
Error-tolerant Image Compositing

Michael W. Tao1, Micah K. Johnson2, and Sylvain Paris3

1University of California, Berkeley 2Massachusetts Institute of Technology
3Adobe Systems, Inc.

Abstract. Gradient-domain compositing is an essential tool in com-
puter vision and its applications, e.g., seamless cloning, panorama stitch-
ing, shadow removal, scene completion and reshuffling. While easy to im-
plement, these gradient-domain techniques often generate bleeding arti-
facts where the composited image regions do not match. One option is
to modify the region boundary to minimize such mismatches. However,
this option may not always be sufficient or applicable, e.g., the user or
algorithm may not allow the selection to be altered. We propose a new
approach to gradient-domain compositing that is robust to inaccuracies
and prevents color bleeding without changing the boundary location. Our
approach improves standard gradient-domain compositing in two ways.
First, we define the boundary gradients such that the produced gradient
field is nearly integrable. Second, we control the integration process to
concentrate residuals where they are less conspicuous. We show that our
approach can be formulated as a standard least-squares problem that can
be solved with a sparse linear system akin to the classical Poisson equa-
tion. We demonstrate results on a variety of scenes. The visual quality
and run-time complexity compares favorably to other approaches.
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1 Introduction

Gradient-domain compositing is an essential technique at the core of many com-
puter vision applications such as seamless cloning [1–4], panorama stitching [5–
7], inpainting [8], shadow removal [9], scene completion [10], and reshuffling [11].
These methods first delineate the composited regions, then compute a target
gradient field and boundary conditions from these regions, and finally solve the
Poisson equation to reconstruct an image. A major issue with gradient-domain
compositing is that the combined gradient field may not be integrable; that
is, an image with gradients that match the target field as well as the specified
boundary conditions may not exist. Existing work mitigates this issue by moving
the boundary to more carefully combine the merged regions. However, when the
combined images are widely different, this strategy may not be sufficient. Or,
if the user has specified the boundary by hand, he or she may not want it to
be altered. For instance in Figure 1, the selection cannot be modified because
the tree trunks have to abut the pyramids. Even with boundary refinement, the
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(a) Foreground (b) Copy-and-paste (c) Poisson (d) Our result

Fig. 1. We present an image-compositing technique tolerant to selection inaccuracies.
In this example, a user wishes to add trees to an image of the Egyptian pyramids, but it
is not possible to select the trees without cutting through the foliage (a). Moreover, to
ensure a good insertion behind the pyramids, it is not possible to modify the selection
boundary. A direct copy of the pixels yields a undesirable visible seam (b). Standard
gradient-domain compositing minimizes the seam, but leads to bleeding artifacts where
the foliage is cut (c). Our method characterizes where color leakage should be avoided,
producing a seamless composite without bleeding artifacts (d).

target gradient fields may be far from integrable, yielding color leaks and halos
typical of Poisson-based methods.

In this paper, we present an algorithm for minimizing artifacts in gradient-
domain image compositing. We characterize the origin of typical bleeding ar-
tifacts and analyze the image to locate the areas where they would be most
and least conspicuous. Based on this analysis, we propose a two-step algorithm.
First, we process the gradient values on the boundary to minimize artifacts in
regions where bleeding would be visible. Second, we describe a weighted integra-
tion scheme that reconstructs the image from its gradient field so that residuals
are located in textured regions where they are less visible. Our results show
that the combination of these two steps yields significantly better composites.
Moreover, our method is formulated as a least-squares optimization that can
be solved using a sparse linear system, which makes our approach computa-
tionally efficient. We demonstrate our approach on scenarios in which boundary
mismatches are likely to occur: user-driven seamless cloning [1], heterogeneous
panorama stitching [7], and scene reshuffling [11].

