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Abstract The Pascal Visual Object Classes (VOC)
challenge consists of two components: (i) a publicly
available dataset of images together with ground truth
annotation and standardised evaluation software; and
(ii) an annual competition and workshop. There are five
challenges: classification, detection, segmentation, ac-
tion classification, and person layout. In this paper we
provide a review of the challenge from 2008–2012.

The paper is intended for two audiences: algorithm

designers, researchers who want to see what the state
of the art is, as measured by performance on the VOC
datasets, along with the limitations and weak points
of the current generation of algorithms; and, challenge

designers, who want to see what we as organisers have
learnt from the process and our recommendations for
the organisation of future challenges.

Mark Everingham, who died in 2012, was the key member of
the VOC project. His contribution was crucial and substan-
tial. For these reasons he is included as the posthumous first
author of this paper. An appreciation of his life and work can
be found in Zisserman et al (2012).
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To analyse the performance of submitted algorithms
on the VOC datasets we introduce a number of novel
evaluation methods: a bootstrapping method for deter-
mining whether differences in the performance of two
algorithms are significant or not; a normalised average
precision so that performance can be compared across
classes with different proportions of positive instances;
a clustering method for visualising the performance
across multiple algorithms so that the hard and easy
images can be identified; and the use of a joint classi-
fier over the submitted algorithms in order to measure
their complementarity and combined performance. We
also analyse the community’s progress through time us-
ing the methods of Hoiem et al (2012) to identify the
types of occurring errors.

We conclude the paper with an appraisal of the as-
pects of the challenge that worked well, and those that
could be improved in future challenges.

1 Introduction

The Pascal
1 Visual Object Classes (VOC) Challenge

has been an annual event since 2006. The challenge con-
sists of two components: (i) a publicly available dataset

of images obtained from the Flickr web site (2013), to-
gether with ground truth annotation and standardised
evaluation software; and (ii) an annual competition and
workshop. There are three principal challenges: classifi-

cation – “does the image contain any instances of a par-
ticular object class?” (where object classes include cars,
people, dogs, etc.), detection – “where are the instances

1
Pascal stands for pattern analysis, statistical modelling

and computational learning. It was an EU Network of Excel-
lence funded project under the IST Programme of the Euro-
pean Union.
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of a particular object class in the image (if any)?”,
and segmentation – “to which class does each pixel be-
long?”. In addition, there are two subsidiary challenges
(‘tasters’): action classification – “what action is be-
ing performed by an indicated person in this image?”
(where actions include jumping, phoning, riding a bike,
etc.) and person layout – “where are the head, hands
and feet of people in this image?”. The challenges were
issued with deadlines each year, and a workshop held to
compare and discuss that year’s results and methods.

The challenges up to and including the year 2007
were described in our paper Everingham et al (2010).
The purpose of this paper is not just to continue the
story from 2008 until the final run of the challenge in
2012, although we will cover that to some extent. In-
stead we aim to inform two audiences: first, algorithm

designers, those researchers who want to see what the
state of the art is, as measured by performance on the
VOC datasets, and the limitations and weak points of
the current generation of algorithms; second, challenge

designers, who want to see what we as organisers have
learnt from the process and our recommendations for
the organisation of future challenges.

1.1 Paper layout

This paper is organised as follows: we start with a re-
view of the challenges in Section 2, describing in brief
the competitions, datasets, annotation procedure, and
evaluation criteria of the 2012 challenge, and what was
changed over the 2008–2012 lifespan of the challenges.
The parts on annotation procedures and changes to the
challenges are intended for challenge organisers.

Section 3 provides an overview of the results for the
2012 challenge and, thereby, a snapshot of the state
of the art. We then use these 2012 results for several
additional and novel analyses, going further than those
given at the challenge workshops and in our previous
publication on the challenge (Everingham et al, 2010).
At the end of Section 3 we consider the question of how
the performance of algorithms can be fairly compared
when all that is available is their prediction on the test
set, and propose a method for doing this. This is aimed
at challenge organisers.

Section 4 takes stock and tries to answer broader
questions about where our field is at in terms of the clas-
sification and detection problems that can or cannot be
solved. First, inspired by Hoiem et al (2012), we propose
evaluation measures that normalise against the propor-
tion of positive instances in a class (a problem when
comparing average precision across classes). It is shown
that some classes – like ‘person’ – still pose larger prob-
lems to modern methods than may have been believed.

Second, we describe a clustering method for visualising
the performance across multiple algorithms submitted
during the lifespan of the challenges, so that the char-
acteristics of hard and easy images can be identified.

Section 5 investigates the level of complementarity
of the different methods. It focusses on classification,
for which a ‘super-method’ is designed by combining
the 2012 submitted methods. It turns out that quite
some performance can be gained over any one existing
method with such a combination, without any of those
methods playing a dominant role in the super-method.
Even the combination of only pairs of classifiers can
bring a substantial improvement and we make sugges-
tions for such pairs that would be especially promising.
We also comment on the construction of super-methods
for detection and segmentation.

In Section 6 we turn to progress through time. From
the evaluation server, we have available to us the results
of all algorithms for the challenges from 2009 to 2012,
and we analyse these using the methods of Hoiem et al
(2012) to identify the types of errors occurring across
time. Although important progress has been made, it
has often not been as monotonic as one might expect.
This underlines the fact that novel, promising ideas may
require some consolidation time and benchmark scores
must not be used to discard such novelties. Also, the
diversity among the scores has increased as time has
progressed.

Section 7 summarises our conclusions, both about
what we believe to have done well and about caveats.
This section also makes suggestions that we hope will
be useful for future challenge organisers.

2 Challenge Review

This section reviews the challenges, datasets, annota-
tion and evaluation procedures over the 2009–2012 cy-
cles of the challenge. It gives a bare bones summary of
the challenges and then concentrates on changes since
the 2008 release. Our companion paper (Everingham
et al, 2010) describes in detail the motivation, annota-
tions, and evaluation measures of the VOC challenges,
and these details are not repeated here. Sec. 2.3 on the
annotation procedure is intended principally for chal-
lenge organisers.

2.1 Challenge tasks

This section gives a short overview of the three princi-
pal challenge tasks on classification, detection, and seg-

mentation, and of the two subsidiary tasks (‘tasters’)
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Vehicles Household Animals Other

Aeroplane Bottle Bird Person
Bicycle Chair Cat
Boat Dining table Cow
Bus Potted plant Dog
Car Sofa Horse
Motorbike TV/monitor Sheep
Train

Table 1: The VOC classes. The classes can be considered
in a notional taxonomy.

on action classification and person layout. The evalua-
tion of each of these challenges is described in detail in
Sec. 2.4.

2.1.1 Classification

For each of twenty object classes predict the pres-
ence/absence of at least one object of that class in a
test image. The twenty objects classes are listed in Ta-
ble 1. Participants are required to provide a real-valued
confidence of the object’s presence for each test image
so that a precision-recall curve can be drawn. Partici-
pants may choose to tackle all, or any subset of object
classes, for example ‘cars only’ or ‘motorbikes and cars’.

Two competitions are defined according to the
choice of training data: (i) taken from the VOC train-
ing/validation data provided, or (ii) from any source ex-
cluding the VOC test data. In the first competition, any
annotation provided in the VOC training/validation
data may be used for training, for example bounding
boxes or particular views e.g. ‘frontal’ or ‘left’. Partici-
pants are not permitted to perform additional manual
annotation of either training or test data. In the second
competition, any source of training data may be used
except the provided test images.

2.1.2 Detection

For each of the twenty classes, predict the bounding
boxes of each object of that class in a test image (if
any), with associated real-valued confidence. Partici-
pants may choose to tackle all, or any subset of ob-
ject classes. Two competitions are defined in a similar
manner to the classification challenge.

It is clear that the additional requirement to locate
the instances in an image makes detection a more de-
manding task than classification. Guessing the right an-
swer is far more difficult to achieve. It is also true that
detection can support more applications than mere clas-
sification, e.g. obstacle avoidance, tracking, etc. Dur-

ing the course of the Pascal VOC challenge it had
even been suggested that only detection matters and
classification is hardly relevant. However, this view is
rather extreme. Even in cases where detection is the
end goal, classification may be an appropriate initial
step to guide resources towards images that hold good
promise of containing the target class. This is similar
to how an ‘objectness’ analysis (e.g. Alexe et al, 2010)
can guide a detector’s attention to specific locations
within an image. Classification could also be used to
put regression methods for counting into action, which
have been shown to perform well without any detection
(Lempitsky and Zisserman, 2010).

