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Abstract This paper investigates the visual-inertial

structure from motion problem. A simple closed form

solution to this problem is introduced. Special attention

is devoted to identify the conditions under which the

problem has a finite number of solutions. Specifically,

it is shown that the problem can have a unique solution,

two distinct solutions and infinite solutions depending

on the trajectory, on the number of point-features and

on their layout and on the number of camera images.

The investigation is also performed in the case when

the inertial data are biased, showing that, in this latter

case, more images and more restrictive conditions on

the trajectory are required for the problem resolvabil-

ity.

Keywords Sensor Fusion · Structure from Motion ·
Inertial Sensors · Robotics

1 Introduction

The structure from motion problem (SfM) consists of

determining the three-dimensional structure of the scene

by using the measurements provided by one or more

sensors over time (e.g. vision sensors, ego-motion sen-

sors, range sensors). In the case of visual measurements

only, the SfM problem has been solved up to a scale

[4,5,11,16,20] and a closed form solution has also been

derived [11,16,20], allowing the determination of the

three-dimensional structure of the scene, without the

need for any prior knowledge.

The case of inertial and visual measurements, i.e.,

the visual-inertial structure from motion problem (from
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now on the Vi-SfM problem), has particular interest

and has been investigated by many disciplines, both in

the framework of computer science [3,13,14,17,21] and

in the framework of neuroscience (e.g., [2,6,9]). Prior

work has answered the question of which are the ob-

servable modes, i.e. the states that can be determined

by fusing visual and inertial measurements [3,13,14,

17]. Specifically, it has been shown that the velocity,

the absolute scale, the gravity vector in the local frame

and the bias-vectors which affect the inertial measure-

ments, are observable modes. On the other hand, the

problem of determining these observable modes is not

fully solved.

The majority of the approaches so far introduced,

perform the fusion of vision and inertial sensors by

filter-based algorithms. In [1], these sensors are used
to perform egomotion estimation. The sensor fusion is

obtained by an Extended Kalman Filter (EKF ) and

by an Unscented Kalman Filter (UKF ). The approach

proposed in [10] extends the previous one by also esti-

mating the structure of the environment where the mo-

tion occurs. Also, in [22] an EKF has been adopted.

In this case, the proposed algorithm estimates a state

containing the robot speed, position and attitude, to-

gether with the inertial sensor biases and the location

of the features of interest. In the framework of air-

bone SfM, an EKF has been adopted in [15] to solve

the Vi-SfM problem. It was observed that any incon-

sistent attitude update severely affects any SfM solu-

tion. The authors proposed to separate attitude update

from position and velocity update. Alternatively, they

proposed to use additional velocity observations, such

as air velocity observation. Very recently, in the frame

work of micro aerial robotics, flight stabilization and

fully autonomous navigation have been achieved by us-

ing monocular vision and inertial sensors as the only
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exteroceptive sensors. Also in this case, the sensor fu-

sion was carried out by a filter based algorithm [23,24].

There are very few methods able to perform the fusion

of image and inertial measurements without a filter-

based approach. One algorithm of this type has been

suggested in [21]. This algorithm is a batch method

which performs SfM from image and inertial measure-

ments. Specifically, it minimizes a cost function by us-

ing the Leven-Marquardt algorithm. This minimization

process starts by initializing the velocities, the gravity

and the biases to zero.

When using a linear estimator (e.g. an EKF ), or

an optimization method in order to minimize a suit-

able cost function, an important issue which arises is

the initialization problem. Indeed, because of the sys-

tem non-linearities, lack of a precise initialization can

irreparably damage the entire estimation process. This

important limitation would be eliminated by introduc-

ing a deterministic solution, i.e., by analytically ex-

pressing all the observable modes in terms of the mea-

surements provided by the sensors during a short time-

interval. Closed form solutions have been introduced

very recently in [17]. Specifically, in [17] an observability

analysis allowed us to quantify the information result-

ing when combining visual and inertial measurements.

This allowed us to analytically derive the observable

modes. Then, starting from the differential equations

which characterize a generic 3D-motion and from the

analytical expression of the visual observations, closed

form expressions of the observable modes in terms of the

sensor measurements were derived. On the other hand,

these derivations did not allow us to detect the condi-

tions under which the Vi-SfM can be solved. This im-

portant issue was very marginally investigated in [17].

Specifically, the observability analysis carried out in [17]

only allowed us to detect a very limited number of sin-

gular cases where the sensor information does not allow

us to determine the observable modes.

Here we derive a new simple and intuitive closed so-

lution to the Vi-SfM problem. Compared with the solu-

tions proposed in [17], this new solution allows us to in-

vestigate the intrinsic properties of the Vi-SfM problem

and to identify the conditions under which the prob-

lem can be solved in closed form. In particular, these

conditions regard the trajectory, the number of point-

features and their layout and the number of monocu-

lar images where the same point-features are seen. Ad-

ditionally, minimal cases have been fully investigated,

i.e., necessary and sufficient conditions on the trajec-

tory and on the feature layout have been provided for

the cases when the number of features and the num-

ber of camera images is the minimum required for the

Vi-SfM problem resolvability.

All the theoretical results derived in this paper are

obtained under the assumption of noiseless visual and

inertial measurements. Additionally, the measurements

provided by the gyroscopes are assumed to be unbiased

(only the case of a constant bias on the accelerometers

is considered). Finally, the theoretical analysis assumes

that all the sensors share the same reference frame (in

other words, the transformation between visual and in-

ertial sensors is a priori known). Very recently, a closed

form determination of this transformation has been sug-

gested [7]. On the other hand, Monte Carlo simulations

have also been performed by relaxing all these assump-

tions.

The paper is organized as follows. The system is de-

fined in section 2. In section 3 the Vi-SfM problem is

reduced to a polynomial equation system, whose resolv-

ability is investigated in section 4, both in the unbiased

(4.1) case and in the case of biased accelerometer mea-

surements (4.2). All the possible cases are then sum-

marized in the first part of section 5. In section 5.2

some results obtained by performing Monte Carlo sim-

ulations are also provided. Specifically, the assumptions

made in the theoretical analysis are relaxed in order to

generate the sensor measurements and the closed form

solution is used in conjunction with a filtering approach

in order to show its benefit. Finally, concluding remarks

are provided in section 6.

2 The Considered System

We consider a system (from now on we call it the plat-

form) consisting of a monocular camera and an Inertial

Measurement Unit (IMU). The IMU consists of three

orthogonal accelerometers and three orthogonal gyrom-

eters. We introduce a global frame in order to charac-

terize the motion of the platform moving in a 3D en-

vironment. Its z-axis points vertically upwards. As we

will see, for the next derivation we do not need to bet-

ter define this global frame. We will adopt lower-case

letters to denote vectors in this frame (e.g. the gravity

is g = [0, 0, − g]T , where g ' 9.8 ms−2). We assume

that the transformations among the camera frame and

the IMU frame are known (we assume that the plat-

form frame coincides with the camera frame and we

call it the local frame). We will adopt upper-case let-

ters to denote vectors in this frame. Since this local

frame is time dependent, we adopt the following nota-

tion: W t(τ) will be the vector with global coordinates

w(τ) in the local frame at time t. Additionally, we will

denote with Ct2t1 the matrix which characterizes the ro-

tation occurred during the time interval (t1, t2) and

with Ct1t2 its inverse (i.e., (Ct2t1 )−1 = Ct1t2 ). Let us refer
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to vectors which are independent of the origin of the ref-

erence frame (e.g., speed, acceleration, etc.). For these

vectors we have: W t1(τ) = Ct2t1W t2(τ). Finally, Ct will

denote the rotation matrix between the global frame

and the local frame at time t, i.e., w(τ) = CtW t(τ).

The IMU provides the platform angular speed and

acceleration. Regarding the acceleration, the one per-

ceived by the accelerometer (A) is not simply the iner-

tial acceleration (Ainertial). It also includes the gravi-

tational acceleration (G).

We assume that the camera is observing one or more

point-features during the time interval [Tin, Tfin]. The

platform and one of these observed features are dis-

played in fig 1.

Fig. 1 Global and local frame with the point-feature position
(P ), the platform acceleration (Ainertial) and the gravita-
tional acceleration (G).

3 The closed form solution

Prior work has answered the question of which are the

observable modes, i.e. the states that can be determined

by fusing visual and inertial measurements [3,13,14,

17]. The observable modes are: the platform velocity,

the absolute scale, the gravity vector in the local frame

and the bias-vectors which affect the inertial measure-

ments. Note that the knowledge of the gravity in the

local frame is equivalent to the knowledge of its mag-

nitude together with the roll and pitch angle, i.e., the

orientation of the platform with respect to the horizon-

tal plane. Our goal is to express in closed-form all the

observable modes at a given time Tin only in terms of

the visual and inertial measurements obtained during

the time interval [Tin, Tfin].