1.1 Related Work

Gradient-domain techniques are useful to a variety of problems in computer
vision, including image stitching, intrinsic images, shadow removal, and shape-
from-shading [5, 12–15]. In most of these problems, the gradient field contains
non-integrable regions and many authors have noted that reconstruction artifacts
are often due to boundary conditions. As a result, a variety of methods have
been introduced to minimize artifacts by refining the boundary location [2, 4,
5, 16]. Rather than moving the boundary, which may not always be possible,
we focus on reconstructing the final image from the target gradient field once
the boundary is specified. Our approach is complementary and orthogonal to
boundary-refinement methods. We show that our image analysis combined with
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a careful study of the numerical scheme reduces visible artifacts. Our approach
could benefit many computer vision algorithms that rely on gradient-domain
reconstruction as a subroutine.

The general formulation of the gradient-domain reconstruction problem is to
seek an image I that approximates the target field v in a least-squares sense
(with ∇, the gradient operator):

argminI

∫
||∇I − v||2 (1)

which can be minimized by solving the Poisson equation:

∆I − div(v) = 0 (2)

where ∆ is the Laplacian operator ∂2/∂x2 + ∂2/∂y2 and div is the divergence
operator ∂/∂x+∂/∂y. To solve this equation, one also needs boundary conditions
that depend on the application. We illustrate how to compute the target gradient
v in the context of seamless compositing using three inputs: the background
image, B; the foreground image, F ; and a selection, S with a boundary β [5].

v(x, y) =


∇F if (x, y) ∈ S, (x, y) 6∈ β
∇B if (x, y) 6∈ S
1
2 (∇F +∇B) if (x, y) ∈ β

(3)

Other cases such as panorama stitching are similar except that the images are
not named “foreground” and “background.” For the sake of simplicity, we will
name the images foreground and background.

The gradients from the foreground image F and background image B are
integrable since they are computed directly from images. But the gradients along
the boundary between the two images may not be integrable, creating a source of
errors that the integration routine must manage. Farbman et al. [17] address this
issue by relying on users to identify the leaks. The gradients of marked regions are
ignored, which removes the leaks. In comparison, our method analyzes the image
to automatically adapt the integration process. Our approach shares similarities
with the method of Lalonde et al. [16] who propose to take the image gradient
magnitude into account during the reconstruction process. However, color leaks
may still appear with this technique when boundaries are not accurate.

Besides image compositing, gradient-domain methods have also been used in
computer vision for surface reconstruction problems, such as shape-from-shading
and photometric stereo. In these problems, an algorithm estimates the gradient
of a surface at every pixel and then a robust Poisson solver is used to find the
surface that best fits the estimated gradients. We refer to the recent work of
Agrawal et al. [14], Reddy et al. [18], and the references therein for detail. Al-
though image compositing and robust integration techniques both reconstruct a
2D signal from its gradients, the two problems are fundamentally different. The
gradients from surface-reconstruction methods are noisy everywhere, whereas
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image-compositing gradients are problematic only at the boundary between fore-
ground and background. In this paper, we exploit this specificity to improve the
quality of the results. We also rely on visual masking to locate integration resid-
uals where they are less conspicuous.

1.2 Contributions

In this paper, we introduce several contributions.
B Low-curl boundaries. We describe a method that limits the artifacts by mini-
mizing the curl of the target gradients on the foreground-background boundary.
B Weighted Poisson equation. We show how to add weights to the Poisson equa-
tion so that integration residuals lie in textured regions where they are less visible
due to visual masking.
B Efficient non-bleeding compositing. We combine the two previous contribu-
tions to obtain a compositing algorithm that prevents bleeding artifacts while
remaining linear akin to the original Poisson equation.

1.3 Overview

Our algorithm consists of two steps. First, we focus on the boundary between the
foreground and background regions. We characterize the origin of the bleeding
artifacts and we show how to modify the gradient field v to minimize them. The
second step focuses on the location of the integration residuals. We show that
artifacts are less visible in textured regions due to visual masking. We describe
an algorithm that controls the integration residuals such that they are located
in textured areas. In the results section, we show that the combination of these
two steps yields visually superior results.

