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Abstract The objective of this work is to determine if peo-
ple are interacting in TV video by detecting whether they are
looking at each other or not. We determine both the temporal
period of the interaction and also spatially localize the rel-
evant people. We make the following four contributions: (i)
head detection with implicit coarse pose information (front,
profile, back); (ii) continuous head pose estimation in un-
constrained scenarios (TV video) using Gaussian Process
regression; (iii) propose and evaluate several methods for
assessing whether and when pairs of people are looking at
each other in a video shot; and (iv) introduce new ground
truth annotation for this task, extending the TV Human In-
teractions Dataset [28]. The performance of the methods is
evaluated on this dataset, which consists of 300 video clips
extracted from TV shows. Despite the variety and difficulty
of this video material, our best method obtains an average
precision of 87.6% in a fully automatic manner.
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Fig. 1: Are they looking at each other? Answering
this question enables richer video analysis, and retrieval
based on where actors interact. From left to right: Friends,
Casablanca, Fawlty Towers. The eyeline in the Casablanca
shot gives rise to the famous quote ”Here’s looking at you,
kid”.

1 Introduction

If you read any book on film editing or listen to a direc-
tor’s commentary on a DVD, then what emerges again and
again is the importance of eyelines. Standard cinematogra-
phy practice is to first establish which characters are looking
at each other using a medium or wide shot, and then edit sub-
sequent close-up shots so that the eyelines match the point
of view of the characters. This is the basis of the well known
180o rule in editing.

The objective of this paper is to determine whether eye-
lines match between characters within a shot – and hence
understand which of the characters are interacting. The im-
portance of the eyeline is illustrated by the three examples
of fig. 1 – one giving rise to arguably the most famous quote
from Casablanca, and another being the essence of the hu-
mour at that point in an episode of Fawlty Towers. Our tar-
get application is this type of edited TV video and films. It
is very challenging material as there is a wide range of hu-
man actors, camera viewpoints and ever present background
clutter.
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Fig. 2: Proposed pipeline. a) Upper-body detection. b) Head detection inside upper-body areas. c) Head pose estimation. d)
LAEO scoring between pairs of heads. This example would be correctly classified as LAEO.

Determining whether characters are interacting using their
eyelines is another step towards a fuller video understand-
ing, and complements recent work on automatic character
identification [7, 11, 37], human pose estimation [1, 6, 17,
33, 46], human action recognition [21, 22, 24, 30, 32], and
social [13] and specific interaction recognition (e.g. hug-
ging, shaking hands) [29, 46]. Putting interactions together
with previous character identification work, it now becomes
possible to retrieve shots where two particular actors inter-
act, rather than just shots where the actors are present in the
same scene.

In order to determine if two people are looking at each
other, it is necessary to detect their head and estimate their
head pose. There are two main strands in previous work: 2D
approaches, where detectors are built for several aspects of
the head (such as frontal and profile [37]) or the pose is clas-
sified into discrete viewpoints [4, 39, 47], or regressed [26].
The alternative are 3D approaches, where a 3D model is fit-
ted to the image and hence the pose determined [5, 10]. A
survey of head pose estimation is given in [25].

In this work, we start by detecting human heads in each
video frame separately and then grouping them over time
into tracks, each corresponding to a different person. Next,
we estimate the pitch and yaw angles for each head detec-
tion. For this, we propose a 2D approach and train a Gaus-
sian Process regressor [31] to estimate the head pitch and
yaw directly from the image patch within a detection win-
dow using publicly available datasets. In the third step, we
explore three methods to determine if two people (tracks)
are Looking At Each Other (LAEO, sec. 2). Two people are
LAEO if there is eye contact between them. We start with
a simple 2D analysis, based on the intersection of gaze ar-
eas in 2D defined by the sign of the estimated yaw angles
(sec. 2.1). In a more sophisticated alternative, we use both
the continuous yaw and pitch angles as well as the relative
position of the heads (sec. 2.2). Finally, we propose a ‘2.5D’
analysis, where we use the scale of the detected head to esti-
mate the depth positioning of the actors, and combine it with
the full head pose estimate to derive their gaze volumes in
3D (sec. 2.3). Figure 2 summarizes the proposed pipeline.

We apply these methods (sec. 5) to the TV Human In-
teractions Dataset (TVHID) [28]. This is very challenging
video material with far greater variety in actors, shot editing,
viewpoint, locations, lighting and clutter than the typical
surveillance videos used previously for classifying interac-
tions [3, 27, 40] where there is a fixed camera and scene. We
provide additional ground truth annotation for the dataset,
specifying which shots contain people looking at each other.
Originally, the dataset only had annotations for four spe-
cific interactions (hand-shake, high-five, hugging and kiss-
ing) but there are many other shots where people are looking
at each other.

In a thorough experimental evaluation on the TVHID,
we show that the full head pose estimate (i.e. yaw and pitch
angles) in combination with the relative position of the heads
in a 3D scenario are needed for most real situations to clearly
define if two people are LAEO.

This paper is an extended version of our preliminary
work on this subject [23].

