to mimic human-provided tag-lists. This
is the key novelty of our problem definition and approach.
Thus, comparisons to numbers reported in the literature for
generic CBIR tasks are not suited to support our claims, and
the baselines listed above are the most important natural al-
ternatives to test in order to validate our idea.

To allow the most informative comparisons, for all meth-
ods we use the exact same visual features and kernels. Our
method uses R and A together with the visual cues.

4.2 Datasets

We consider three datasets: (1) the PASCAL VOC 2007 im-
ages (Everingham et al. 2007) with keyword tags collected
on Amazon’s Mechanical Turk, (2) LabelMe images (Rus-
sell et al. 2005) with keyword tags collected on Mechanical
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Fig. 5 Example PASCAL images with keyword tags collected on Mechanical Turk. Note how the relative importance of the objects affects the
order of the tags, as in the fourth example, where the image depicts an atypical scene

Fig. 6 Example LabelMe images with keyword tags collected on Mechanical Turk. Unlike the PASCAL images, the images in this dataset are
mostly scenes with no clear central object; here the lower level saliency often plays a more crucial role, such as in the third example above

Fig. 7 Example PASCAL images with natural language descriptions collected on Mechanical Turk

Turk, and (3) the PASCAL VOC 2007 images with natu-
ral language sentences collected on Mechanical Turk. See
Figs. 5 through 7 for examples from each dataset. The PAS-
CAL images in particular are a realistic representation of
the sort of images an ordinary user might want to search and

organize based on content, since they originate from user-
uploaded content on Flickr.

For the first PASCAL dataset, we use the VOC train and
test splits as our database (5011 images) and query exam-
ples (4952 images). We use the tags we collected in Hwang
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and Grauman (2010b) from 758 workers on Mechanical
Turk. To collect those tags, we posted each image online
with a nearby textbox, and the anonymous workers were in-
structed to name the objects or items in the image. For qual-
ity control, we disabled the textbox until the image had been
viewed by the tagger for 7 seconds, and required him/her
to submit after 30 seconds had passed. We refine the re-
sulting tags using the LabelMe toolbox, correcting spelling
errors and resolving synonyms. PASCAL contains fairly
object-centric instances, with relatively few tagged objects
per image—5.5 tags on average among V = 399 total words.
See Fig. 5 for example images.

The LabelMe images contain broader scenes (often of-
fices and streets), with many more objects per image. We use
the 3825 images compiled in Hwang and Grauman (2010b)
for which there are at least 10 tags (on average each has
23). We report results for five 50–50 random database-query
splits. See Fig. 6 for example images.

To test the PASCAL images with natural language de-
scriptions, we use Mechanical Turk to gather sentences from
workers on a randomly selected subset of 500 images. In
contrast to the above tag collection, in this case we instruct
the workers to give a detailed explanation of the scene with-
out any other restrictions. We manually correct misspellings
and resolve synonyms using the same tools as above; fur-
ther, we remove all articles, pronouns, and prepositions from
the vocabulary in order to focus the representation on key
nouns, verbs, and adjectives. We report results for ten 60–40
random database-query splits. See Fig. 7 for example im-
ages. The tag-list data and natural language caption data we
collected are publicly available.2

4.3 Implementation Details

We use the KCCA code provided by Hardoon et al. (2004).3

We fix the learning rate μ = 0.5 and set the regularization
parameter by maximizing the difference in spectrums of the
kernels for each view, between samples of actual and ran-
dom image-tag pairs. Specifically, we set the regularization
parameters κx and κy for the image and tag views, respec-
tively, by maximizing the following:

κ∗
i = arg max

κi

‖λRi
(κi) − λi(κi)‖2, (12)

where λi is the spectrum of the kernel associated for each
view, and λRi

is the spectrum of the same kernel matrix with
random permutation. See (Hardoon et al. 2004) for details.

We fix T = 20 for all KCCA projections. In initial in-
formal tests, we did not find the overall results to be very
sensitive to the semantic space dimensionality.

2http://vision.cs.utexas.edu/projects/importance.
3http://www.davidroihardoon.com/Research/Code.html.