2 Low-curl Boundary

A necessary condition for a gradient field u to be integrable is to have a zero
curl1. That is, if there exists an image I such that ∇I = u, then curl (u) =
∂uy/∂x − ∂ux/∂y = 0. For example, consider the configuration illustrated in
Figure 2(a). When all pixels come from one image, in this case the foreground
image, the derivatives are consistent and the curl is zero. Therefore, this region
is integrable, i.e., the image can be reconstructed from its gradients. The same
observation holds for regions from the background image.

In the image compositing problem, a non-integrable gradient field only occurs
on the boundary, as illustrated in Figure 2(b). On the boundary, the gradient
field is a mixture of two fields and may have non-zero curl since gradients come
from mixed sources. When the gradient field has a non-zero curl, we cannot
minimize the Poisson equation (2) exactly and residuals remain. These residuals
are often visible in composited images as halos, bleeding, or other artifacts.

1 Note that for a 2D vector field u = (ux,uy), the curl is a scalar value that corresponds
to the z component of the 3D curl applied to the 3D vector field (ux,uy, 0).



Lecture Notes in Computer Science: Error-tolerant Image Compositing 5

F F

FF

(a) Within fore-
ground

F

F B

B

β

(b) On boundary

Fig. 2. Estimating the curl on a discrete
grid. Circles denote pixels and arrows de-
note differences between pixels. If the curl is
computed within the foreground region (a),
all the derivatives come from F and the curl
is null. The background case is equivalent
(not shown). On the boundary (b), deriva-
tives from diverse sources are used and in
general the curl is not zero.

2.1 Reducing the Curl on the Boundary

Since the non-integrability of regions along boundary is the source of artifacts,
we seek to alter the desired gradient field to minimize the bleeding artifacts.
Let v represent the desired gradient field of the composited image. To preserve
the visual information of the two images, we do not modify the foreground or
background gradients in v. We only modify v values on the boundary such that
the curl is as small as possible.

A naive solution would be to seek curl (v) = 0 everywhere. But the following
counterexample shows that this approach would not achieve our goal. Consider
the standard copy-and-paste operation that directly combines the pixel values
and produces an image Iseam with visible seams. The curl of the gradient field of
Iseam is null since it is computed from an actual image. And, inside the selection,
gradients are equal to the foreground values since pixels have been copied. The
same holds outside the selection with the background values. However, on the
boundary, gradients are different from either the foreground or the background,
which generates the seams. We address the shortcomings of this naive solution
by seeking gradient values that minimize the curl and are close to the gradients
of the input images.

A Least-squares Approach We formulate our goal using a least-squares energy
where the desired gradients v on the boundary are the unknowns. The first term
minimizes the curl:

∫
β
[curl (v)]2 and the second term keeps the values close to

the input gradients
∫
β
(v − ∇F )2 +

∫
β
(v − ∇B)2. This last term has the same

effect as keeping v close to the average gradient. We combine the two terms to
obtain:

argminv

∫
β

([
curl (v)

]2
+Wβ

[
v − 1

2
(∇B +∇F )

]2)
(4)

where Wβ controls the importance of the second term.

Adaptive Weights Figure 2.1 shows results for several values of Wβ . For large Wβ ,
we only minimize the proximity to the input gradients, which is the standard
gradient compositing with seamless boundaries but leaking artifacts. For a small
Wβ , we have the naive solution described above where we only minimize the curl.
There are no bleeding artifacts but the boundary is visible. We combine these
two behaviors by varying the weights according to the local image structure.
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(a) High weight (b) Low weight (c) Adaptive

Fig. 3. Influence of the curl term.
With high weights Wβ , the com-
posite is seamless but suffers from
bleeding (a). With low Wβ , bleed-
ing disappears but seams become
visible (b). Our adaptive approach
locally adjusts the weights to
achieve seamless results with no
leaks (c).