The position of the platform r at any time t ∈
[Tin, Tfin] satisfies the equation r(t) = r(Tin)+v(Tin)∆t+∫ t
Tin

∫ τ
Tin
a(ξ)dξdτ . The last term contains a double in-

tegral over time, which can be simplified in a single

integral by integrating by parts. We obtain:

r(t) = r(Tin) + v(Tin)∆t+

∫ t

Tin

(t− τ)a(τ)dτ (1)

where v ≡ dr
dt , a ≡ dv

dt and∆t ≡ t−Tin. The accelerom-

eter does not provide the vector a(τ). It provides the

acceleration in the local frame and it also perceives the

gravitational component. Additionally, its data are usu-

ally biased [8,25], i.e., they are corrupted by a constant

term (B)1. In other words, the accelerometer provides

the vector: Aτ (τ) ≡ Ainertial
τ (τ) −Gτ +B. Note that

the gravity comes with a minus since, when the plat-

form does not accelerate (i.e. Ainertial
τ (τ) is zero), the

accelerometer perceives an acceleration which is the

same of an object accelerated upward in absence of

gravity. Note also that the vector Gτ depends on time

only because the local frame can rotate.

We write equation (1) by highlighting the vector

Aτ (τ) provided by the accelerometer:

r(t) = r(Tin)+v(Tin)∆t+g
∆t2

2
+CTin [STin

(t)− Γ (t)B]

(2)

where:

STin(t) ≡
∫ t

Tin

(t− τ)CτTin
Aτ (τ)dτ ;

Γ (t) ≡
∫ t

Tin

(t− τ)CτTin
dτ

The matrix CτTin
can be obtained from the angular

speed during the interval [Tin, τ ] provided by the gy-

roscopes [8]. Hence, also the matrix Γ (t) can be ob-

tained by directly integrating the gyroscope data dur-

ing the interval [Tin, t]. Finally, the vector STin(t) can

be obtained by integrating the data provided by the

gyroscopes and the accelerometers delivered during the

interval [Tin, t].

Let us suppose that N point-features are observed,

simultaneously. Let us denote their position in the phys-

ical world with pi, i = 1, ..., N . According to our no-

tation, P i
t(t) will denote their position at time t in the

local frame at time t. We have:

1 Actually, the accelerometer bias slightly changes with
time, i.e., it would be more appropriate to write B(τ). How-
ever, as we will show in the next section, few camera images
allow us to determine this component and we can assume that
the bias is constant during the time interval needed to collect
few camera images.
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pi = r(t) + CTinCtTin
P i
t(t) (3)

We write this equation at time t = Tin obtaining:

pi − r(Tin) = CTinP i
Tin

(Tin) (4)

By inserting the expression of r(t) provided in (2) into

equation (3), by using (4) and by pre multiplying by the

rotation matrix (CTin)−1 (we remind the reader that,

according to our notation, v(Tin) = CTinV Tin
(Tin) and

g = CTinGTin) we finally obtain the following equation:

CtTin
P i
t(t) = P i

Tin
(Tin)−V Tin

(Tin)∆t−GTin

∆t2

2
+ (5)

Γ (t)B − STin
(t); i = 1, 2, ..., N

A single image provides the bearing angles of all the

point-features in the local frame. In other words, an

image taken at time t provides all the vectors P i
t(t) up

to a scale. Since the data provided by the gyroscopes

during the interval (Tin, Tfin) allow us to build the

matrix CtTin
, having the vectors P i

t(t) up to a scale,

allows us to also know the vectors CtTin
P i
t(t) up to a

scale.

We assume that the camera provides ni images of

the same N point-features at the consecutive times:

t1 = Tin < t2 < ... < tni
= Tfin. From now on, for

the sake of simplicity, we adopt the following notation:

– P i
j ≡ C

tj
Tin
P i
tj (tj), i = 1, 2, ..., N ; j = 1, 2, ..., ni

– P i ≡ P i
Tin

(Tin), i = 1, 2, ..., N
– V ≡ V Tin

(Tin)

– G ≡ GTin

– Γj ≡ Γ (tj), j = 1, 2, ..., ni
– Sj ≡ STin

(tj), j = 1, 2, ..., ni

Additionally, we will denote with µij the unit vector

with the same direction of P i
j and we introduce the

unknowns λij such that P i
j = λijµ

i
j . Finally, without

loss of generality, we can set Tin = 0, i.e., ∆t = t.

Our sensors provide µij and Sj for i = 1, 2, ..., N ;

j = 1, 2, ..., ni. Equation (5) can be written as follows:

P i − V tj −G
t2j
2

+ ΓjB − λijµij = Sj (6)

The Vi-SfM problem is the determination of the vec-

tors: P i, (i = 1, 2, ..., N), V , G. In the case with

biased accelerometer data, we also need to determine

the vector B. We can use the equations in (6) to deter-

mine these vectors. On the other hand, the use of (6)

requires to also determine the quantities λij . By consid-

ering j = 1 in (6), i.e. tj = t1 = Tin = 0, we easily

obtain: P i = λi1µ
i
1. Then, we write the linear system

in (6) as follows:

[
−G t2j

2 − V tj + ΓjB + λ11µ
1
1 − λ1jµ1

j = Sj
λ11µ

1
1 − λ1jµ1

j − λi1µi1 + λijµ
i
j = 03

(7)

where j = 2, ..., ni, i = 2, ..., N and 03 is the 3 × 1

zero vector. This linear system consists of 3(ni − 1)N

equations in Nni+6 unknowns (or Nni+9 in the biased

case). Let us define the two column vectors X and S:

X ≡ [GT , V T , BT , λ11, ..., λ
N
1 , ..., λ

1
ni
, ..., λNni

]T

(or

X ≡ [GT , V T , λ11, ..., λ
N
1 , ..., λ

1
ni
, ..., λNni

]T

in absence of bias), and

S ≡ [ST2 , 03, ..., 03, S
T
3 , 03, ..., 03, ..., S

T
ni
, 03, ..., 03]T

and the matrix:

Ξ ≡ (8)

T2 S2 Γ2 µ
1
1 03 03 −µ1

2 03 03 03 03 03
033 033 033 µ

1
1 −µ2

1 03 −µ1
2 µ

2
2 03 03 03 03

... ... ... ... ... ... ... ... ... ... ... ...

033 033 033 µ
1
1 03 −µN1 −µ1

2 03 µ
N
2 03 03 03

... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ...

Tni
Sni

Γni
µ1

1 03 03 03 03 03 −µ1
ni

03 03
033 033 033 µ

1
1 −µ2

1 03 03 03 03 −µ1
ni
µ2
ni

03
... ... ... ... ... ... ... ... ... ... ... ...

033 033 033 µ
1
1 03 −µN1 03 03 03 −µ1

ni
03 µNni


where Tj ≡ −

t2j
2 I3, Sj ≡ −tjI3 and I3 is the identity

3 × 3 matrix; 033 is the 3 × 3 zero matrix (note that

the third set of columns disappear in absence of bias).

The linear system in (7) can be written in the following

compact format:

ΞX = S (9)

The sensor information is completely contained in the

above linear system. Additionally, we assume that the

magnitude of the gravitational acceleration is a priori

known. This extra information is obtained by adding

to our linear system the following quadratic equation:

|G| = g. By introducing the following 3 × (Nni + 6)
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matrix (or 3 × (Nni + 9) in the biased case), Π ≡
[I3, 03 ... 03], this quadratic constraint can be written

in terms of X as follows:

|ΠX|2 = g2 (10)

The Vi-SfM problem can be solved by finding the vector

X, which satisfies (9) and (10).

4 Existence and number of distinct solutions

We are interested in understanding how the existence

and the number of solutions of the Vi-SfM problem de-

pend on the motion, on the number of observed point-

features, on the point-features layout and on the num-

ber of camera images. The resolvability of the Vi-SfM prob-

lem can be investigated by computing the null space of

the matrix Ξ in (8). Let us denote with N (Ξ) this

space. The following theorem holds:

Theorem 1 (Number of Solutions) The Vi-SfM prob-

lem has a unique solution if and only if N (Ξ) is empty.

It has two solutions, if and only if N (Ξ) has dimension

1 and, for any n ∈ N (Ξ), |Πn| 6= 0. It has infinite so-

lutions in all the other cases.