2.1.3 Segmentation

For each test image, predict the object class of each
pixel, or give it ‘background’ status if the object does
not belong to one of the twenty specified classes. There
are no confidence values associated with this prediction.
Two competitions are defined in a similar manner to the
classification and detection challenges.

Segmentation clearly is more challenging than de-
tection and its solution tends to be more time consum-
ing. Detection can therefore be the task of choice in
cases where such fine-grained image analysis is not re-
quired by the application. However, several applications
do need a more detailed knowledge about object outline
or shape, such as robot grasping or image retargeting.
Even if segmentation is the goal, detection can provide
a good initialization (e.g. Leibe et al, 2004).

2.1.4 Action classification

This taster was introduced in 2010. The motivation was
that the world is dynamic and snapshots of it still con-
vey substantial information about these dynamics. Sev-
eral of the actions were chosen to involve object classes
that were also part of the classification and detection
challenges (like a person riding a horse, or a person
riding a bike). The actions themselves were all geared
towards people.

In 2010 the challenge was: for each of ten action
classes predict if a specified person (indicated by a
bounding box) in a test image is performing the corre-
sponding action. The output is a real-valued confidence
that the action is being performed so that a precision-
recall curve can be drawn. The action classes are ‘jump-
ing’, ‘phoning’, ‘playing instrument’, ‘reading’, ‘riding
bike’, ‘riding horse’, ‘running’, ‘taking photo’, ‘using
computer’, ‘walking’, and participants may choose to
tackle all, or any subset of action classes, for example
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‘walking only’ or ‘walking and running’. Note, the ac-
tion classes are not exclusive, for example a person can
be both ‘riding a bicycle’ and ‘phoning’. In 2011 an
‘other’ class was introduced (for actions different from
the ten already specified). This increased the difficulty
of the challenge. The output is still a real-valued con-
fidence for each of the ten actions. As with other parts
of the challenge, the training could be either based on
the official Pascal VOC training data, or on external
data.

It was necessary for us to specify the person of in-
terest in the image as there may be several people per-
forming different actions. In 2012 the person of interest
was specified by both a bounding box and a point on
the torso, and a separate competition defined for each.
The motivation for this additional point annotation was
that the aspect ratio of the bounding box might pro-
vide some information on the action being performed,
and this was almost entirely removed if only a point
was provided. For example, the aspect ratio of the box
could help distinguish walking and running from other
action classes (this was a criticism raised during the
2011 Pascal VOC workshop).

2.1.5 Person layout

For each person in a test image (their bounding box
is provided) predict the presence or absence of parts
(head, hands and feet), and the bounding boxes of those
parts. The prediction of a person layout should be out-
put with an associated real-valued confidence of the
layout so that a precision-recall curve can be gener-
ated for each person. The success of the layout predic-
tion depends both on: (i) a correct prediction of parts
present/absent (e.g. are the hands visible or occluded);
(ii) a correct prediction of bounding boxes for the vis-
ible parts. Two competitions are defined in a similar
manner to the classification challenge.

2.2 Datasets

For the purposes of the challenge, the data is di-
vided into two main subsets: training/validation data
(trainval), and test data (test). For participants’
convenience, the trainval data is further divided into
suggested training (train) and validation (val) sets,
however participants are free to use any data in the
trainval set for training and/or validation.

There is complete annotation for the twenty classes:
i.e. all images are annotated with bounding boxes for
every instance of the twenty classes for the classifica-
tion and detection challenges. In addition to a bound-
ing box for each object, attributes such as: ‘orientation’,

‘occluded’, ‘truncated’, ‘difficult’; are specified. The full
list of attributes and their definitions is given in Ever-
ingham et al (2010). Fig. 1 shows samples from each of
the challenges including annotations. Note, the annota-
tions on the test set are not publicly released.

Statistics for the number of object instances and
images in the training and validation datasets for the
classification, detection, segmentation and layout chal-
lenges is given in Table 3, and for the action classifica-
tion challenge in Table 4. Note, we do not release the
exact numbers of object instances in the test set, but
both the number of instances per class and number of
images are approximately balanced with those in the
trainval set.

The number of images and instances in all the tasks
was increased up to 2011. From 2011 to 2012 the num-
ber of images in the classification, detection and person
layout tasks was not increased, and only those for seg-
mentation and action classification were augmented.

From 2009 onwards the data for all tasks consists of
the previous years’ images augmented with new images.
Before this, in 2008 and earlier, an entirely new dataset
was released each year for the classification/detection
tasks. Augmenting allows the number of images to grow
each year and, more importantly, means that test re-
sults can be compared with the previous years’ images.
Thus, for example, performance of all methods from
2009–2012, can be evaluated on the 2009 test set (al-
though the methods may have used a different number
of training images).

2.3 Annotation procedure

The procedure of collecting the data and annotating it
with ground truth is described in our companion pa-
per (Everingham et al, 2010). However, the annotation
process has evolved since that time and we outline here
the main changes in the collection and annotation pro-
cedure. Note, for challenge organisers, one essential fac-
tor in obtaining consistent annotations is to have guide-
lines available in advance of the annotation process. The
ones used for VOC are available at the Pascal VOC
annotation guidelines web page (2012).

2.3.1 Use of Mechanical Turk for initial class labelling

of the images

We aimed to collect a balanced set of images with a cer-
tain minimum number of instances of each class. This
required finding sufficient images of the rarer classes,
such as ‘bus’ and ‘dining table’. In previous years this
had been achieved by getting the annotators to focus on
such classes towards the end of the annotation period,
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(a) Classification and detection

(b) Segmentation

(c) Action classification

(d) Person layout

Fig. 1: Sample images from the Pascal dataset. (a) Each image has an annotation file giving a bounding box and object
class label for each object in one of the twenty classes present in the image. Note that multiple objects from multiple classes
may be present in the same image. Annotation was performed according to a set of guidelines distributed to all annotators.
(b) A subset of images are also annotated with pixel-wise segmentation of each object present, to support the segmentation
competition. Segmentations are annotated at the object and object class level. (c) Images for the action classification task are
disjoint from those of the classification, detection and segmentation tasks. They have been partially annotated with people,
bounding boxes, reference points and their actions. Annotation was performed according to a set of guidelines distributed to all
annotators. (d) Images for the person layout taster, where the test set is disjoint from the main tasks, have been additionally
annotated with parts of the people (head, hands and feet).
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which often meant having to skip through large num-
bers of images before finding examples of the desired
class.

Our initial hope was to use Mechanical Turk (MT)
for most or all of the annotation. We were not able
to obtain MT bounding box annotations of sufficiently
high quality to achieve this. However, the labels of
whether a class was present or not were high enough
quality to allow a balanced image set to be selected,
prior to annotation by our trained annotators. This
saved substantial time during the annotation period at
relatively low cost.

2.3.2 Interleaved annotation and checking

Previously, significant effort had been spent in check-
ing and correcting the annotations after the main an-
notation period. For segmentation annotation this was
a very time consuming task. It was also common to
discover patterns of errors by new annotators who had
not yet become fully familiarised with the annotation
guidelines.

To help new annotators to self-correct and to reduce
the amount of post-hoc correction needed, the main an-
notation period was changed to incorporate both an-
notation and checking running in parallel. After each
image was annotated, it was passed to a different anno-
tator for checking. Examples of common errors were
pasted onto a common noticeboard (with the anno-
tator remaining anonymous) so that the entire group
could understand and avoid such errors in future. In
this way, errors were picked up and corrected earlier
and post-hoc checking was substantially reduced. Over
time, the checking part of the annotation effort grew to
take around 50% of the annotators’ time.

2.3.3 Increased time spent on segmentation

As the datasets for the classification and detection tasks
became large, more emphasis was placed on increasing
the size of the segmentation dataset. Segmentation re-
quires substantially more annotation effort than detec-
tion – it can easily take ten times as long to segment
an object than to draw a bounding box around it. Over
time, the annotation period was adapted until around
50% of the time was spent on segmentation annotation
and checking.