2 Classifying pairs of heads as looking at each other
(LAEO)

Let us assume that we know the spatial location of the per-
sons present in a video sequence and we have information
about their head orientation as well. For each person i in a
video frame, let

Wi = (xi,yi,wi,hi,θi,αi,σθi ,σαi)

be an image window containing the head, with top-left co-
ordinates (xi,yi), width wi, height hi, yaw angle θi (rotation
about Y -axis), pitch angle αi (rotation about X-axis). The
values σθi and σαi represent the uncertainty in the estimate
of θi and αi, respectively. Using this information, we pro-
pose in this section three methods for classifying a pair of
persons as LAEO or not. This is the main contribution of this
paper. In section 3 we explain how to perform head pose es-
timation automatically (i.e. we use Gaussian Process regres-
sors), and in section 4 we explain how to detect and tracks
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Fig. 3: Left: Intersection of gaze areas in 2D. We show heads (Pl and Pr) as red rectangles and gaze areas (Gl and Gr) as
yellow dashed rectangles. The head orientations are represented by green arrows (Ol and Or). This method would incorrectly
say that these people are not LAEO, since their 2D gaze areas do not intersect. Right: Geometric constraints in 2D. We
show the estimated yaw and pitch angles as yellow vectors (yaw θ determines if left or right facing and length; pitch α

determines orientation). The blue vector γlr defines the orientation of the vector going from B to C in the image plane. The
angle defined by these vectors for (B,C) would classify such pair as LAEO. (Best viewed in colour).

heads (i.e. we build tracks of head detections obtained from
previously computed upper-body tracks).

2.1 Intersection of gaze areas in 2D

The simplest method we propose only considers the head
pose as discretized into just two directions, i.e. facing left
or right. For this we only use the estimated yaw angle and
discard the pitch. In addition to this binary head pose, this
method also uses the image position of the head window and
its height.

We define as gaze area Gi the image region a person
head Pi is looking at: a horizontal rectangle extending from
the head towards the gaze direction (fig. 3(left)). The height
of Gi is given by the height of Pi, while the width is given
by the x position of the farthest other head in the scene. To
classify whether two heads Pl ,Pr are LAEO, we define the
LAEOGA(Pl ,Pr) function. Let (xl ,yl) and (xr,yr) be the cen-
tres of Pl ,Pr, satisfying the condition (xl ≤ xr), and Ol ,Or be
their orientation (i.e. +1 facing left, −1 facing right). With
these definitions, LAEOGA is

LAEOGA(Pl ,Pr) = IoU(Gl ,Gr) ·δ (Ol ·Or < 0) (1)

where IoU(Gi,G j) =
Gi∩G j
Gi∪G j

is the insersection-over-union
of the heads’ gaze areas Gi,G j (fig. 3(left)); the Kronecker
delta δ (c) is 1 if condition c is true, and 0 otherwise.

2.2 Geometric constraints in 2D

The second method we propose takes into account both the
yaw and pitch angles defining the full head pose, as well as

the image position of the two heads. Two people are deemed
to be LAEO if all the following three conditions are true

(i) the person on the left has a positive yaw angle and the
person on the right has a negative yaw angle

(ii) the cosine of the difference between their yaw angles is
close to -1

(iii) the vectors defined by the pitch angles are similar to the
vectors that join the heads, in both directions.

Fig. 3(right) shows an example that should be highly scored
as LAEO.

For a head Pi, let (xi,yi) be the coordinates of its centre,
θi,αi the estimated yaw and pitch angles, and σθi ,σαi the
uncertainty associated at each estimated angle, respectively.
We define the following function LAEOGC(Pl ,Pr) to formal-
ize the above constraints and decide if two heads Pl ,Pr are
LAEO (with (xl ≤ xr)):

LAEOGC(Pl ,Pr) =

βθ · [δ (θl ·θr < 0∧θl > θr) · (1− cos(θl−θr)) ·0.5]+
βα ·[(1+ cos(αl− γlr)) ·0.25+(1+ cos(αr− γrl)) ·0.25]

(2)

where γi j is the orientation of the vector going from Pi to
Pj in the image plane; the symbol ‘−’ between two angles
denotes their orientation difference; βθ and βα are weights,
so that βθ +βα = 1. Note that each row of eq. (2) (omitting
their β ) ranges in [0,1]. Therefore, LAEOGC ranges in [0,1],
with 1 the best possible score.

There are many possible choices for this scoring func-
tion, as long as they enconde the three conditions stated
above. In our case, the first term of eq. (2) encodes condi-
tions (i) and (ii), based on the yaw angles. The second term
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Fig. 4: Geometric constraints in 3D. (left) Original video frame. (middle) 3D representation of a scene with two people.
We show heads (spheres) and their gaze volumes (cones). (right) View from above, with heads (circles) and gaze direction
vectors (blue arrows) dl and dr defined by the yaw and pitch angles. Green lines are the boundaries of the conic gaze volumes.
The red vector is jlr and goes from Pl to Pr. With this configuration, Pr lays inside Pl gaze area but Pl does not lay inside that
of Pr. Therefore, the two people are correctly classified as not LAEO. (Best viewed in colour).

encodes condition (iii), based on the pitch angles and the
position of the heads.