4.4 Evaluation Metrics

We score the methods using the Normalized Discounted Cu-
mulative Gain at top k (NDCG@k), a measure commonly
used in information retrieval (Jarvelin and Kekalainen
2002). It reflects how well a computed ranking agrees with
the ideal (ground truth) ranking, and more strongly empha-
sizes the accuracy of the higher ranked items. It is defined
as:

NDCG@k = 1

Z

k∑

p=1

2s(p) − 1

log(1 + p)
, (13)

where Z is a query-specific normalization term, p cycles
over the top k ranks, and s(p) denotes the reward at rank
position p. The score ranges from 0 to 1, where 1 indicates
perfect agreement.

We define reward functions for two variants of “ideal”
rankings, both intended to reveal how well the retrievals ex-
hibit the query’s important objects. The first is object counts
and scales, where the ideal ranking would sort the images
based on the correlation of the presence and relative scales
of all objects named in the query’s ground truth tag-list. This
reward function is defined as:

s(p) = 1

2

( 〈Sp,Sq〉
‖Sp‖ ‖Sq‖ + 〈Wp,Wq〉

‖Wp‖ ‖Wq‖
)

, (14)

where Sp and Wp are V -dimensional vectors recording the
scale (normalized by image size) and count of each object
within the p-th retrieved image, respectively, and Sq and Wq

are the same for the query.
The second reward function conveys tag rank similarity.

For this scoring, the ideal ranking would sort the images
based on the agreement between the (withheld) ground truth
ordered tag-list features:

s(p) = 1

2

( 〈Rp,Rq〉
‖Rp‖ ‖Rq‖ + 〈Ap,Aq〉

‖Ap‖ ‖Aq‖
)

, (15)

where the subscripts again refer to the p-th ranked examples
and the query image. Note that this metric will reveal to what
extent the retrieval results are ranked in a way human taggers
would similarly tag them with ordered importance.

We stress that in either reward function, the evaluation
relies on ground truth information that remains hidden to
our algorithm when processing the novel queries.

The two metrics offer complementary insight into the re-
trieval results. While the object counts and scales directly
uses the objective presence and prominence of each object
in a pair of images to gauge their desired similarity, the tag
similarity scoring directly uses the more subjective human-
provided ordered lists to gauge the desired similarity. For ex-
ample, consider the images in Fig. 8. The object counts and

http://vision.cs.utexas.edu/projects/importance
http://www.davidroihardoon.com/Research/Code.html


144 Int J Comput Vis (2012) 100:134–153

Fig. 8 The two reward functions used to score NDCG@k account for
instances’ agreement according to either the ground truth object pres-
ence and relative scales (top), or the ground truth tag ordering (bottom)

scales scoring (a) would consider the cow instances to be
very similar, but the lack of a person in the first view would
be penalized. The tag rank similarity scoring (b) would pe-
nalize the differences more because of the differing ‘cow’
ranks assigned in either instance, as well as the additional
objects mentioned in the second instance.

Finally, as a third measure of accuracy, we ask human
subjects to subjectively evaluate results for the image-to-
image retrieval task. This allows us to directly study to what
extent our method and the baselines retrieve images that a
human viewer perceives as capturing the most important el-
ements. We discuss this metric in more detail in the latter
part of Sect. 4.5.1.

4.5 Image-to-Image Retrieval Results

First we show that our approach better retrieves images
matching the important objects in a query. We first analyze
performance when learning the semantic space with tagged
images (Sect. 4.5.1), and then we show results when learn-
ing with images and full sentence captions (Sect. 4.5.2).

4.5.1 Learning with Tagged Images

For results learning from tagged data, we first quantify ac-
curacy in terms of the information retrieval metric NDCG,
and then consider a subjective human evaluation.

Performance evaluated with NDCG@k metrics Figure 9
shows the results for our method and the two baselines
on the tagged PASCAL and LabelMe datasets. While the
Word+Visual semantic space improves over the Visual-only
retrievals, our method outperforms both methods, in terms
of the object presence and scales (left plots), and the tag-list
agreement (right plots).

Our method’s gains are quite significant on the challeng-
ing PASCAL data, which makes sense given that the images
contain a clearer mix of more and less prominent objects,

and there is wider variance in a given category’s importance
across images. Looking at the k = 30 top-ranked images (the
number of images one might fit in a Web page search return),
we see our method yields a 39% improvement in NDCG
over the Visual-only result, and about a 17% gain over the
Word+Visual semantic space.

