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A MATHEMATICAL MODEL FOR THE CTL EFFECT ON THE

DRUG RESISTANCE DURING ANTIRETROVIRAL

TREATMENT OF HIV INFECTION

NICOLETA TARFULEA

Abstract. In treating Human Immunodeficiency Virus (HIV) infection, strict
adherence to drug therapy is crucial in maintaining a low viral load, but the
high dosages required for this often have toxic side effects which make perfect
adherence to Antiretroviral Therapy (ART) unsustainable. The imperfect pa-
tient adherence to ART and the development of resistant strains in the viral
load has led to the development of alternative treatments that incorporate im-
munological response. This paper investigates theoretically and numerically
the effect of immune effectors, such as the cytotoxic lymphocyte (CTL), in
modeling HIV pathogenesis; our results suggest the significant impact of the
immune response on the control of the virus during primary infection. Qual-
itative aspects (including positivity, boundedness, stability, uncertainty, and
sensitivity analysis) are addressed. Additionally, by introducing drug therapy,
we analyze numerically the model to assess the effect of treatment consist-
ing of a combination of several antiretroviral drugs. Nevertheless, even in the
presence of drug therapy, ongoing viral replication can lead to the emergence
of drug-resistant virus variances. This fact is addressed in our model by in-
cluding two viral strains, wild-type and drug-resistant. Our results show that
the inclusion of the CTL compartment produces a higher rebound for an in-
dividual’s healthy helper T-cell compartment than does drug therapy alone.
Furthermore, we quantitatively characterize successful drugs or drug combina-
tion scenarios for both strains of virus.
Keywords: HIV dynamics, Cytotoxic Lymphocyte, Antiretroviral Therapy
Drug resistance, Mathematical model

1. Introduction

The severe and deadly impacts of the Acquired Immunodeficiency Syndrome
(AIDS) have motivated scientists to investigate them in the sequential stages of the
Human Immunodeficiency Virus (HIV) infection [1, 2]. AIDS is the result of a long
battle between an individual’s immune system and the HIV [3, 4, 5]. The body’s
initial response to HIV infection is similar in nature to the response to many other
viruses. Unfortunately, the virus has a demonstrated ability to evade these natural
defense mechanisms, with the result that after the initial period of infection, the
disease progresses to latency [6]. During this latent stage of infection, the virus
can go undetected, while it continues to attack and weaken the immune system [7].
The latent period of infection is followed by the final stage, when a deteriorated
immune system collapses, and the individual dies from secondary infections.

When HIV enters the bloodstream, it primarily targets crucial components of
the immune system [8], specifically, CD4+ T-cells or helper T-cells, whose function
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is to assist the response to bodily infections by releasing chemicals that signal
other immune system cells, such as CD8+ (killer) T-cells, to kill infected cells or
infectious particles [9, 10, 8, 11, 12, 13]. HIV is capable of infecting other immune
cells, such as macrophages [14], but the primary targets of infection are the CD4+
T-cells [15]. Hence, they plays a central role in existing mathematical models
[16, 17, 18, 19, 14, 20, 21, 22].

Several stages have been identified in the virus’ reproduction cycle. First, an
HIV viral particle attaches to a CD4+ T-cell, and the genetic material required
for synthesis of new viral DNA, the viral RNA, is injected into the healthy cell.
Aided by the enzyme, reverse transcriptase, which is contained in the viral shell,
the virus’ RNA uses the T-cell’s own DNA to produce viral DNA. The viral DNA
penetrates the nucleus and is integrated with the cell’s chromosomes, forming part
of the infected cellular DNA. The replicating mechanisms of the infected cell are
then used to produce copies of this newly-integrated viral DNA, as well as copies
of the original viral RNA. After the viral DNA has been replicated, an enzyme
produced by the viral DNA, protease, cuts the DNA inside the cell into protein
strings of proper length. These protein strings are regrouped together inside the
cell with the viral RNA, and become the basis for new virus. The newly-formed
viral particles can be released in a process called budding, where they exit the
cell through its external membrane and become mature infectious virus. In an
alternative outcome, the production of a large number of viral particles can force
the infected cell to burst, killing the cell and releasing the infectious virions into
the body [23, 24, 8, 25, 26, 27].

The body’s immune system fails to react fast enough to prevent the virus from
rapidly infecting and killing a large number of CD4+ T-cells, which subsequently
they become the mechanism through which the virus population can multiply [3,
5, 28, 29, 14]. The rapid mutation of the virus can prevent proper identification of
infected cells by the body’s immune effectors. Infected cells flag themselves for the
immune system by chopping viral proteins into pieces and attaching these to HLA
cellular proteins. The molecular combination then rises to the membrane of the cell,
where it becomes a signal for CD8+ T-cells to destroy the infected cell [9, 30, 12].
However, the rapid mutation of HIV can prevent the HLA molecule from properly
rising to the surface of the cell, or in some cases, prevent the molecule from rising
at all. As a result, the immune effector CD8+ T-cells are incapable of recognizing
the cell as being infected, allowing the virus to continue replication [9, 8, 11].

The intrinsic complexity of HIV has been a crucial factor for the development
of various mathematical models for the dynamics of the disease in order to predict
viral evolution over time and under various conditions [18, 14, 20, 21, 22] and, more
importantly, to get valuable insights into the emergence of HIV drug resistance and
possible treatment scenarios [31, 32, 33, 34, 35, 36, 21, 22, 37, 38]. In this paper,
building upon the standard model of within-host virus infection [39, 14], we propose
a mathematical model for HIV dynamics that considers the impact of CD8+ T-cells
in fighting the infection by studying their effect on the emergence of drug resistance
during antiretroviral therapy. Our model incorporates multiple viral strains (drug-
sensitive and drug-resistant strains) which differ by a single mutation since even
a single mutation can make the mutant virus to acquire a significant degree of
resistance to a drug or a class of drugs [40, 41, 42, 43]. It is worth mentioning
that the model could be easily extended to include multiple resistant strains as a
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result of two or more mutations. We provide analytical and numerical results of
this model in the absence and presence of therapy and we investigate the evolution
of the resistant strain in these cases. Furthermore, we explore the consequences
of different scenarios of antiviral therapy, the influence of different combinations of
the major classes of drugs available for the treatment. We also study their impact
on the evolution of the disease and determine a possible optimal treatment strategy
that will lower the most the viral load in the body.

2. Formulation of the problem

2.1. Presentation of the mathematical model. A widely adopted mathemati-
cal model of HIV infection is given by the system (1) (see [16, 19, 14, 20, 21, 22, 44])
which is composed of compartments accounting for the concentration of healthy
CD4+ T-cells, HIV-infected CD4+ T-cells, and free virus in the blood.

dT

dt
= λT − dT − kV T

dT ∗

dt
= kTV − δT ∗

dV

dt
= NδT ∗ − cV

(1)

Here, T , T ∗, and V are the concentration of healthy CD4+ T-cells, infected CD4+
T-cells, and free virus in the body at time t, respectively. Additionally, λT is the
recruitment rate of uninfected T - cells, k is the rate at which healthy CD4+ T-
cells are infected by free HIV virus, δ is the rate at which infected CD4+ T-cells die
naturally, N is the number of free virions released by an infected cell upon death,
also known as the burst size, and c is the clearance rate of free virus from the body.