Intuitively, a seamless boundary is desirable when both sides of the boundary
are smooth. This is the case for instance when we stitch a sky region with
another sky region. A seamless boundary is also acceptable when both sides are
textured because leaking is a low-frequency phenomenon that will be hidden by
visual masking. Figure 4 illustrates this effect that has also been used in the
rendering literature [19–22]. In these two cases, we seek high values for Wβ . But
when a textured region is composited adjacent to a smooth region, we want to
prevent bleeding because such regions would generate unpleasing artifacts on
the smooth side, e.g. in the sky. In this case, we want low values of Wβ . The
following paragraph explains how we compute Wβ based on the local amount of
texture.

Estimating the Local Amount of Texture Our strategy relies on the presence or
absence of texture in a given neighborhood. In this paragraph, we describe a
simple and computationally efficient texture estimator although one could use
other models [23, 24]. Formally, our scheme is:

Tσ1,σ2(g) =
Gσ1
⊗ ||g||

Gσ2 ⊗ ||g||
n(||g||) (5)

where g is a gradient field, Gσ is a Gaussian of width σ, σ1 and σ2 are two
parameters such that σ1 < σ2, ⊗ is the convolution operator, and n(·) a noise-
controlling function. Our scheme relies on image gradients, for instance T (∇I)
is the texture map of the image I. We compare the average amplitude of the
gradients in two neighborhoods defined by σ1 and σ2. If the image is locally
textured, then the average in the small neighborhood will be higher than in the
large neighborhood, corresponding to T > 1. Conversely, T < 1 corresponds to
regions with locally less texture than in the larger neighborhood. This scheme
would be sensitive to noise in smooth regions where gradients are mostly due
to noise. We address this issue with the function n that is equal to 0 for very
small gradient and 1 otherwise. In practice, we use a smooth step equal to 0 for
the bottom 2% of the intensity scale and 1 for 4% and above. In our context,

(a) dots on a gray background (b) same dots on a photograph

black

black

blue
(sky)

green
(foliage)

Fig. 4. We show the same dots
on a uniform background (a)
and on a photograph (b) but
the two dots on the tree are
not visible because of the tex-
ture of the foliage.
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the goal is to differentiate textureless areas from textured regions; the relative
amount of texture in textured regions does not matter. Consequently, we use the
estimator T̄ = min(1, T ) that considers all textured regions to be equal.

Computing the Boundary Weights Recall that we want Wβ to be large when
both foreground and background regions have the same degree of texture, either
both smooth or both textured. If one of them is smooth and the other textured,
we want Wβ to be small. We consider the difference D =

∣∣T̄ (∇F )− T̄ (∇B)
∣∣ and

define Wβ using a function that assigns a small value w when D is large, 1 when
D is small, and linearly transitions between both values. Formally, we use:

Wβ =

{
w if D > τ

min (1 , w + λ (1−D/τ)) otherwise
(6)

where λ and τ control the linear transition. We found that λ = 4, w = 0.05,
τ = 0.005, σ1 = 0.5, and σ2 = 2 work well in practice. All results are computed
with these values unless otherwise specified.

Discussion Figure 5 illustrates the effect of our approach that reduces the curl
on the compositing boundary. Bleeding artifacts are significantly reduced. In
next section, we describe how to remove the remaining leaks. For color images,
we use RGB gradients in Equation (5) so that we account for luminance and
chrominance textures. From an efficiency standpoint, an important characteristic
of our approach is that it can be solved with a sparse linear system since our
least-squares energy (Eq. 4) involves only sparse linear operators andWβ depends
only on the input data.

3 Controlling the Location of the Residuals

Although our boundary treatment reduces the curl of the gradient field v, in
general v is not integrable. As with other gradient-domain methods, our goal is to
produce an image with a gradient field ∇I as close as possible to v. Our strategy
is to modify the Poisson equation (Eq. 2) in order to locate the residuals as much
as possible in regions where they will be the least objectionable. Intuitively, we
want to avoid errors in smooth regions such as the sky where they produce
color leaks and halos, and put them in textured areas where visual masking will
conceal the artifacts (Fig. 4).