In comparison, LabelMe’s broad scenes make it less ap-
parent which objects are most important, and instances of
the same scene type contain less variance in composition
(e.g., office images tend to have the computer in a similarly
prominent role). This allows the traditional semantic space
using unordered words to be almost as effective—especially
under the tag rank similarity scoring (see bottom two plots
in Fig. 9). In other words, we do not expect our approach
to offer an advantage when the objects play a fixed role in
the scene, not varying in their importance. The example re-
trievals in Fig. 11 also illustrate this point.

Looking more closely at the plots, we see that the
NDCG@k values for the object counts and scales reward
function (left two plots) show a decreasing trend. What hap-
pens is that many of the lower ranked examples (higher val-
ues of k) will have a score of zero for each of the test ex-
amples, whereas the ideal ranking method does not. This is
because all three methods use background visual informa-
tion, yet the PASCAL dataset is only labeled for a subset of
the foreground objects. On the other hand, for the tag rank
similarity reward function (right two plots) there is a grad-
ual increase in NDCG. This is because the tags provided
by MTurk workers on the PASCAL images are generally
more complete than the PASCAL bounding boxes them-
selves, and so all methods accumulate more of the relevant
database instances for increasing k.

In all plots, we notice that for very small values of k

the three methods give similar results, since the first few
matches tend to be very close visually and semantically. We
illustrate this effect further in the qualitative results below.

Figures 10 and 11 show example image retrieval results
that illustrate our method’s advantages on either dataset.
Overall, we see in these examples how the Visual-only base-
line can retrieve image instances that closely match the
holistic appearance of the query, whereas the Words+Visual
baseline often enhances those results to focus on a similar
distribution of objects as present in the query. In contrast,
our technique tends to retrieve images that further prioritize
the most prominent objects from the query.

For example, in the PASCAL results in Fig. 10, the third
row shows a query that is a black and white image of a
bus on the street. While other objects also appear in the
query, the bus is large and dominates the semantics of the
image. The Visual-only baseline retrieves images with sim-
ilar black and white texture patterns, but are otherwise lack-
ing in semantic agreement.4 The Word+Visual baseline fo-

4Recall that color is one of the visual features.
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Fig. 9 Image-to-image retrieval
results for the tagged PASCAL
(top row) and LabelMe (bottom
row) datasets. Left two plots use
the object counts and scales
reward function, while the right
two plots use the tag rank
similarity reward function.
Higher curves are better. By
modeling importance cues from
the tag-lists when building the
semantic space, our method
outperforms both a method
using image features alone, as
well as a semantic space that
looks only at unordered
keywords

cuses more on the contents of the image; however, since it
has no cues about the relative importance of the objects, it
retrieves images of other street scenes that have buildings or
cars as main objects. In contrast, with our method, the map-
ping to the semantic space has been learned so as to favor
the concept ‘bus’ over other concepts relevant to this scene
type, and thus we retrieve other images with a prominent
bus. Note also the variety of viewpoints in those examples.

Another useful aspect of our method visible in the image-
to-image retrieval results is that it reduces the confusion be-
tween classes. For example, in the fifth row of Fig. 10, the
Word+Visual baseline retrieves images containing bicycles,
instead of birds as shown in the query. This happens because
all objects effectively get equal “weight” when the baseline
learns the mapping to the semantic space. ‘Birds+forest’ and
‘bicycle+forest’ are therefore mapped to a point in the se-
mantic space near ‘forest’ using this equal weight scheme,
introducing confusion between the features that describe
birds and bicycle. This problem is accentuated by the fact
that in many cases the background features (i.e., for ‘for-
est’) dominate the visual representation and have less intra-
class variance, while the foreground objects can be more
variable. In contrast, during training our method learns to
map ‘birds+forest’ to a point in the semantic space where
the concept bicycle does not dominate, thus reducing confu-
sion at test time. Thus, in some sense, our method behaves
like distance metric learning: we learn which semantic di-
mensions are more important than others for the tagged im-
ages.

Performance evaluated with human opinions The quanti-
tative analysis so far shows a clear benefit from using our

approach, and in particular the tag agreement reward func-
tion directly validates that its retrieved images better reflect
the things a human observer would mention first when look-
ing at the image. Next, to further assess our accuracy, we
perform an experiment with human subjects. The goal is to
let the human subjects judge the different retrieval results
based solely on their opinion of which contain the same im-
portant objects as a query image.