This system has two steady states: the infection free steady state

S0 :=

(
T0 =

λ

d
, T ∗

0 = 0, V0 = 0

)

and the infected steady state

Si :=

(
Ti =

c

Nk
, T ∗

i =
λkN − cd

kNδ
, Vi =

λkN − cd

kc

)
.

If we denote by

R0 :=
k λN

d c
,

the basic reproductive ration [45, 46, 21, 47], then it has been proved that the
infection free steady state S0 is globally attracting if R0 < 1 and that the infected
steady state Si is globally asymptotically stable if R0 > 1 [48].

The course of HIV infection varies widely across the infected population, and
this is at least partially explained by individually-specific immunological responses.
The primary effector of the cell-mediated immune response is the CD8+ killer T
cells (CTLs). The CD8+ T cell kills infected cells bearing a specific antigen. The
activation of the killer T cell is largely dependent upon the CD4+ helper T cells,
which direct the immune response. Thus incorporation of cellular compartments
representing both the helper and effector T cells more completely represents the
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body’s cellular immune system. In [49] the authors considered the following model
for HIV dynamics which includes the CTLs response.

dT

dt
= λT − dT − kV T

dT ∗

dt
= kTV − δT ∗

dV

dt
= NδT ∗ − cV

dE

dt
= λE + cET

∗ − δEE,

(2)

together with initial data

T (0) = T0, T ∗(0) = 0, V (0) = V0, E(0) = E0 (here T0, V0, E0 > 0). (3)

Here, in addition to the variables and parameters used in the system (1), E denotes
the concentration of CD8+ T-cells in the body, λE represents the production rate
of healthy CD8+ T-cells from natural sources, δE represents the natural death
rate of CD8+ T-cells, cE represents the constant for CD8+ T-cell birth via their
interaction with infected cells, and m represents the CD8+ T-cell-induced death
rate for T ∗.

The system (2) has two possible steady states within the nonnegative orthant,
that is, the infection free steady state

S0 :=

(
T0 =

λT

d
, T ∗

0 = 0, V0 = 0, E0 =
λE

δE

)
(4)

and the infected steady state

Si :=

(
Ti, T

∗
i =

c

Nδ
· λT − dTi

kTi
, Vi =

λT − dTi

kTi
, Ei =

λE

δE
+

cE
δE

· λT − dTi

kTi

)
, (5)

where Ti is the positive solution of the quadratic equation T 2−A ·T −B = 0, with

A =
c

Nδk

(
δ +m

λE

δE
−md

c

Nδk

cE
δE

)
and B = m

( c

Nδk

)2 cE
δE

λT .

If we let

R :=
NδkλT

cd
(
δ +mλE

δE

)
denote the basic reproductive ratio, then the uninfected steady state S0 is stable
if and only if R < 1. Moreover, the infected steady state is stable for any choice of
the parameters in the considered range (see [49]).

To model the emergence of drug resistance and a possible treatment method, a
new model is required which accounts for the presence of drug-sensitive and drug-
resistant strains of virus separately, rather than aggregating them. In this manner,
one could determine whether a certain treatment regimen was producing an increase
in the drug-resistant concentration of virus over time, even if the population of
drug-sensitive HIV virus was declining. Treatments which cause the population of
drug-sensitive virus to decline, but the population of drug-resistant virus to increase
over time are postponing the inevitable, as they do not provide a long-term benefit
to an individual infected with HIV. A model incorporating two strains of HIV



A MATHEMATICAL MODEL FOR THE CTL EFFECT ON DRUG RESISTANCE 5

Table 1. Parameter definitions and values used in numerical simulations

Parameter Description Value Ref.

λT Recruitment rate of uninfected d · T (0) [21]
cells

d Death rate of uninfected cells 0.01 day −1 [50, 21]
ks Infection rate of T-cells by the 2.4 · 10−5μl day−1 [16, 19, 21]

wild-type virus
kr Infection rate of T-cells by the 2.4 · 10−5μl day−1 [16, 19, 21]

drug-resistant virus
δ Death rate of infected cells 0.3 day−1 [51]
m1 Immune-induced clearance rate 10−2μl day−1 [16]

for infected Ts cells
m2 Immune-induced clearance rate 10−2μl day−1 [16]

for infected Tr cells
Ns Virions produced per infected 5000 [21]

drug-sensitive cell
Nr Virions produced per infected 5000 [21]

dru-resistant cell
c Clearance rate of free virus 23 day−1 [21]
λE Immune effector production 10−3μl day−1 [16]

(source) rate
cE Stimulation of CTL proliferation 0.3 day−1 [51]
δE Death rate of immune effectors 0.1 day−1 [16, 51]

has been utilized extensively in [21] to model the effects of Antiretroviral Therapy
(ART) on the arisal of drug-resistant strains of HIV.

Drawing from the multiple-strain model of infection and the CD8+-inclusive
models [52, 53, 54], we consider the following model for our purpose.

dT

dt
= λT − dT − ksVsT − krVrT

dTs

dt
= (1− u)ksTVs − δTs −m1ETs

dVs

dt
= NsδTs − cVs

dTr

dt
= uksTVs + krVrT − δTr −m2ETr

dVr

dt
= NrδTr − cVr

dE

dt
= λE + cE(Ts + Tr)− δEE,

(6)

together with initial data

T (0) = T0, Ts(0) = 0, Vs(0) = V0, Tr(0) = 0, Vr(0) = 0, E(0) = E0, (7)

where T0, V0, E0 > 0.
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(b) Wild-type virus Vs(t)
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(c) Resistant virus Vr(t)
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(d) Total virus

Figure 1. Simulation over the first 350 days of infection; (-.-) line
for the system in [21] with initial conditions T (0) = 103 cells/ μl,
Ts(0) = 0 cells/μl, Tr(0) = 0 cells/μl, Vs(0) = 10−3 copies/μl, and
Vr(0) = 0 cells/μl,; (–) line for (6) with additional initial condition
E(0) = 10−3 cells/ μl.