3.1 Adapting the Poisson Equation

Let’s assume that we have a scalar map WP with high values in regions where
errors would be visible and low values otherwise. We discuss later how to compute
such a function using our texture estimator T̄ . Given WP, we modulate the least-
squares strength so that we penalize less the regions where we prefer the residuals
to be, that is, regions with low WP values:

argminI

∫
WP ||∇I − v||2 (7)
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(a) Poisson
compositing

(b) Boundary
adjustment only

(c) Weighted
reconstruction only

(d) Our result

Fig. 5. To reduce the color bleeding artifacts visible in a Poisson composite (a), we
proceed in two steps. We adjust the gradient values at the boundaries to minimize the
curl and weight the reconstruction process so that residual is mostly concentrated in
the textured regions. While these two steps improve the results when applied sepa-
rately (b,c), combining them achieves a visually superior composite (d).

Since we want to reduce the difference between ∇I and v, WP has to be strictly
positive everywhere. Moreover, to keep our approach computationally efficient,
we will design WP such that it does not depend on the unknown image I. In this
case, Equation 7 is a classical least-squares functional that can be minimized by
solving a linear system. To obtain a formula similar to the Poisson equation (2),
we apply the Euler-Lagrange formula [25]. Recall that WP does not depend on I.
Thus, we obtain the following linear system:

div
(
WP(∇I − v)

)
= 0 (8)

In Section 3.2, we show that although this equation is simple, it has favorable
properties.

Computing the Weights To keep our scheme linear, we do not use any quantity
related to the unknown I. We use the desired gradient field v to estimate the
texture location in the image. Although v is not equal to the gradient of final
output, it is a good approximation that is sufficient to compute the weights WP.
Since we want high weights in smooth regions and low weights in textured areas,
we use the following formula: WP = 1 − p T̄ (v) where p is a global parameter
that indicates how much we control the residual location. For instance, p = 0
corresponds to no control, that is, to the standard Poisson equation, whereas
larger values impose more control. p has to be strictly smaller than 1 to keep
WP > 0. We found that values close to 1 performs better in practice. We use
p = 0.999 in all our results. We also found that it is useful to have a more local
estimate of the texture, which we achieve using σ1 = 0 to compute T̄ while
keeping the other parameters unchanged.

3.2 Analysis of the Residual Structure

Independent of the actual definition of WP, we can show that the residuals
produced by our approach have structure that is aligned with the image content.
Wang et al. [26] have demonstrated that such structural similarity produces



Lecture Notes in Computer Science: Error-tolerant Image Compositing 9

more acceptable results. To better understand the role of WP, we distribute the
divergence in Equation 8: WP div(∇I−v) +∇WP · (∇I−v) = 0. With WP 6= 0,
the relation div(∇I) = ∆I, and the logarithmic gradient ∇WP/WP = ∇ logWP,
we obtain:

∆I − div(v)︸ ︷︷ ︸
Poisson term

+ ∇ logWP · (∇I − v)︸ ︷︷ ︸
new term

= 0 (9)

The left term is the same as the standard Poisson equation (2) while the right
term is new. In regions whereWP is constant, the new term is null and our scheme
behaves as the Poisson equation, that is, it spreads the residuals uniformly. In
other regions where WP varies, our scheme differs from the Poisson equation
and allows for discontinuities in the residual. Since WP measures the amount of
texture, it means that residual variations are aligned with texture edges, which
ensures the structural similarity that has been shown desirable by Wang et
al. [26]. We provide illustrations of this property in supplemental material.

3.3 Relationship with Existing Methods

For this section, we make explicit the variable WP, that is, Equation 7 becomes∫
WP(v) ||∇I − v||2, and Equation 8, div

(
WP(v) (∇I − v)

)
= 0. We discuss the

relationships among our work and related methods independently of the actual
definition of WP.