Proof : The first part of this theorem is a trivial con-

sequence of the theory of linear systems. Indeed, the

vector X can be uniquely obtained by inverting the

matrix Ξ. Let us consider the case when the dimension

of N (Ξ) is 1. The linear system in (9) has infinite solu-

tions with the following structure: X(γ) = Ξ∗S + γn,

where Ξ∗ is a pseudoinverse of Ξ, n is a vector be-

longing to N (Ξ) and γ is an unknown scalar value [19].

We use (10) to obtain γ. We have: |ΠX(γ)|2 = g2,

which is a second order polynomial equation in γ if and

only if |Πn| 6= 0. Hence, we have two solutions for γ,

γ1 and γ2, and two solutions for X, X1 ≡ X(γ1) and

X2 ≡X(γ2). When |Πn| = 0 equation |ΠX(γ)|2 = g2

is independent of γ. Hence, this equation is automati-

cally satisfied, independently of γ. This means that the

Vi-SfM problem has infinite solutions. However, it also

means that the vector G can be uniquely determined.

�
The previous theorem allows us to obtain all the prop-

erties of the Vi-SfM problem by investigating the null

space of Ξ. The dimension of this null space does not

change by multiplying the columns of Ξ by any value

different from zero. Hence, we will refer to the following

matrix:

Ξ ′ ≡


M2 P1 P2 03N N ... 03N N

M3 P1 03N N P3 ... 03N N

... ... ... ... ... ...

Mni
P1 03N N ... 03N N Pni

 (11)

where 03N N denotes the 3N ×N zero matrix and:

Mj ≡


Tj Sj Γj
033 033 033
... ... ...

033 033 033

 , Pj ≡

P 1
j 03 03 ... 03

P 1
j P

2
j 03 ... 03

P 1
j 03 P

3
j ... 03

... ... ... ... ...

P 1
j 03 ... 03 P

N
j


(note that the last three columns in the matrix Mj

disappear in absence of bias). In the following, theo-

rem 1 will be applied by using Ξ ′ instead of Ξ. We

remark that the difference P i
j−P

i
1, i = 1, 2, ..., N, j =

2, ..., ni, is independent of i (see equation (5), where,

by definition, C
tj
Tin
P i
tj (tj) = P i

j). Hence, we will set

χj ≡ P
i
j −P

i
1. This quantity characterizes the motion

of the platform.

We will make the following assumption:

Assumption 1 For any i = 1, 2, ..., N, j = 2, ..., ni,

P i
j 6= 03 (or equivalently, χj 6= −P

i
1).

This assumption means that during the platform mo-

tion, no point-feature can be on the origin of the camera

frame. It ensures that no column of Ξ ′ vanishes.

4.1 Unbiased case

Let us denote a vector belonging to N (Ξ ′) as follows:

n ≡ [αT ,νT , n11, ..., n
N
1 , n

1
2, ..., n

N
2 , ..., n

1
ni
, ..., nNni

]T

(12)

where α and ν are 3D column vectors. n must satisfy:

Ξ ′n = 03(ni−1)N (13)

where 03(ni−1)N is the zero 3(ni−1)N×1 column vector.

We can write this system as follows (j = 2, ..., ni, i =

2, ..., N):

−
t2j
2
α− tjν + (n11 + n1j )P

1
1 + n1jχj = 03 (14)

(n11 + n1j )P
1
1 + (ni1 + nij)P

i
1 + (n1j + nij)χj = 03 (15)

We start our analysis by investigating two very special

cases: the planar case and the linear case.
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4.1.1 Planar case

Let us suppose that all the vectors P i
j , i = 1, ..., N, j =

2, ..., ni, belong to a plane2. This means that it exists a

frame such that all these vectors have the last compo-

nent equal to zero. In this new frame the linear system

in (13) can be separated in two parts: the former cor-

responds to the first two lines of (14) and the first two

lines of (15) for j = 2, ..., ni; the latter corresponds to

the third line of (14) for j = 2, ..., ni, which only in-

volves the third component of α and ν. Let us denote

with Ξplane1 and Ξplane2 the matrices which characterize

these two systems. Their size is 2(ni− 1)N × (Nni + 4)

and (ni− 1)× 2, respectively. When ni ≤ 2, the dimen-

sion of N (Ξplane1 ) is at least 4. Hence, from theorem 1,

we obtain that a necessary condition in order to have a

finite number of solutions (one or two) is that ni ≥ 3.

The null space of Ξplane2 has dimension 0 as ni ≥ 3. Let

us consider the case when ni = 3. The size of Ξplane1 is

4N × (3N + 4). Hence, in order to have the dimension

of N (Ξplane1 ) not larger than 1 it is necessary to have

N ≥ 3. Let us consider the case when ni = 4. The size

of Ξplane1 is 6N × (4N + 4). Hence, in order to have the

dimension of N (Ξplane1 ) not larger than 1 it is neces-

sary to have N ≥ 2. Finally, when ni ≥ 5 no necessary

condition constrains N .

We summarize the results of this subsection with

the following property:

Property 1 (Unbiased: Planar Layout) When all

the observed point-features and the platform positions

are coplanar, a necessary condition to have a finite num-

ber of solutions is that ni ≥ 3. Specifically, if ni = 3,

N ≥ 3, if ni = 4, N ≥ 2.

4.1.2 Linear case

When all the vectors P i
j , i = 1, ..., N, j = 2, ..., ni,

belong to a line it exists a frame such that all these

vectors have the last two components equal to zero. In

this new frame the linear system in (13) can be sepa-

rated in two parts: the former corresponds to the first

line of (14) and the first line of (15) for j = 2, ..., ni;

the latter corresponds to the second and third line of

(14) for j = 2, ..., ni, which only involve the last two

components of α and ν. Let us denote with Ξline1 and

Ξline2 the matrices which characterize these two sys-

tems. Their size is (ni−1)N×(Nni+2) and 2(ni−1)×4,

respectively. The null space of Ξline1 has dimension at

least N + 4. Hence, the Vi-SfM problem has always

2 This is equivalent to say that the position of any point-
feature and the position of the platform at any time tj (j =
1, ..., ni), are coplanar.

infinite solutions. This result is obvious and could be

derived in a simpler manner. When the platform mo-

tion is on a straight line, any point-feature belonging to

this line provides the same bearing data independently

of its distance from the platform.

We summarize the results of this subsection with

the following property:

Property 2 (Unbiased: Linear Layout) When all the

observed point-features and the platform positions are

collinear, the Vi-SfM problem has always infinite solu-

tions. Additionally, when the platform motion is on a

straight line, it is not possible to determine the distance

of all the point-features belonging to this line even if

there are other point-features outside the line.

Let us consider now the general 3D case. We have the

following property:

Property 3 When ni ≤ 2 the dimension of N (Ξ ′) is

at least 3. When ni = 3 the dimension of N (Ξ ′) is at

least 1. Finally, when ni ≥ 4 and the platform moves

with constant acceleration the dimension of N (Ξ ′) is at

least 1.

Proof : In order to prove all these three statements we

need to focus our attention on the following subsystem:

−
t2j
2
α− tjν = −χj , j = 2, ..., ni (16)

Let us denote the matrix characterizing this linear sys-

tem with Ξ ′′. It is immediate to realize that the dimen-

sion of N (Ξ ′) is never smaller than the dimension of

N (Ξ ′′). Indeed, if the vector [nα
T , nν

T ]T ∈ N (Ξ ′′)

then the vector in (12) with α = nα, ν = nν , and

nij = 0, ∀i, j, belongs to N (Ξ ′). The first statement is

a consequence of the fact that the dimension of N (Ξ ′′)

is at least 3 when ni ≤ 2.

Let us consider the case of ni = 3. The linear sys-

tem in (16) can always be solved, independently of the

platform motion (i.e., for any set of vectors χj). In par-

ticular, the equations in (16) for j = 2, 3 form a linear

square system, which has a unique solution, (α0,ν0).

From (14-16) we obtain that the vector in (12) with

α = α0, ν = ν0, n11 = n̄11 ≡ −1, n1j = n̄1j ≡ 1,

ni1 = n̄i1 ≡ 1, nij = n̄ij ≡ −1 (j = 2, 3; i = 2, ..., N)

belongs to N (Ξ ′) when ni = 3. We will denote this

vector with n0:

n0 ≡ [α0, ν0, n̄
1
1, ..n̄

i
1.., ..n̄

1
j .., ..n̄

i
j ..]

T (17)

Hence, when ni = 3 the vector n0 ∈ N (Ξ ′) for any

motion and the dimension of N (Ξ ′) is at least 1.
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Finally, the system in (16) can be solved for any

ni ≥ 4 if and only if χj = ν0tj + α0
t2j
2 . This situation

corresponds to a platform motion with constant accel-

eration α0 and initial speed ν0. Hence, also in this case

n0 ∈ N (Ξ ′) �
In order to apply theorem 1, we need to understand if

n0 is the only generator of N (Ξ ′), i.e., if N (Ξ ′) has

dimension equal or larger than 1.