Once post-hoc segmentation correction was com-
pleted, each annotator was sent a report detailing the
number and kind of errors that they made, so they could
avoid such errors in future years.

2.3.4 Co-located annotators

In the earlier years of the challenge (up to 2008) an-
notations were carried out with all annotators located
at the same site. This enabled efficient discussion, e.g.
of challenging or unusual cases, and was very flexible
in allowing changes of priorities and training. In later
years the annotators could remain in their own labs
and a web interface was developed for annotating us-
ing a standard client-server architecture. However, the
annotation event took place simultaneously (over a pe-
riod of three to five days) so that even if the annotators
were not co-located they could still discuss in real-time
using Skype messaging. In addition, some experienced
annotators were always included at each remote site to
train novices.

2.4 Submission and evaluation

2.4.1 Submission of results

The running of the challenge consisted of two phases:
At the start of the challenge, participants were issued a
development kit comprising training/validation images
with annotation, and Matlab

2 software to access the
annotation (stored in an XML format compatible with
LabelMe, Russell et al, 2008), to compute the evalu-
ation measures, and including simple baseline imple-
mentations for each competition. In the second phase,
unannotated test images were distributed. Participants
were then required to run their methods on the test
data and submit results to an evaluation server. The
test data was available for approximately three months
before submission of results.

2.4.2 Evaluation of results

In addition to withholding the test data annotation, it
was also required that participants submit only a single
entry per method. We encouraged participants to ob-
serve the best practice guidelines, given at the Pascal

VOC best practice guidelines web page (2012), that pa-
rameters should be tuned on the validation set and algo-
rithms run only once on the test set, so that the organ-
isers were not asked to choose the best result for them.
To add to this encouragement, the evaluation server
restricted the number of times a participant could sub-
mit results for earlier years (since performance could be
partially gauged as earlier years’ images are a subset of
the current year’s).

2
Matlab R© is a registered trademark of MathWorks, Inc.
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2.4.3 Classification and detection

Both the classification and detection tasks were eval-
uated as a set of 20 independent two-class tasks: e.g.
for classification “is there a car in the image?”, and for
detection “where are the cars in the image (if any)?”.
A separate ‘score’ is computed for each of the classes.
For the classification task, participants submitted re-
sults in the form of a confidence level for each image
and for each class, with larger values indicating greater
confidence that the image contains the object of in-
terest. For the detection task, participants submitted
a bounding box for each detection, with a confidence
level for each bounding box. The provision of a confi-
dence level allows results to be ranked such that the
trade-off between false positives and false negatives can
be evaluated, without defining arbitrary costs on each
type of classification error.

In the case of classification, the correctness of a class
prediction depends only on whether an image contains
an instance of that class or not. However, for detec-
tion a decision must be made on whether a prediction
is correct or not. To this end, detections were assigned
to ground truth objects and judged to be true or false
positives by measuring bounding box overlap. To be
considered a correct detection, the area of overlap ao
between the predicted bounding box Bp and ground
truth bounding box Bgt must exceed 50% by the for-
mula:

ao =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
, (1)

where Bp∩Bgt denotes the intersection of the predicted
and ground truth bounding boxes and Bp ∪ Bgt their
union.

Detections output by a method were assigned to
ground truth object annotations satisfying the overlap
criterion in order ranked by the (decreasing) confidence
output. Ground truth objects with no matching detec-
tion are false negatives. Multiple detections of the same
object in an image were considered false detections, e.g.
5 detections of a single object counted as 1 correct de-
tection and 4 false detections – it was the responsibility
of the participant’s system to filter multiple detections
from its output.

For a given task and class, the precision-recall
curve is computed from a method’s ranked output.
Up until 2009 interpolated average precision (Salton
and Mcgill, 1986) was used to evaluate both classifi-
cation and detection. However, from 2010 onwards the
method of computing AP changed to use all data points
rather than TREC-style sampling (which only sampled
the monotonically decreasing curve at a fixed set of

uniformly-spaced recall values 0, 0.1, 0.2, ..., 1). The in-
tention in interpolating the precision-recall curve was
to reduce the impact of the ‘wiggles’ in the precision-
recall curve, caused by small variations in the ranking of
examples. However, the downside of this interpolation
was that the evaluation was too crude to discriminate
between the methods at low AP.

2.4.4 Segmentation

The segmentation challenge was assessed per class on
the intersection of the inferred segmentation and the
ground truth, divided by the union (commonly referred
to as the ‘intersection over union’ metric):

seg. accuracy =
true pos.

true pos.+ false pos.+ false neg.
(2)

Pixels marked ‘void’ in the ground truth (i.e. those
around the border of an object that are marked as nei-
ther an object class or background) are excluded from
this measure. Note, we did not evaluate at the individ-
ual object level, even though the data had annotation
that would have allowed this. Hence, the precision of
the segmentation between overlapping objects of the
same class was not assessed.

2.4.5 Action classification

The task is assessed in a similar manner to classifica-
tion. For each action class a score for that class should
be given for the person performing the action (indicated
by a bounding box or a point), so that the test data can
be ranked. The average precision is then computed for
each class.

2.4.6 Person layout

At test time the method must output the bounding
boxes of the parts (head, hands and feet) that are visi-
ble, together with a single real-valued confidence of the
layout so that a precision/recall curve can be drawn.

From VOC 2010 onwards, person layout was evalu-
ated by how well each part individually could be pre-
dicted: for each of the part types (head, hands and feet)
a precision/recall curve was computed, using the confi-
dence supplied with the person layout to determine the
ranking. A prediction of a part was considered true or
false according to the overlap test, as used in the detec-
tion challenge, i.e. for a true prediction the bounding
box of the part overlaps the ground truth by at least
50%. For each part type, the average precision was used
as the quantitative measure.

This method of evaluation was introduced following
criticism of an earlier evaluation used in 2008, that was



8 Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John Winn, Andrew Zisserman
ju

m
p
in

g

p
h
o
n
in

g

p
la

y
in

g

r
e
a
d
in

g

r
id

in
g
b
ik

e

r
id

in
g
h
o
r
se

r
u
n
n
in

g

ta
k
in

g
p
h
o
to

u
si

n
g

w
a
lk

in
g

o
th

e
r

to
ta

l

Img 405 444 459 463 400 411 310 414 395 386 799 4588
Obj 495 457 619 530 578 534 561 456 476 597 1043 6278

Table 4: Statistics of the action classification
VOC2012 dataset. For the trainval dataset, the number
of images containing at least one person performing a given
action, and the corresponding number of objects are shown.

considered too strict and demanding (given the state
of the art in layout detection algorithms at that time).
In VOC 2008, the layout was still assessed by comput-
ing a precision-recall curve, but rather than assessing
parts individually the entire layout was assessed. To
be considered a true positive, each layout estimate had
to satisfy two criteria: (i) the set and number of pre-
dicted parts matches ground truth exactly e.g. {head,
hand, hand} or {head, hand, foot}; and (ii) the pre-
dicted bounding box of each part overlaps ground truth
by at least 50%. These criteria were relaxed from VOC
2010 on, though this task never became as popular as
the others.

3 VOC 2012 Results and Rankings

In this section we review the results of the VOC 2012
challenge to give a snapshot of the state-of-the-art in
the final year of the challenge. Secs. 3.1, 3.2, 3.3 and 3.4
describe the top performing methods for the classifica-
tion, detection, segmentation and action classification
challenges in 2012 respectively (there were no entries
for complete person layout so we do not include that
here). Having done that, in Sec. 3.5, we then propose
a method to assess whether differences in AP between
the methods are significant or not based on bootstrap
sampling – this is important as it enables one to tell if
the method proposed by the ‘runner up’ should actually
be considered as equivalent to that of the ‘winner’.

The VOC 2012 participants (and our codenames for
them) are listed in Table 2. Where possible we have
identified publications describing these methods in the
right hand column of the table; in addition short de-
scriptions were provided by the participants and are
available at the Pascal VOC 2012 challenge results
webpage (2012).