In this model, T represents the healthy T-cell concentration, Ts and Vs repre-
sent the drug-sensitive infected T-cell and drug-sensitive virus concentration, re-
spectively, Tr and Vr represent the drug-resistant infected T-cell and drug-resistant
virus concentration, respectively, and E represents the concentration of CD8+ T-
cells in the body. Moreover, λT represents the production rate of healthy CD4+
T-cells from natural sources, λE represents the production rate of healthy CD8+
T-cells from natural sources, δ represents the death rate of infected T-cells, δE
represents the natural death rate of CD8+ T-cells, dT represents the natural death
rate of uninfected CD4+ T-cells, m1 represents the CD8+ T-cell-induced death rate
for Ts, m2 represents the CD8+ T-cell-induced death rate for Tr. Additionally, u
represents the rate at which drug-sensitive T-cells mutate to become drug-resistant,
while kr and ks are the drug-resistant and drug-sensitive infection rates of target
cells by free virus, respectively. It is assumed, in this model, that c, the viral clear-
ance rate, and δ, the infected T-cell death rate, are the same for both strains of
virus.
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Figure 1 presents simulation results for the CD4+ T cell concentration, the wild
type virus, the resistant virus, and the total viral load before treatment using the
systems in [21] and (6). The values of the common parameters are the same, and all
values are listed in Table 1. As is expected, CD8+ T-cell response is very important
in the evolution of HIV and this aspect is captured by the system that we consider.
While the two cases produce similar behavior, the healthy T-cell concentration is
higher in the second case, and, consequently, the total viral load is lower in this
case. Moreover, the limiting solution is lower as well.

2.2. Analysis of the model. We start the analysis by showing that the solution
of the initial-value problem (6)–(7) is nonnegative and bounded. The following
lemmas are relatively simple, but useful tools for proving these facts.

Lemma 1. Let P and Q be two continuous functions on the interval [a, b) (b < ∞
or b = ∞), with Q nonnegative everywhere. Then, the solution to the initial-value
problem

dy

dt
+ P (t)y = Q(t) for t ∈ (a, b); y(a) = α, with α ≥ 0, (8)

is nonnegative everywhere. Moreover, if either α > 0 or Q(a) > 0, then the solution
y is strictly positive in (a, b).

Proof. Let μ(t) := exp
( ∫ t

a
P (s)ds

)
be the integrating factor of the first-order linear

ordinary differential equation in (8). Then, it is well-known that the solution of the
initial-value problem (8) is given by

y(t) =
1

μ(t)

(∫ t

a

μ(s)Q(s)ds + α
)
for t ∈ [a, b).

Since μ(t) > 0 for all t ∈ [a, b), the conclusion of the lemma follows easily. �

Lemma 2. Let y : [a, b) → R (b < ∞ or b = ∞) be a function differentiable on
(a, b). If there exist two positive constants α, β > 0 such that y′(t) ≤ α − βy(t) in
(a, b), then the function y is bounded from above.

Proof. Observe that [(eβsy(s)]′ ≤ αeβs in (a, b). Then, by integration with respect
to s over the interval [a, t], with t ∈ [a, b), it follows that

eβty(t)− eβay(a) ≤ α

β
(eβt − eβa),

and so

y(t) ≤ eβa

eβt
y(a) +

α

β
(1− eβa

eβt
) ≤ |y(a)|+ α

β
, for all t ∈ [a, b),

which proves the claim. �

First of all, we observe that the first equation of the system (6) can be reformu-
lated as a standard first-order linear ODE

dT

dt
+ (d+ ksVs + krVr)T = λT . (9)

Because T (0) = T0 > 0, by Lemma 1 it follows that T (t) > 0 for all t > 0 for which
the solution of the initial-value problem (6)–(7) exists.

Next, let us prove that Vs is nonnegative. Arguing by contradiction, suppose
that Vs changes sign. It follows that there exists a minimal positive time t0 when
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Vs(t0) = 0. Since Vs(t) > 0 in [0, t0), one obtains V ′
s (t0) ≤ 0. From the third

equation of the system (6), it follows that Ts(t0) ≤ 0. However, the second equation
of (6) together with the initial condition Ts(0) = 0, gives Ts(t) in the form

Ts(t) =
1

μTs(t)

[ ∫ t

0

μTs(θ)(1 − u)ksT (θ)Vs(θ)dθ
]
, (10)

with

μTs(t) := exp
[ ∫ t

0

(δ +m1E(θ))dθ
]
.

From (10), we observe that Ts(t0) must be strictly positive, which is in clear con-
tradiction with Ts(t0) ≤ 0. This proves that Vs(t) must be positive on its domain of
definition. Since both T (t) and Vs(t) are positive wherever defined, from Lemma 1
applied to the second equation of (6) one gets the positivity of Ts(t) on its domain
of definition. From the fourth equation of (6) and the initial condition Tr(0) = 0,
we can solve for Tr and write the solution in the form

Tr(t) =
1

μTr (t)

∫ t

0

μTr (θ)(uksT (θ)Vs(θ) + krVr(θ)T (θ))dθ, (11)

where

μTr (t) := exp (

∫ t

0

(δ +m2E(θ))dθ).

Since μTr (t) > 0, for all t ≥ 0, and uksT (0)Vs(0) + krVr(0)T (0) = uKsT0V0 > 0,
the equation (11) implies that there is t0 > 0 such that Tr(t) > 0 in (0, t0). Assume
that t0 < ∞ is maximal with this property, that is, Tr(t) > 0 for all t < t0 and
Tr(t0) = 0 (if t0 = ∞, then obviously Tr(t) > 0 for all t > 0 and the positivity
of Tr is proven completely). By Lemma 1, fifth equation of (6), and the initial
data Vr(0) = 0, one obtains that Vr(t) > 0 on (0, t0]. But this, together with
the positivity of the other terms of the right-hand side of equation (11), is in
contradiction with Tr(t0) = 0. Thus, we conclude that Tr(t) > 0 on its domain
of definition. Furthermore, Lemma 1 and the last two equations of (6), combined
with the just proven positivity of both Tr and Ts, show that Vr and E must be
positive wherever defined as well.

The boundedness of the solution of (6) can be proven as follows. From (6), first
observe that

d

dt
(T+Ts+Tr) = λT−dT−δTs−m1ETs−δTr−m2ETr ≤ λT−min (d, δ)(T+Ts+Tr).

(12)
Then, by Lemma 2, the function T + Ts + Tr is bounded from above. Because T,
Ts, and Tr are also nonnegative, we obtain that each of them is a bounded function.
From the third, fifth, and sixth equations of (6), we see that

V ′
s (t) ≤ C − cVs(t), V ′

r (t) ≤ C − cVr(t), E′(t) ≤ C − δEE(t),

respectively, where in each inequality C is a constant that bounds NsδTs, NrδTr,
and λE + cE(Ts + Tr), respectively. Then, by applying Lemma 2, we obtain that
the functions Vs, Vr, and E are also bounded.