4.1.3 ni ≤ 2

From property 3 we know that the dimension of N (Ξ ′)

is at least 3 and, consequently, the Vi-SfM problem has

always infinite solutions.

4.1.4 ni = 3

From property 3 we know that the dimension of N (Ξ ′)

is at least 1, independently of the number of point-

features. When N = 1, Ξ ′ is a 6× 9 matrix. Hence, the

dimension of N (Ξ ′) is at least 3. Let us consider the

case when N = 2. In this case Ξ ′ is a 12 × 12 matrix.

We have the following property:

Property 4 (Minimal case: ni = 3, N = 2) The di-

mension of N (Ξ ′) is 1 if and only if the following two

conditions are met:

(i) for a given j (e.g., for j = 2), the three vectors

P 1
1, P 2

1 and χj span the entire 3D−space;

(ii) for the other value of j (e.g., for j = 3) P i
j is not

proportional to P k
j , ∀i, k = 1, 2, ..., N .

Otherwise, the dimension of N (Ξ ′) is larger than 1.

Proof : If (i) is not true, all the vectors P i
j , i = 1, 2, j =

2, 3, belong to a plane. Since N = 2, the dimension of

N (Ξ ′) is larger than 1 (see property 1). Let us suppose

now that the condition (i) is met for j = 2. From (15)

with j = 2 we obtain: n11 = n22 = −n12 = −n21. From

(14) with j = 2 we obtain the same equation in (16)

with n12χ2 instead of χ2. From (15) with j = 3 we ob-

tain: (−n12 + n13)P 1
3 = (n12 + n23)P 2

3. If the condition

(ii) is met, we have: n13 = −n23 = n12 and from (14)

with j = 3 we obtain the same equation in (16) with

n12χ3 instead of χ3. In other words, when the condition

(ii) is met we have the same equations as in (16) for

j = 2, 3, with n12χj instead of χj . As previously men-

tioned, this system has a unique solution and N (Ξ ′) is

generated by n0. If the condition (ii) is not met, equa-

tion (−n12 +n13)P 1
3 = (n12 +n23)P 2

3 has further solutions

and consequently n0 is not the only generator of N (Ξ ′)

�
From now on, we will say that a condition is satisfied

in general when the probability that it is not satisfied

is zero. We remark that both conditions (i) and (ii) are

met in general.

Also for N > 2 there are still conditions, which oc-

cur with zero probability, under which the dimension

of N (Ξ ′) is larger than 1. We summarize the results of

this subsection with the following property:

Property 5 (Unbiased with ni = 3, N ≥ 2) When

ni = 3 and N ≥ 2 the Vi-SfM problem has in general

two distinct solutions. In some special cases it has infi-

nite solutions.

4.1.5 ni ≥ 4

When ni ≥ 4 the number of equations is larger than the

number of unknowns, except when ni = 4 and N = 1.

In this case the matrix Ξ ′ is 9× 10 and the dimension

of its null space is at least 1. We have the following

property:

Property 6 (Minimal case: ni = 4, N = 1) The di-

mension of N (Ξ ′) is 1 if and only if the four vectors

P 1
1, χ2, χ3 and χ4 span the entire 3D−space.

Proof : If the vectors P 1
1 and χj , j = 2, 3, 4, are copla-

nar, since N = 1, the dimension of N (Ξ ′) is larger than

1 (see property 1). Let us suppose now that the vec-

tors P 1
1 and χj , j = 2, 3, 4 span the entire 3D−space.

From the first 6 equations in (13) (i.e., the equation

(14) for j = 2, 3) we obtain α and ν as linear func-

tions of P 1
1, χ2 and χ3. By substituting the expres-

sions of α and ν in the last three equations (i.e., in

(14) with j = 4) we obtain the following equation:

a1P
1
1+a2χ2+a3χ3+a4χ4 = 03, where a1, a2, a3, a4 are

linear expressions of n11, n
1
2, n

1
3, n

1
4. Since the four vec-

tors span the entire 3D−space, the null space of the 3×4

matrix
[
P 1

1, χ2, χ3, χ4

]
has dimension 1. Let us de-

note with [a∗1, a
∗
2, a
∗
3, a
∗
4]T a generator of this null space.

We consider the linear system ak(n11, n
1
2, n

1
3, n

1
4) = a∗k,

k = 1, 2, 3, 4. We analytically compute the determinant

of the 4× 4 matrix, which characterizes this linear sys-

tem. We obtain:
−(t4−t3)2(t4−t2)2t24

(t2−t3)2t23t22
. This determinant is

always different from 0 (note that 0 < t2 < t3 < t4).

Hence, the previous linear system provides a unique so-

lution and the dimension of N (Ξ ′) is 1 �
We do not derive necessary and sufficient conditions

for any value of ni and N . The following property holds:

Property 7 (Unbiased with ni ≥ 4) When ni = 4

and N = 1 the Vi-SfM problem has in general two dis-

tinct solutions. If ni = 4, N ≥ 2 or if ni ≥ 5, ∀N it

has in general a unique solution.
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Proof : Since the four vectors P 1
1, χ2, χ3 and χ4 span

in general the entire 3D−space, property 6 proves the

first statement.

To prove the second part we start by considering the

case ni ≥ 4 and N ≥ 2. In general, the three vectors P 1
1,

P i
1 and χj are independent for each i = 2, ..., N and

for each j = 2, ..., ni. Hence, from equation (15) we

obtain: n11+n1j = ni1+nij = n1j+nij = 0, ∀i ≥ 2, ∀j ≥ 2.

If n11 6= 0, let us set, without loss of generality, n11 = 1.

Equation (14) becomes: − t
2
j

2 α − tjν = χj . For ni ≥ 4

this equation does not hold in general since it only holds

for a motion with constant acceleration (this special

case will be dealt in more detail in 4.1.6). Hence, n11 = 0

and, consequently, nij = 0 ∀i, ∀j. From (14) we also

have α = ν = 03. Therefore, the dimension of N (Ξ ′)

is 0.

Let us now consider the case ni ≥ 5 and N = 1.

From property 6 we know that, in general, it exists one

independent vector n̂4 ≡ [α̂T , ν̂T , n̂11, n̂
1
2, n̂

1
3, n̂

1
4]T satis-

fying equation (14) for j = 2, 3, 4. Hence, any solution

of (13) must have the first ten components coincident

with the ones of n̂4 or all the first ten components equal

to zero. Let us consider a given j ≥ 5. In the former case

(i.e., first ten components equal to n̂4), equation (14)

reads as follows: − t
2
j

2 α̂ − tj ν̂ + (n̂11 + n1j )P
1
1 + n1jχj =

03. This equation does not hold in general. Indeed, if

n1j = 0, − t
2
j

2 α̂ − tj ν̂ + n̂11P
1
1 = 03 (which is not true

in general) and, if n1j 6= 0, the vector P 1
1 + χj must be

parallel to the vector − t
2
j

2 α̂− tj ν̂ + n̂11P
1
1 (which is not

the case in general). In the latter case (i.e., all the first

ten components equal to zero), equation (14) reads as

follows: n1j (P
1
1+χj) = 03. Because of assumption 1 this

holds if and only if n1j = 0 �

4.1.6 Constant acceleration

Let us consider the case when the platorm moves with

constant acceleration, i.e. when χj = ν0tj +α0
t2j
2 , j =

2, ..., ni, where ν0 and α0 are two 3D−vectors. We

already know from property 3 that the dimension of

N (Ξ ′) is at least 1. Specifically, the vector n0 in (17)

belongs to the null space of Ξ ′. In order to use theorem

1, we need to understand when N (Ξ ′) has dimension

equal or larger than 1. The following property provides

a sufficient condition which ensures the Vi-SfM resolv-

ability.

Property 8 (Unbiased with constant acceleration)

Let us suppose that the platform moves with constant

acceleration, i.e., χj = ν0tj+α0
t2j
2 , j = 2, ..., ni. When

for a given point-feature k the vectors ν0, α0 and P k
1

span the entire 3D−space the dimension of N (Ξ ′) is 1.

Proof : Without loss of generality, let us set k = 1.