The weights βθ and βα can be defined as functions of
the uncertainties σθ and σα associated to the angles θ and
α , respectively. These uncertainties are output by the Gaus-
sian Process regressors along with the angle estimates them-
selves (Sec. 3). Hence, we set βθ for a test pair of heads Pl ,Pr
as

βθ = (σ−1
θl

+σ
−1
θr

)/(σ−1
θl

+σ
−1
θr

+σ
−1
αl

+σ
−1
αr ) (3)

and βα = 1−βθ . This dynamic weighting gives more weight
to reliable estimates of the head orientation, while reducing
the negative impact of poor estimates on the LAEO score.

2.3 Geometric constraints in 3D

The most complex method we propose operates in a sim-
plified 3D space. We place each person’s head Pi in a com-
mon 3D coordinate system by using the image coordinates
of the head centre as (xi,yi) and deriving the depth coordi-
nate zi from the head size in the image. Coordinates zi are
derived as a direct proportion between all the heads present
in the scene, by assuming that in such 3D world all the heads
have the same size and, therefore, the height of the detec-
tion window indicates the relative distance of the person to
the camera (i.e. larger heads in 2D are closer to the cam-
era than smaller ones). So, heads are z-ordered so that the
largest head in the image is the closest one to the camera.
This implicitly assumes that all people have approximately
the same head size in the 3D world. This is only a problem
in rare cases, i.e. scenes containing both adults and small
children, which have significantly different head sizes.

The gaze volume of a head Pi is represented as a 3D
cone Ci with apex at (xi,yi,zi) and axis orientation defined

by the estimated yaw and pitch angles (fig. 4). We classify
two heads Pl and Pr as LAEO if Pl lays inside Cr, and Pr
lays inside Cl . Note how this method uses all the available
information.

More formally, we define the LAEO3D score by the fol-
lowing equation:

LAEO3D(Pl ,Pr) =
(ϕ−∆(jlr,dl)+(ϕ−∆(jrl ,dr))

2ϕ
(4)

where the angle ϕ represents the aperture of the gaze cone
that is a free parameter to be learnt during training (see Sec. 5.3);
∆(·, ·) is the angle between two vectors; di is a vector defined
by the yaw and pitch angles of Pi; jlr is the vector from Pl to
Pr, i.e. defined as (xl ,yl ,zl)→ (xr,yr,zr) (and vice-versa for
jrl). Fig. 4 illustrates this score. Note how the magnitude of
di is irrelevant, as it is only used inside the ∆ function.

3 Continuous head pose estimation

We describe here our approach to automatically estimate
two head pose angles: yaw (around the Y axis) and pitch
(X axis). We do not consider roll (Z axis). We use a Gaus-
sian Process (GP) to directly regress from the image patch
within a head detection window to the two pose angles.

3.1 Training a Gaussian Process head pose regressor

For each detected head, we crop an N×N image window H
centred on it, where N is the number of pixels of the largest
side of the detection window. Then, H is resized to a pre-
defined common size N′×N′. Given an observed head win-
dow H, the goal is to predict two angles (θ ,α) conveying
its pose with regard to the camera viewpoint. We formulate
this problem in terms of regression, and train two separate
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Fig. 5: Head pose datasets. (top) Samples from CMU-PIE dataset. (bottom) Samples from IDIAP-HP dataset.

regressors, one for yaw (θ ) and one for pitch (α). As the
method is exactly the same, we restrict the explanation to
yaw.

The goal is to find a real-valued regression function θ̂ =

f (g(H)), so that θ̂ ≈ θ , where g(H) is a feature vector of
H, and θ and θ̂ are the real and estimated angles respec-
tively. We use a histogram of oriented gradients (HOG) [8]
as the head descriptor g. A HOG descriptor encodes the spa-
tial structure of a rather rigid object through a set of his-
tograms of oriented gradients computed in each cell of a grid
overlaid on the window covering the object.

A Gaussian Process (GP) [31] regressor f (g(H)) is em-
ployed for estimating the angle. GPs are attractive because
they are non-parametric models, and therefore can flexibly
adapt to almost any distribution of the data (i.e. provided the
mean, covariance and likelihood functions). Moreover, at in-
ference time, they return both the estimate θ̂ as well as its
uncertainty σθ (i.e. the mean and variance of the Gaussian
posterior). This offers the possibility to downweight uncer-
tain pose estimates in later processing stages (e.g. sec. 2.2).

3.2 Implementation details and experimental validation

A GP [31] is a collection of random variables, any finite
number of which have a joint Gaussian distribution. A GP is
completely specified by its mean function m and covariance
(or kernel) function k. Given an input vector x, the mean
function m(x) and the covariance k(x,x′) of a real process
f (x) are defined as

m(x) = E [ f (x)] , (5)

k(x,x′) = E
[
( f (x)−m(x))( f (x′)−m(x′))

]
(6)

where E denotes expectation, and k(x,x′) indicates that the
covariance function is evaluated at the points x and x′.