The number of images and objects in the VOC 2012
training and validation sets are shown as a histogram
for the classification and detection challenges in Fig-
ure 2. The numbers are tabulated in Table 3 for classi-

100

200

300
400

700

1000

2000

3000

5000

10000

15000

 

 

ae
ro

pl
an

e

bi
cy

cl
e

bi
rd

bo
at

bo
ttl
e

bu
s

ca
r

ca
t

ch
ai
r
co

w

di
ni
ng

ta
bl
e

do
g

ho
rs

e

m
ot

or
bi
ke

pe
rs

on

po
tte

dp
la
nt

sh
ee

p
so

fa
tra

in

tv
m

on
ito

r

images

objects

Fig. 2: Summary of the main VOC2012 dataset. Train-
ing and validation images only. Histogram by class of the
number of objects and images containing at least one object
of the corresponding class. Note the log scale on the vertical
axis. Best viewed in colour.

fication, detection and segmentation, and in Table 4 for
the action classification challenge. There were 850 an-
notated objects instances in 609 images for the person
layout challenge.

3.1 Classification

Figure 5 and Table 5 give summaries of the results
of the classification challenge for both competition 1
(using supplied data only) and competition 2 (which
also allowed external data to be used). Figure 3 shows
precision-recall curves for a sample of the classes. The
winning method for competition 1 is NUS_SCM. Its
performance exceeded all other methods (including
those in competition 2) for all classes in 2012, and also
improved on the 2011 winning entries in all but one
class (‘pottedplant’). The NUS_SCM method started
from a fairly standard pipeline of a bag-of-visual-words
(BOW) representation and spatial pyramid matching
(SPM), followed by a support vector machine (SVM)
classifier (see Sec. 6.1 for more details). To this they
added the identification and use of sub-categories (e.g.
identifying different types of chair), and a refinement of
SPM based on the output of sliding window detection
confidence maps.

3.2 Detection

Figure 6 and Table 6 give the results of the detec-
tion challenge for competition 3 (using supplied data
only); there were no entries for competition 4. Figure 4
shows precision-recall curves for a sample of the classes.
The winning method was UVA_HYBRID (see Van de
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Codename C
ls

D
e
t

S
e
g

A
c
t

Institutions Contributors References

BONN_CSI · · • · University of Bonn,

Georgia Institute of Technology,

University of Coimbra

Joao Carreira, Fuxin Li,

Guy Lebanon, Cristian Smin-

chisescu

Li et al (2013)

BONN_JOINT · · • · University of Bonn,

Georgia Institute of Technology,

University of Coimbra,

Vienna University of Technology

Joao Carreira, Adrian Ion,

Fuxin Li, Cristian Sminchisescu

Ion et al (2011a,b)

BONN_LINEAR · · • · University of Bonn,

University of Coimbra

Joao Carreira, Rui Caseiro,

Jorge Batista, Cristian Sminchis-

escu

Carreira et al (2012)

CVC • · · · Computer Vision Barcelona Fahad Khan, Camp Davesa,

Joost van de Weijer, Rao Muham-

mad Anwer, Albert Gordo,

Pep Gonfaus, Ramon Baldrich,

Antonio Lopez

Khan et al (2012a)

CVC_CLS · • · · Computer Vision Barcelona Albert Gordo, Camp Davesa,

Fahad Khan, Pep Gonfaus,

Joost van de Weijer, Rao Muham-

mad Anwer, Ramon Baldrich,

Jordi Gonzalez, Ernest Valveny

Khan et al (2012a,b)

CVC_SP • · · · Computer Vision Barcelona,

University of Amsterdam,

University of Trento

Fahad Khan, Jan van Gemert,

Camp Davesa, Jasper Uijlings ,

Albert Gordo, Sezer Karaoglu,

Koen van de Sande, Pep Gon-

faus, Rao Muhammad Anwer,

Joost van de Weijer, Cees Snoek,

Ramon Baldrich, Nicu Sebe,

Theo Gevers

Khan et al (2012a,b);
Karaoglu et al (2012);
Van Gemert (2011)

HU · · · • Hacettepe University,

Bilkent University

Cagdas Bas, Fadime Sener, Na-

zli Ikizler-Cinbis

Sener et al (2012)

IMPERIAL • · · · Imperial College London Ioannis Alexiou, Anil A. Bharath Alexiou and Bharath
(2012)

ITI,
ITI_ENTROPY,
ITI_FUSED

• · · · ITI-CERTH, University of Surrey,

Queen Mary University of London

Elisavet Chatzilari,

Spiros Nikolopoulos, Yiannis Kom-

patsiaris, Joseph Kittler

-

MISSOURI · • · · University of Missouri Columbia Guang Chen, Miao Sun, Xutao Lv,

Yan Li, Tony Han

-

NEC · • · · NEC Laboratories America,

Stanford University

Olga Russakovsky, Xiaoyu Wang,

Shenghuo Zhu, Li Fei-Fei, Yuan-

qing Lin

Russakovsky et al (2012)

NUS_SCM • · · · National University of Singapore,

Panasonic Singapore Laboratories,

Sun Yat-sen University

Dong Jian, Chen Qiang,

Song Zheng, Pan Yan, Xia Wei,

Yan Shuicheng, Hua Yang,

Huang Zhongyang, Shen Shengmei

Song et al (2011); Chen
et al (2012)

NUS_SP · · • · National University of Singapore,

Panasonic Singapore Laboratories

Wei Xia, Csaba Domokos,

Jian Dong, Shuicheng Yan,

Loong Fah Cheong,

Zhongyang Huang, Shengmei Shen

Xia et al (2012)

OLB_R5 · • · · Orange Labs Beijing,

France Telecom

Zhao Feng -

OXFORD · • · · University of Oxford Ross Girshick, Andrea Vedaldi,

Karen Simonyan

-

OXFORD_ACT · · · • University of Oxford Minh Hoai, Lubor Ladicky, An-

drew Zisserman

Hoai et al (2012)

STANFORD · · · • Stanford University, MIT Aditya Khosla, Rui Zhang, Bang-

peng Yao, and Li Fei-Fei

Khosla et al (2011)

SYSU_DYNAMIC · • • · Sun Yat-Sen University Xiaolong Wang, Liang Lin,

Lichao Huang, Xinhui Zhang,

Zechao Yang

Wang et al (2013)

SZU · · · • Shenzhen University Shiqi Yu, Shengyin Wu, Wen-

sheng Chen

-

UP • · · · University of Padova Loris Nanni Nanni and Lumini (2013)

UVA_HYBRID · • · · University of Amsterdam Koen van de Sande, Jasper Uijlings,

Cees Snoek, Arnold Smeulders

Van de Sande et al
(2011); Uijlings et al
(2013)

UVA_MERGED · • · · University of Amsterdam Sezer Karaoglu, Fahad Khan,

Koen van de Sande,

Jan van Gemert, Rao Muham-

mad Anwer, Jasper Uijlings,

Camp Davesa, Joost van de Weijer,

Theo Gevers, Cees Snoek

Khan et al (2012a); Ui-
jlings et al (2013)

UVA_NBNN · · • · University of Amsterdam Carsten van Weelden,

Maarten van der Velden,

Jan van Gemert

-

Table 2: Participation in the 2012 challenge. Each method is assigned an abbreviation used in the text, and identified
as a classification (Cls), detection (Det), segmentation (Seg), or action classification (Act) method. The contributors to each
method are listed with references to publications describing the method, where available.
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Fig. 3: Classification results. Precision-recall curves are shown for a representative sample of classes. The legend indicates
the AP score (%) obtained by the corresponding method.
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Fig. 4: Detection results. Methods trained on VOC2012 data. Precision-recall curves are shown for a representative
sample of classes. The legend indicates the AP score (%) obtained by the corresponding method.
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Main
Img 670 552 765 508 706 421 1161 1080 1119 303 538 1286 482 526 4087 527 325 507 544 575 11540
Obj 954 790 1221 999 1482 637 2364 1227 2906 702 747 1541 750 751 10129 1099 994 786 656 826 31561

Seg
Img 178 144 208 150 183 152 255 250 271 135 157 249 147 157 888 167 120 183 167 157 2913
Obj 218 197 277 232 357 237 457 286 550 284 168 299 204 204 1738 322 308 209 189 198 6934