From the first 6 equations in (13) (i.e., the equation

(14) for j = 2, 3) we obtain α and ν as linear func-

tions of P 1
1, α0 and ν0. By substituting the expres-

sions of α and ν in (14) with j = 4 we obtain the

following equation: a1P
1
1 + a2α0 + a3ν0 = 03, where

a1, a2, a3 are linear expressions of n11, n
1
2, n

1
3, n

1
4. Since

the three vectors span the entire 3D−space, we must

have ak(n11, n
1
2, n

1
3, n

1
4) = 0, k = 1, 2, 3. This linear sys-

tem is characterized by a 3 × 4 matrix. Hence, it has

at least one non trivial solution. By a direct compu-

tation, it is possible to see that the dimension of the

null space of this matrix is 1. The non trivial solution

is n11 = −1, n12 = n13 = n14 = 1. Now, let us consider the

equation (15). We obtain (i 6= 1):

(ni1 + nij)P
i
1 + (1 + nij)(ν0tj +α0

t2j
2

) = 03 (18)

On the other hand, a further consequence of the fact

that ν0, α0 and P 1
1 span the entire 3D-space, is that

the two vectors ν0 and α0 cannot be collinear. Hence,

it exists a value of j = j∗, such that P i
1 is not pro-

portional to ν0tj∗ + α0
t2j∗

2 . From (18) we immediately

obtain nij∗ = −1 and ni1 = 1. For the other j 6= j∗ we

obtain: (1 + nij)(P
i
1 + ν0tj + α0

t2j
2 ) = 03. If nij 6= −1

P i
1 = −ν0tj − α0

t2j
2 = −χj , which is not possible be-

cause of the assumption 1 �
This property ensures that, when the platform moves

with constant acceleration, the Vi-SfM problem has in

general two solutions.

A special case of constant acceleration occurs when

the vector α0 vanishes, i.e., when the platform moves

with constant speed. Since |Πn0| = |α0| = 0, according

to theorem 1, the Vi-SfM has infinite solutions. How-

ever, as it has been proven at the end of the proof

of that theorem, in this case the local gravity G can

be uniquely determined. Hence, the orientation of the

platform with respect to the horizontal plane can be

uniquely determined. We proved the following property:

Property 9 (Unbiased with constant speed) Let us

suppose that the platform moves with constant speed.

The Vi-SfM has infinite solutions. Additionally, the ori-

entation of the platform with respect to the horizontal

plane can be uniquely determined.

4.2 Biased case

We investigate now the resolvability of the Vi-SfM prob-

lem when the accelerometers are affected by a bias. Ob-

viously, all the necessary conditions derived in 4.1 are



Closed-form solution of visual-inertial structure from motion 9

still necessary in this harder case. On the other hand,

there are cases where conditions which ensure resolv-

ability in the unbiased case, are no longer sufficient in

this case. By proceeding as in the unbiased case (see

(12)), we will denote a vector belonging to N (Ξ ′) as

follows:

n ≡ [αT ,νT , bT , n11, ..., n
N
1 , n

1
2, ..., n

N
2 , ..., n

1
ni
, ..., nNni

]T

(19)

where b is a 3D−vector (as α and ν). n must sat-

isfy (13) where now Ξ ′ also includes the third set of

columns. We can write this system as in (14-15). In

this case, the first equation must be replaced by:

−
t2j
2
α− tjν + Γjb+ (n11 + n1j )P

1
1 + n1jχj = 03 (20)

Regarding the planar and linear cases, properties 1 and

2 still hold since they only provide necessary condi-

tions. However, regarding the planar case, more restric-

tive conditions can be derived, which even hold in the

3D−case3.

In the biased case, property 3 is replaced by the

following property:

Property 10 When ni ≤ 3 the dimension of N (Ξ ′)

is at least 3. When ni = 4 the dimension of N (Ξ ′)

is at least 1. Finally, when ni ≥ 5 and the platform

moves with the special motion characterized by χj =

− t
2
j

2 α0 − tjν0 + Γjb0, for three vectors α0, ν0 and b0
and j ≥ 5, the dimension of N (Ξ ′) is at least 1.

Proof : In order to prove these three statements we need

to focus our attention on the following subsystem:

−
t2j
2
α− tjν + Γjb = −χj , j = 2, ..., ni (21)

Let us denote the matrix characterizing this linear sys-

tem with Ξ ′′b . It is immediate to realize that the di-

mension of N (Ξ ′) is never smaller than the dimension

of N (Ξ ′′b ). Indeed, if the vector [nα
T , nν

T , nb
T ]T ∈

N (Ξ ′′b ) then the vector in (19) with α = nα, ν = nν ,

b = nb and nij = 0, ∀i, j, belongs to N (Ξ ′). The first

statement is a consequence of the fact that the dimen-

sion of N (Ξ ′′b ) is at least 3 when ni ≤ 3 (being the

number of equations in (21) not more than 6 and the

number of unknowns is 9).

3 Note that it is not possible to proceed as in the unbiased
case since it is not possible to separate the linear system in
(13) in two parts because of the bias.

Let us consider the case of ni = 4. Ξ ′′b is a square

matrix. We distinguish two cases: the case when the

determinant of Ξ ′′b vanishes and the case when is non-

zero. In the first case the dimension of N (Ξ ′′b ) is at least

1 and, as shown in the first part of this proof, also the

dimension of N (Ξ ′) is at least 1. In the second case, the

linear system in (21) can be uniquely solved (for any set

of vectors χj). Let us denote this solution with (α0,ν0,

b0). From (15) and (20) we obtain that the vector in

(19) with α = α0, ν = ν0, b = b0, n11 = nij = −1,

n1j = ni1 = 1, (j = 2, 3, 4, i = 2, ..., N) belongs to

N (Ξ ′). Hence, also in this case the dimension of N (Ξ ′)

is at least 1.

Finally, the system in (21) can be solved for ni ≥ 5

if and only if the platform motion satisfies the equation

χj = − t
2
j

2 α0 − tjν0 + Γjb0. In this case, the vector n0

in (17) becomes:

nb0 ≡ [αT0 , ν
T
0 b

T
0 , n̄

1
1, ..n̄

i
1.., ..n̄

1
j .., ..n̄

i
j ..]

T , (22)

and it is immediate to verify that nb0 ∈ N (Ξ ′) �
Note that, when b0 = 03, the special motion considered

in this property is the motion with constant accelera-

tion defined in the unbiased case.

We remark that, in the unbiased case, the platform ro-

tations do not affect the problem resolvability. Indeed,

in the matrix Ξ ′, only the third set of columns are af-

fected by the platform rotations. In the biased case it

is easy to prove the following property:

Property 11 (Biased: impact of rotations, part 1)

When the platform does not rotate the dimension of

N (Ξ ′) is at least 3. When the platform rotates always

around the same axis the dimension of N (Ξ ′) is at least

1.

Proof : When the platform does not rotate Γj =
t2j
2 I3

(see the definition of Γj in (2)). Hence, the third set

of columns coincides with the first set up to a sign.

This means that the dimension of N (Ξ ′) is at least 3.

Let us consider the case when the rotations only occur

around the same axis. We can assume without loss of

generality that it is the z−axis (indeed, we can change

the camera frame in such a way that its new z−axis is

aligned with the axis of rotation). From the definition of

Γ in (2) we remark that, in this case, the third column

of Γj coincides with the third column of Tj in (8) up

to a sign. Hence, the vector in (19) with all the entries

zero with the exception of the third and the ninth entry

equal one each other, belongs to N (Ξ ′) �

It also holds the following stronger property:
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Property 12 (Biased: impact of rotations, part 2)

When the platform rotates always around the same axis

the dimension of N (Ξ ′′b ) is in general 1 (provided that

ni ≥ 4). When the platform rotates around at least two

independent axes the dimension of N (Ξ ′′b ) is in general

0 (provided that ni ≥ 4).

Proof : The proof of this property is much more trou-

blesome than the proof of property 11. It becomes easier

by assuming that the observations are provided contin-

uously in time (i.e., if the discrete index j in (21) is re-

placed by the continuous index t). In the following, for

the sake of clarity, we prove the two statements under

this ideal assumption (which we will call the continu-

ous assumption). Finally, we prove the first statement

in the discrete case.

Under the continuous assumption, by differentiat-

ing three times equation (21) with respect to time we

obtain: d
3Γ (t)
dt3 b = −d

3χ(t)
dt3 . From the definition of Γ (t)

in (2) we obtain (we remind the reader that we set

Tin = 0):

dCt0
dt
b = −d

3χ(t)

dt3
(23)

Since Ct0 is the rotation matrix generated by the angu-

lar speed Ω(t), we also have:
dCt

0

dt = [Ω(t)]×C
t
0, where

[Ω(t)]× ≡

 0 −Ωz Ωy
Ωz 0 −Ωx
−Ωy Ωx 0

. By using this equation

in (23) and by denoting b′ ≡ Ct0b we obtain:

[Ω(t)]×b
′ = −d

3χ(t)

dt3
(24)

For a non-zero Ω(t), the previous system has rank 2.

