
Noname manuscript No.
(will be inserted by the editor)

Boosting k-NN for categorization of natural scenes

Paolo Piro · Richard Nock · Frank Nielsen · Michel Barlaud

Received: date / Accepted: date

Abstract The k-nearest neighbors (k-NN) classification rule
has proven extremely successful in countless many com-
puter vision applications. For example, image categorization
often relies on uniform voting among the nearest prototypes
in the space of descriptors. In spite of its good generalization
properties and its natural extension to multi-class problems,
the classic k-NN rule suffers from high variance when deal-
ing with sparse prototype datasets in high dimensions. A few
techniques have been proposed in order to improve k-NN
classification, which rely on either deforming the nearest
neighborhood relationship by learning a distance function or
modifying the input space by means of subspace selection.

In this paper, we propose a novel boosting algorithm,
called UNN (Universal Nearest Neighbors), which induces
leveraged k-NN, thus generalizing the classic k-NN rule.
Our approach consists in redefining the voting rule as a strong
classifier that linearly combines predictions from the k clos-
est prototypes. Therefore, the k nearest neighbors examples
act as weak classifiers and their weights, called leveraging
coefficients, are learned by UNN so as to minimize a surro-

P. Piro ·M. Barlaud
University of Nice-Sophia Antipolis / CNRS, 2000 route des Lucioles
- 06903 Sophia Antipolis Cedex, France

P. Piro E-mail: piro@i3s.unice.fr · R. Nock
CEREGMIA Department, University of Antilles-Guyane, Martinique,
France
E-mail: rnock@martinique.univ-ag.fr

F. Nielsen
Department of Fundamental Research, Sony Computer Science Labo-
ratories, Inc., Tokyo, Japan
E-mail: nielsen@lix.polytechnique.fr

F. Nielsen
LIX Department, Ecole Polytechnique, Palaiseau, France
E-mail: nielsen@lix.polytechnique.fr

M. Barlaud
E-mail: barlaud@i3s.unice.fr

gate risk, which upper bounds the empirical misclassifica-
tion rate over training data. A major feature of UNN is the
ability to learn which prototypes are the most relevant for a
given class, thus allowing one for effective data reduction by
filtering the training data.

Experimental results on the synthetic two-class dataset
of Ripley show that such a filtering strategy is able to reject
“noisy” prototypes, and yields a classification error close to
the optimal Bayes error. We carried out image categorization
experiments on a database containing eight classes of natural
scenes. We show that our method outperforms significantly
the classic k-NN classification, while enabling significant
reduction of the computational cost by means of data filter-
ing.

Keywords Boosting · k nearest neighbors · Image
categorization · Scene classification

1 Introduction

1.1 Generic visual categorization

In this paper, we address the problem of generic visual cate-
gorization. This is a relevant task in computer vision, which
aims at automatically classifying images into a discrete set
of categories, such as indoor vs outdoor, beaches vs moun-
tains, churches vs towers. Generic categorization is distinct
from object and scene recognition, which are classification
tasks concerning particular instances of objects or scenes
(e.g. Notre Dame Cathedral vs St. Peter’s Basilic). It is also
distinct from other related computer vision tasks, such as
content-based image retrieval (that aims at finding images
from a database, which are semantically related or visually
similar to a given query image) and object detection (which
requires to find both the presence and the position of a target
object in an image, e.g. person detection).

ar
X

iv
:1

00
1.

12
21

v1
 [

cs
.C

V
]

 8
 J

an
 2

01
0

2

Automatic categorization of generic scenes is still a chal-
lenging task, due to the huge number of natural categories
that should be considered in general. In addition, natural im-
age categories may exhibit high inter-class variability (i.e., vi-
sually different images may belong to the same category)
and low inter-class variability (i.e., distinct categories may
contain visually similar images).

Classifying images requires a reliable description of the
content relevant for an application (e.g., location and shape
of specific objects or overall scene appearance). Examples
of suitable image descriptors for categorization purposes are
Gist, i.e. global image features representing the overall scene
(Oliva and Torralba, 2001), and SIFT descriptors, i.e. de-
scriptors of local features extracted at salient patches (Lowe,
2004).

Gist descriptor is based on the so-called “spatial enve-
lope” (Oliva and Torralba, 2001), which is a very effective
low dimensional representation of the overall scene based
on spectral information. Such a representation bypasses seg-
mentation, extraction of keypoints and processing of indi-
vidual objects and regions, thus enabling a compact global
description of images. Gist descriptors have been success-
fully used for categorizing locations and environments, show-
ing their ability to provide relevant priors for more specific
tasks, like object recognition and detection (Rubin et al, 2003).

1.2 k-NN classification

Apart from the descriptors used to compactly represent im-
ages, most image categorization methods rely on supervised
learning techniques for exploiting information about known
samples when classifying an unlabeled sample. Among these
techniques, k-NN classification has proven successful, thanks
to its easy implementation and its good generalization prop-
erties (Shakhnarovich et al, 2006). Indeed, the k-NN rule
does not require explicit construction of the feature space
and is naturally adapted to multi-class problems. Moreover,
from the theoretical point of view, k-NN classification prov-
ably tends to the Bayes optimal when increasing the sample
size. Although such advantages make k-NN classification
very attractive to practitioners, it is an algorithmic challenge
to speed-up k-NN queries and design schemes that scale-up
well with large dimensional datasets (Shakhnarovich et al,
2006). Moreover, it is yet another challenge to reduce the
misclassification rate of the k-NN rule, usually tackled by
data reduction techniques (Hart, 1968).

In a number of works, the classification problem has
been reduced to tracking ill-defined categories of neighbors,
interpreted as “noisy” (Brighton and Mellish, 2002). Most
of these recent techniques are in fact partial solutions to a
larger problem related to nearest neighbors’ error, which
does not have to be the discrete prediction of labels, but

rather a continuous estimation of class membership prob-
abilities (Holmes and Adams, 2003). This problem has been
reformulated by Marin et al (2009) as a strong advocacy
for the formal transposition of boosting to nearest neighbors
classification. Such a formalization is challenging as near-
est neighbors rules are indeed not induced, whereas all for-
mal boosting algorithms induce so-called strong classifiers
by combining weak classifiers (also induced, say by decision
stumps).

A survey of the literature shows that at least four differ-
ent categories of approaches have been proposed in order to
improve k-NN classification:

– learning local or global adaptive distance metric;
– embedding data in the feature space (kernel nearest neigh-

bors);
– distance-weighted and difference-weighted nearest neigh-

bors;
– boosting nearest neighbors.

The earliest approaches to generalizing the k-NN clas-
sification rule relied on learning an adaptive distance met-
ric from training data. Refer to the seminal work of Fuku-
naga and Flick (1984) who presented an optimal global met-
ric for k-NN. An analogous approach was later adopted by
Hastie and Tibshirani (1996), who carried out linear dis-
criminant analysis to adaptively deform the distance met-
ric. Recently, Paredes (2006) has proposed a method for
learning a weighted distance, where weights can be either
global (i.e., only depending on classes and features) or local
(i.e., depending on each individual prototype as well).