Table 3: Statistics of the main and segmentation VOC2012 datasets. Showing the number of images in the trainval

dataset containing at least one object of a given class, and the corresponding number of object instances. Note that because
images may contain objects of several classes, the totals shown in the Img rows are not simply the sum of that row.
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CVC 89.3 70.9 69.8 73.9 51.3 84.8 79.6 72.9 63.8 59.4 64.1 64.7 75.5 79.1 91.4 42.7 63.2 61.9 86.7 73.8
CVC_SP 92.0 74.2 73.0 77.5 54.3 85.2 81.9 76.4 65.2 63.2 68.5 68.9 78.2 81.0 91.6 55.9 69.4 65.4 86.7 77.4
IMPERIAL 73.2 33.4 31.0 44.7 17.0 57.7 34.4 45.9 41.2 18.1 30.2 34.3 23.1 39.3 57.2 11.9 23.1 25.3 51.1 36.2
ITI 89.1 62.3 60.0 68.1 33.4 79.8 66.9 70.3 57.4 51.0 55.0 59.3 68.6 74.5 83.1 25.6 57.2 53.8 83.4 64.9
ITI_FUSED 90.4 65.3 65.8 72.3 37.6 80.6 70.5 72.4 60.3 55.1 61.4 63.6 72.4 77.4 86.8 37.7 61.1 57.2 85.9 68.7
NUS_SCM 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7
UP – – – – – – – – – – – – – – 88.7 – – – – –

methods below also trained on external data

ITI_ENTROPY 88.1 63.0 61.9 68.6 34.9 79.6 67.4 70.5 57.5 52.0 55.3 60.1 68.7 74.3 83.2 26.4 57.6 53.4 83.0 64.0

Table 5: Classification results. For each object class and submission, the AP score (%) is shown. Gold entries in each
column denote the maximum AP for the corresponding class, and silver entries denote the results ranked in second place.
Competition 1 results are in the top part of the table, and competition 2 in the lower part.
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CVC_CLS 45.4 49.8 15.7 16.0 26.3 54.6 44.8 35.1 16.8 31.3 23.6 26.0 45.6 49.6 42.2 14.5 30.5 28.5 45.7 40.0
MISSOURI 51.4 53.6 18.3 15.6 31.6 56.5 47.1 38.6 19.5 31.9 22.1 25.0 50.3 51.9 44.9 11.9 37.7 30.6 50.8 39.2
NEC 65.0 46.8 25.0 24.6 16.0 51.0 44.9 51.5 13.0 26.6 31.0 40.2 39.7 51.5 32.8 12.6 35.7 33.5 48.0 44.8
OLB_R5 47.5 51.6 14.2 12.6 27.3 51.8 44.2 25.3 17.8 30.2 18.1 16.9 46.9 50.9 43.0 09.5 31.2 23.6 44.3 22.1
SYSU_DYNAMIC 50.1 47.0 07.9 03.8 24.8 47.2 42.8 31.1 17.5 24.2 10.0 21.3 43.5 46.4 37.5 07.9 26.4 21.5 43.1 36.7
OXFORD 59.6 54.5 21.9 21.6 32.1 52.5 49.3 40.8 19.1 35.1 28.9 37.2 50.9 49.9 46.1 15.6 39.3 35.6 48.9 42.8
UVA_HYBRID 61.8 52.0 24.6 24.8 20.2 57.1 44.5 53.6 17.4 33.0 38.2 42.8 48.8 59.4 35.7 22.8 40.3 39.5 51.1 49.5
UVA_MERGED 47.2 50.2 18.3 21.4 25.2 53.3 46.3 46.3 17.5 27.8 30.3 35.0 41.6 52.1 43.2 18.0 35.2 31.1 45.4 44.4

Table 6: Detection results. Methods trained on VOC2012 data. For each object class and submission, the AP score
(%) is shown. Gold entries in each column denote the maximum AP for the corresponding class, and silver entries denote the
results ranked in second place.

Sande et al, 2011) which used multiple segmentations to
hypothesise bounding boxes bottom up, thus avoiding
an expensive sliding window search (with potentially
more false positives). These candidate bounding boxes
were then classified using a BOW feature representa-
tion, SPM, and a SVM using the histogram intersection
kernel.

The method from Oxford won on six classes. This
used a local implementation of the deformable parts

model (DPM; Felzenszwalb et al, 2010) sliding window
detector to propose candidate regions. The top 100 can-
didates were then re-scored using a homogeneous kernel
map (χ2) SVM combining the DPM’s scores, two de-
scriptors computed on the regions, together with two
context models (the context scoring of Felzenszwalb
et al, and context from image classification scores).
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BONN_CSI 45.4 85.0 59.3 27.9 43.9 39.8 41.4 52.2 61.5 56.4 13.6 44.5 26.1 42.8 51.7 57.9 51.3 29.8 45.7 28.8 49.9 43.3
BONN_JOINT 47.0 85.1 65.4 29.3 51.3 33.4 44.2 59.8 60.3 52.5 13.6 53.6 32.6 40.3 57.6 57.3 49.0 33.5 53.5 29.2 47.6 37.6
BONN_LINEAR 44.8 83.9 60.0 27.3 46.4 40.0 41.7 57.6 59.0 50.4 10.0 41.6 22.3 43.0 51.7 56.8 50.1 33.7 43.7 29.5 47.5 44.7
NUS_SP 47.3 82.8 52.9 31.0 39.8 44.5 58.9 60.8 52.5 49.0 22.6 38.1 27.5 47.4 52.4 46.8 51.9 35.7 55.2 40.8 54.2 47.8
UVA_NBNN 11.3 63.2 10.5 02.3 03.0 03.0 01.0 30.2 14.9 15.0 00.2 06.1 02.3 05.1 12.1 15.3 23.4 00.5 08.9 03.5 10.7 05.3

methods below also trained on external data

BONN_CSI 46.8 85.0 63.6 26.8 45.6 41.7 47.1 54.3 58.6 55.1 14.5 49.0 30.9 46.1 52.6 58.2 53.4 32.0 44.5 34.6 45.3 43.1
BONN_JOINT 47.5 85.2 63.4 27.3 56.1 37.7 47.2 57.9 59.3 55.0 11.5 50.8 30.5 45.0 58.4 57.4 48.6 34.6 53.3 32.4 47.6 39.2
BONN_LINEAR 46.7 84.7 63.9 23.8 44.6 40.3 45.5 59.6 58.7 57.1 11.7 45.9 34.9 43.0 54.9 58.0 51.5 34.6 44.1 29.9 50.5 44.5

Table 7: Segmentation results. For each object class and submission, the AP score (%) is shown. Gold entries in each
column denote the maximum AP for the corresponding class, and silver entries denote the results ranked in second place.
Competition 5 results are in the top part of the table, and competition 6 in the lower part.

3.3 Segmentation

Table 7 gives the results of the segmentation challenge
for competition 5 (using supplied data only) and com-
petition 6 (which also allowed external data to be used).
The winning method for competition 5 was NUS_SP
which used an object detector to identify object bound-
ing boxes and then determined a segmentation for each
bounding box using a superpixel-based MRF (see Xia
et al, 2012). This method achieved a mean AP 4%
higher than the winner of the previous year, which sug-
gests that segmentation methods continue to improve,
although some of the increase may be due to the addi-
tional training data available in 2012.

The second placed method in competition 5 and the
winning entry in competition 6 was BONN_JOINT
which created multiple segmentations of each image
and then sampled from a distribution over tilings con-
structed from these segments (see Ion et al, 2011a). Pa-
rameter learning was achieved using the method of Ion
et al (2011b). The additional training data used in com-
petition 6 was a set of ground truth annotations pro-
vided by the Berkeley vision group. This data proved
to be valuable in that it increased the mean AP of this
method by about 0.5%.

3.4 Action classification

Table 8 gives the results of the action classification chal-
lenge. This consisted of competitions 9 (using only sup-
plied data) and competition 10 (which also allowed ex-
ternal data to be used).