Let S̄ := (T̄ , T̄s, V̄s, T̄r, V̄r, Ē) denote a steady state (constant solution) of the
system (6) in the nonnegative orthant R6

+. That is, S̄ is a nonnegative solution of
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the algebraic system

λT − dT − ksVsT − krVrT = 0

(1− u)ksTVs − δTs −m1ETs = 0

NsδTs − cVs = 0

uksTVs + krVrT − δTr −m2ETr = 0

NrδTr − cVr = 0

λE + cE(Ts + Tr)− δEE = 0,

(13)

Solving for T , Vs, Vr, and E with respect to Ts and Tr in (13) gives

T =
λT c

dc+ δ(ksNsTs + krNrTr)

Vs =
δNsTs

c

Vr =
δNrTr

c

E =
λE + cE(Ts + Tr)

δE

(14)

Substituting back into equation (13), one finds that the system (6) has three possible
positive steady states:

(1) the infection free steady state

S0 :=

(
T0 =

λT

d
, Ts0 = 0, Vs0 = 0, Tr0 = 0, Vr0 = 0, E0 =

λE

δE

)
, (15)

(2) the boundary steady state Sb, when only the drug-resistant strain is present

Sb := (Tb, Tsb, Vsb, Trb, Vrb, Eb) , (16)

where Tsb = 0, Vsb = 0, Trb =
c

Nrδ
· λT − dTb

krTb
, Vrb =

λT − dTb

krTb
, Eb =

λE

δE
+
cE
δE

·λT − dTb

krTb
, and Tb is the positive solution of the quadratic equation

T 2 −Ab · T −Bb = 0, where

Ab =
c

Nrδkr

(
δ +m2

λE

δE
−m2d

c

Nrδkr

cE
δE

)
and Bb = m2

(
c

Nrδkr

)2
cE
δE

λT .

(3) the interior steady state Si, when both the wild-type and the resistant
strains coexist

Si := (Ti, Tsi, Vsi, Tri, Vri, Ei) , (17)

where Ti =
λT c

dc+ δ(ksNsTsi + krNrTri)
, Vsi =

δNsTsi

c
, Vri =

δNrTri

c
, E =

λE + cE(Tsi + Tri)

δE
, and Tsi and Tri are the solutions of the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1− u)ksNsδλT

dc+ δ(ksNsTs + krNrTr)
− δ − m1[λE + cE(Ts + Tr)]

δE
= 0

δλT (uksNsTs + krNrTr)

dc+ δ(ksNsTs + krNrTr)
− δTr − m2[λE + cE(Ts + Tr)]Tr

δE
= 0

(18)
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Let

Rs :=
NsδksλT

cd
(
δ +m1

λE

δE

) and Rr :=
NrδkrλT

cd
(
δ +m2

λE

δE

) (19)

denote the basic reproductive ratios of the wild-type strain and the drug-resistant

strain, respectively, and let σ =
ksNs

krNr
.

The second equation in (18) is of the form

T 3
r + a1T

2
r + a2Tr − a3 = 0, (20)

where

a1 =
λE

cE
+

δδE
m2cE

+ (1 + σ)Ts + α > 0

a2 = −λT δE
m2cE

+ (σTs + α)

(
Ts +

λE

cE
+

δδE
m2cE

)

a3 = uλTσTs > 0,

and α =
dc

δkrNr
.

Since the y intercept is below the x axis and a1 > 0, the equation (20) has only
one positive solution which guaranties the existence of the infected steady state
value for Tr. Now the first equation in (18) is a quadratic equation in Ts

T 2
s + b1Ts + b2 = 0, (21)

where

b1 =
λE

cE
+

δδE
m1cE

+ Tr(1 + σ) + α > 0,

b2 = − (1− u)λT δE
m1cE

+ (α+ Tr)

(
δδE

m1cEσ
+

λE

cEσ
+

1

σ
Tr

)
,

and whose discriminant is

Δ =

[
m1cE
δE

(1− σ)Tr +m1

(
α
cE
δE

− σ
λE

δE

)
σδ

]2
+ 4

cE
δE

σ2λTm1(1 − u) > 0,

which guaranties the existence of real solutions for the equation (21). Since b1 > 0
this equation can have at most one positive solution. The necesary and sufficient
condition for the existence of a positive solution is b2 < 0, which implies that

Rs >
1

1− u
.

In the special case that there is no mutation, i.e., u = 0, the interior steady state
Si reduces to another boundary steady state Sw when only the wild-type strain is
present.

Sw := (Tw, Tsw, Vsw , Trw, Vrw, Ew) , (22)

where Trw = 0, Vrw = 0, Tsw =
c

Nsδ
· λT − dTw

ksTw
, Vsw =

λT − dTw

ksTw
, Ew =

λE

δE
+

cE
δE

· λT − dTw

ksTw
, and Tw is the positive solution of the quadratic equation T 2−Awb ·

T −Bw = 0, where

Aw =
c

Nsδks

(
δ +m1

λE

δE
−m1d

c

Nsδks

cE
δE

)
and Bw = m1

(
c

Nsδks

)2
cE
δE

λT .
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The other steady states S0 and Sb are the same.
The Jacobian matrix of the system (6) is

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

−d− ksVs − krVr 0 −ksT 0 −krT 0
(1− u)ksVs −δ −m1E (1 − u)ksT 0 0 −m1Ts

0 Nsδ −c 0 0 0
uksVs + krVr 0 uksT −δ −m2E krT −m2Tr

0 0 0 Nrδ −c 0
0 cE 0 cE 0 −δE

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let J(S0) be the Jacobian matrix evaluated at the steady state S0. This steady
state is asymptotically stable if and only if the eigenvalues of the matrix J(S0)
have negative real parts. The characteristic equation det (J(S0)− ξI6) = 0 is

(d+ ξ)(δE + ξ)

[
ξ2 +

(
δ + c+m2

λE

δE

)
ξ + δc+m2c

λE

δE
− krNrδ

λT

d

]
[
ξ2 +

(
δ + c+m1

λE

δE

)
ξ + δc+m1c

λE

δE
− (1− u)ksNsδ

λT

d

]
= 0

One can see that the sum of the roots of each of the quadratic factors is negative.
Thus, the necessary and sufficient condition for the roots to have negative real parts
is that their product be positive. Therefore, we just proved the following stability
result.

Proposition 1. (1) The infection-free steady state S0 is locally asymptotically

stable if Rr < 1 and Rs <
1

1− u
, where Rs and Rr are the basic reproduc-

tive ratios of the wild-type strain and the drug-resistant strain, respectively,

given by (19), and it is unstable if Rr > 1 or Rs >
1

1− u
.

(2) In the case that u = 0 in model (6) (i.e., there is no mutation), then the
infection-free steady state S0 is locally asymptotically stable if Rr < 1 and
Rs < 1, and it is unstable if Rr > 1 or Rs > 1.

Note that if the infection-free steady state S0 is stable, then the system (6) does
not have the interior steady state Si (since in this case Tsi < 0).