The Poisson Equation and its Variants Rewriting the Poisson equation (2) as
div(∇I − v) = 0, we see that our linear system has the same complexity since
we do not introduce new unknowns nor new coefficients in the system; we only
reweight the coefficients. Agrawal et al. [14] also describe an anisotropic variant
that is linear. However, while this method performs well in shape-from-shading,
it does not prevent bleeding when applied to image compositing (Fig. 6). The L1

reconstruction method that Reddy et al. [18] propose in the context of shape-
from-shading has the same difficulty with image compositing (Fig. 6).

Edge-preserving Filtering Our method is also related to Farbman’s edge-preserving
filter [27] that minimizes an attachment term plus

∫
WP(I0) ||∇I||2 where I0 is

the input image. Farbman projects the formula on the x and y axes but we
believe that it does not have a major impact on the results. More importantly,
Farbman’s method and ours share the idea of using a modulation WP that de-
pends on fixed quantities and preserves the least-squares nature of the problem;
Farbman uses the input image I0 and we use the target gradient field v. Finally,
our work has common points with Perona and Malik’s nonlinear anisotropic
diffusion filter [28]: ∂I/∂t = div

(
WP(∇I)∇I

)
. The difference is that our modu-

lation term WP is not a function of the image I which makes our equation linear,
and we have a term ∇I − v instead of ∇I, which can be interpreted as Perona
and Malik “diffuse gradients” whereas we “diffuse integration residuals.”
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(a) Foreground (b) Copy and paste (c) Poisson (d) Max. gradient

(e) Diffusion tensor (f) Lalonde (g) L1 norm (h) Our result

Fig. 6. We compare several approaches on an example where we composite a tree on
a sky background. To test the robustness against selection accuracies, we introduce
three errors (a): a small error on the left, a large error on the right, and the trunk
is inserted in the ground. A direct copy-and-paste produces an image with visible
seams in the sky region (b). Poisson compositing [1] (c), maximum gradient [1] (d),
diffusion [14] (e), Photo Clip Art [16] (f), and robust Poisson reconstruction using the
L1 norm [18] (g) generate seamless boundaries but suffer from bleeding artifacts where
the selection cuts through the foliage and also at the contact between the trunk and
the ground. In comparison, our method (h) produces artifact-free results. We provide
more comparisons in supplemental material.

4 Results

We demonstrate our approach on a typical hand-made compositing scenario
which may generate inaccurate selections (Fig. 6). We also show that our ap-
proach applies to heterogeneous panorama stitching [7] (Fig. 10) and image
reshuffling [11] (Fig. 11). More results are in our supplemental material. All
the results are computed using the same parameters unless otherwise specified.
These settings performed well in all of our experiments. Parameter variations
are also shown in the supplemental material.

Quantitative Evaluation We use direct compositing and Poisson compositing as
baselines to estimate how much bleeding occurs. For direct compositing, we di-
rectly copy pixel values and the result Id exhibits visible seams but not bleeding.
For Poisson compositing, we copy gradient values and solve the Poisson equation.
The result IP is seamless but colors leak where the selection is inaccurate. Then
we consider an image I, pick a pixel p in the potential leaking area, and com-
pute: ||I(p)− Id(p)|| / ||IP(p)− Id(p)||. Expressed in percentages, 0% indicates
no bleeding at all and 100% indicates as much bleeding as Poisson compositing.
Figure 7 compares the results for several methods.
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Textured Area

50% 100% 150%

Poisson
Max gradient

Diffusion
Lalonde
L1 norm

Our method

100%

108%

75%

41%

5%

4%

L2 distance relative to Poisson

Textureless Area

Fig. 7. We numerically evaluate bleeding introduced by different methods. We selected
two 11 × 11 regions in the tree example (Fig. 6), one within the textured area below
the trunk and one in the sky on right of the foliage. We compute the L2 RGB differ-
ence between the image before and after compositing, normalized relative to Poisson
compositing; that is, 100% indicates as much bleeding as Poisson and 0% indicates no
bleeding. In the textured region (left), all methods bleed but the bleeding is masked by
the high frequency texture. In the textureless area (right), most methods cause visible
bleeding, which is particularly visible in this smooth region. The L1-norm and our
method achieve similarly low values which confirm minimal bleeding. But in a number
of cases, the L1-norm method introduces an undesirable color cast shown in the tree
example, whereas our method yields a satisfying output.