Other more recent techniques apply the nearest neigh-
bors rule to data embedded in a high-dimensional feature
space, following the kernel trick approach of support vec-
tor machines. For example, Yu et al (2002) have proposed
a straightforward adaptation of the kernel mapping to the
nearest neighbors rule, which yields significant improvement
in terms of classification accuracy. In the context of vision,
a successful technique has been proposed by Zhang et al
(2006), which involves a “refinement” step at classification
time, without relying on explicitely learning the distance
metric. This method trains a local support vector machine
on nearest neighbors of a given query, thus limiting the most
expensive computations to a reduced subset of prototypes.

Another class of k-NN methods rely on weighting near-
est neighbors votes based on their distances to the query
sample (Dudani, 1976). Recently, Zuo et al (2008) have pro-
posed a similar weighting approach, where the nearest neigh-
bors are weighted based on their vector difference to the
query. Such a difference-weight assignment is defined as a
constrained optimization problem of sample reconstruction
from its neighborhood. The same authors have proposed a
kernel-based non-linear version of this algorithm as well.

3

Finally, only very few work have proposed the use of
boosting techniques for k-NN classification. For instance,
Amores et al (2006) use AdaBoost for learning a distance
function to be used for k-NN search. On the other hand,
Garcı́a-Pedrajas and Ortiz-Boyer (2009) adopt the boosting
approach in a non-conventional way. At each iteration a dif-
ferent k-NN classifier is trained over a modified input space.
Namely, the authors propose two variants of the method,
depending on the way the input space is modified. Their
first algorithm is based on optimal subspace selection, i.e.,
at each boosting iteration the most relevant subset of input
data is computed. The second algorithm relies on modify-
ing the input space by means of non-linear projections. But
neither method is strictly an algorithm for inducing weak
classifiers from the k-NN rule, thus not directly addressing
the problem of boosting k-NN classifiers. Moreover, such
approaches are computationally expensive, as they rely on a
genetic algorithm and a neural network, respectively.

Conversely, we propose a complete solution to the prob-
lem of boosting k-NN classifiers in the general multi-class
setting. Namely, we propose a novel boosting algorithm, called
UNN, which induces a leveraged nearest neighbors rule that
generalizes the uniform k-NN rule. Indeed, the voting rule is
redefined as a strong classifier that linearly combines weak
classifiers induced by the k-NN rule. Therefore, our approach
does not need to learn a distance function, as it directly op-
erates on the top of k-nearest neighbors search. At the same
time, it does not require an explicit computation of the fea-
ture space, thus preserving one of the main advantages of
prototype-based methods. Our UNN boosting algorithm is
an iterative procedure that learns the weights of weak classi-
fiers, called leveraging coefficients. We show that this algo-
rithm converges to the global minimum of any chosen clas-
sification calibrated surrogate1 (Bartlett et al, 2006). Hence,
our framework handles most popular losses in the machine
learning literature: squared loss, exponential loss, logistic
loss, etc. In particular, we prove a specific convergence rate
for the exponential loss (reported in our experiments) far
better than the general rate of Nock and Nielsen (2009). An-
other important characteristic of UNN is that it is able to
discriminate the most relevant prototypes for a given class,
thus allowing one for significant data reduction while im-
proving at the same time classification performances.

1.3 Overview of the paper

In the following sections we present our approach to k-NN
boosting. Sections 2.1-2.3 present key definitions for k-NN
boosting. These sections also describe how to replace the
classic uniform k-NN rule by a leveraged k-NN rule. Lever-

1 A surrogate is a function which is a suitable upperbound for an-
other function (here, the non-convex non-differentiable empirical risk).

aged k-NN classifiers are induced by UNN algorithm, which
is detailed in Sec. 2.4 for the case of exponential risk. Sec. 2.5
presents the generic convergence theorem of UNN and the
upper bound performance for the exponential risk minimiza-
tion. Our experiments on both synthetic and image catego-
rization datasets are reported in Sec. 3. Then, Sec. 4 dis-
cusses results and mentions future work.

In order not to laden the body of the paper, the general
form of UNN algorithm and proofsketches of our theorems
have been postponed to an appendix in Sec. 5.

2 Method

2.1 Problem statement and notation

In this work, we address the task of multi-class, single-label
image categorization. Hence, several categories of images
are predefined, whereas each image is constrained to belong
to a single category. The number of categories (or classes)
may range from a few to hundreds, depending on appli-
cations. E.g., categorization with 67 Indoor categories has
been recently studied by Quattoni and Torralba (2009). We
treat the multi-class problem as multiple binary classifica-
tion problems as it is customary in machine learning. I.e.,
for each class c, a query image is classified either to c or to c̄
(the complement class of c, which contains all classes but c)
with a certain confidence (classification score). Then the la-
bel with the maximum score is assigned to the query. Im-
ages are represented by descriptors related to given local or
global features. We refer to an image descriptor as an obser-
vation o ∈ O, which is a vector of n features and belongs to
a domainO (e.g., Rn or [0, 1]n). A label is associated to each
image descriptor according to a predefined set of C classes.
Hence, an observation with the corresponding label leads to
an example, which is the ordered pair (o,y) ∈ O × RC ,
where y is termed the class vector that specifies the class
memberships of o. In particular, the sign of yc gives the
membership of example (o,y) to class c, such that yc is neg-
ative iff the observation does not belong to class c, positive
otherwise. At the same time, the absolute value of yc may
be interpreted as a relative confidence in the membership.
Inspired by the multi-class boosting analysis of Zhu et al
(2006), we constrain class vectors to be symmetric, that is:

C∑
c=1

yc = 0 . (1)

Hence, in the single-label framework, the class vector of an
observation o belonging to class c̃ is defined as: yc̃ = 1,
yc6=c̃ = − 1

C−1 . This setting turns out to be necessary when
treating multi-class classification as multiple binary classifi-
cations, as it balances negative and positive labels of a given
example over all classes. We are given an input set of m

4

examples S = {(oi,yi), i = 1, 2, ...,m}, arising from an-
notated images, which form the training set.

2.2 Boosting k-NN for minimization of surrogate risks

We aim at defining a one-versus-all classifier for each cate-
gory, which is to be trained over the set of examples. This
classifier is expected to correctly classify as many new ob-
servations as possible, i.e. to predict their true labels. There-
fore, we aim at determining a classification rule h from the
example dataset, which is able to minimize the classification
error over all possible new observations. But since the un-
derlying class probability densities are generally unknown
and difficult to estimate, defining a classifier in the frame-
work of supervised learning can be viewed as fitting a clas-
sification rule onto a training set S without overfitting. This
corresponds to defining a classifier that correctly classifies
most of the example data themselves, thus minimizing the
classification error over the example dataset (empirical or
true classification loss). Therefore, in the most basic frame-
work of supervised classification, one wishes to train a clas-
sifier on S, i.e. build a function h : O → RC with the
objective to minimize its empirical risk on S, defined as:

ε0/1(h,S)
.
=

1

mC

C∑
c=1

m∑
i=1

[%(h, i, c) < 0] , (2)

with [.] the indicator function (1 iff true, 0 otherwise), called
here the 0/1 loss, and:

%(h, i, c)
.
= yichc(oi) (3)

the edge of classifier h on example (oi,yi) for class c. Tak-
ing the sign of hc in {−1,+1} as its membership prediction
for class c, one sees that when the edge is positive (resp. neg-
ative), the membership predicted by classifier and the actual
example’s membership agree (resp. disagree). Therefore, (2)
averages over all classes the number of mismatches for the
membership predictions, thus measuring the goodness-of-fit
of the classification rule on the training dataset. Provided
that the example dataset has good generalization properties
with respect to the unknown distribution of possible obser-
vations, minimizing this empirical risk is expected to yield
good accuracy when classifying unlabeled observations. Un-
fortunately, minimizing the empirical risk is mathematically
not tractable as it deals with non-convex optimization. In
order to bypass this cumbersome optimization challenge,
the current trend of supervised learning (including boosting
and support vector machines) has replaced the minimiza-
tion of the empirical risk (2) by that of a so-called surrogate
risk (Bartlett et al, 2006), to make the optimization problem
amenable. In boosting, it amounts to summing (or averag-
ing) over classes and examples a real-valued function called

the surrogate loss, thus ending up with the following rewrit-
ing of (2):

εψ(h,S)
.
=

1

mC

C∑
c=1

m∑
i=1

ψ(%(h, i, c)) . (4)

Important choices available for ψ include:

ψsqr .
= (1− x)2 , (5)

ψexp .
= exp(−x) , (6)

ψlog .
= log(1 + exp(−x)) ; (7)

(5) is the squared loss (Bartlett et al, 2006), (6) is the ex-
ponential loss (Schapire and Singer, 1999), and (7) is the
logistic loss (Bartlett et al, 2006).

Surrogates play a fundamental role in supervised learn-
ing. They are upper bounds of the empirical risk with de-
sirable convexity properties. Their minimization remarkably
impacts on that of the empirical risk, thus enabling to pro-
vide minimization algorithms with good generalization prop-
erties (Nock and Nielsen, 2009).

In this paper, we move from recent advances in boost-
ing with surrogate risks to redefine the k-NN classification
rule. In particular, we concentrate on the exponential risk
and provide a novel algorithm that learns a leveraged k-NN
classifier, while provably converging to the global optimum
of a surrogate risk. Our algorithm, called UNN (Universal
Nearest Neighbors), meets boosting-type convergence prop-
erties under two mild assumptions on the training set: weak
learning and weak coverage properties. In the Appendix, we
also describe how the UNN algorithm generalizes to any
surrogate loss, and provide the most general analysis.

2.3 Leveraged k-NN rule

In the following, we denote by NNk(oi′) the set of the k-
nearest neighbors (with integer constant k > 0) of an ex-
ample (oi′ ,yi′) in set S with respect to a non-negative real-
valued “distance” function. This function is defined on do-
main O and measures how much two observations differ
from each other. This dissimilarity function thus many not
necessarily satisfy the triangle inequality of metrics. (All
experiments in this paper refer to nearest neighbors with
respect to the Euclidean distance.) For sake of readability,
we let i ∼k i′ denote an example (oi,yi) that belongs to
NNk(oi′). This neighborhood relationship is intrinsically
asymmetric, i.e., i ∼k i′ does not necessarily imply that
i′ ∼k i. Indeed, a nearest neighbor of i′ does not necessarily
contain i′ among its own nearest neighbors.

The k-nearest neighbors rule (k-NN) is the following
multi-class classifier h = {hc : c = 1, 2, ..., C} (k appears
in the summation indices):

hc(oi′) =
∑
j∼ki′

[yjc > 0] , (8)

5

where hc is the one-versus-all classifier for class c and square
brackets denote the indicator function. Hence, the classic
nearest neighbors classification is based on majority vote
among the k closest prototypes.

In this paper, we propose to weight the votes of nearest
neighbors by means of real coefficients, thus generalizing
(8) to the following leveraged k-NN rule h` = {h`c : c =

1, 2, ..., C}:

h`c(oi′) =
∑
j∼ki′

αjcyjc , (9)

where αjc ∈ R is the leveraging coefficient for example j
in class c, with j = 1, 2, ...,m and c = 1, 2, ..., C. Hence,
(9) linearly combines class labels of the k nearest neighbors
(defined in Sec. 2.1) with their leveraging coefficients.

The main contribution of our work is to define a gen-
eral algorithm (UNN) for learning these leveraging coef-
ficients from training data. This algorithm operates on the
top of classic k-NN methods, for it does not affect the near-
est neighbors search when inducing weak classifiers of (9).
Indeed, it is independent on the way nearest neighbors are
computed, unlike most of the approaches mentioned in Sec. 1.2,
which rely on modifying the neighborhood relationship via
metric distance deformations or kernel transformations.
Though, our approach is still fully compatible with any un-
derlying (metric) distance and data structure for k-NN search,
as well as possible kernel transformations of the input space.

For a given training set S of m labeled examples, we
define the k-NN edge matrix R(c) ∈ Rm×m for each class
c = 1, 2, ..., C (Nock and Nielsen, 2009):

r
(c)
ij

.
=

{
yicyjc if j ∼k i
0 otherwise

. (10)

The name of R(c) is justified by an immediate parallel with
(3). Indeed, each example j serves as a classifier for each
example i, predicting 0 if j 6∈ NNk(oi), yjc otherwise, for
the membership to class c. Hence, the jth column of matrix
R(c), r(c)j , which is different from 0 when choosing k > 0,
collects all edges of “classifier” j for class c. Note that non-
zero entries of this column correspond to the so-called recip-
rocal nearest neighbors (Rk-NN) of j, i.e., those examples
for which j is a neighbor (Fig. 1). It finally comes that the
edge of the leveraged k-NN rule on example i for class c is:

%(h`, i, c) = (R(c)α(c))i , c = 1, 2, ..., C , (11)

where α(c) collects all leveraging coefficients in a vector
form for class c: α(c)

i
.
= αic, i = 1, 2, ...,m. The expression

of surrogate loss (4) can be written as follows after replacing
the argument of ψ(·) in (4) by (11):

εψ(h,S)
.
=

1

mC

C∑
c=1

m∑
i=1

ψ

 m∑
j=1

r
(c)
ij αjc

 . (12)

j
i1

i2

i3

i4
i5

i6

i7

j
i1

i2

i3

i4
i5

i6

i7

Fig. 1 A toy example of direct (left) and reciprocal (right) k-nearest
neighbors (k = 1) of an example j. Squares and circles represent ex-
amples of positive and negative classes. Each arrow connects an exam-
ple to its 1-NN.

Therefore, fitting all αjc’s so as to minimize the surrogate
loss (12) is the main goal of our learning algorithm UNN for
inducing the leveraged k-NN classifier h`.

2.4 UNN: learning αjc of leveraged k-NN classifier

We propose a novel classification algorithm which induces
the leveraged nearest neighbors classifier h` (Eq. 9) in the
multi-class one-versus-all framework. In this section, we ex-
plain UNN specialized for the exponential risk minimiza-
tion, with pseudo-code shown in Alg. 1. However, our anal-
ysis is much more general, as it involves the broad class of
classification-calibrated surrogate risks (Bartlett et al, 2006),
and is postponed to Appendix in order not to burden the
methodology. Like common boosting algorithms, UNN op-
erates on a set of weights wi (i = 1, 2, ...,m) defined over
training data. Such weights are repeatedly updated to fit all
leveraging coefficients α(c) for class c (c = 1, 2, ..., C). At
each iteration, the index to leverage, j ∈ {1, 2, ...,m}, is ob-
tained by a call to a weak index chooser oracle WIC(., ., .),
whose implementation is postponed to steps [A.1] and [A.2],
detailed later on in this section.