To this end, we performed a leave-one-out test with 5000
total PASCAL image queries, in which we present the hu-
man judges with the query image plus the top seven im-
ages retrieved by each method. Figure 12 shows the inter-
face for the task. The human subject is asked to select those
images that contain the same important objects as the query
image. Specifically, we give the following simple instruc-
tions: “First look at the topmost query image. Then select
those images that contain the most important objects seen
in the query.” We set up this task such that the same hu-
man judge considers results from all methods at once for
a given query, yet is given no indication that the results
stem from different methods. This way we know that the
results are judged side-by-side; if one image in the set is se-
lected but another is not, we know the first was found to be
more importance-preserving than the second. We stress that
the MTurk workers have no information about which image
comes from which method, nor any background on what we
are testing beyond the simple instructions shown in Fig. 12.

In order to access a large number of unbiased human
subjects with no knowledge of our method or purpose, we
posted the tasks on Mechanical Turk. We took two steps to
ensure quality control. First, we disabled the “submit” but-
ton on the interface until at least 15 seconds had passed,
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Fig. 10 Example image-to-image retrievals for our method and the
baselines on the tagged PASCAL dataset; leftmost image is query, three
rows show top ranked results per method. While a baseline that builds

the semantic space from Words+Visual features can often retrieve im-
ages with an object set overlapping the query’s, ours often better cap-
tures the important objects that perceptually define the scene
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Fig. 11 Example image-to-image retrievals for our method and the
baselines on the LabelMe dataset; leftmost image is query, three rows
show top ranked results per method. Our method often better captures

the important objects that perceptually define the scene; since most
LabelMe images are less object-centric (compared to PASCAL), our
method tends to retrieve images with similar scene layouts

Fig. 12 Mechanical Turk
interface for human evaluation
of retrieval relevance. The top
seven retrieval results are shown
for each test query, and the
workers are asked to select any
image(s) they find to share the
“most important objects” with
the query by clicking on the
checkboxes
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in an effort to stop workers from speeding through the task.
Notice that workers could select as many or as few images as
they liked in each query case. Second, we collected five re-
dundant responses for each query. After running the collec-
tion, we obtained results from 323 unique Mechanical Turk
workers.

Despite the subjective nature of the task, we find the
agreement between the five workers working on the same
example is moderately high. Specifically, using Fleiss’
kappa statistical test for agreement between multiple raters
(Fleiss 1971), we find the agreement score to be κ = 0.4402.
To give some context for this score, complete agreement
yields κ = 1, whereas no agreement other than what is ex-
pected by chance yields κ ≤ 0. To refine the human re-
sponses to form a ground truth rating, we treat only those
images unanimously selected by all five annotators as being
relevant.

Analyzing the resulting human subject data, we find that
for a large portion of the test examples, no images are se-
lected as relevant (from any method). We suspect this is
because the human subjects often found retrieved images
sharing similar objects irrelevant when the finer-grained “la-
bels” of the objects differed, as they often do in PASCAL
images. For example, while in PASCAL terms any instance
of “dog” is related, to the human viewers, a chihuahua or
German Shepherd may seem different enough to not share
importance/relevance. Thus, this data from humans serves
as a useful complementary study to our evaluation with
NDCG@k presented above.

Figure 13 shows the results, for all three methods and all
5000 queries. The curves record the average cumulative rel-
evance score per query. For clarity, we sort the queries in
the plot by the total relevance score obtained over all three
methods—that is, the total number of images among all 21
candidates that were unanimously selected by the human
subjects as relevant. We see that overall human observers
report our results to more often depict the important objects
in the query image. This is an important result. It shows that
our approach does indeed better capture perceived impor-
tance, since that was exactly what the human subjects were
instructed to judge. Figure 15(a) shows representative exam-
ples that illustrate where our method has an advantage.