Complexity We compute the final result in two linear steps. This is equivalent
to a single linear system because I is a linear function of v (Eq. 8) and v
is a linear function of B and F (Eq. 4). Further, only sparse operators are
involved: divergence, curl, and weights that correspond to diagonal matrices.
Compared to the Poisson equation, we solve for the same number of unknowns,
that is, the number of pixels in I. The only overhead is the computation of
v, for which the number of unknowns is orders of magnitude smaller, since
only pixels on the boundary are concerned. To summarize, our method has the
same complexity as the Poisson equation. In comparison, nonlinear methods [18]
require more complex iterative solvers. Figure 8 shows that our implementation
achieves timings similar to the Poisson reconstruction, resulting in a run-time
faster than most other implementations while introducing almost no bleeding.

Discussion Although our method produces high quality outputs, a close exam-
ination reveals that the boundary can be sometimes overly sharp. This minor
issue is difficult to spot at first and less conspicuous than color leaks. Nonethe-
less, matching the sharpness of other edges in the image would be an interesting
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Fig. 8. This plot locates each method according to its
speed and how much bleeding it introduces in the sky
region on Figure 6 as reported in Figure 7. Our method
is as fast as the standard Poisson solver while introduc-
ing almost no bleeding. In comparison, the other meth-
ods are slower and generate color leaks. Note that the
L1 method does not produce bleeding artifact on this
example but it creates a severe color cast (Fig. 6).
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(a) Foreground (b) Poisson (c) Our result

Fig. 9. In some cases,
when compared to the
input (a), Poisson com-
positing (b) and our ap-
proach(c) discolor the
pasted region. See text
for details.

extension to this work. As other gradient-domain methods, our method can yield
some discoloration (Fig. 9 and supplemental material). This effect is often desir-
able to achieve seamless blending. If one wishes to preserve the original colors,
matting can be solution but it often requires a more careful user input. We also
found that our approach is useful in challenging applications such as heteroge-
neous panorama stitching [7] where mismatches are common place (Fig. 10). In
this case, we found that our method performs better with a smoother transition
from seamless and leak-free compositing, which is achieved by setting τ = 0.01
in Equation (6).

(a) Photoshop Auto Blend (b) close-up

(c) Our result (d) close-up

Fig. 10. For heterogeneous panorama, Photoshop Auto Blend [6] produces strong
bleeding near the cut. In comparison, our method significantly improves the result.
Our approach also performs better than to other methods on this challenging case as
shown in supplemental material.

5 Conclusion

We have described an image-compositing method that is robust to selection inac-
curacies. The combination of low-curl boundaries and a weighted reconstruction
based on visual masking produces artifact-free results on a broad range of inputs,
in particular where other methods have difficulties. In addition, the solution is
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(a) Blending used
by Cho et al.

(b) close-up (c) Our result (d) close-up

Fig. 11. Compared to the blending approach proposed by Cho et al. [11] (a,b), our
approach (c,d) improves the result of image reshuffling. We used the same patch loca-
tions and boundaries as Cho et al. but applied our method which yields better results
than the Poisson-based blending proposed in the original article [11]. In particular, our
result produces more faithful colors but does have local color leaks as can be seen on
the close-up (zoom of a region above the girl’s hat). This result may be better seen in
the supplemental material. Data courtesy of Tim Cho.

linear and has similar complexity to the standard Poisson equation. With robust
results and speed, our method is a suitable replacement for the standard Poisson
equation in many computer vision applications.
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