The training phase is implemented in a one-versus-all
fashion, i.e. C learning problems are solved independently,
and for each class c the training examples are considered as
belonging to either class c or the complement class c̄, i.e.
any other class. Eventually, one leverage coefficient (αjc)
per class is learned for each weak classifier (indexed by j).
In the Appendix, we show that Alg. 1 is a specialization of
a very general classification algorithm, thus justifying the
name “Universal Nearest Neighbors”. In particular, Alg. 1
induces the leveraged k-NN classifier by minimizing the ex-
ponential surrogate risk (6), very much like regular boosting
does it for inducing a weighted voting rule for a set of weak
classifiers.

The key observation when training weak classifiers with
UNN is that, at each iteration, one single example (indexed
by j) is considered as a prototype to be leveraged. Indeed, all
the other training data are to be viewed as observations for

6

which j may possibly vote. In particular, due to k-NN vot-
ing, j can be a classifier only for its reciprocal nearest neigh-
bors (i.e., those data for which j itself is a neighbor, corre-
sponding to non-zero entries in matrix (10) on column j).
This brings to a remarkable simplification when computing
δj in step [I.1] and updating weights wi in step [I.2] (Eq. 16,
17). Indeed, only weights of reciprocal nearest neighbors of
j are involved in these computations, thus allowing us not
to store the entire matrix R(c), c = 1, 2, ..., C. Note that the
set of Rk-NN is splitted in two subsets, each containing ex-
amples that agree (disagree) with the class membership of j,
thus yielding the partial sums w+

j and w−j of (15).
Note that when whichever w+

j or w−j is zero, δj in (16)
is not finite. There is however a simple alternative, inspired
by Schapire and Singer (1999), which consists in smooth-
ing out δj when necessary, thus guaranteeing its finiteness
without impairing convergence. More precisely, we suggest
to replace:

w+
j ← w+

j +
1

m
, (13)

w−j ← w−j +
1

m
. (14)

Also note that step [I.0] relies on oracle WIC(., ., .) for
selecting index j of the next weak classifier. We propose two
alternative implementations of this oracle, as follows:

[I.0.a] a lazy approach: we set T = m and let j be chosen
by WIC({1, 2, ...,m}, t, c) either: (1) randomly, or (2)
following the alphabetic order of classes;

[I.0.b] the boosting approach: we pick T ≥ m, and let j be
chosen by WIC({1, 2, ...,m}, t, c) such that δj is large
enough. Each j can be chosen more than once.

There are also schemes mixing [I.0.a] and [I.0.b]: for exam-
ple, we may pick T = m, choose j as in [I.0.b], but exactly
once as in [I.0.a].

2.5 Properties of UNN

In this section, we enunciate two fundamental theorems for
UNN. The first theorem reports a general monotonic con-
vergence property of UNN to the optimal loss, for any given
surrogate function. The second theorem further refines this
general convergence theorem by providing effective conver-
gence bound for the exponential loss.

Theorem 1 As the number of iteration steps T increases,
UNN converges to h` realizing the global minimum of the
surrogate risk at hand (4), for any ψ meeting conditions (i),
(ii) and (iii) above. (proofsketch in Appendix)

Although we prove the boosting ability of UNN for all
applicable surrogate losses, we choose to show in particular
its behavior for the exponential loss ψexp, which features far

Algorithm 1: UNIVERSAL NEAREST NEIGHBORS

UNN(S) for ψ = ψexp

Input: S = {(oi,yi), i = 1, 2, ...,m, oi ∈ O, yi ∈
{− 1

C−1
, 1}C}

Let r(c)ij
.
=

{
yicyjc if j ∼k i
0 otherwise ,

∀i, j = 1, 2, ...,m, c = 1, 2, ..., C;
for c = 1, 2, ..., C do

Let αjc ← 0, ∀j = 1, 2, ...,m;
Let wi ← 1, ∀i = 1, 2, ...,m;
for t = 1, 2, ..., T do

[I.0] Weak index chooser oracle: Let
j ← WIC({1, 2, ...,m}, t);
[I.1] Let

w+
j =

∑
i:r

(c)
ij >0

wi, w
−
j =

∑
i:r

(c)
ij <0

wi , (15)

δj ←
1

2
log

(
w+
j

w−j

)
; (16)

[I.2] Let

wi ← wi exp(−δjr(c)ij), ∀i : j ∼k i ; (17)

[I.3] Let αjc ← αjc + δj

Output: hc(oi′) =
∑
i∼ki′

αicyic, ∀c = 1, 2, ..., C

better convergence bound than the general one (Nock and
Nielsen, 2009).

Computing this bound is based on defining a weak in-
dex assumption (WIA), which is to nearest neighbors what
the conventional weak learning assumption is to general in-
duced classifiers (Schapire and Singer, 1999):

(WIA) let p(c)j
.
= w

(c)+
j /(w

(c)+
j + w

(c)−
j). There exist some

γ > 0 and η > 0 such that the following two inequality
holds for index j returned by WIC(., ., .):

|p(c)j − 1/2| ≥ γ , (18)

(w
(c)+
j + w

(c)−
j)/||w||1 ≥ η . (19)

Theorem 2 If the WIA holds for τ ≤ T steps in UNN (for
each c), then ε0/1(h`,S) ≤ exp(−2ηγ2τ). (proofsketch in
Appendix)

Inequality (18) is the usual weak learning assumption
(Schapire and Singer, 1999), when considering examples
as weak classifiers. But a weak coverage assumption (19)
is needed as well, because insufficient coverage of the re-
ciprocal neighbors could easily wipe out even the surrogate
risk reduction potentially due to a large γ. In addition, even
when classes are significantly overlapping, choosing k not
too small is enough for the WIA to be met for a large num-
ber of boosting rounds τ , thus determining a potential harsh
decrease of ε0/1(h`,S). This is important, as there are at most

7

m different weak classifiers available to WIC(., ., .), even
when each one may be chosen more than once under the
WIA. Last but not least, Theorem 2 also displays the fact
that classification (18) may be more important than cover-
age (19).

3 Experiments

In this section, we present experimental results of UNN vs
plain k-NN on both synthetic and real datasets. Such exper-
iments allowed us to quantify the gains brought by boost-
ing on nearest neighbors voting (Marin et al, 2009). For this
purpose, we first performed tests on two-class synthetic data
to drill down into the performances of UNN (Sec. 3.1). In
Sec. 3.2 we discuss the data reduction ability of our tech-
nique. Then, we carried out experiments of multi-class scene
categorization on a dataset of natural images and compared
the results of UNN to plain k-NN classification (Sec. 3.3).

3.1 Synthetic datasets

We have drilled down into the experimental behavior of UNN
using the synthetic Ripley’s dataset (Ripley, 1994) with two
classes denoted by P and N. Each population of this dataset
is an equal mixture of two two-dimensional normally dis-
tributed populations, which are equally likely. Training and
test dataset (consisting of 250 and 1000 points, respectively)
are shown in Figure 2, where the optimal classification bound-
ary of the Bayes rule is also displayed. This corresponds to
the best theoretical error rate of 8.0% (Ripley, 1994).