Therefore, we write the GP as

f (x)∼ GP
(
m(x),k(x,x′)

)
(7)

where f (x) is a stochastic function that is distributed as a
GP with parameters m and k. We use a linear mean function
m(x) = axT + c, where a and c are the hyperparameters of
m. We investigate experimentally various functional forms
for the covariance k below.

For making predictions (i.e. computation of the poste-
rior), one also needs to define the functional form of the
likelihood function. A common choice is a Gaussian like-
lihood, since it allows to carry out exact inference [31].

We use two datasets to learn yaw and pitch angles. The
first is the CMU Pose, Illumination and Expression (CMU-
PIE) dataset [35]. It contains images of 68 people from 13
different camera viewpoints, corresponding to 9 discretized
yaw angles ([−90,90] degrees). Images have been captured
in two different sessions and in each session there are four
subsets, corresponding to different types of variations: ex-
pression, illumination, lighting and talking. The top row of
Figure 5 shows some examples of images contained in the
dataset.

The second dataset is the IDIAP head pose (IDIAP-HP) [2].
It contains 8 videos recorded in a meeting room and 15
videos in an office. Yaw, pitch and roll angles ground-truth
is provided for each person in every frame. The bottom row
of Figure 5 shows some examples of cropped frames from
videos of the meeting room subset. Note that, in contrast to
CMU-PIE dataset, people pose diverse pitch angles.

In order to train the head pose estimators, the first step is
to detect all the heads from the training images by using the
detector of sec. 4.1. Next, all detected heads are normalized
to a common size of 48× 48 pixels and HOG features are
extracted. For computing the HOG descriptor, we use non
overlapping cells of 8× 8 pixels and 9 orientation bins for
quantizing the orientation of the gradient vectors. We experi-
mented with other configurations for HOG, but they brought
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(x−x′)T (x−x′)

)
+σ2

f ′ δ
(
x−x′

)
σ2

f exp
(
− 1

2l2
(x−x′)T (x−x′)

)
+σ2

f ′ (x
T x′ + c)3 σ2

f

(
1+ 1

2αl2
(x−x′)T (x−x′)

)−α

(xT x′ +1)/l2

yaw 15.73 20.42 20.36 20.40 25.86
pitch 10.09 10.10 10.11 10.16 10.94

Table 1: RMSE for yaw and pitch. Average RMSE performance for various functional forms. The minimum values (i.e.
lowest error) for each angle are marked in bold. See main text for discussion.

no improvement. Moreover, this configuration is the same as
the one used by our head detector, enabling to reuse previous
computations. The HOG features are used as input x to the
GP regressor, which outputs the target angle (i.e. θ or α).
We learn the parameters of the two GP regressors by using
the GPML 3.1 library [43].

We learn the yaw estimator from the subsets expression
and illumination of CMU-PIE dataset, and the pitch esti-
mator from the subset meeting room of IDIAP-HP dataset.
The set of training data for yaw angle is D = {(g(Hi),θi)},
where g(Hi) is the HOG descriptor of the i-th training sam-
ple (i.e. head) and θi is its ground-truth yaw angle. In or-
der to evaluate the yaw GP regressor, we split the dataset
in two parts: six random people are used for validation and
the remaining ones for training. We have repeated this pro-
cedure for five trials. We measure performance as the root
mean squared error (RMSE) averaged over all validation
sets, where the error is measured as the difference between
the ground-truth angle and the estimated one. We repeat the
same procedure for the pitch GP regressor, but using only
one for validation in each trial, and all others for training.

We tested various functional forms for the covariance
function: diagonal squared exponential (SEiso), SEiso plus
white noise (SEisoWN), SEiso plus third-order polynomial
(SEisoPoly), rational quadratic (RQiso), and linear with bias
(Lin). The number of hyperparameters that have to be learned
for each covariance function is different: 2 for SEiso, 3 for
SEisoWN, 4 for SEisoPoly, 3 for RQiso and 1 for Lin. Each
entry in Table 1 reports the regression performance for a par-
ticular covariance function and angle. Note how SEiso leads
to the best performance for both angles (yaw and pitch),
i.e. 15.73 average RMSE for yaw and 10.09 for pitch. The
worst results are delivered by a linear covariance function
(i.e. Lin).

As a baseline, we trained and validated a linear regressor
on the same data (using Matlab’s robustfit function). This
linear regressor has about twice the average RMSE of the
GP with SEiso covariance. This demonstrates that GP re-
gression is a much better choice than simple linear regres-
sion for this task.

After the above evaluations, we chose GP regression with
a SEiso covariance and we trained a final GP regressor from
all the available samples. This final regressor is used in the
LAEO experiments (sec. 5).

4 Detecting and tracking heads in video shots.

We explain here how we detect and track the heads of the
people present in a video shot. This is in fact the first step
in our processing pipeline. We split the task into the follow-
ing subtasks: (i) human upper-body detection in individual
frames; (ii) grouping upper-body detections over time into
tracks; (iii) detecting heads within upper-body detection ar-
eas; and, (iv) grouping head detections into tracks.