For the boundary steady state Sb, the characteristic equation det (J(Sb)− ξI6) =
0, is of the form

(ξ2 + (k2 + c)ξ + ck2 −Nsksδ(1− u)Tb)(ξ
4 + α1ξ

3 + α2ξ
2 + α3ξ + α4) = 0, (23)

where k1 = d + krVrb, k2 = δ + m1Eb, k3 = δ + m2Eb, k4 = m2Trb, and the
coefficients are

α1 = c+ k3 + k1 + δE > 0,

α2 = (k1 + k3)(c+ δE) + cδE + k1k3 + k4cE − krNrδTb,

α3 = (c+ k1)(cEk4 + δEk3) + ck1(δE + k3)− krNrδ(d+ δE)Tb,

α4 = ck1(cEk4 + δEk3)− krNrδδEdTb.

The stability condition for this boundary steady state is that the roots of the char-
acteristic equation (23) have negative real parts. The first factor of this equation
is quadratic with the sum of its roots negative. Thus, the necesary and sufficient
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condition for these two roots to have negative real parts is that their product to be
positive, relation that translates into

Nsksδ(1− u)Tb < c(δ +m1Eb).

Since T (t) is bounded above by
λT

d
and Eb >

λE

δE
, we find that a sufficient condition

for the above relation to hold is Rs <
1

1− u
.

For the second factor of (23) we use the Routh-Hurwitz criteria [55], that is

D1 = α1 > 0, D2 =

∣∣∣∣ α1 α3

1 a2

∣∣∣∣ > 0, D3 =

∣∣∣∣∣∣
α1 α3 0
1 α2 α4

0 α1 α3

∣∣∣∣∣∣ > 0, and α4 > 0.

In our case, D1 is a sum of positive terms, so it is always positive. Last condition
is equivalent to

krNrδδEdTb < ck1(cEk4 + δEk3),

and a sufficient condition for it to hold is Rr < 1. We can state the following result.

Proposition 2. The local stability of the infection free steady state S0 implies the
local stability of the boundary steady state Sb.

Using the values of the parameters in the model (6) from Table 1 and a 10%
variation centered at these values we find that both S0 and Sb are unstable steady
states (see Section 2.3).

To study the interior steady state Si given by (17) we make the assumption that
the CD8+ T-cell induced death rates for Ts and Tr are the same, denoted by m.
Thus, one can find the analytical expressions for Tsi and Tri to be

Tsi = −krNr − (1− u)ksNs

ksNs(krNr − ksNs)
· Ai −

√
Bi

2mcEδ(1− u)

Tri =
u

krNr − ksNs
· Ai −

√
Bi

2mcEδ(1 − u)
,

(24)

where

Ai = mcEdc+Nsksδ(1− u)(δδE +mλE)

Bi = [mcEdc−Nsksδ(1− u)(δδE +mλE)]
2
+ 4mcEλT δE [Nsksδ(1 − u)]2

The characteristic equation det (J(Si)− ξI6) = 0 is a six order polynomial in ξ.
Using the parameters in Table 1 in the same range as in the case of the boundary
steady state Sb, we find Si to be a stable steady state in all the aforementioned
cases (see Section 2.3).

Since the drug resistant variants of HIV preexist before the initiation of therapy
[56, 21], it is important to consider the case when there is no mutation during the
initial stage of the disease. Thus, the interior steady state Si reduces to the second
boundary steady state Sw given by (22). In this case, the characteristic equation is

[ξ2 + (k3 + c)ξ + ck3 −NrkrδTw](ξ
4 + β1ξ

3 + β2ξ
2 + β3ξ + β4) = 0, (25)
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where k1 = d + ksVsw, k2 = δ + m1Ew, k3 = δ + m2Ew, k4 = m1Tsw, and the
coefficients are

β1 = c+ k2 + k1 + δE > 0,

β2 = (k1 + k2)(c+ δE) + cδE + k1k2 + k4cE − ksNsδTw,

β3 = (c+ k1)(cEk4 + δEk2) + ck1(δE + k2)− ksNsδ(d+ δE)Tw,

β4 = ck1(cEk4 + δEk2)− ksNsδδEdTw.

With a similar analysis as in the case of the boundary steady state Sb, we can state
the following result for the steady state Sw.

Proposition 3. The local stability of the infection free steady state S0 implies the
local stability of the boundary steady state Sw when only the wild-type strain is
presnt.

2.3. Uncertainty and sensitivity analysis of the model. From the analysis
in the previous section it follows that the basic reproductive ratios Rs and Rr

play an important role in predicting the evolution of HIV. Therefore, we perform

Table 2. Statistics for Rs from Monte Carlo samples of 105 rep-
etitions and PRCC value for each parameter

Parameter Mean Std. Dev. Median PRCC

λT 3.1305 0.0905 3.1307 1.000
d 2.9833 0.0820 2.9813 -0.9997
ks 3.1301 0.0904 3.1303 1.000
δ 3.1301 0.0090 3.1301 0.9997
m1 3.1301 0.0090 3.1301 -1.000
Ns 3.1285 0.6016 3.1235 1.000
c 3.6916 1.5271 3.1910 -0.9389
λE 3.1301 0.0090 3.1301 -1.000
δE 3.1301 0.0090 3.1301 0.9997

an uncertainty and sensitivity analysis to determine how these ratios vary due
to the uncertainty in the estimation of parameters used in the model. Here Ns

and Nr are sampled from an uniform distribution over the interval (2000, 4000)
and (1000, 3000) [21], with the mean 3000 and 2000, respectively (values that we
have been used in numerical simulations); c is sampled from a distribution over
the interval (9, 36)day−1 [21, 57]; all other parameters being sampled from a 10%
distribution centered at their values which are given in Table 1.

Statistical results obtained by generating 5 Monte Carlo samples of 105 repeti-
tions chosen from the above distributions are listed in Table 2 for Rs, Table 3 for
Rr, and Table 4 for the uninfected steady states T0 and V0. To address the sensitiv-
ity analysis, we assess the partial rank correlation coefficients (PRCCs) (see [21])
between Rs and Rr and each considered parameter, respectively. A closer value to
1 suggests a stronger correlation; thus, we find that the most influential parame-
ters in this case are λT , λE (the recruitment rate of uninfected CD4+ T-cells and
the production rate of healthy CD8+ T-cells, respectively), and ks, kr, Ns, Nr,m1,
and m2 (the infection rate of CD4+ T-cells, the number of free virions released
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Table 3. Statistics for Rr from Monte Carlo samples of 105 rep-
etitions and PRCC value for each parameter

Parameter Mean Std. Dev. Median PRCC

λT 1.7392 0.0503 1.7393 1.000
d 1.6574 0.0456 1.6563 -0.9997
kr 1.7390 0.0502 1.7392 1.000
δ 1.7390 0.0050 1.7390 0.9997
m2 1.7390 0.0050 1.7390 -1.000
Nr 1.7400 0.5011 1.7409 1.000
c 2.0509 0.8484 1.7728 -0.9389
λE 1.7390 0.0050 1.7390 -1.000
δE 1.7390 0.0050 1.7390 0.9997

by an infected cell upon death, and the immune effectors - induced death rate for
Ts, Tr, respectively); that is, decreasing the infection rate or the burst size (for ex-
ample, increasing the drug efficacy of RT or PI inhibitors) or decreasing the death
rate mi, i = 1, 2 is more effective in reducing Rs or Rr. This result supports our
approach in the treatment case considered in the next section.