Fig. 3 validates on this dataset the monotonous decay
of the exponential risk (6), mathematically proved in Theo-
rem 2 under the two basic weak index/learning assumptions.
It also shows the effect of three different implementations of
the WIC oracle (Sec. 2.5). Note that the boosting approach
for selecting weak classifiers provides much faster decay of
the surrogate risk, thus outperforming the two tested “lazy”
implementations. In these latter cases, the index j of the
weak classifier at each UNN iteration was chosen either ran-
domly or following the order of examples in their respective
categories.

Classification results for a range of values of k are shown
in Fig. 4. They enable to draw two main conclusions: First,
test errors display a robustness of UNN against variations of
k. Second, filtering out even a large proportion 1− θ of ex-
amples with the smallest ||α.||22 does not degrade classifica-
tion performances, and can even significantly improve them.
As witnessed by Fig. 4, values as small as θ = 0.25 yields
improvements that make the test error close to Bayes’. (E.g.,
see the minimum error of boosted k-NN for θ = 0.25, k =

9.) We investigate such a data reduction ability of UNN in
the following Section.

Fig. 2 Training and validation data for the Ripley’s dataset. The Bayes
boundary is also drawn as reported in (Ripley, 1994).

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

ψ
ex

p

T

WIC = boosting
WIC = random order
WIC = alphabetic order

Fig. 3 Decrease of εψ
exp

(h`,S) as a function of T in UNN for the
Ripley’s dataset for different oracle implementations. Note that the
boosting implementation ([I.0.b], Sec. 2.4) always guarantees mono-
tonic decrease of the surrogate loss, until the weak assumptions are
matched (red curve). Conversely, the lazy implementation ([I.0.a],
Sec. 2.4) may select, at a given step, a classifier that does not match
those assumptions, thus preventing the loss from strictly decreasing
(see green and blue curves).

1 3 5 7 9 11 13 15
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

k

M
is

cl
as

si
fic

at
io

n
er

ro
r

ra
te

k−NN

UNN θ=1

UNN θ=0.75

UNN θ=0.5

UNN θ=0.25

Fig. 4 Test error for UNN as a function of k for boosted k-NN. Bayes
rule yields 8% optimal misclassification rate.

8

3.2 Filtering the prototype dataset

Experiments on the synthetic data illustrate the significant
precision improvement provided by filtering the prototype
dataset. Assuming standard sampling assumptions (Schapire
et al, 1998), filtering benefits from two positive effects. The
first is a margin effect, well known for induced classifiers
(Schapire et al, 1998). The goodness-of-fit of the k-NN rule
is driven by the most accurate examples, i.e. those surrounded
by examples of the same class, getting the largest ||α.||22.
The least accurate ones, e.g. those located in overlapping
regions between two classes, get the smallest. Discarding
these latter examples tends to increase a gap between class
clouds, but each cloud may shelter examples of different
classes. Fortunately, filtering with boosting is accompanied
by a subtle local repolarization of predictions which, as ex-
plained in Figure 5 for θ = 0.25, makes this gap maximiza-
tion translate to margin maximization, for which positive ef-
fects on learning are known (Schapire et al, 1998). The sec-
ond effect is structural: in nearest neighbors rules, the fron-
tier between classes stems from the Voronoi cells of those
least accurate examples. Discarding them separates better
the classes, as witnessed by Fig. 5. Above all, it reduces the
number of Voronoi cells involved in the class frontiers, thus
reducing structural parameters (VC-dimension) of the clas-
sifier, possibly buying a reduction of the test error as well
(Schapire et al, 1998).

3.3 Image Categorization

We tested our k-NN boosting algorithm for image catego-
rization. In particular, we used the global Gist descriptor of
Oliva and Torralba (2001) in order to obtain a meaningful
representation of images. This descriptor provides a global
representation of a scene, while not requiring explicit seg-
mentation of image regions and objects. In the typical set-
ting, an image is represented by a single vector of dimen-
sion 512, which collects features related to the spatial or-
ganization of dominant scales and orientations in the im-
age. This correspondence between images and descriptors is
one of the main advantages of using global descriptors over
representations based on bags of local features (Grauman
and Darrell, 2005). Indeed, global descriptors are straight-
forwardly adapted to image categorization methods relying
on machine learning techniques, as most of these techniques,
from prototype-based to kernel-based, require any instance
of a particular category to be represented by a single vector.
In particular, this is the case of k-NN classification, which
explicitly relies on measuring one-to-one similarity between
a query image and prototype images. In addition, Gist de-
scriptors have proven successful in representing relevant con-
textual information of natural scenes, which allows to com-

pute meaninfgul priors for exploration tasks like object de-
tection and localization (Rubin et al, 2003).

The dataset we used contains 2688 color images of out-
door scenes of size 256x256 pixels, divided in 8 categories:
coast, mountain, forest, open country, street, inside city, tall
buildings and highways. One example image of each cate-
gory is shown in Fig. 6.

To extract global descriptors from these images we used
the matlab implementation by Torralba 2, with the most com-
mon settings: 4 resolution levels of the Gabor pyramid, 8 ori-
entations per scale and 4× 4 blocks.

We used this database to validate UNN for different val-
ues of k. In particular, we concentrated on evaluating clas-
sification performances when filtering the prototype dataset,
i.e. retaining a proportion θ of the most relevant examples
as prototypes for classification. Such a data reduction capa-
bility is one of the most interesting properties of UNN, as
it favourably impacts on the computational cost of classi-
fication, which grows at least logarithmically (at most lin-
early) with the dataset size. Indeed, classification roughly
amounts to searching for the k nearest neighbors among
prototypes, which is O(kdθm) for linear exhaustive search,
O(kd log(θm)) for fast kD-tree based search (Arya et al,
1998) (d being the dimension of feature vectors, θ the pro-
portion of retained classifiers).

Fig. 7 shows results of 3-fold cross-validation in terms
of the mean Average Precision (mAP) 3 as a function of θ,
for different values of k. Indeed, we randomly splitted the
database into 3 distinct subsets, each containing 896 images.
Then, for each fold, we used one of these subsets as training
set, while validating on the two remaining subsets. In each
experiment, UNN was run over the training set and a subset
of the trained weak classifiers was retained as prototypes
for classifying the test images. In particular, we selected
all training images j with leveraging coefficients αjc, c =

1, 2, ..., C, such that αjc > α̃ > 0. Note from Fig. 7 that,
even when fixing threshold α̃ so as to retain all the exam-
ples, the actual proportion θ of prototypes is less than one,
because UNN always discards the examples with null lever-
aging coefficients, which do not match assumptions (18,19).

We compared UNN with the classic k-NN classifica-
tion. Namely, in order for the classification cost of k-NN be
roughly the same as UNN, we carried out random sampling
of the prototype dataset for selecting proportion θ (between
10% and the whole set of examples). UNN significantly out-
performs classic k-NN, even increasingly with k, as shown
in Fig. 8(a).