We propose this two-level pipeline because upper-body
detection is more robust to clutter than head detection, as
it benefits from wider, more distinctive context. The precise
localization of the head within the limited area defined by
an upper-body detection can then proceed safely. In partic-
ular, direct detection of profile heads in uncontrolled scenes
would otherwise produce many false positives [18]. On the
other hand, although we already have tracks in step (ii), an-
other tracking stage is performed in step (iv) in order to
resolve situations where two heads are so close that they
fall into the same upper-body bounding box (e.g. see Fig. 8,
bottom-left).

The detectors are described next, followed by the track-
ing process in Sec. 4.2.

4.1 Upper-body and head detection

For both the upper-body (UB) and head detectors we use
the model of Felzenszwalb et al.[14], and train using the
code released at [42]. This code automatically learns the
actual components of the detector based on the aspect ra-
tio of the annotated bounding boxes of the positive train-
ing samples. However, it is necessary to indicate the num-
ber of desired components. In our case, we set one compo-
nent for the upper-body detector (without a mirror compo-
nent), two components for the frontal/profile head detector
(plus the corresponding mirror ones) and one component for
the back-view head detector (plus the mirror one). Figure 7
shows the root filters of the components generated by the
learning code.

Figure 8 shows examples of UB and head detections in
a variety of situations (i.e. different viewpoints, scales, illu-
mination, clothing, clutter, ...).
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Fig. 6: Examples of samples used for detector training. Left: for upper-body detector; right: for head detector. Note the
variety of poses, people, clothing (in the UB case), and rear of heads.

a b

Fig. 7: Models for the multi-view upper-body and head detectors. (a) Root filter of the UB detector. This model contains
a single component trained from a mixture of all viewpoints. (b) Root filters of the 6 components of the head detector.
Each component provides coarse information about the head orientation. From left to right: two near frontal viewpoints, two
profile viewpoints and two back viewpoints.

Training and implementation details. We have used a total
of 1122 annotated video frames from Hollywood movies [20]
as positive training samples for the upper-body detector. These
contain upper-bodies viewed from different viewpoints and
at different scales. Some examples of UB used during train-
ing are shown in Figure 6 (left). As negative training sam-
ples, we used those images in the INRIA-person dataset [41]
which do not contain people.

The very same set of Hollywood video frames has been
used for training the frontal/profile view components of the
head detector. Since the Hollywood movies dataset contains
very few back-views of heads, the positive training set for
the back-view components of the head detector are manually
annotated on 199 video frames extracted from the IDIAP
head pose dataset [2]. Some examples of heads used for
training are shown in Figure 6 (right). As this head detector
is intended to be run only inside upper-body windows, we
provide negative training samples from the area surround-
ing the head.

4.2 Person tracking

We describe here the tracker we use to connect over time the
single-frame detections produced in the previous stage. The
same tracker is used to track upper-body detections or head
detections.

For this we design a tracker that combines successful
ideas from recent works. As in [11], detections in different
frames that are connected by many KLT point tracks [34]
are more likely to be grouped in the same track. As in [36]
for faces, we exploit the fact that detections with similar ap-
pearance are more likely to be the same person and therefore
should be grouped even if far away in time. This helps re-
covering from full occlusion. Finally, we borrow from [16]
the idea of casting the tracking process as a clique partition-
ing problem. This provides a clear objective function and a
well-explored approximate minimization algorithm.

Affinity measures. More formally, we combine three differ-
ent kinds of features as cues for grouping: (i) the location of
a detection window, (ii) its appearance, and (iii) the motion
of point tracks inside it. We measure the affinity between ev-
ery pair of detections Di,D j in the whole shot according to
each of these features.

The location affinity Wloc(i, j) is computed as the area of
intersection-over-union between Di and D j. Note how this
takes into account both the position and the scale of the de-
tections. This was the only affinity term used in our previous
work [16].

The appearance of each detection is represented by a
normalized LAB color histogram. The appearance affinity
between two detections Di,D j is based on the Euclidean dis-
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Fig. 8: Examples of UB (dashed) and head (solid) detections. The head detector is only run inside UB detection windows.
Note how heads are localised in various relative positions within the UB windows, adapting to the image content, including
back views.

Fig. 9: Person tracking - motion affinity term. (left) Input upper-body detections in a video frame. (middle, right) KLT
point tracks are one of the three cues we use to robustly group detections into tracks.

tance E(i, j) between their LAB histograms. The final ap-
pearance affinity matrix is Wapp(i, j) = (2−E(i, j))/2.

The last affinity measure counts how many KLT point
tracks that pass through Di also pass through D j. More pre-
cisely, let Sk be the set of KLT tracks passing through a
detection Dk. Then Wklt(i, j) is the intersection-over-union
of the sets Si and S j. Essentially Wklt(i, j) measures ‘how
strongly’ Di and D j are connected by point tracks. Figure
9 (right) shows the set of KLT tracks associated to the two
UB detections. This affinity measure is more robust than the
location one, as it takes into account the motion inside the
detection window. This is especially useful when two per-
sons are close in the image, so that their detection windows
overlap (see fig. 9, right).