Table 4. Statistics for the infection free steady states T0 and E0

from Monte Carlo samples of 105 repetitions for each parameter

for T0 Parameter Mean Std. Dev. Median
λT 1000.1 28.9163 1000.2
d 953.0816 26.2072 952.4442

for E0

λE 0.0100 2.8926e-004 0.0100
δE 0.0100 2.8914e-004 0.0100

Having decided the most influential parameters, we investigate their effect on
the infected steady state Si. Statistical results for Ti, Vsi, and Vri, that is for the

Table 5. Statistics for Ti from Monte Carlo samples of 105 repe-
titions and PRCC value for each parameter

Parameter Mean Std. Dev. Median PRCC

ks 462.3418 5.1067 462.0640 -0.9998
kr 462.0788 6.9800e-010 462.0788 5.7489e-007
Ns 474.0013 7.8848 462.3059 -0.9900
Nr 462.0788 6.9800e-010 462.0788 6.4769e-006
m 462.0600 2.6122 462.0875 1.000

healthy CD4+ T-cell density, the drug sensitive and drug resistant viral loads, are
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presented in Tables 5, 6, and 7, respectively. The p-value < 0.01 in each considered
case. From the partial rank correlation coefficients (PRCCs) between Ti,Vsi, and

Table 6. Statistics for Vsi from Monte Carlo samples of 105 rep-
etitions and PRCC value for each parameter

Parameter Mean Std. Dev. Median PRCC

ks 484.8274 3.6580 485.0474 0.9997
kr 485.0371 0.0012 485.0371 -0.9995
Ns 485.7595 4.9811 484.5943 1.0000
Nr 485.0315 0.0169 485.0373 -0.9318
m 485.1027 5.0987 485.0203 -0.999

Vri, and each parameter (coefficients that measure the independent influence of
these parameters on the variation of Ti, Vsi, Vri respectively), we observe that
there is a strong correlation between these steady state values and the values of
the considered parameters. The strongest correlation appears to be between these

Table 7. Statistics for Vri from Monte Carlo samples of 105 rep-
etitions and PRCC value for each parameter

Parameter Mean Std. Dev. Median PRCC

ks 0.0219 4.4797e-004 0.0218 -0.9982
kr 0.0219 7.8957e-004 0.0218 0.9995
Ns 0.0239 0.0054 0.0218 -0.8802
Nr 0.0296 0.0202 0.0217 0.9318
m 0.0218 2.2946e-004 0.0218 -0.999

steady states and the immune effectors induced death rates for the infected T-cells
with both strains of virus. Increasing these rates is more efficient in rising the
number of healthy T-cells and decreasing the wild-type and the resistant virus.
This is a strong evidence that supports the inclusion of CTL’s effect in our model.
Also, both classes of antiviral drugs, RTIs and PIs, but only the ones affecting
the sensitive strain, influence the steady state level of CD4+ T-cells. Interestingly
enough, the infection rates are the most influential parameters for both strains of
viral load; the RT inhibitors (see model (26) in Section 3) have a stronger effect in
reducing the viral load.

3. Model with Antiretroviral Therapy

When HIV infects the body, it attacks the CD4+ lymphocytes. Since HIV
is a retrovirus, it contains no DNA of its own, and has to use the enzyme reverse
transcriptase to facilitate its replication. This enzyme allows HIV’s RNA to become
incorporated into the DNA of the helper T-cells of the body, which continue to
replicate the HIV RNA in its own DNA. Additional enzymes help bring together
the pieces of RNA to form complete HIV viruses, eventually causing the infected
cell to burst and release more HIV into the system to attack uninfected helper T
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cells. The process of reverse transcription is prone to errors, so many different
strains of the virus may survive to replicate in the body.

There are two major classes of antiretroviral drugs which are utilized in HIV
treatment: the reverse transcriptase inhibitors (RTI) and the protease inhibitors
(PI). Combinations of these are used in a regimen known as Highly Active An-
tiretroviral Therapy (HAART) [10, 58, 59, 35, 1, 2] designed to limit the virus’
ability to mutate and develop drug-resistant strains. Nucleoside Reverse Tran-
scriptase Inhibitors (NRTI’s) and Non-Nucleoside Reverse Transcriptase Inhibitors
(NNRTI’s) inhibit reverse transcription enzymes. Entry inhibitors prevent the virus
from attaching to the surface of the lymphocytes. This class of drugs in our model
would have an impact on reducing ks and kr, the infection rate for wild-type and
drug resistant virus, respectively. Protease inhibitors inhibit the protein enzymes
that cut viral proteins to the correct size. PIs go to work after the process of
reverse transcription by inhibiting the activity of protease, an enzyme needed by
the virus for the production of new virions in infected lymphocytes [23]. In our
model this would impact Ns and Nr, the number of virions produced per infected
drug-sensitive and drug-resistant cell, respectively.

We study the antiretroviral drug therapy in this system by introduction of drug-
efficacy parameters, which are extensively used in numerous models, such as [16,
14, 21, 22]. We consider εsRT and εrRT to represent the efficacies of RTIs and
εsPI and εrPI to be the efficacies of PIs drug-sensitive and drug-resistant strains,
respectively. Thus, incorporating the effect of these drugs into the system (6) we
obtain the following equations.

dT

dt
= λT − dT − ks(1− εsRT )VsT − kr(1− εrRT )VrT

dTs

dt
= (1 − u)ks(1− εsRT )TVs − δTs −m1ETs

dVs

dt
= Ns(1− εsPI)δTs − cVs

dTr

dt
= uks(1− εsRT )TVs + kr(1− εrRT )VrT − δTr −m2ETr

dVr

dt
= Nr(1− εrPI)δTr − cVr

dE

dt
= λE + cE(Ts + Tr)− δEE,

(26)

The initial conditions are the values for the interior infected steady states Si (given
by (17)) in the no-treatment case. Here εsRT , ε

s
PI , ε

r
RT , and εrPI ∈ [0, 1]. In the case

that all are zero, i.e., no treatment, we obtain the system (6); if all are 1, then we

obtain a complete cure of the disease since
dVs

dt
< 0 and

dVr

dt
< 0. Moreover, we

have that εsRT > εrRT and εsPI > εrPI since the wild-type virus is more susceptible
to drugs. Therefore we can consider that εrRT = αεsRT or that εrPI = αεsPI , where
0 < α < 1 represents the HIV mutants’ level of resitance; the smaller α, the more
resistance to the used drug for the drug-resistant strains.