At the same time, however, for those queries that yielded
the highest number of relevant images across all methods
(i.e., the leftmost part of the plot in Fig. 13), we see that
the baselines are as good or slightly better than our method.
Upon examination, we find that this is likely due to a similar
effect we observed in the NDCG results on LabelMe: when
there are near-exact visual matches, the retrieval is effec-
tively handled by visual matching alone. Figure 15(b) illus-
trates such a case, where all methods can obtain very close
visual matches for the equestrian query, and our method
does not have an advantage by representing the objects’ rel-
ative importance. Furthermore, we observe that when the 21

Fig. 13 Average relevance scores across all queries, as judged by hu-
man raters on image-to-image retrieval results. The x-axis indexes the
5000 total query examples, where queries are sorted by the total num-
ber of relevant images retrieved among the union of the three meth-
ods’ results. The y-axis measures the cumulative average of the num-
ber of relevant images returned in the top 7 results. (Max score on any
query is 7, and higher curves are better.) Human observers find that our
method’s results more often depict the important objects in the query
image. However, for query images that have few or no relevant matches
in the database, all three method do similarly (right end of the plot)

candidates contain a mix of very close visual matches to-
gether with more distant but still semantically relevant im-
ages (e.g., the same main object but from a different view-
point), the human judges tend to favor marking the near-
exact matches as relevant. This also reduces our method’s
impact for the top few “easiest” queries. Finally, there are
some difficult queries for which no method retrieves very
good results. In such cases we observe the limitations of the
low-level visual descriptors, which may be insufficient for
some unusual views of objects (see Fig. 15(c) for an exam-
ple).

Whereas Fig. 13 summarizes the results for all queries,
Fig. 14 breaks out the relevance score per method individ-
ually for the top 120 queries sorted by total relevance. To
help interpret this data, we note that the average number
of relevant images obtained by our method is 5.64, which
corresponds to 81% precision among the top 7 retrievals.
In comparison, the Visual-only baseline averages only 4.12
relevant examples, or 59% precision, while Word+Visual
yields a slightly better 4.70, or 67% precision. This plot also
reveals that for those queries where Visual-only does bet-
ter, both the Word+Visual baseline and our method obtain a
fairly low score (look at cases where ‘x’ is high). We again
attribute this to cases where there are near-exact matches
available for the query. The human evaluators are affected by
this, and become more prone to discard semantically similar
but visually distinct results. Thus, while overall our method
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Fig. 14 Relevance scores per query according to human judges, for image-to-image retrieval on PASCAL dataset. Our method shows a clear
advantage over the other methods. See text for details

is most consistent in quality, this phenomenon naturally sug-
gests learning when to switch between the learned semantic
space and raw visual features; we leave this idea for future
work.

4.5.2 Learning with Captioned Images

Next we consider the same experimental image-to-image re-
trieval setting, but where the semantic space is learned from
images that have natural language captions. As depicted in
the data-set examples shown in Fig. 7, the semantics in the
accompanying text will be much more diverse than the sim-
ple tags in this setting. Notably, the sentences contain ad-
jectives that directly describe attributes of objects in the
scenes, and verbs noting the ongoing action. This suggests
our representation could benefit from the more thorough de-
scriptions. On the other hand, the descriptions are more var-
ied in length compared to the typical tag lists. Some peo-
ple are quite succinct, others are verbose. Some veer away
from pure descriptiveness, and comment on what is imag-
ined about the image, not merely what is visible. Such fac-
tors may make it more difficult to learn a clear association
with importance. At the same time, we expect that the posi-
tions of words in the sentence are less immediately indica-
tive of object importance, since the word order is determined
not only by importance but also by grammatical structure in
the sentence.

However, in examining the MTurk sentences we col-
lected, we do observe some correlation. First, words that ap-
pear earlier in the sentence are likely the subject and thus
define the scene to the viewer. Second, the earlier sentences
provided for an image tend to comment on the more no-
ticeable objects (subject or otherwise). We also observe that
people will invert the subject/object at times in order to em-
phasize some object in the scene.

Figure 16 shows the results for our method and the two
baselines on the PASCAL images and sentence descriptions.
As with the tagged dataset, our method again outperforms

both the Word+Visual and Visual-only methods. Looking at
the k = 30 top-ranked images, we see our method yields a
13% improvement in NDCG over the Visual-only result, and
about a 5% gain over the Word+Visual semantic space. This
shows that our method can generalize to free text sentences.

However, we do find that the absolute improvement in
retrieval accuracy is smaller than it is in the above tagged-
image experiments. This is likely because the complex struc-
ture of natural language sentences reduces the correlation
between the objects’ importance and their order of mention.
In addition, we see narrower gains under the tag rank simi-
larity metric compared to the object scales metric (see right
plot in Fig. 16); this is likely because larger differences in the
retrieval evaluation using the ground truth bounding boxes
can correspond to smaller changes in the sentence config-
urations. Overall, considering the small size of the training
set, and the fact that no further postprocessing is done on
the syntax, this is an encouraging result. We leave as future
work to explore more elaborate text-based representations
that exploit knowledge about grammatical structures.