2 publicly available at http://people.csail.mit.edu/torralba/code/
spatialenvelope/sceneRecognition.m

3 The mAP was computed by averaging classification rates over cat-
egories (diagonal of the confusion matrix) and then averaging those
values over the 3 cross-validation folds (Oliva and Torralba, 2001).

http://people.csail.mit.edu/torralba/code/spatialenvelope/sceneRecognition.m
http://people.csail.mit.edu/torralba/code/spatialenvelope/sceneRecognition.m

9

Fig. 5 Maps of positive/negative leveraging coefficients αj over training data for k = 3 and three different values of θ. Examples of class N with
negative α. (filled squares) and those of class P with positive α. (empty circles) predict class P; similarly, empty squares and filled circles both
correspond to membership prediction in N. For this reason, when θ = 0.25, filtering produces a clear-cut gap between the two possible membership
predictions (but not between the original classes). The optimal Bayes boundary between classes is shown as well. Interestingly, while this frontier
still does not separate the original classes (without error), it does separate the memberships predictions, with much larger minimal margin. The
combination of the data reduction and polarity reversal for memberships has thus simplified the learning of S, and eased the capture of the optimal
frontier with nearest neighbors.

coast forest highway inside city mountain open country street tall buildings

Fig. 6 Examples of annotated images of the database containing 2688 images classified into 8 categories.

Image categorization results confirm the trend observed
on the synthetic data when filtering the prototype dataset.
Hence, selecting a reduced set of prototypes limits over-
fitting on training data, while improving classification per-
formance on the test set (typically 3% improvement). Most
interestingly, classification precision of UNN is very stable
as a function of θ, as it is shown in Fig. 8(b), where the drop
of UNN precision for the largest values of θ is due to in-
cluding prototypes with negative leveraging coefficients as
well. To summarize, UNN displays the ability to discrimi-
nate the most relevant images of each class, thus inducing a

classification rule robust to “noisy” prototypes arising from
low inter-class variations. Adjusting the value of threshold
α̃ enables to remove those confusing prototypes, thus reduc-
ing the representation of each category to a sparse subset of
meaningful prototype images.

Fig. 10 shows two examples of how the leveraged k-NN
rule may correct misclassifications due to the uniform k-NN
voting. E.g., in the first example, the classic and the boosted
k-NN methods are compared when classifying an image be-
longing to class coast, with k = 11. The leveraged rule with
as few as 20% of prototype images is able to correctly la-

10

0 0.2 0.4 0.6 0.8 1
55

60

65

70

75

80

θ

m
A

P
k=5

 k−NN
UNN

0 0.2 0.4 0.6 0.8 1
50

55

60

65

70

75

80

θ

m
A

P

k=9

 k−NN
UNN

0 0.2 0.4 0.6 0.8 1
50

55

60

65

70

75

80

θ

m
A

P

k=13

 k−NN
UNN

0 0.2 0.4 0.6 0.8 1
50

55

60

65

70

75

80

θ

m
A

P

k=17

 k−NN
UNN

Fig. 7 Classification performances of UNN compared to k-NN in 3-fold cross-validation.

5 7 9 11 13 15 17 19 21
71.5

72

72.5

73

73.5

74

74.5

75

75.5

76

k

m
A

P

k−NN

UNN

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
60

62

64

66

68

70

72

74

76

θ

m
A

P

k−NN

UNN

(b)

Fig. 8 Performances of k-NN and UNN classification as a function of (a) k and (b) θ. (The best results obtained with each of the two methods are
plotted.)

bel the query image (first row). Below each nearest neigh-
bor image we show its contribution to the classifier of (9):
note that negative votes are significantly smaller than pos-
itive ones (up to an order of magnitude), thus determining
positive labeling with high prediction score h`c, according to
(9). On the contrary, uniform voting rule with all prototypes
misclassifies the test image, not being able to reject contri-
butions by “noisy” neighbor images. An example of proto-

types selected by filtering the dataset is shown in Fig. 11,
where the leveraging coefficients refer to the first category
(tall buildings) versus the remaining ones.

11

4 Conclusion

In this paper, we contribute to fill an important void of NN
methods, showing how boosting can be transferred to k-NN
classification. Namely, we propose a novel boosting algo-
rithm, UNN (Universal Nearest Neighbors rule), for induc-
ing a leveraged k-NN rule. This rule generalizes classic k-
NN to weighted voting where weights, the so-called leverag-
ing coefficients, are iteratively learned by UNN. We prove
that this algorithm converges to the global optimum of sur-
rogate risks under very mild assumptions.

Experiments on both synthetic and image categorization
databases display that UNN provides significant performance
improvements (up to the best possible performance of the
Bayes rule). Moreover, UNN exhibits consistent data reduc-
tion ability, which results in significant speed-ups for classi-
fication (up to a factor 16 when removing 3/4 of the coeffi-
cients).

Our approach is built on the top of k-NN search, thus
being fully compatible with existing techniques relying on
metric distance learning (Zhang et al, 2006) as well as sub-
space projections like PCA (Jain, 2008) or kernel transfor-
mations of the input space, which are expected to enable
significant improvements of categorization performances.

References

Amores J, Sebe N, Radeva P (2006) Boosting the distance
estimation: Application to the k-nearest neighbor classi-
fier. Pattern Recognition Letters 27(3):201–209

Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY
(1998) An optimal algorithm for approximate nearest
neighbor searching fixed dimensions. Journal of ACM
45(6):891–923

Bartlett P, Jordan M, McAuliffe JD (2006) Convexity, clas-
sification, and risk bounds. Journal of the American Sta-
tistical Association 101:138–156

Brighton H, Mellish C (2002) Advances in instance selec-
tion for instance-based learning algorithms. Data Mining
and Knowledge Discovery 6:153–172

Dudani S (1976) The distance-weighted k-nearest-neighbor
rule. IEEE Transactions on Systems, Man, Cybernetics
6(4):325–327

Fukunaga K, Flick T (1984) An optimal global nearest
neighbor metric. IEEE Transactions on Pattern Analysis
and Machine Intelligence 6(3):314–318

Garcı́a-Pedrajas N, Ortiz-Boyer D (2009) Boosting k-
nearest neighbor classifier by means of input space
projection. Expert Systems Applications 36(7):10,570–
10,582

Grauman K, Darrell T (2005) The pyramid match kernel:
Discriminative classification with sets of image features.

In: IEEE International Conference on Computer Vision,
Beijing, China

Hart PE (1968) The Condensed Nearest Neighbor rule.
IEEE Transactions on Information Theory 14:515–516

Hastie T, Tibshirani R (1996) Discriminant adaptive near-
est neighbor classification. IEEE Transactions on Pattern
Analysis and Machine Intelligence 18(6):607–616

Holmes CC, Adams NM (2003) Likelihood inference
in nearest-neighbour classification models. Biometrika
90:99–112

Jain AK (2008) Data clustering: 50 years beyond k-means.
In: ECML PKDD ’08: Proceedings of the 2008 Euro-
pean Conference on Machine Learning and Knowledge
Discovery in Databases - Part I, Springer-Verlag, Berlin,
Heidelberg, pp 3–4

Lowe DG (2004) Distinctive image features from scale-
invariant keypoints. International Journal of Computer
Vision 60(2):91–110

Marin JM, Robert CP, Titterington DM (2009) A Bayesian
reassessment of nearest-neighbor classification. Journal
of the American Statistical Association

Nock R, Nielsen F (2009) On the efficient minimization of
classification calibrated surrogates. In: Koller D, Schuur-
mans D, Bengio Y, Bottou L (eds) Advances in Neural
Information Processing Systems 21, MIT Press, pp 1201–
1208

Oliva A, Torralba A (2001) Modeling the shape of the scene:
A holistic representation of the spatial envelope. Interna-
tional Journal of Computer Vision 42(3):145–175