The analysis of this system does not change from the previous case since the
positive coefficients ks, kr andNs, Nr in (6) have been replaced by ks(1−εsRT ), kr(1−
εrRT ) and Ns(1− εsPI), Nr(1− εrPI), respectively, in (26) which are positive as well.
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Therefore, the nonnegative orthant R6
+ is an invariant for the solution and the

system has three steady states in this region, S̄0, S̄b, and S̄i obtained in a similar
way as before.
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(c) Steady state of total virus Vti

Figure 2. Steady state of the virus in model (26) as a function
of εsRT , with εrRT = αεsRT , ε

s
PI and εrPI are zero, and α = 0.5

We begin by investigating the effect of only one class of antiretroviral drugs in
the system. First off we consider that εrRT = αεsRT and εrPI = εsPI = 0. Figure 2
shows the variation of the steady states Vsi, Vri, for wild type and drug-resistant
strains respectively, and the total virus as εsRT varies over the interval (0, 1), with
α = 0.5. One can see that drug-sensitive strain Vsi decreases with the increase
of drug efficacy εsRT until it becomes zero for εsRT = 0.68. However, this is not
the case with the drug-resistant strain Vri. At first it changes very slowly as the
efficacy εsRT increases. When εsRT approaches 0.6, Vri increases substantially until
it reaches its maximum value. As εsRT varies from 0.6 to 0.62, the value of this
steady state decreases from its peak to zero. Thus, for εsRT = 0.68, both values for
steady states reach zero, so the virus is eradicated. Next, we investigate the effect of
varying εrRT in the interval (0, 1), on the steady states Vsi and Vri, with εsRT = 0 and
εsPI = εrPI = 0 as well. As one can see from Figure 3, εrRT alone has little or no effect
on drug sensitive strain, which in fact shows an insignificant increase. Although
Vri decreases with the increase of εrRT , it never reaches zero even with a perfect
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(c) Steady state of total virus Vti
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Figure 3. Steady state of the virus in model (26) as a function
of εrRT , with εsPI and εrPI are zero; εsRT = 0 for (a), (b), and (c).

adherence to this treatment. Moreover, the total virus exhibits the same behavior
as the wild type. This implies that a RTI drug targeting only the strain-resistant
virus does not have any effect on the total virus concentration. In Figure 3(d) we
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(b) Steady state of Vri

Figure 4. Steady state of the virus in model (26) as a function
of εsPI with εrPI = αεsPI , and εsRT and εrRT are zero and α = 0.5

gradually introduce RTIs for the wild-type virus. Even though Vri reaches lower
values as εsRT increases (as expected), it does not change dramatically the evolution
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of the system in this considered situations. Therefore, this result gives additional
support to our assumption that εsRT > εrRT . We perform a similar analysis using
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Figure 5. Steady state of Vr with εr = αεs, for different values of α

only PIs, that is εrPI = αεsPI and εsRT = εrRT = 0 and the results for the two steady
states are shown in Figure 4. It is not surprising to see a similar behavior as before.
However, in this case Vsi decreases almost linear (i.e., faster than in the other case)
and Vri has a lower maximum value obtained for εsPI = 0.62. It appears that PIs
are slightly more efficient than RTIs when considered in a non-cocktail regimen
(see Figure 5); also, as the resistant strain is less resistant (i.e., the values for α
are greater), the maximum values for this steady states gets smaller, as expected,
which is another evidence for our assumption.
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Figure 6. Variation of εsRT and εsPI

Next we simulate a combination of both types of drugs, RTIs and PIs, for both
wild-type and drug-resistant strains. Having concluded that the drugs affecting
only the drug-resistant virus for both classes of antiretroviral drugs have very little
effect when not combined with the ones for the drug sensitive virus, we consider that
εrRT = α1ε

s
RT and εrPI = α2ε

s
PI , with α1,2 ∈ (0, 1) representing the HIV mutants’

level of resistance. These values for α’s are not necessarily equal. The relationship
between εsRT and εsPI such that the steady state for total virus Vti = Vsi + Vri is
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zero is given in Figure 6(a) (here α1 = α2 = 0.25).The coordinates of any point on
this curve give the necessary and sufficient combined drug sensitive efficacies for
the perfect treatment, i.e., eradication of the disease in the case of constant drug
efficacies. The drug-resistant efficacies can be calculated as well using the above
mentioned relation. Figure 6(b) shows the levels of the steady state of the total virus
Vti as the drug sensitive efficacies vary in the interval [0, 1], with α1 = α2 = 0.25.
Let us define the drug-sensitive and drug-resistant overall treatment effect [21] to
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Figure 7. The relation between εs and εsRT , ε
s
PI such that the

infected steady state Vti is zero, i.e., effective treatment

be
εs = 1− (1− εsRT )(1− εsPI) and εr = 1− (1 − εrRT )(1 − εrPI), (27)

respectively. Using the previously mentioned relation between drug sensitive and
drug-resistant efficacies, it is enough to restrict our analysis to εs, since εr depends
on εs through α1 and α2. Its variation as εsRT , ε

s
PI ∈ (0, 1) such that Vti = 0 is given

in Figure 7 (b). Not surprisingly, the overall effect increases as a cocktail of drugs
is used in the treatment regimen. Furthermore, we investigate the optimum combi-
nation of RTIs and PIs for potential maximum efficiency. For the pairs (εsRT , ε

s
PI)

at which Vti = 0 we calculate the drug sensitive overall efficacy εs as εsRTvaries
in the interval (0, 0.7) and we plot the results in Figure 7(a). It is clear that the
treatment is more effective when a cocktail of drugs is used. Moreover, there are
different combinations at which it attends its maximum values (such as εsRT = 0.04,
or εsRT = 0.08); it appears that εs varies almost periodically for εsRT ∈ (0, 0.25).
However, as εsRT approaches 0.65, εs does not change significantly. This suggests
that a more effective treatment should contain a cocktail with both type of an-
tiretroviral drugs, RTIs and PIs. Likewise, this dependence of the overall efficacies
εs and εr could be obtained for any desired threshold values for the steady states of
the drug sensitive, drug-resistant, or total free virus. Then an optimum treatment
strategy could be design for each patient.

In our proposed model we consider the influence of CD8 T lymphocytes (CTLs),
thus we investigate the dynamics of our system (26) when the immune-induced
clearance rates are zero and different from zero. We use the steady state values
of the pretreatment model (6) (see Figure 1) as the initial conditions in all these
simulations. Figure 8 (a) and (b) illustrates the evolution of the uninfected T cells
and the total free virus over a period of 800 days. Here the overall treatment effect
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(d) Drug-resistant virus with m1 = 0

Figure 8. Time evolution of uninfected T cells and the viral load
with and without the influence of immune effectors; α = 0.2, εs =
0.51 with εsRT = εsPI = 0.3

for the drug sensitive strain is εs = 0.51 (εsRT = εsPI = 0.3) and the HIV mutants’
resistance level is α = 0.2. Clearly, the inclusion of CTLs has a significant effect on
the steady state levels of uninfected T cells and the total viral load, as well as on the
overall dynamics of the system. The virus concentration decreases when the immune
clearance rate is not zero (for the drug sensitive strain or for both strains) as the
density of the CD4+ T cells converges to a higher level. Furthermore, we investigate
the effect of each clearance rate of the corresponding virus’ strains and the results
are plotted in Figure 8 (c) and (d). Under the same conditions, we consider m2 = 0
and we vary m1; we see a substantial decrease of the sensitive strain. Moreover
it is eradicated under these assumptions when m1 = 0.5 · 10−2μl cell−1day−1 (see
Figure 8 (c)). We observe a similar behavior when m1 = 0 and we vary m2; the
level of the resistant virus in the system decreases considerable (see Figure 8 (d)).