Hence, it allows us to determine two components of b

in terms of the third one. Additionally, by considering

the system in (21) at two distinct times, it is possible

to uniquely obtain the vectors α and ν in terms of b.

Hence, the dimension of N (Ξ ′′b ) is at most 1. On the

other hand, by proceeding as in the proof of property

11 it is possible to show that, when the platform rotates

always around the same axis, the dimension of N (Ξ ′′b )

is at least 1. Therefore, the dimension of N (Ξ ′′b ) is 1.

When the platform rotates around at least two in-

dependent axes, by taking (24) at two distinct times

(where the two corresponding angular velocities are not

proportional), we can determine all the three compo-

nents of b. By considering the system in (21) at two

distinct times, it is possible to uniquely obtain the vec-

tors α and ν in terms of b, which is now determined.

Hence, the dimension of N (Ξ ′′b ) is 0.

We conclude this proof by considering the realistic

discrete case and by proving only the first statement. By

proceeding as in the proof of property 11 it is possible to

show that, when the platform rotates always around the

same axis, the dimension of N (Ξ ′′b ) is at least 1. Hence,

it sufficies to show that when ni = 4 the dimension of

N (Ξ ′′b ) is in general 1. The matrix Ξ ′′b is in this case:

Ξ ′′b =

T2 S2 Γ2

T3 S3 Γ3

T4 S4 Γ4

 (25)

By doing a Gauss elimination it is immediate to verify

that the dimension of the null space of this matrix is

equal to the dimension of the null space of the following

3× 3 matrix:

Γ ′ ≡ w23Γ4 + w24Γ3 + w34Γ2 (26)

where w23 = t2t
2
3 − t22t3, w24 = t4t

2
2 − t24t2 and w34 =

t3t
2
4 − t23t4. On the other hand, by setting, without loss

of generality, the z−axis as the rotation axis, the matrix

Γj has the structure:

 cj sj 0

−sj cj 0

0 0
t2j
2

 where cj ≡
∫ tj
0

(tj −

τ) cos θ(τ)dτ , sj ≡
∫ tj
0

(tj−τ) sin θ(τ)dτ and θ(τ) is the

rotation accomplished by the platform up to time τ . By

using this expression in (26) we obtain that the third

line of Γ ′ vanishes. In order to show that the dimension

of N (Γ ′) is in general 1 it suffices to prove that the

following expression is in general different from zero:

w23c4 + w24c3 + w34c2. We show that this expression

is in general different from zero in the following infinite

dimensional space of continuous function V ≡ {f ∈ C1 :

[Tin = 0, Tfin] → [−1, 1]}, i.e., that in this space the

following equation holds in general4:

w23

∫ t4

0

(t4 − τ)f(τ)dτ + w24

∫ t3

0

(t3 − τ)f(τ)dτ+

w34

∫ t2

0

(t2 − τ)f(τ)dτ 6= 0 (27)

A probe for this is the one-dimensional space of all the

constant function in [−1, 1]. This proves that the set

T ⊂ V where (27) holds is prevalent (see [12] for the

definition of probe and prevalence ) �

4 Note that we are not considering the space of the func-
tions θ(τ) but the space of the functions cos θ(τ).
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4.2.1 ni ≤ 3

From property 10 we know that the dimension ofN (Ξ ′)

is at least 3. Hence, the following property holds:

Property 13 (Biased case, ni ≤ 3) The Vi-SfM prob-

lem has always infinite solutions in the biased case when

ni ≤ 3.

4.2.2 ni = 4

From property 10 we know that the dimension ofN (Ξ ′)

is at least 1. In order to apply theorem 1 we need

to know when it is exactly 1, in which case the Vi-

SfM problem has two distinct solutions. We have the

following property:

Property 14 (Biased case, ni = 4) In the biased case,

when ni = 4 the Vi-SfM problem has always infinite so-

lutions if N = 1 and in general two distinct solutions

if N ≥ 2 and the platform rotates around at least one

axis.

Proof : Proving the first statement is trivial since for

N = 1, the number of unknowns in (9) is 13 and the

number of equations is 9. When N ≥ 2 the number of

unknowns is smaller than the number of equations. We

will prove that, when N ≥ 2, the dimension of N (Ξ ′) is

in general 1 both if the platform rotates around a single

axis and if it rotates around two or more axes.

In general, the three vectors P 1
1, P i

1 and χj are

independent for each i = 2, ..., N and for each j =

2, ..., ni. Hence, from equation (15) we obtain: n11 +

n1j = ni1 + nij = n1j + nij = 0, ∀i ≥ 2, ∀j ≥ 2.

If n11 = 0 we have nij = 0 ∀i, ∀j. Equation (20)

becomes: − t
2
j

2 α− tjν +Γjb = 03. From property 12 we

conclude that it exists in general one independent vec-

tor n ∈ N (Ξ ′) with n11 = 0 only if the platform rotates

around a single axis. If n11 6= 0 we can divide equation

(20) by n11 obtaining: − t
2
j

2
α
n1
1
− tj νn1

1
+Γj

b
n1
1

= χj . From

property 12 we conclude that this system has in gen-

eral a unique solution if the platform rotates around at

least two axes and in general no solution if it rotates

around a single axis or it does not rotate. Hence, we

conclude that it exists in general one independent vec-

tor n ∈ N (Ξ ′) with n11 6= 0 only if the platform rotates

around two or more axes.

In both cases (rotation around a single axis and

rotation around two or more axes), the dimension of

N (Ξ ′) is in general 1 �

4.2.3 ni ≥ 5

We have the following property:

Property 15 (Biased case, ni ≥ 5) In the biased case,

when ni = 5 and N = 1 the Vi-SfM problem has always

infinite solutions. When ni ≥ 5 and N ≥ 2, or when

ni ≥ 6 and N = 1 the Vi-SfM problem has in gen-

eral a unique solution if the platform rotates around at

least two axes and two solutions if the platform rotates

around a single axis.

Proof : When ni = 5 and N = 1 the number of un-

knowns in (9) is 14 and the number of equations is

12. This proves the first statement. When ni = 5 and

N ≥ 2 and when ni = 6, ∀N , the number of unknowns

is smaller than the number of equations.

Let us consider the case when N ≥ 2 and ni ≥ 5.

We proceed exactly as for the proof of property 14. As

in that proof, we conclude that it exists in general one

independent vector n ∈ N (Ξ ′) with n11 = 0 only if

the platform rotates around a single axis. On the other

hand, we also conclude that in general it does not exist

any vector n ∈ N (Ξ ′) with n11 6= 0, independently of

the platform rotations. This proves the statement when

ni ≥ 5 and N ≥ 2.

It remains the case ni ≥ 6, N = 1. We start by

considering the case when the platform rotates around

two or more axes. First of all it suffices to consider the

case ni = 6. Indeed, if the dimension of N (Ξ ′) is zero

when ni = 6, then equation (20) for j ≥ 7 becomes:

n1j (P
1
1 + χj) = 03 which is true if and only if n1j = 0

because of the assumption 1. Let us consider the case

ni = 6. From equation (20) for j = 2, 3, 4, thanks to the

result stated by property 12, we know that in general we

can express the vectors α, ν and b as linear combina-

tions of n11P
1
1, n12P

1
2, n13P

1
3 and n14P

1
4. By substituting

these expressions in equation (20) for j = 5, 6 we obtain

a homogeneous linear system of six equations in the six

unknowns n1j , 1 ≤ j ≤ 6. In general, this system has

full rank and therefore n1j = 0, 1 ≤ j ≤ 6.

Let us consider the case when the platform rotates

around a single axis and ni ≥ 6, N = 1. Thanks to

property 11 we know that the dimension of N (Ξ ′) is

at least 1. Specifically, we know that there is a non

null vector in N (Ξ ′) whose first nine components make

a vector which belongs to N (Ξ ′′b ). To prove that the

dimension of N (Ξ ′) is in general 1 we proceed as in the

previous case. Also in this case it suffices to consider the

case ni = 6. Indeed, if the dimension ofN (Ξ ′) is 1 when

ni = 6, since the first nine components of the vector

in N (Ξ ′) are in N (Ξ ′′b ), then equation (20) for j ≥ 7

becomes as in the previous case: n1j (P
1
1 + χj) = 03.