Paredes R (2006) Learning weighted metrics to minimize
nearest-neighbor classification error. IEEE Trans Pattern
Anal Mach Intell 28(7):1100–1110

Quattoni A, Torralba A (2009) Recognizing indoor scenes.
In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR)

Ripley B (1994) Neural networks and related methods for
classification. Journal of the Royal Statistical Society Se-
ries B 56:409–456

Rubin M, Freeman W, Murphy K, Torralba A (2003)
Context-based vision system for place and object recog-
nition. In: MIT AIM

Schapire RE, Singer Y (1999) Improved boosting al-
gorithms using confidence-rated predictions. Machine
Learning Journal 37:297–336

Schapire RE, Freund Y, Bartlett P, Lee WS (1998) Boosting
the margin : a new explanation for the effectiveness of
voting methods. Annals of Statistics 26:1651–1686

Shakhnarovich G, Darell T, Indyk P (2006) Nearest-
Neighbors Methods in Learning and Vision. MIT Press

Yu K, Ji L, Zhang X (2002) Kernel nearest-neighbor algo-
rithm. Neural Processing Letters 15(2):147–156

Zhang H, Berg AC, Maire M, Malik J (2006) Svm-knn: Dis-
criminative nearest neighbor classification for visual cate-

12

gory recognition. In: CVPR ’06: Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, IEEE Computer Society, Wash-
ington, DC, USA, pp 2126–2136

Zhu J, Rosset S, Zou H, Hastie T (2006) Multi-class ad-
aboost. Tech. rep., Department of Statistics, University of
Michigan, Ann Arbor, MI 48109

Zuo W, Zhang D, Wang K (2008) On kernel difference-
weighted k-nearest neighbor classification. Pattern Anal-
ysis Applications 11(3-4):247–257

5 Appendix

Generic UNN algorithm The general version of UNN is
shown in Alg. 2. This algorithm induces the leveraged k-
NN rule (9) for the broad class of surrogate losses meeting
conditions of Bartlett et al (2006), thus generalizing Alg. 1.
Namely, we constrain ψ to meet the following conditions:
(i) im(ψ) = R+, (ii) ∇ψ(0) < 0 (∇ψ is the conventional
derivative of ψ loss function), and (iii) ψ is strictly convex
and differentiable. (i) and (ii) imply that ψ is classification-
calibrated: its local minimization is roughly tied up to that
of the empirical risk (Bartlett et al, 2006). (iii) implies con-
venient algorithmic properties for the minimization of the
surrogate risk (Nock and Nielsen, 2009). Three common ex-
amples have been shown in Eq. (6 – 5).

The main bottleneck of UNN is step [I.1], as Eq. (21)
is non-linear, but it always has a solution, finite under mild
assumptions (Nock and Nielsen, 2009): in our case, δj is
guaranteed to be finite when there is no total matching or
mismatching of example j’s memberships with its recipro-
cal neighbors’, for the class at hand. The second column of
Table 1 contains the solutions to (21) for surrogate losses
mentioned in Sec. 2.2. Those solutions are always exact for
the exponential loss (ψexp) and squared loss (ψsqu); for the
logistic loss (ψlog) it is exact when the weights in the recip-
rocal neighborhood of j are the same, otherwise it is approx-
imated. Since starting weights are all the same, exactness
can be guaranteed during a large number of inner rounds de-
pending on which order is used to choice the examples. Ta-
ble 1 helps to formalize the finiteness condition on δj men-
tioned above: when either sum of weights in (20) is zero, the
solutions in the first and third line of Table 1 are not finite.
A simple strategy to cope with numerical problems arising
from such situations is that proposed by Schapire and Singer
(1999). (See Sec. 2.4.) Table 1 also shows how the weight
update rule (22) specializes for the mentioned losses.

Proofsketch of Theorem 1 We show that UNN converges to
the global optimum of any surrogate risk (Sec. 2.2). So, let
us consider the surrogate risk (4) for any fixed class c =

Algorithm 2: Algorithm UNIVERSAL NEAREST

NEIGHBORS UNN(S, ψ)
Input: S = {(oi,yi), i = 1, 2, ...,m, oi ∈ O, yi ∈

{− 1
C−1

, 1}C}, ψ meeting (i), (ii), (iii) (Sec. 5);

Let r(c)ij
.
=

{
yicyjc if j ∼k i
0 otherwise ,

∀i, j = 1, 2, ...,m, c = 1, 2, ..., C;
for c = 1, 2, ..., C do

Let αjc ← 0, ∀j = 1, 2, ...,m;
Let wi ← −∇ψ(0) ∈ Rm+∗, ∀i = 1, 2, ...,m;
for t = 1, 2, ..., T do

[I.0] Let j ← WIC({1, 2, ...,m}, t);
[I.1] Let

w+
j =

∑
i:r

(c)
ij >0

wi, w
−
j =

∑
i:r

(c)
ij <0

wi , (20)

[I.1] Let δj ∈ R solution of:

m∑
i=1

r
(c)
ij ∇ψ

(
δjr

(c)
ij +∇−1

ψ (−wi)
)
= 0 ; (21)

[I.2] ∀i : j ∼k i, let

wi ← −∇ψ
(
δjr

(c)
ij +∇−1

ψ (−wi)
)
. (22)

[I.3] Let αjc ← αjc + δj ;

Output: hc(oi′) =
∑
i∼ki′

αicyic, ∀c = 1, 2, ..., C

Rm

W

kerr(c)>

wt

wt+1

w0 = −∇ψ(0)1

0
w∞

Fig. 9 A geometric view of how UNN converges to the global opti-
mum of (4). (See Appendix for details and notations.)

1, 2, ..., C:

εψc (h,S)
.
=

1

m

m∑
i=1

ψ(%(h, i, c)) . (23)

Let wt denote the tth weight vector inside the “for c” loop
of Alg. 2 (assumingw0 is the initialization ofw); similarly,
h`t denotes the tth leveraged k-NN rule obtained after the
update in [I.3]. The following identity holds, whose prove
follows from Nock and Nielsen (2009):

ψ(%(h`t, i, c)) = g +Dψ̃ (0||wti) , (24)

13

Table 1 Three common loss functions and the corresponding solutions δj of (21) and wi of (22). (Vector r(c)
j designates column j of R(c) and

||.||1 is the L1 norm.) The rightmost column says whether it is (A)lways the solution, or whether it is when the weights of reciprocal neighbors of
j are the (S)ame.

loss function δj in (21) wi in (22) Opt

ψexp .
= exp(−x) 1

2
log

(
w

(c)+
j

w
(c)−
j

)
wi exp

(
−δjr(c)ij

)
A

ψsqu .
= (1− x)2 w

(c)+
j −w(c)−

j

2||r(c)
j ||1

wi − 2δjr
(c)
ij A

ψlog .
= log(1 + exp(−x)) log

(
w

(c)+
j

w
(c)−
j

)
wi exp

(
−δjr

(c)
ij

)
1−wi

(
1+exp

(
−δjr

(c)
ij

)) S

where g(m)
.
= −ψ̃(0) does not depend on the k-NN rule.