Given that we consider in our treatment scenarios that efficacies for drug resistant
strains depend on the efficacies of the drug sensitive strains via the HIV mutants’
resistance levels, we investigate the effect of this parameter on the dynamics of the
drug resistant virus and we present the results in Figure 9. Without a doubt, the
steady state values of the resistant strains are lower as the virus is less resistant to
either class of antiretroviral drugs used (see Figure 9 (a)); furthermore, with the
same RTIs’ resistance level, it is more efficient to have a better adherence to the
class of PI drugs (see Figure 9 (b)).
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Figure 9. The dynamics of the drug-resistant virus for different
mutants’ resistant levels; εs = 0.51 with εsRT = εsPI = 0.3
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Figure 10. The evolution of the resistant and total virus concen-
trations for different combinations of therapy, with εs = 0.51 and
α = 0.2

In the last part, we analyze different treatment scenarios. First off, we investigate
the effect of different combinations of RTIs and PIs for both strains. We consider
a fixed overall treatment effect for the sensitive strain (e.g., εs = 0.51 in Figure 10)
and fixed resistance rates (α1 = α2 = 0.2). We investigate different possibilities for
εsRT , ε

s
PI and εrRT = α1ε

s
RT , ε

r
PI = α2ε

s
PI connected by the relation (27). Figure 10

(a) and (b) shows the dynamics of the resistant strain and the total free virus , re-
spectively, when (εsRT , ε

s
PI , ε

r
RT , ε

r
PI) ∈ {(0.51, 0, 0.102, 0), (0.41, 0.17, 0.082, 0.034),

(0.3, 0.3, 0.06, 0.06)}, i.e., we start with only RTIs and progressively incorporate
PIs. It is not surprising to see that the least efficient scenario appears when there
is no combination of these two classes of drugs. In this case, the viral loads de-
crease the least compared to the other cases and converge to higher steady states.
As expected, the level of mutant virus increases the most when a no combination
therapy is administered. Moreover, from these numerical experiments we obtain
a similar conclusion as before, that PIs are more effective in the cocktail of drugs
when εsRT belongs to the first third of the interval as seen in Figure 6 (b).
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Figure 11. The dynamics of the uninfected T cells and total free
virus for different εs, with α = 0.2 and εsRT = εsPI given by (27)

Secondly, we investigate the effect of different treatment effects εs for the sen-
sitive strain in the interval (0, 0.65) (for values greater than 0.65, the viral pop-
ulation is eradicated), with α = 0.2 (that is, a mutant strain more resistant to
the drug), and the same ration of RTIs and PIs. We present the results in Fig-
ure 11 for εs = 0.41, 0.51, and 0.61 with εsRT = εsPI = 0.15, 0.31, and 0.37, thus
εrRT = εrPI = 0.03, 0.06, and 0.074, respectively. We clearly observe that the num-
ber of uninfected T cells converges to a higher level as the drug efficacy increases
(see Figure 11 (a)), while the amplitude of the viral peak and the value of the steady
state decrease. However, a higher drug efficacy causes the viral load to reach its
first peak at a later time than a lower drug efficacy (see Figure 11 (b)). Likewise,
if we consider εsPI = 0.3, varying εsRT in a range of (0.15, 0.3) has a small effect
on Vsi and Vri; however, for ε

s
RT = 0.45 only the resistant strain persists, whereas

when εsRT = 0.6 both strains are eradicated (Figure 12); in turn, healthy T-cell
concentration converges to higher levels as the efficacy increases, as expected.

4. Disscusion

Mathematical models of HIV’s dynamics have been intensively utilized in the
common effort to accurately predict the course that HIV takes under different cir-
cumstances [21, 20, 14, 18, 22]. many of them are composed of a system of differ-
ential equations describing the evolution of the uninfected T-cells, infected T-cells,
and the free virus in the body. In this paper we perform further analysis that con-
siders the impact of CD8+ T-cells in fighting the infection, by including their effect
on a multiple strain system. Our results show that that the presence of the active-
immune effectors reduces the infected cell concentration, driving drug-sensitive,
drug-resistant, and the total viral concentrations to stabilize at lower levels, and
allowing the concentration of healthy CD4+ T-cells to reach a higher steady-state
(Figure 1). The analysis of our mathematical model shows that the solution of the
initial value problem (6)–(7) is non-negative and bounded. Stability and sensitivity
analysis is performed on the system (6) to show that it has three positive steady
states: the unstable infection free and boundary steady states and stable interior
steady state. In addition, through the results of Monte-Carlo simulations, we ana-
lyze the sensitivity of the interior steady state to key parameters. We find that the
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Figure 12. The dynamics of the wild-type, the resistant virus,
and uninfected T cells for different εsRT , with α = 0.2 and εsPI = 0.3

inclusion of the effector-cell compartment suggests stimulation of the immune sys-
tem, through Structured Treatment Interruption or antigenic boosts, can produce
a positive outcome with a suppressed viral load and an immune system capable of
controlling the infection.

Exploring new means of treating HIV that are meant to supplement traditional
pharmaceutical regimens appears to be an intriguing new field of research. Finding
ways for the immune system to cope with an HIV infection that do not involve
large amounts of pharmaceutical treatment could be a necessary step in fighting
the HIV epidemic. In this paper we also explore the impact of the antiretroviral
therapy on an HIV plagued immune system while accounting for the presence of
CD8+ T-lymphocytes (CTLs), as well as their impact on the emergence of drug
resistance variance. Our results show that when the activity of immune effectors
is incorporated into the model and antiretroviral treatment is simulated, the con-
centration of healthy helper T-cells increases relative to that of a system without
immune effectors (see Figure 8). Additionally, our results confirm the fact that a
more efficient drug therapy requires a combination of RTIs and PIs for both strains
of virus, wild-type and resistant; nevertheless, we prove that a more effective treat-
ment should contain a cocktail with both drugs, but the ratio of RTIs to PIs should
be about 1:4 (Figure 7 (a)), that is PIs are slightly more effective in the combi-
nation therapy. These results yield promise for newer treatment methods such as
STIs and antigenic stimulation of the immune system.
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