Let us refer to the case ni = 6. This time, property
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Cases Number of Solutions

Varying Acceleration Unique Solution
ni = 4, N ≥ 2 ; ni ≥ 5, ∀N

Varying Acceleration Two Solutions
ni = 3, N ≥ 2; ni = 4, N = 1

Constant and non null Acceleration Two Solutions
ni = 3, N ≥ 2; ni ≥ 4, ∀N

Null Acceleration Infinite Solutions
∀ni, ∀N

Any Motion Infinite Solutions
ni ≤ 2, ∀N ; ni = 3, N = 1

Table 1 Number of distinct solutions for the Vi-SfM problem
in the unbiased case

Cases Number of Solutions

Rotation around 2 or more axes
Varying Acceleration Unique Solution

ni = 5, N ≥ 2 ; ni ≥ 6, ∀N
Rotation around a single axis

Varying Acceleration Two Solutions
ni = 5, N ≥ 2 ; ni ≥ 6, ∀N

Rotation around 1 or more axes
Varying Acceleration Two Solutions

ni = 4, N ≥ 2
Rotation around 2 or more axes

Constant and non null Acceleration Two Solutions
ni = 4, 5, N ≥ 2; ni ≥ 6, ∀N
Rotation around a single axis Infinite Solutions

Constant Acceleration
No rotation Infinite Solutions
∀ni, ∀N

Null Acceleration Infinite Solutions
∀ni, ∀N

Any Motion Infinite Solutions
ni ≤ 3, ∀N ; ni = 4, 5, N = 1

Table 2 Number of distinct solutions for the Vi-SfM problem
in the biased case

12 allows us to state that we can in general obtain 8

components among the nine components of the vectors

α, ν and b as linear combinations of n11P
1
1, n12P

1
2, n13P

1
3

and n14P
1
4 and the remaining component (denoted with

w) of the three vectors α, ν and b. By substituting

these expressions in equation (20) for j = 5, 6 we obtain

a homogeneous linear system of six equations in the

seven unknowns n1j , 1 ≤ j ≤ 6 and w. In general, this

system has a one dimensional null space �

5 Discussion

5.1 Summary of the theoretical results

Tables 1 and 2 summarize our results by providing the

number of solutions case by case, respectively in the

case without bias (table 1) and with bias (table 2). Note

that these tables do not account the point-features lay-

Fig. 2 Illustration of two distinct solutions for the unbiased
case with ni = 4, N = 1 (star symbols indicate the position
of the point-feature respectively for the two solutions).

Fig. 3 Illustration of two distinct solutions for the unbiased
case with constant acceleration (star symbols indicate the po-
sition of the point-features respectively for the two solutions).

out. Specifically, the motion and the point-features are

not supposed to be either coplanar or collinear. Regard-

ing these cases, necessary conditions are provided in

properties 1 and 2. In table 2, by motion with constant

acceleration we mean the special motion described in

property 10.

Figures 2 and 3 illustrate two cases when the Vi-

SfM problem has two distinct solutions. The platform

configurations and the position of the point-features in

the global frame are shown. The two solutions are in

blue and red. The platform configuration at the ini-

tial time is the same for both the solutions and it is in

black. Both figures show unbiased cases. Fig 2 regards

the case of one point-feature seen in four images. Fig

3 displays the case of constant acceleration: the case of

three point-features in seven images has been consid-

ered and the seven poses of the platform at the time

when the images are taken are shown in the figure to-

gether with the position of the point-features.
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5.2 Simulations

In this section we show the benefit of using the closed

solution for initializing a filter based approach to solve

the Vi-SfM problem. Specifically, we generate Monte

Carlo simulations according to the following four sce-

narios:

Sa ideal conditions, i.e., all the measurements are noise-

less, the gyroscope bias is set to zero, the accelerom-

eter bias is constant, the extrinsic camera calibra-

tion is perfectly known;

Sb as in Sa but now the visual and the inertial mea-

surements are corrupted by noise, as explained in

section 5.2.2;

Sc as in Sb but now the gyroscopes and the accelerome-

ters are affected by a time varying bias, as explained

in section 5.2.1;

Sd as in Sc but now the camera extrinsic calibration is

affected by an error, as explained in section 5.2.1.

In section 3 we formulated the Vi-SfM problem as the

problem of determining the vectors: P i, (i = 1...N),

V , G (and also B in presence of bias). For the sake of

clarity, in this section we choose to show the results in

a global frame. For this reason, we need to consider at

least two point-features. Indeed, two is the minimum

number of point-features to uniquely define a global

frame, provided that they do not lie on the same vertical

axis (defined by the gravity). We define the global frame

as follows: first, we define one of the point-features as

the origin of the frame. The z-axis coincides with the

gravity axis but with opposite direction. Finally, the

x-axis is defined by requiring that the second point-

feature belongs to the xz-plane. In other words, the

second point-feature has zero y−coordinate. In these

settings, the Vi-SfM can be defined as the estimation

of the platform configuration and the estimation of the

x and the z coordinate of the second point-feature (from

now on, px and pz, respectively). By adding more point-

features, the state to be estimated also includes all the

three coordinates of each point-feature. We adopt an

Extended Kalman Filter (EKF ) to perform this esti-

mation. The state to be estimated is:

xe ≡ [r, v, q, px, pz, B, BΩ, p
3, ..., pN ]T

where q is a unit quaternion characterizing the platform

orientation and BΩ is the bias on the measurements

provided by the gyroscopes.

By collecting the sensor measurements during the

time-interval [Tin, Tfin], the closed solution discussed

in the previous sections allows us to determine the vec-

tors P i, (i = 1, 2, ..., N), V , G and B at the time

Tin. Note that, when N ≥ 2, having the vectors P i, V ,

G and B at the time Tin, allows us to build the state

xe at time Tin (with the exception of BΩ).

In this section, we investigate how the performance

of the EKF depends on its initialization and how this

performance can be improved by using the closed solu-

tion to initialize the state. We adopt eight initialization

for our filter, denoted by I1, I2, · · · , I8. In I1 the initial

state coincides with the true state. In I2, I3, I4, I5
the initial state coincides with the true state regarding

the angular components (i.e., the roll, pitch and yaw

angles), while the metric components are corrupted by

changing the scale factor. In particular, the scale factor

is set equal to 0.95 (I2), 1.1 (I3), 0.8 (I4) and 1.3 (I5).

In I6, I7 the initial state coincides with the true state

regarding all the metric components, while all the an-

gular components are corrupted by adding an error of

1 deg (I6) and 3 deg (I7). Finally, in I8 the initial state

is obtained by using our closed form solution. In par-

ticular, the initial state is obtained by using the first 6

camera observations (i.e. by considering the time inter-

val [Tin = 0, Tfin = 0.5]s). Since the closed solution

does not provide the initial BΩ, its initial value will be

set to zero.

5.2.1 Simulated Trajectories

All the trajectories are randomly generated starting

from the following initial true state:

r(Tin) = [0.5, 0.5, 0.5]m; v(Tin) = [0.1, 0.1, 0.1]ms−1;

q(Tin) = 1, which corresponds to the platform attitude

roll = pitch = yaw = 0 deg; B(Tin) = 0.05 µ̂ m s−2,

where µ̂ is the unit vector pointing in the direction

[1, 1, 1]; px = 2m and pz = 1m. In the scenarios Sc
and Sd also the gyroscope is affected by a bias, whose

initial value is set as follows: BΩ(Tin) = 0.5 µ̂ deg s−1.

Additionally, in these two scenarios both the biases are

time-dependent. Specifically, they are modelled as in-

dependent random walks (for all the three components

of both), whose mean values are the initial ones and

their variances increase linearly with time. For the gyro-

scopes, the three variances are set equal to (50 deg/h)2

at 100 s and for the accelerometers are set equal to

(1 m/h2)2 at 100 s (see [25]). We assume that the

camera and the IMU frame coincide (i.e., they have

the same origin and the same orientation). In the last

scenario (Sd) we characterize an error in the extrinsic

calibration by setting the actual position of the origin

of the camera frame in the IMU frame to [0.002, −
0.003, 0.004]m and the actual orientation qcam = 1 −
2.3 10−5 + (3.5i− 5.2j+ 2.6k) 10−3, which corresponds
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to the attitude roll = 0.4 deg, pitch = −0.6 deg and

yaw = 0.3 deg.

We also considered the case of more than two point-

features (N ≥ 3), obtaining similar results in terms of

performance and, for the sake of brevity, in the follow-

ing we only refer to the case of N = 2.

The trajectories are generated by randomly gener-

ating the linear and angular acceleration of the plat-

form at 100 Hz. In particular, at each time step, the

three components of the linear acceleration and the an-

gular speed are generated as zero-mean Gaussian inde-

pendent variables whose covariance matrices are equal

to (1ms−2)2I3 and (10 deg s−1)2I3, respectively. The

length of each trajectory is 6 s.