The winning method STANFORD for competition 9
is mostly described in the paper by Khosla et al (2011),
and that of OXFORD_ACT for competition 10 in Hoai
et al (2012). What these high-scoring approaches seem
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Fig. 5: Summary of the 2012 classification results
by class (competition 1). For each class three values are
shown: the maximum AP obtained by any method (max), the
median AP over all methods (median) and the AP obtained
by a random ranking of the images (chance).
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Fig. 6: Summary of the 2012 detection results by
class. For each class two values are shown: the maximum
AP obtained by any method (max) and the median AP over
all methods (median).
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STANFORD 75.7 44.8 66.6 44.4 93.2 94.2 87.6 38.4 70.6 75.6
SZU 73.8 45.0 62.8 41.4 93.0 93.4 87.8 35.0 64.7 73.5

methods below also trained on external data

HU 59.4 39.6 56.5 34.4 75.6 80.2 74.3 27.6 55.2 56.6
OXF_ACT 77.0 50.4 65.3 39.5 94.1 95.9 87.7 42.7 68.6 74.5

Table 8: Action classification results. For each object
class and submission, the AP score (%) is shown. Gold en-
tries in each column denote the maximum AP for the corre-
sponding class, and silver entries denote the results ranked in
second place. Competition 9 results are in the top half of the
table, and competition 10 in the lower half.

to have in common is a top-down analysis. STANFORD
first focuses on larger, more globally enclosing boxes,
and then homes in on smaller ones that capture details
relevant to the action. OXFORD_ACT followed an ap-
proach that was quite different in the specifics, but also
started with global regions, then homed in on telling
details like the hands. A difference was that for the
OXFORD_ACT method the regions were pre-selected
by the designers, while the STANFORD method itself
determines which portions of the given bounding box
are relevant at the different stages of processing. The
methods also shared their use of a wide variety of fea-
tures. The OXFORD_ACT method was in competition
10 as it used additional data to train detectors for the
upper body and musical instruments.

3.5 Bootstrapping AP and rank

In the challenge different methods will produce differ-
ent scores on each class and competition. For classifi-
cation, detection, and action classification this will be
the AP score, while for segmentation it is the segmenta-
tion accuracy (see Eq. 2). This is a single number that
summarises a method’s performance on a whole dataset
— how should we assess if differences between methods
are significant? A simple approach to this question is
via the bootstrap (see e.g. Wasserman, 2004, Ch. 8),
where the data points are sampled with replacement

from the original n test points to produce bootstrap
replicates. We first came across this idea in the blog
comment by O’Connor (2010), although bootstrapping
of ROC curves has been discussed by many authors,
e.g. Hall et al (2004); Bertail et al (2009).

We can use the bootstrap in a number of different
ways: to simply judge the variability for a given method,
to compare the relative strength of two methods, or to
look at rank ranges in order to get an overall sense of
all methods in a competition.

For a single method we can obtain a bootstrap esti-
mate of the confidence interval for a method’s score by
running a large number of bootstrap replicates, sort-
ing the resulting scores, and then returning the α/2
and 1 − α/2 quantiles, where for example α = 0.05

would yield a 95% confidence interval. (This is the per-
centile interval method described in Wasserman, 2004,
Sec. 8.3.)

To compare two methods A and B, we first compute
the difference in score for each method on each boot-
strap sample. We then use the percentile bootstrap to
estimate a confidence interval, with a null hypothesis
that A is equivalent to B (at the 1 − α level). This
is rejected if zero is not contained in the confidence
interval, leading to the conclusion that method A is
statistically significantly better than method B, or vice
versa, depending on the result. This procedure is more
informative than the unpaired confidence intervals in
determining whether two methods are significantly dif-
ferent; for example a variation in the hardness of the
bootstrap replicates may give rise to overlapping score
intervals, even if method A always beats method B.

Thirdly, in the challenge we can also determine the
rank of each method on each bootstrap replicate, and
thus a confidence interval for the rank of a method (us-
ing α/2 and 1−α/2 quantiles as above). This can pro-
vide a useful summary of the relative strength of the
methods without the need for pairwise comparisons.
Note that rank ranges depend on all entrants in a com-
petition, while the individual confidence interval is a
property of a single method.

These bootstrap ideas are illustrated in detail for
four classes in Tables 9 and 10, for the classification
and detection competitions respectively. Summary re-
sults for all classes highlighting methods that are not
significantly different from the leading one are shown
in Table 11 (for classification) and Table 12 (for detec-
tion).

4 What We Can and Cannot Do Today

In this section we examine the results of the VOC clas-
sification and detection competitions in more detail to
answer the following questions:

– which classes are current methods doing better or
worse on?



14 Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John Winn, Andrew Zisserman

aeroplane bottle person potted plant
AP range Rank RR AP range Rank RR AP range Rank RR AP range Rank RR

0.025 0.5 0.975 0.025 0.5 0.975 0.025 0.5 0.975 0.025 0.5 0.975

CVC 87.2 89.4 91.1 4 4-5 47.4 51.4 55.0 3 3 90.7 91.4 92.0 3 2-3 38.3 42.9 47.2 3 3
CVC_SP 90.2 92.1 93.5 2 2 50.6 54.4 58.0 2 2 91.0 91.6 92.2 2 2-3 51.6 56.1 60.3 2 1-2
IMPERIAL 70.0 73.3 76.4 6 6 15.2 17.3 19.7 6 6 55.6 57.3 59.1 7 7 10.3 12.1 14.2 6 6
ITI 86.8 89.1 90.8 5 4-5 30.2 33.6 37.2 5 5 82.1 83.2 84.2 6 6 22.3 26.0 29.8 5 5
ITI_FUSED 88.3 90.5 92.0 3 3 34.2 37.9 41.7 4 4 85.9 86.8 87.6 5 5 33.4 37.8 42.3 4 4
NUS_SCM 96.4 97.3 98.1 1 1 57.3 61.1 64.9 1 1 94.4 95.1 95.6 1 1 53.1 58.0 62.6 1 1-2
UP – – – 7 7 – – – 7 7 88.0 88.7 89.5 4 4 – – – 7 7

Table 9: Bootstrapped classification results on 4 classes. Here α = 0.05, RR denotes the rank range, and the leading
methods that are not statistically significantly different from each other are highlighted in gold.

bicycle bus horse potted plant
AP range Rank RR AP range Rank RR AP range Rank RR AP range Rank RR

0.025 0.5 0.975 0.025 0.5 0.975 0.025 0.5 0.975 0.025 0.5 0.975

CVC_CLS 47.0 49.8 52.5 6 6 51.4 54.6 57.9 3 3 42.6 45.7 48.7 5 4-6 12.9 14.7 16.4 4 3-5
MISSOURI 50.9 53.7 56.6 2 1-3 53.4 56.5 60.2 2 1-2 47.0 50.4 53.5 2 1-3 10.1 12.0 13.8 6 5-6
NEC 43.9 46.8 49.9 8 7-8 47.8 50.9 54.5 7 4-7 36.6 39.8 43.2 8 7-8 10.9 12.8 14.8 5 4-6
OLB_R5 48.9 51.7 54.5 4 3-5 48.6 51.8 54.9 6 4-7 43.7 47.0 50.4 4 3-5 07.7 09.6 11.3 7 7
SYSU_DYNAMIC 44.0 47.0 49.9 7 7-8 43.9 47.2 50.6 8 8 40.1 43.7 47.6 6 5-7 06.5 07.9 09.5 8 8
OXFORD 51.7 54.5 57.3 1 1-2 49.5 52.6 55.8 5 4-7 47.7 51.0 54.3 1 1-3 13.5 15.7 17.7 3 3-4
UVA_HYBRID 49.1 52.0 54.7 3 2-5 54.0 57.1 60.2 1 1-2 45.7 49.0 52.0 3 1-4 20.1 22.8 25.6 1 1
UVA_MERGED 47.4 50.2 52.9 5 3-5 50.2 53.4 56.7 4 4-7 38.5 41.7 44.9 7 6-8 15.8 18.2 20.5 2 2