Grouping detections. The three affinity matrices Wloc, Wapp,
Wklt are combined into a single matrix Wall as follows

Wall(i, j) =Wloc(i, j) ·Wapp(i, j) ·Wklt(i, j) ·Wtd(i, j) (8)

Wtd(i, j) = exp(−(|ti− t j|−1)2/σ
2
td)

where ti, t j are frame indexes of bounding boxes i, j
and Wtd(i, j) is a damping factor limiting similarity to short
time difference. We group detections based on Wall using the
Clique Partitioning (CP) algorithm of [15], under the con-
straint that no two detections from the same frame can be
grouped. This returns an initial set of tracklets. These track-
lets might be interrupted by occlusions, e.g. a person moving
behind an occluder would be broken into multiple tracklets
(see fig. 10, top).

In a second stage, tracklets are joined together into full
long-term tracks based purely on appearance similarity. We
define the similarity between two tracklets as the median ap-
pearance similarity Wapp between all pairs of frames in the
tracklets and group tracklets using CP. This second stage re-
connects tracklets belonging to the same person undergoing
occlusion (see fig. 10, bottom).
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t t +66 t +119

Fig. 10: Person tracking through full occlusions. Subsequent frames (t, t + 66, t + 119) from a video shot where actors
swap positions in the scene. Bounding box colors depict different track IDs. Tracks are initially broken into multiple tracklets
due to full occlusions (top row). Connecting tracklets based on appearance similarity enables tracking through full occlusion
(bottom tow).

Post-processing. The process above carefully groups the de-
tections returned by the detector operating in individual frames.
However, as the detector is not perfect, it might miss a per-
son in a few frames, even along an otherwise perfect track In
the last stage we fill these ‘holes’ by separate linear interpo-
lation of the window position and size within each tracklet
(we assume fixed aspect-ratio of the detection windows). In
addition, the position and size values are smoothed over time
using a Gaussian filter.

Once the tracking process has finished, false-positive tracks
are discarded in a discriminative manner. Inspired by [20],
we define a feature vector using the following information:
number of detections in the track; ratio of number of detec-
tions in the track to the shot length; minimum, maximum,
average and standard deviation of the detection scores in the
track; minimum, maximum, average and standard deviation
of the bounding-box width (note that our UB is squared);
absolute and relative ranking position of track in the shot
(based on the sum of the detection scores); and, maximum
and average overlap (i.e. intersection-over-union) of the track
with the other tracks in the same video shot. Then, we train a
linear SVM on these feature vectors. For training purposes,
we label a track as positive if it goes through a ground-truth
bounding-box in at least one video frame (i.e. overlaps at
least 0.5 in terms of intersection-over-union). Otherwise, the
track is labelled as negative.
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Fig. 11: Performance of the generic viewpoint upper-
body detector and tracker. Detection rate (DR) versus
false positives per image (FPPI) are evaluated on the TVHID
dataset. The two curves correspond to detecting upper-
bodies independently in each frame (blue) and after track-
ing (green). The latter uses the entire process described
in sec. 4.2, including automatically removing false-positive
tracks.
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Fig. 12: Example LAEO labels. Top-left: label 0 (no LAEO). Top-right: label l (clearly visible LAEO). Bottom-left: label
2 (LAEO but with eyes occluded). Bottom-right: label 3 (LAEO but with closed eyes). For our experiments, classes 1, 2 and
3 are considered as positive (green plus symbol), and class 0 as negative (red minus symbol).

4.3 Performance of people detection

We evaluate the performance of the UB detector over test
data extracted from the TV human interactions dataset (TVHID)
of [28]. We evaluate detection rate (DR) versus the aver-
age number of false positives per image (FPPI) over all the
27094 frames that compose the dataset. Following the stan-
dard PASCAL VOC protocol [12], we count a detection as
correct if the intersection-over-union with any ground-truth
bounding-box exceeds 0.5.

Fig. 11 reports the performance of our method. The solid
green line corresponds to the UBs after tracking, whereas
the dashed blue line corresponds to the raw UB detections
(i.e. before tracking). The tracker improves DR performance
over the whole FPPI range.

Note how our method can handle persons standing close
together up to a good degree (see fig. 8). However, for ac-
curately detecting persons in more extreme cases such as
when a person is mostly occluded by the other, a separately
trained ‘double person detector’ might be necessary, as pro-
posed by [38].

5 Experimental results

5.1 LAEO dataset

We evaluate our LAEO classifiers on the TV human inter-
actions dataset (TVHID) of [28]. It contains a total of 300
video clips grouped in five classes: hand-shake, high-five,
hug, kiss and negative. Each video clip might be composed
of several shots, and we detect the shot boundaries as max-
ima in the colour histogram differences between consecutive
frames [19].

For our task, we have provided additional annotation for
all the videos by assigning one of the following labels to
each shot:

– label 0: no pairs of people are LAEO
– label 1: one or more pairs of people are LAEO in a

clearly visible manner
– label 2: a pair of people are LAEO, but at least one of

them has occluded eyes (e.g. due to viewpoint or hair)
– label 3: a pair of people are facing each other, but at least

one of them has closed eyes (e.g. during kissing).