4.6 Tag-to-Image Retrieval Results

All of the results presented thus far handle the content-based
search problem. Next we consider the tag-to-image cross-
modal retrieval setting, in which a person queries for images
with keywords.

Figure 17 shows the results when we query with a
human-provided ordered list of keywords, and return rele-
vant images from the database. Again, the learned semantic
space allows us to find the relevant content, this time where
the objects emphasized by the human are more likely to be
prominent in the results. Our approach makes dramatic im-
provements over the baselines—31% better in NDCG than
the Words+Visual baseline for k = 30 on the PASCAL.
(Note that we omit scoring with tag rank similarity reward
function for this case, since it would be trivial for the Word-
only baseline.)
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Fig. 15 Example results from the human evaluation experiments. The
numbers on the right side of the images denote the fraction of people
who selected the image as relevant to the query on the left. (a) For
most retrieval results, we observe a clear gain in retrieval accuracy
using our method, as judged by the human evaluators. (b) When there

are near-exact matches, people are less likely to mark as relevant those
retrieval results that contain the object from a correct category, but
with different visual aspect. (c) If the query image is too difficult, then
all three methods can fail

Fig. 16 Image-to-image retrieval results for the PASCAL+sentence dataset. Higher curves are better. See text for details
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Fig. 17 Tag-to-image retrieval results. Given a user’s ordered tag-list, our method retrieves images better respecting the objects’ relative impor-
tance

Dataset PASCAL VOC 2007+Tags LabelMe+Tags
Method K = 1 K = 3 K = 5 K = 10 K = 1 K = 3 K = 5 K = 10

Visual-only 0.0826 0.1765 0.2022 0.2095 0.3940 0.4153 0.4297 0.4486
Word+Visual 0.0818 0.1712 0.1992 0.2097 0.3996 0.4242 0.4407 0.4534
Ours 0.0901 0.1936 0.2230 0.2335 0.4053 0.4325 0.4481 0.4585

Fig. 18 Top: Image-to-tag auto annotation accuracy on the two tagged image datasets, as measured with the F1 score. Higher values are better.
Bottom: Examples of auto-tagged images. Tags are quite accurate for images that depict typical scenes. Last example is a failure case

On PASCAL the Word-only baseline has very low accu-
racy on the top few retrieved results (see left plot in Fig. 17),
likely because it cares only how many tags the images have
in common with the query, whether they are foreground or
background. That makes the baseline prone to retrieve im-
ages with the same background object tags (e.g., grass, sky,
water) but possibly different foreground objects. This is pe-
nalized heavily by the object counts and scales reward func-
tion, which focuses on the foreground objects; on the more
densely tagged LabelMe images, it is less of a pitfall for the
baseline.

This result clearly illustrates the limitations of traditional
keyword search retrieval: in terms of perceived importance,
simply looking for images that share terms with a person’s
query words is insufficient. In contrast, by learning connec-
tions between how humans describe images and the appro-
priate relative layout of objects, we can obtain more consis-
tent results.

We also note that the absolute magnitude of the NDCG
scores are higher for this task than for content-based im-
age retrieval; ours is almost double what it is for the object
counts and scales reward function on the image-to-image re-
sults. We attribute this to the fact that keywords (tags) can
serve as a more precise query, whereas a example-based im-

age query may leave more ambiguity about the desired con-
tent.

4.7 Image-to-Tag Auto-Annotation Results

Finally, we explore auto-annotation, where our method takes
an image and generates a list of tags. In contrast to previous
work, however, we account for the importance of the tags
when scoring the outputs: listing all the objects present is
less valuable than listing those that most define the scene.
We take the average ranks from the top K neighbors, and
sort the keywords accordingly (see Sect. 3.3.3).

Figure 18 shows the results as a function of K , when us-
ing the two tagged image datasets, and Fig. 19 shows the re-
sults on the PASCAL when using the natural language cap-
tions to train and score results. We quantify the accuracy of
the estimated output list using the F1 score, which accounts
for both the precision and recall of the words included rela-
tive to the human-provided ground truth.