5.2.2 Simulated Sensors

Starting from the accomplished trajectory, the true an-

gular speed and the linear acceleration are computed

at each time step of 0.01s (respectively, at the jth time

step, we denote them with Ωtruej and Atruej ). Start-

ing from them, the IMU sensors are simulated by ran-

domly generating the angular speed and the linear ac-

celeration at each step according to the following:Ωj =

N
(
Ωtruej −BΩ(tj), PΩ

)
andAj = N

(
Atruej −G(tj)

−B(tj), PA), where N(., .) indicates the Normal dis-

tribution whose first entry is the mean value and the

second its covariance matrix and PΩ and PA are the

covariance matrices characterizing the accuracy of the

IMU . In all the simulations we set both the matrices

PΩ and PA diagonal. In the first scenario (Sa) we set

both these matrices to zero. In the last three scenar-

ios (Sb, Sc, Sd) we set: PΩ = (1 deg s−1)2 I3 and

PA = (1 cm s−2)2 I3.

Regarding the camera, the provided readings are

generated in the following way. By knowing the true tra-

jectory and the true camera-IMU transformation, the

true bearing angles of the two point-features in the cam-

era frame are computed. They are computed each 0.1s.

Then, the camera readings are generated by adding to

the true values zero-mean Gaussian errors whose vari-

ance is equal to (1 deg)2 for all the readings (for the

last three scenarios, Sb, Sc, Sd). In the first scenario

(Sa) the camera readings coincide with the true bearing

angles.

5.2.3 Simulation Results

For each setting (i.e., each scenario among Sa, Sb, Sc
and Sd and each initial state I1, · · · , I8) we ran 100

simulations. For each simulation we computed the er-

ror, i.e. the difference between the true value and the

one estimated. We provide the error on the platform

Sim Position (cm) Velocity ( cm
s

) Attitude (deg)

Sa 0.06 0.04 0.15 1.4 0.02 1.5 0.01 0.007 0.03
Sb 1.0 1.0 4.1 1.8 0.46 2.6 0.06 0.06 0.22
Sc 2.5 1.2 5.8 4.2 1.3 5.7 0.45 0.37 0.7
Sd 3.4 1.7 8.2 5.4 1.9 6.5 0.68 0.58 1.4

Table 3 Performance of the closed form solution in de-
termining the initial state in the four considered scenarios
(Sa, Sb, Sc, Sd).

position, velocity and attitude. All these errors are de-

fined as the following scalars. The position error is the

magnitude of the vector, which is the difference between

the true platform position and the one estimated. Sim-

ilarly, the velocity error is the magnitude of the vector,

which is the difference between the true velocity and the

one estimated. Finally, the attitude error is the mean

value of the roll error, pitch error and yaw error. Each

of these is defined as the absolute value of the difference

between the true value and the one estimated. We eval-

uate both the performance of the closed form solution

in determining the initial state and the performance of

the EKF . Regarding the latter, the errors are averaged

along the entire trajectory.

For each setting, the 100 simulations provided a dis-

tribution for all the previous errors. In tables 3 and 4

we provide three values in order to characterize each

distribution: they are the mean, the standard devia-

tion and the maximum, respectively. Table 3 shows the

performance of the proposed closed form solution in de-

termining the initial state. The position error is of few
centimetres in the hardest scenarios Sc, Sd, which cor-

responds to an error on the absolute scale smaller than

3%. Regarding the attitude, the error is smaller than

0.7 deg. Table 4 shows the performance of the EKF

in estimating the state along the entire trajectory. The

best estimates are obviously the ones obtained with a

perfect initialization (I1). On the other hand, the per-

formance achieved by initializing the state through the

proposed closed form solution (I8) is always much bet-

ter than the one obtained in all the other cases. In par-

ticular, this performance is closer to the one obtained

with a perfect initialization than to the performance

achieved in the case of an initial scale equal to 0.95 and

perfect attitude (I2) and the performance achieved in

the case of perfect initial metric components and initial

roll pitch and yaw affected by an error of 1 deg (I6).

By considering initial states corrupted by an error

larger than the ones in I4, I5 and I7 we often obtained

a filter divergence.



Closed-form solution of visual-inertial structure from motion 15

Sa

In. Position (cm) Velocity ( cm
s

) Attitude (deg)

I1 3e-3 2e-3 0.01 5e-3 4e-3 0.02 6-4 5e-5 2e-3
I2 1.4 0.47 2.8 1.2 0.64 3.6 0.13 0.06 0.28
I3 4.1 1.7 9.8 4.0 2.8 9.3 0.45 0.36 1.8
I4 16 8.9 37 19 9.9 40 2.5 1.9 8.7
I5 30 17 76 32 20 90 3.4 2.0 8.6
I6 2.8 3.5 4.7 4.6 5.6 13 0.63 0.66 2.9
I7 20 15 78 35 41 233 3.5 3.7 11
I8 0.03 0.01 0.06 0.05 0.02 0.09 0.01 4e-3 0.02

Sb

In. Position (cm) Velocity ( cm
s

) Attitude (deg)

I1 2.0 1.0 4.1 2.7 1.2 5.9 0.35 0.13 0.63
I2 3.0 1.4 6.0 3.4 1.3 6.2 0.48 0.33 1.8
I3 5.2 2.6 11 4.8 3.1 15 0.74 0.48 2.1
I4 18 17 96 22 22 127 3.0 3.9 21
I5 39 46 262 44 62 357 4.1 3.1 13
I6 3.3 1.6 6.7 5.1 6.1 9.7 0.73 0.34 2.7
I7 26 38 213 44 72 393 4.4 3.3 14
I8 2.2 1.2 5.0 3.1 1.4 6.9 0.38 0.18 1.0

Sc

In. Position (cm) Velocity ( cm
s

) Attitude (deg)

I1 2.3 1.1 4.9 3.8 1.3 7.0 0.37 0.18 1.0
I2 3.3 1.4 6.7 5.4 1.4 8.2 0.59 0.34 2.1
I3 5.5 2.7 13 5.6 2.9 17 0.83 0.48 2.8
I4 23 42 236 34 78 433 3.6 6.9 38
I5 37 39 218 49 91 500 4.0 3.9 20
I6 4.2 4.6 7.7 6.0 5.1 11 0.92 0.74 3.7
I7 71 112 145 107 384 205 5.7 7.4 38
I8 2.7 1.8 4.5 4.4 1.7 9.7 0.50 0.26 1.4

Sd

In. Position (cm) Velocity ( cm
s

) Attitude (deg)

I1 3.3 1.9 8.4 4.4 2.5 14 0.68 0.50 2.1
I2 4.1 2.0 9.2 7.3 2.6 12 0.84 0.79 3.5
I3 9.3 8.9 18 11 13 27 1.7 1.8 4.7
I4 38 114 617 57 186 800 4.0 7.0 38
I5 103 376 201 156 635 339 5.7 10 55
I6 4.5 3.2 10 6.9 5.5 13 0.94 0.59 4.2
I7 85 95 137 119 134 271 6.8 8.7 48
I8 3.8 1.8 8.5 6.8 1.9 11 0.76 0.43 1.9

Table 4 Performance of the EKF for the four considered
scenarios (Sa, Sb, Sc, Sd) and for the eight considered initial
conditions (I1, · · · , I8). I8 corresponds to the initialization
obtained by the proposed closed form solution.

6 Conclusion

In this paper we derived a simple and intuitive closed

solution to the visual-inertial structure from motion

problem. We used this derivation to investigate the in-

trinsic properties of the Vi-SfM problem and to identify

the conditions under which the problem can be solved

in closed form. In particular, we showed that the prob-

lem can have a unique solution or two distinct solu-

tions or infinite solutions depending on the trajectory,

on the number of point-features and their layout and

on the number of monocular images where the same

point-features are seen. The investigation was also per-

formed in the case when the inertial data are biased,

showing that, in this latter case, more images and more

restrictive conditions on the trajectory are required in

order to have a finite number of solutions.

The most useful applications of the closed-form so-

lution here derived will be in all the applicative domains

which need to solve the SfM problem with low-cost sen-

sors and which do not demand any infrastructure (e.g.,

in GPS denied environment). Additionally, our results

could also play an important role in the framework of

neuroscience. Indeed, our findings show that it is possi-

ble to easily distinguish linear acceleration from grav-

ity. Specifically, the closed form solution performs this

determination by a very simple matrix inversion. This

problem has been investigated in neuroscience [18]. Our

results could provide a new insight to this mechanism

since they clearly characterize the conditions (type of

motion, features layout) under which this determina-

tion can be performed.
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