There are a total of 443 video shots, where 112 have label 0,
197 label 1, 131 label 2 and 3 label 3. Therefore, the dataset
contains 112 negative (label 0) and 331 positive samples (la-
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bels 1, 2 and 3). Note that we do not distinguish the three
positive labels in the experiments and, for example, we treat
looking at each other with closed eyes as a positive. Figure
12 shows an example for each LAEO label. Both the LAEO
annotations and the shot boundaries are available at [44].

5.2 Scoring pipeline

We evaluate here the perfomance of the proposed LAEO
classifiers on the following task: is there any pair of people
LAEO at any time in this video shot?

To assign a LAEO score to a shot we apply the following
pipeline:

(i) assign a LAEO score to each pair of people in every
frame using one of the methods in sec. 2. Heads detected
by the back-view component are assigned a yaw angle
of −135o or +135o, depending if they are facing left or
right. For the rest of the cases (i.e. frontal/profile head
components), the yaw angle returned by the GP regres-
sor is used (i.e. in the range [−90o,90o]);

(ii) assign a LAEO score to each frame, as the maximum
over all pairs of people it contains;

(iii) slide a window along the temporal axis and average the
scores of all frames in the window that are greater than
a threshold T ;

(iv) assign a LAEO score to the shot, as the maximum over
all temporal window scores.

Intuitively, these steps will lead to higher scores for pairs
of heads that are LAEO over a sustained period of time.
This avoids producing false positives for accidental geomet-
ric alignments over a few frames (as opposed to simply aver-
aging the thresholded scores over frames). We evaluate per-
formance on the TVHID dataset, using the annotations de-
scribed above in sec. 5.1. Each method is used to score every
shot, and then the average precision (AP) is used to compare
the performance of the methods.

5.3 Training-testing setup

The TVHID release of [28] defines two disjoint partitions.
We run experiments on two trials, where one partition is
used for training and the other for testing, and then report
mean AP (mAP) over the two trials.

We set the free parameters of the proposed LAEO scor-
ing methods so as to maximize AP on the training set, using
grid search. These parameters are: (i) the aperture φ of the
cone in the range [15,45] in steps of 5, for the method of
sec. 2.3; (ii) the threshold T on the LAEO scores used by all
methods during the temporal window averaging. We tried T
the range [0.2,0.5] in steps of 0.1; and, (iii) the length of the
temporal window W in the range [5,11] in steps of 2.

5.4 LAEO baseline

In addition to the three LAEO methods proposed in sec. 2,
we also experiment with a baseline (BL) which, instead of
using estimated angles, uses the coarse directional informa-
tion provided by our head detector (i.e. which model com-
ponent triggered the detection) to define gaze areas as it in
sec. 2.1. Eq. (1) is used to score person pairs. Note that this
baseline computes neither yaw nor pitch angles.

5.5 Degrees of automation

In addition to evaluating the proposed LAEO scoring meth-
ods, the experiments evaluate the impact of the different
stages of our pipeline by replacing them with ground-truth
annotations (for the upper-body detector and for the yaw es-
timator).

Annotated UBs and discretized yaw (GT UB + GT yaw).
In this experiment we use the ground-truth upper-body an-
notations included in TVHID to estimate the position of the
head. We do the following coversion: given an upper-body
annotation defined by (x,y,w,h) – top left corner at (x,y)
with width w and height h – the estimated head window
is computed as (x+ 0.25 ·w,y,0.6 ·w,0.65 · h). In addition,
the annotated head orientation is used as an approximation
of the yaw angle. The following five head orientations are
possible in the ground-truth: profile-left, frontal-left, frontal-
right, profile-right and backwards. For our experiments, we
map such orientations to the following yaw angles in de-
grees: -90, -45, 45, 90 and 180. Since information about
pitch angle is not annotated, we set it to 0. Note that TVHID
does not contain UB annotations in shots where the UB is
not fully visible (i.e. face close-ups). We assign a LAEO
score of 0 to such shots.

Annotated UBs with automatic head detection and head
pose estimation (GT UB + auto head). In this experiment
we use the annotated upper-bodies included in TVHID to
define the tracks of upper-bodies, as in the previous exper-
iment. But all the rest of the processing is automatic (i.e.
head detection and head pose estimation). Note that in this
experiment we already use the new back-view head detector
during the head detection stage.

Fully automatic system. This experiment covers the fully
automatic system proposed in this work. We report results
for several variants: (i) the system without using the back-
view head detector. This corresponds to the results we previ-
ously published in [23] (“Fully auto”); (ii) the system with
the new back-view component of the head detector, used to
retrieving more heads only (“Fully auto + HB”); (iii) the
system using the back-view component to also provide a
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rough information about the yaw angle of the head, as dis-
cussed in Sec. 4.1 (“Fully auto + HB + BA”).