Table 10: Bootstrapped detection results on 4 classes. Here α = 0.05, RR denotes the rank range, and the leading
methods that are not statistically significantly different from each other are highlighted in gold.
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CVC 89.4 70.8 69.8 73.9 51.4 84.9 79.7 72.9 63.9 59.6 64.3 64.8 75.8 79.1 91.4 42.9 63.5 62.1 86.7 73.8
CVC_SP 92.1 74.2 73.1 77.5 54.4 85.2 81.9 76.4 65.3 63.6 68.7 69.0 78.3 80.9 91.6 56.1 69.6 65.5 86.7 77.4
IMPERIAL 73.3 33.6 31.1 45.0 17.3 57.8 34.7 46.0 41.3 18.7 30.7 34.6 23.3 39.5 57.3 12.1 23.7 25.6 51.4 36.5
ITI 89.1 62.4 60.1 68.2 33.6 79.8 67.0 70.3 57.5 51.3 55.3 59.4 68.7 74.5 83.2 26.0 57.4 54.1 83.4 64.9
ITI_FUSED 90.5 65.4 65.9 72.3 37.9 80.7 70.6 72.5 60.4 55.4 61.7 63.6 72.5 77.4 86.8 37.8 61.2 57.3 85.8 68.8
NUS_SCM 97.3 84.3 80.9 85.4 61.1 90.0 86.9 89.4 75.5 78.2 75.4 83.2 87.6 90.2 95.1 58.0 79.6 73.8 94.5 80.9
UP – – – – – – – – – – – – – – 88.7 – – – – –

Table 11: Bootstrapped classification results on all classes. The leading methods that are not statistically significantly
different from each other are highlighted in gold.
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CVC_CLS 45.4 49.8 15.7 16.1 26.3 54.6 44.8 35.1 16.8 31.4 23.6 26.0 45.7 49.7 42.3 14.7 30.5 28.5 45.8 39.9
MISSOURI 51.4 53.7 18.3 15.6 31.7 56.5 47.1 38.7 19.5 32.0 22.1 25.1 50.4 51.9 44.9 12.0 37.8 30.8 50.9 39.4
NEC 65.0 46.8 25.1 24.7 16.1 50.9 44.9 51.6 13.0 26.7 31.0 40.2 39.8 51.6 32.8 12.8 35.8 33.7 48.0 44.7
OLB_R5 47.5 51.7 14.2 12.6 27.4 51.8 44.2 25.5 17.8 30.3 18.2 17.0 47.0 50.9 43.0 09.6 31.3 23.7 44.3 22.1
SYSU_DYNAMIC 50.0 47.0 07.9 03.8 24.9 47.2 42.7 31.3 17.5 24.4 10.1 21.4 43.7 46.4 37.5 07.9 26.4 21.6 43.2 36.5
OXFORD 59.5 54.5 21.9 21.7 32.1 52.6 49.3 40.8 19.1 35.3 28.9 37.2 51.0 49.9 46.1 15.7 39.4 35.7 49.0 42.8
UVA_HYBRID 61.6 52.0 24.6 24.9 20.2 57.1 44.5 53.7 17.4 33.1 38.1 42.9 49.0 59.5 35.8 22.8 40.3 39.7 51.1 49.4
UVA_MERGED 47.2 50.2 18.4 21.5 25.2 53.4 46.3 46.3 17.5 27.9 30.1 35.1 41.7 52.1 43.2 18.2 35.1 31.2 45.5 44.3

Table 12: Bootstrapped detection results on all classes. The leading methods that are not statistically significantly
different from each other are highlighted in gold.
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BONN_CSI 45.3 84.9 59.5 27.9 44.1 39.7 41.6 52.5 61.6 56.2 13.4 44.4 25.9 42.7 51.6 58.2 51.4 29.4 45.7 28.7 49.8 43.6
BONN_JOINT 46.9 85.1 65.9 29.3 51.7 33.3 43.8 60.1 60.5 52.2 13.5 54.0 32.6 40.3 57.7 57.0 49.0 33.1 53.6 29.1 47.3 37.6
BONN_LINEAR 44.8 83.9 60.3 27.3 46.5 39.9 42.0 57.5 59.2 50.2 09.9 41.5 21.7 42.9 51.8 57.1 50.1 33.4 44.0 29.1 47.8 44.8
NUS_SP 47.2 82.8 52.9 31.0 40.1 44.4 58.6 61.0 52.4 49.0 22.6 37.9 27.2 47.4 52.6 47.1 51.9 35.3 54.9 40.7 54.1 47.7
UVA_NBNN 11.2 63.2 10.4 02.3 02.9 02.9 00.9 30.2 14.7 14.9 00.2 06.0 02.2 05.0 12.2 15.2 23.4 00.5 08.8 03.4 10.7 05.2

methods below also trained on external data

BONN_CSI 46.7 85.0 64.0 26.7 45.9 42.0 47.1 54.3 58.8 55.1 14.4 48.9 30.6 46.1 52.7 58.4 53.4 31.7 44.4 34.5 45.5 42.6
BONN_JOINT 47.5 85.2 63.8 27.0 56.3 37.8 46.8 58.2 59.4 54.9 11.4 50.9 30.4 45.0 58.6 57.4 48.6 34.8 53.3 32.2 47.8 38.7
BONN_LINEAR 46.7 84.7 63.9 23.8 44.8 40.5 44.9 59.9 58.8 56.9 11.5 45.8 34.9 43.0 55.0 58.3 51.5 34.7 44.2 29.7 50.5 44.1

Table 13: Bootstrapped segmentation results on all classes. The leading methods that are not statistically significantly
different from each other are highlighted in gold.

– are there groups of images that are handled partic-
ularly well or particularly badly, and can these be
characterised?

We continue this examination in Sec. 6, where we
analyse in detail the types of errors occurring for each
class over time.

4.1 Comparing across classes

The standard VOC 2012 classification and detection
results given earlier and reproduced in the top plots
of Fig. 7 and Fig. 8 show the best average precision
achieved in descending order across classes. However,
this does not necessarily mean that we are doing better
on classes earlier in the ordering than those later in the
ordering. Looking at the ‘chance’ results we see that a
random ranking does better on some classes than oth-
ers. For the person class, for example, it is easier to get
a higher AP score simply because a much higher pro-
portion of images contain people, than is the case for
other classes. To overcome this bias, we need to consider
a different comparison metric.

4.1.1 Comparing classification across classes

To correct for the varying proportion of positive in-
stances in different classes, we define a normalised pre-
cision measure that takes this into account. This nor-
malised measure will allow us to compare classification
accuracy across classes meaningfully. It is inspired by
the normalised AP measure introduced by Hoiem et al
(2012) for detection.

For reference, the standard definition of precision is:

precision =
true positives

true positives + false positives
(3)

=
TPR× npos

TPR× npos + FPR× nneg

(4)

where TPR is the true positive rate, FPR is the false
positive rate, npos is the number of positive examples,
and nneg the number of negative examples. As already
mentioned, it is difficult to compare precisions across
classes where these numbers differ because precision
depends on the proportion of positive and negative im-
ages. To perform such a comparison we instead define
a normalised precision measure:

norm. precision =
TPR× n̄pos

TPR× n̄pos + FPR× n̄neg

(5)

where n̄pos and n̄neg are the average number of positive
and negative examples across all classes. Thus for a par-
ticular classifier threshold, computing the normalised
precision measure simply involves calculating the TPR
(as in Eq. 4) and using its value in Eq. 5. A normalised
average precision measure for classification can be com-
puted by averaging normalised precisions computed at
a range of recalls.

The bottom plot of Fig. 7 gives the VOC 2012 classi-
fication results using this normalised measure. The first
thing to note is that the ‘chance’ results (obtained by
setting TPR = FPR) are now the same for all classes,
showing that the normalisation has equalised the accu-
racy for a random classifier. In addition, the normalised
results also reveal aspects of the accuracy across classes
that are not clear from the original results (top plot).
The biggest change is that the ‘person’ class drops from
2nd to 13th position in the ranking, indicating that this
class is substantially harder to identify than might have
been understood from the unnormalised results alone.
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Fig. 7: Effect of normalised AP on 2012 classification
results by class. Above: Standard AP results. Below: Nor-
malised AP results. For each class three values are shown:
the maximum AP obtained by any method (max), the me-
dian AP over all methods (median) and the AP obtained by
a random ranking of the images (chance).

This is not the only difference: the ‘chair’ class now
joins the ‘bottle’ and ‘potted plant’ classes in under-
performing the general trend. These three classes seem
to be substantially harder to recognise than the oth-
ers. Other classes with large changes in rank are: ‘dog’
(down 5 places to 16), ‘sheep’ (up 5 places to 9) and
‘cow’ (also up 5 places to 10). However, these large
changes in rank are less significant since they occur in
the centre of the list where the AP figures are similar
(and so small changes in AP can lead to large changes
in rank).