In these results, we observe that the Word+Visual ap-
proach, lacking any notion of importance, does not improve
the auto-tagging accuracy over the Visual-only method. This
is in concordance with the image-to-image retrieval results



152 Int J Comput Vis (2012) 100:134–153

Dataset PASCAL VOC 2007+Sentences

Method K = 1 K = 3 K = 5 K = 10
Visual-only 0.0988 0.1313 0.1409 0.1665
Word+Visual 0.1057 0.1327 0.1399 0.1592
Ours 0.1194 0.1435 0.1542 0.1621

Fig. 19 Image-to-text auto annotation accuracy on the sentence data,
as measured by the F1 score

measured using tag rank similarity in Fig. 9. When we con-
sider only the top few retrieved images, the Visual-only
method works about as well as it retrieves the near-exact
matches that are likely to contain very similar tags, while the
Word+Visual method retrieves images that have the same
tags.

Overall, our method outperforms the baselines noticeably
on the PASCAL images; differences are more modest on La-
belMe, again likely due to the minor variation of importance
per object occurrence. Given that PASCAL stems from real
Flickr images, it is more realistic for the target setting where
a user uploads photos and would like them auto-tagged and
indexed. The fact that our results are strongest for this chal-
lenging set is therefore quite promising.

5 Conclusions

We proposed an unsupervised approach to learn the connec-
tions between human-provided tags and visual features, and
showed the impact of accounting for importance in several
retrieval and auto-tagging tasks. The key novelty is to reveal
implied cues about object importance based on how people
naturally annotate images with text, and then translate those
cues into a dual-view semantic representation.

Our results show our method makes consistent improve-
ments over pure content-based search as well as a method
that also exploits tags, but disregards their implicit impor-
tance cues. We also show that our approach translates to
learning an importance-aware semantic space with images
that have natural language captions, and confirm through a
human subject experiment that people find our method pro-
duces results with stronger perceived importance overall.

Through a series of experiments with multiple datasets,
we have demonstrated the strengths and weaknesses of the
proposed technique. On the whole, we see that for com-
plex scenes in which objects play varying roles, our learned
representation is much more suited to retrieval and auto-
tagging. At the same time, we find that if using strong image
descriptors (as we do here), a method that searches purely
with the visual content is best when the database contains
near-exact matches with similar scene layouts. This was ev-
ident in the LabelMe and human evaluation results. This

means that for applications where the query is meant to
bring up near matches (e.g., to find shots with a similar at-
mosphere, like the classic CBIR example of searching for
other sunset images), using our learned representation is not
necessary. More generally, these findings suggest that one
might consider ways to automatically trade off the influence
of close visual appearance matches with good contextual
tag-based matches.

Our human subject tests show there is a fairly good level
of agreement in practice about how well images relate in
terms of important objects. This agrees with findings in pre-
vious work (von Ahn and Dabbish 2004; Spain and Perona
2008; Einhauser et al. 2008), and lends necessary support
for our basic premise to help people find images with the
“right” important objects. On the other hand, we also dis-
covered that viewers are naturally influenced by the context
in which image examples are displayed. Once near matches
are visible, they are preferred over images that have simi-
lar objects but varying viewpoints or label granularities—at
least without any further context about the target applica-
tion. This nicely echoes our findings with the NDCG-scored
results, as described above.

Our results using natural language data are promising,
and they suggest that the simple rank-based cues can also
play a role for learning with free-form descriptions. In future
work, we plan to explore more elaborate feature extraction
for natural language annotations.

Our approach aims to learn a single feature space captur-
ing importance. While such a universal model of importance
capturing what is salient to “any” observer is clearly ap-
pealing, it could also be interesting to consider user-specific
models of importance. One could use our basic framework
to build models for individual annotators, or groups of anno-
tators instructed to generate their descriptions in the context
of a particular task or application. For example, annotators
tasked with understanding the interpersonal relationships of
people captured in an image/video collection would give one
form of descriptions, and annotators tasked with understand-
ing the typical traffic flow would give another. Importantly,
we would expect to see stronger agreement about the appro-
priate description among those interested in the same task,
and can therefore tailor the learned representation most ef-
fectively.

In conclusion, this work shows how to account for the
perceived importance of objects when performing content-
based and cross-modal retrieval. Results on several data sets
and textual sources indicate its advantages and potential pit-
falls, and we think the analysis suggests several interesting
directions for future work.
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