5.6 Results

Table 2 summarizes the mAP over the two test sets, once the
parameters have been optimized over their respective train-
ing sets, for each LAEO method separately. Note that in the
experiment “GT UB + GT yaw” the baseline method (BL)
is not relevant since the head detector is not used (i.e. the
components fired by the head detector are needed by BL,
but only the ground truth yaw orientation is used in the re-
ferred experiment). For placing results in a proper context,
the ratio of positive LAEO over the whole dataset is 0.75,
and consequently the chance performance of the system is
an AP of 0.75.

Figure 13 shows the precision recall curves of the pro-
posed methods for the test set 2 (top row) and test set 1 (bot-
tom row) by using the fully automatic systems without [23]
(left) and with (right) back-view head detection (“Fully auto
+ HB”).

GA GC 3D BL
GT UB + GT yaw 0.869 0.915 0.925 -
GT UB + auto head 0.855 0.893 0.896 0.865
Fully auto [23] 0.822 0.846 0.862 0.816
Fully auto+HB 0.845 0.873 0.876 -
Fully auto+HB+BA 0.841 0.855 0.863 0.842

Table 2: Summary of LAEO experiments. Each entry cor-
responds to the average AP over the test sets. Abbreviations:
GA = intersection of gaze areas in 2D (sec. 2.1); GC = ge-
ometric constraints in 2D (sec. 2.2); 3D = geometric con-
straints in 3D (sec. 2.3); BL = baseline (sec. 5.4); HB = head
back detector; BA = backview angle.

Discussion. The results reported in table 2 allow different
levels of comparison. We can compare different LAEO scor-
ing methods, keeping the degree of automation and the use
of the head-back detector fixed (i.e. compare different values
within a row). Comparing BL to GA suggest that using the
sign of the estimated yaw angles is roughly equivalent to us-
ing the coarse head direction represented by which compo-
nent of the head model triggered the detection (sec. 5.4). The
higher performance of GC over GA demonstrates the impor-
tance of the information provided by both continuously esti-
mated angles and of the 2D spatial relations between heads.
Finally, the most sophisticated LAEO method (3D) consis-
tently delivers the best results in all experiments, although
in some cases by a modest amount. The use of a full 3D
reasoning (i.e. including the 3D head pose vectors and the

relative position of the people in a 3D coordinate system) is
appealing, but we must note that the mAP improvement of
the 3D method over GC is small, as shown in the top row of
table 2, where the available ground-truth information about
people location and their head pose is used.

We can compare performance along another axis by keep-
ing the LAEO scoring method fixed and varying the degree
of automation. The better performance of “GT UB + GT
yaw” over “GT UB + auto head” highlights the importance
of having good head positions and yaw estimates, especially
for the GC and 3D LAEO scoring methods. Comparing “GT
UB + auto head” to “Fully auto + HB”, we can see that the
mAP decreases significatly due to the imperfection of au-
tomatic upper-body detection, which include false positives
and misses some true positive persons. This fact highlights
the importance of using a good person detector and tracker,
as the subsequent stages of the pipeline depend on them.

Finally, comparing “Fully auto+HB” to “Fully auto” [23],
we can see that mAP is improved for all the LAEO meth-
ods. This indicates that detecting back-view heads improves
the performance of the system, as it enables to cover more
LAEO cases. However, additionally using the angles asso-
ciated with the back-view components of the head detector
does not further improve the LAEO score, since these angles
are very imprecise (“Fully auto+HB+BA”).

In summary, the best mAP that we can achieve with a
fully automatic method is 0.876, which is considerably bet-
ter than both the baseline and chance levels. Our method is
able to localise the LAEO pair both spatially and temporally.
Figure 14 shows the middle frame of the highest scored tem-
poral window for each of the top 12 ranked shots, accord-
ing to 3D LAEO scoring method in experiment “Fully auto-
matic+HB”. Note the variety of scenarios where the method
sucessfully works. Only two arguable false positives are present
among those 24 video shots.

6 Conclusions

We presented a technique for automatically determining whether
people are looking at each other in TV video, including three
methods to classify pairs of tracked people. Our best method
uses the scale of the detected heads to estimate the depth
positioning of the actors, and combines it with the full head
pose estimate to derive their gaze volumes in 3D. While we
report quantitative performance at shot level, our method al-
lows the interacting people to be localised both spatially (i.e.
the pair of heads with the highest LAEO score) and tem-
porally (i.e. temporal sliding window). In conclusion, the
recognition of LAEO pairs introduces a new form of high-
level reasoning to the broader area of video understanding.

As future work, we plan to study the LAEO problem
from the point of view of learning a classifier for LAEO
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Fig. 13: Precision recall curves on test sets. (left) Fully automatic system without back-view head detection [23]. Top: test
set 2. Bottom: test set 1. (right) Fully automatic system with back-view head detection (“Fully auto+HB”). Top: test set 2.
Bottom: test set 1. In the legend, the AP of each method is shown in parenthesis.

given descriptors over pairs of people as input. For training,
this can be cast as a Multiple Instance Learning problem [9].
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Appendix: Released materials

We have released a variety of output from the research that
led to this paper: (i) the video shot decomposition [44] of the
TVHID videos; (ii) the LAEO annotations [44] on TVHID
used in our experiments; and, (iii) the head detector [45]
trained to deal with different viewpoints.
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