Eq. (24) makes the connection between the real-valued clas-
sification problem and a geometric problem in the non-metric
space of weights. Here, we have made use of the following
notations: ψ̃(x)

.
= ψ?(−x), where ψ?(x)

.
= x∇−1ψ (x) −

ψ(∇−1ψ (x)) is the Legendre conjugate of ψ; Dψ̃(wi||w′i)
.
=

ψ̃(wi) − ψ̃(w′i) − (wi − w′i)∇ψ̃(w′i) is the Bregman di-
vergence with generator ψ̃ (Nock and Nielsen, 2009). ψ?

is related to ψ in such a way that ∇ψ̃(x) = −∇−1ψ (−x).
Eq. (24) proves in handy as one computes the difference
εψc (h`t+1,S) − εψc (h`t,S). Indeed, using (24) in (23), and
computing δj in (21) so as to bring h`t+1 from h`t , we ob-
tain:

εψc (h`t+1,S)− εψc (h`t,S) = − 1

m

m∑
i=1

Dψ̃

(
w(t+1)i||wti

)
.

(25)

Since Bregman divergences are non negative and meet the
identity of the indiscernibles, (25) implies that steps [I.1]
— [I.3] guarantee the decrease of (23) as long as δj 6= 0.
But (23) is lowerbounded, hence UNN must converge. In
addition, it converges to the global optimum of (23). Since
predictions for each class are independent, the prove con-
sists in showing that (23) converges to its global minimum
for each c. Assume this convergence for the current class,
c. Then, following Nock and Nielsen (2009), (21) and (22)
imply that, when any possible δj = 0, the weight vector,

say w∞, satisfies R(c)>w> = 0, i.e., w∞ ∈ kerR(c)>, and
w∞ is unique. But the kernel of R(c)> and W, the closure
of W, are provably Bregman orthogonal (Nock and Nielsen,
2009), thus yielding:
m∑
i=1

Dψ̃ (0||wi)︸ ︷︷ ︸
mεψc (h`,S)−mg

=

m∑
i=1

Dψ̃ (0||w∞i)︸ ︷︷ ︸
mεψc (h`∞,S)−mg

+

m∑
i=1

Dψ̃ (w∞i||wi)︸ ︷︷ ︸
≥0

,∀w ∈W . (26)

Underbraces use (24) in (23), andh` is a leveraged k-NN rule
corresponding tow. One obtains thath`∞ achieves the global
minimum of (23), as claimed.

The proofsketch is graphically summarized in Figure 9.
In particular, two crucial Bregman orthogonalities are men-
tioned (Nock and Nielsen, 2009). The red one symbolizes:
m∑
i=1

Dψ̃ (0||wti) =

m∑
i=1

Dψ̃

(
0||w(t+1)i

)
+

m∑
i=1

Dψ̃

(
w(t+1)i||wti

)
, (27)

which is equivalent to (25). The black one on w∞ is (26).

Proofsketch of Theorem 2 Using developments analogous
to those of Nock and Nielsen (2009), UNN can be shown
to be equivalent to AdaBoost in which m weak classifiers
are available, each one being an example. Each weak clas-
sifier returns a value in {−1, 0, 1}, where 0 is reserved for
examples outside the reciprocal neighborhood. Theorem 3
of Schapire and Singer (1999) brings in our case:

ε0/1(h`,S) ≤ 1

C

C∑
c=1

T∏
t=1

Z
(c)
t , (28)

where Z(c)
t

.
=
∑m
i=1 w̃

(c)
it is the normalizing coefficient for

each weight vector in UNN. (w̃(c)
it denotes the weight of

example i at iteration (t, c) of UNN, and the Tilda notation
refers to weights normalized to unity at each step.) It follows
that:

Z
(c)
t = 1− w̃(c)+−

jt

(
1− 2

√
p
(c)
jt (1− p(c)jt)

)
≤ exp

(
−w̃(c)+−

jt

(
1− 2

√
p
(c)
jt (1− p(c)jt)

))
≤ exp

(
−η
(

1−
√

1− 4γ2
))
≤ exp(−2ηγ2) ,

where w̃(c)+−
jt

.
= w̃

(c)+
jt + w̃

(c)−
jt , p(c)jt

.
= w̃

(c)+
jt /w̃

(c)+−
jt =

w
(c)+
jt /w

(c)+−
jt . The first inequality uses 1− x ≤ exp(−x),

and the second the WIA. Since even when the WIA does not
hold, we still observe Z(c)

t ≤ 1, plugging the last inequality
in (28) yields the statement of the Theorem.

14query UNN 11-nearest neighbors (θ = 0.2)

coast -0.16 -0.76 4.22 -0.09 5.13 -0.02 -0.19 3.96 0.33 -0.72 0.29
prediction = coast

k-NN 11-nearest neighbors (θ = 1)

0 1 0 0 0 0 0 1 1 0 0
prediction = highway

query UNN 11-nearest neighbors (θ = 0.2)

tall building 4.21 -0.62 -0.34 4.21 -0.23 3.42 -0.54 2.32 -0.21 -0.71 2.37
prediction = tall building

k-NN 11-nearest neighbors (θ = 1)

0 1 0 0 1 0 0 1 0 0 0
prediction = open country

Fig. 10 Two examples where UNN corrects misclassifications of k-NN. The query image is shown in the leftmost column. The 11-nearest prototype images are shown on the right: the first row
refers to UNN with 20% of retained prototypes (θ = 0.2), whereas the second column refers to classic k-NN classification over all prototypes (θ = 1). Neighbors in the same category as the query
image are surrounded by black boxes. Votes given by each prototype for the true category (coast) are shown below each image (such values correspond to αicyjc in (9), where c is the ground-truth
category).

15

tall buildings inside city street highway coast forest mountain open country

3.41 1.87 1.33 1.33 3.78 3.75 4.38 3.45

4.37 2.32 2.75 1.66 3.41 2.32 4.84 3.43

1.74 2.72 3.41 1.97 1.43 3.41 1.69 5.35

3.40 3.43 3.97 4.44 4.22 4.79 1.44 1.51

3.42 5.01 1.54 5.31 3.46 1.33 4.55 1.89

1.34 1.37 3.77 1.87 4.64 1.59 3.40 4.30

3.40 4.68 1.73 5.05 3.44 2.40 1.90 2.02

2.25 1.70 3.76 1.45 5.13 1.81 2.05 4.44

3.32 2.45 3.45 1.59 3.43 1.50 3.76 1.49

4.21 3.42 1.35 2.38 1.52 4.10 5.26 4.92

3.95 3.76 5.30 3.43 4.82 1.37 1.59 4.10

1.73 2.03 3.96 4.30 1.95 1.79 1.73 1.98

4.10 3.96 4.44 5.30 4.10 3.77 3.75 4.51

1.62 1.84 4.79 2.14 2.12 3.45 1.49 1.96

3.75 1.66 1.78 3.96 2.01 2.16 1.86

2.32 3.96 1.65 3.41 4.95 4.37 1.93

1.31 1.78 4.44 4.55 4.10 4.55 4.21

1.59 1.37 4.09 2.01 1.65 2.23 2.05

3.95 3.41 2.02 1.92 4.87 1.86 5.13

1.35 4.21 4.44 3.41 3.97

5.03 1.40 3.77 1.83

1.38 3.96 4.50 1.88

3.75 4.50 1.55 3.41

3.42 2.57 3.41

Fig. 11 Examples of image prototypes with their leveraging coefficients for category 1 (tall buildings)-versus-all.

	1 Introduction
	2 Method
	3 Experiments
	4 Conclusion
	5 Appendix