4.1.2 Comparing detection across classes

In the detection case, the number of negatives is dif-
ficult to define, since it is hard to say the number of
places where an object could be in an image, but isn’t.
Instead, we assume that the number of possible places
is very large compared to the variation in the number of
positives across classes. This allows us to assume that
the number of negatives is approximately equal across

classes, even when they have different numbers of pos-
itives. The result is the same as the normalised AP
measure introduced in Hoiem et al (2012):

norm. prec. det. =
TPR× n̄pos

TPR× n̄pos + FP
, (6)

where FP is the number of false positives in the class.
A normalised average precision measure for detection
can be computed by averaging normalised precisions
computed at a range of recalls.

The detection results using this normalised measure
are shown in the bottom plot of Fig. 8. In general the
impact of the normalisation is less for detection than
for classification, with most classes hardly changing in
rank. The biggest change is once again for the ‘person’
class, which drops from 10th to third from last. This
again suggests that the normal way of reporting results
may underestimate the difficulty of detecting people in
images – the state-of-the-art accuracy for detecting peo-
ple is in fact only slightly better than that of detecting
plants and chairs, despite all the special research ef-
fort that has gone into this case. The other two classes
whose ranking drops after normalisation are ‘cat’ and
‘dog’, in both cases by three places in the ranking, re-
flecting the higher rate of occurrence of cats and dogs in
the test set. However, this is a relatively small change
in rankings compared to that of the ‘person’ class and
should not cause us to substantially re-evaluate the dif-
ficulty of these two classes.

Finally, it is of interest to examine the difference in
class ranking between classification and detection. The
most dramatic difference is for the ‘boat’ class which
is one of the better performing classes for classification
but one of the worst for detection. This suggests that
it is much easier to detect an image that contains a
boat than to find the boat in the image. A plausible
explanation for this is that the presence of an expanse
of water is a good indicator of the presence of a boat.
So a classifier can use this cue to infer that a boat is
present, whereas it is not as helpful for a detector in
precisely locating the boat.

4.2 Identifying easy and hard groups of images

In this section, we aim to identify easy and hard groups
of images using the pooled results of the classification
challenge for all submissions since 2009, a total of 73
submissions. The idea is to cluster both images and
methods simultaneously (bi-clustering) such that meth-
ods that are clustered together tend to perform either
well or badly on all the images in each image cluster.

To be more precise, the following steps were followed
for each class:
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Fig. 8: Effect of normalised AP on 2012 detection
results by class. Above: Standard AP results. Below: Nor-
malised AP results. For each class two values are shown: the
maximum AP obtained by any method (max) and the median
AP over all methods (median).

1. Using the submitted results for each submission the
test images were classified as containing or not con-
taining the class. Since the submitted format in-
cluded a continuous score for each image, these were
converted into binary by choosing a threshold that
gave equal numbers of false positive and false nega-
tives.

2. Taking only the positive images (that is, images
containing objects of the class) these results were
formed into a binary 73×N matrix, where N is the
number of positive images of that class.

3. The columns of the matrix were re-ordered so as to
minimise an objective function whose main compo-
nent was the sum of Hamming distances between ad-
jacent rows/columns. In addition the objective func-
tion also contained a longer-range term that com-
puted the Hamming distance between columns that
were 20 apart, downweighted by a factor of 0.05.
The minimisation was achieved using 40,000 itera-
tions of the following greedy iterative algorithm:

(a) Select a column or block of columns, favouring
blocks that have high Hamming distance to the
immediate neighbouring columns.

(b) Move the selected columns to the location in
the matrix that minimises the objective func-
tion. The block of columns can also be flipped if
that further minimises the objective.

4. Apply the same algorithm to the rows of the matrix
for 10,000 iterations.

5. Manually analyse the resulting matrix to identify
block structures representing groups of images that
are jointly either correctly or incorrectly handled by
different groups of methods.

We also performed similar analysis for the detection
challenge (a total of 57 submissions since 2009), except
in this setting we identify easy and hard groups of ob-
ject instances (as opposed to images). Here, the binary
57 × N matrix represents whether the test instances
were identified in each method’s top 2N most confident
detections, where N is the number of positive instances
of that class. We do this to include the methods’ lower
confidence detections in our analysis.

Figs. 9–11 illustrate the resultant matrices for the
three classes: aeroplane, horse and bicycle for classifi-
cation, and Figs. 12–14 illustrate the resultant matrices
for the three classes: bus, cat and tvmonitor for detec-
tion. For each class, six identified groups are shown,
with six randomly selected images per group used to
illustrate their nature.

In each case the groups of images are ordered to
show a steady increase in difficulty. This increase can
be characterised by reduction in object size, increased
truncation or occlusion, increased variation in illumi-
nation or viewpoint, increased background clutter. In
each figure, the final group is of images which none of
the current methods work on – it would be interesting
to focus analysis and research on this group, with the
aim of teasing out properties of these images which may
inspire improvements to current methods.

5 Super Methods

In this section we investigate whether methods can be
combined in order to obtain an algorithm with superior
performance. This is a way of probing the diversity and
complementarity of the submitted methods. We will use
the classification task as an example, and ask the ques-
tion: “can the output of the submitted methods be com-
bined in order to build a ‘super-classifier’ whose perfor-
mance exceeds that of the individual methods?”. This
question is answered in Sec. 5.1 by constructing a super-
classifier from the VOC 2012 submitted methods. In
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(a) Images identified correctly by 99% of methods on average. Each image contains a large, unoccluded
aeroplane seen from the side with little or no background clutter.

(b) Images identified correctly by 94% of methods on average. Slightly harder images where the aeroplane is still large
but may be truncated or seen from a more unusual viewpoint. The backgrounds are still largely uncluttered.

(c) Images identified correctly by 88% of methods on average. Still harder images with more cluttered backgrounds,
smaller or more truncated aeroplanes and more varied lighting.

(d) Images identified correctly by 35% of methods on average. These may have unusual illumination, shadows and
more extreme viewpoint variation or truncation.

(e) Images identified correctly by only the best method. The aeroplane is often small or highly truncated.

(f) Images identified correctly by none of the methods. Whilst certainly challenging, it is not immediately clear why
these images are so much more challenging than the images in groups (d) and (e).

Fig. 9: Analysis of the matrix of submissions for classification: aeroplane. Each row corresponds to one of the 73
classification methods submitted since 2009. The columns correspond to the test images that contain instances of the class,
with black indicating a missed classification. Six different groups of test images have been highlighted in red. (a–f) A selection
of images from the different groups. The groups are ordered by increasing difficulty.
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(a) Images identified correctly by 95% of methods on average. Each image contains a large,
unoccluded horse with its legs clearly visible and with little background clutter.

(b) Images identified correctly by 52% of methods on average. Slightly harder images where the horse is
still large but may be truncated. The backgrounds are still largely uncluttered.

(c) Images identified correctly by 42% of methods on average. Still harder images with more cluttered
backgrounds, smaller or more truncated objects and varied poses.

(d) Images identified correctly by 13% of methods on average. These images sometimes have unusual illumi-
nation and horses appear in more varied poses.

(e) Images identified correctly by only the best method. The horse is often small, highly truncated or in
a highly unusual pose.

(f) Images identified correctly by none of the methods, typified by small horse sizes and large amounts of
occlusion and truncation.

Fig. 10: Analysis of the matrix of submissions for classification: horse. Each row corresponds to one of the 73
classification methods submitted since 2009. The columns correspond to the test images that contain instances of the class,
with black indicating a missed classification. Six different groups of test images have been highlighted in red. (a–f) A selection
of images from the different groups. The groups are ordered by increasing difficulty.
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(a) Images identified correctly by 97% of methods on average. Each image contains a large, unoccluded bicycle
seen from the side with little background clutter.

(b) Images identified correctly by 52% of methods on average. Slightly harder images
where the bicycle is smaller and may be seen from the rear or front.

(c) Images identified correctly by 27% of methods on average. Still harder images with more cluttered backgrounds
and smaller bicycles.

(d) Images identified correctly by 19% of methods on average. These images sometime have very small or
truncated bicycles or they are in unusual poses.

(e) Images identified correctly by only the best method. The bicycle is often very small or highly truncated.

(f) Images identified correctly by none of the methods.

Fig. 11: Analysis of the matrix of submissions for classification: bicycle. Each row corresponds to one of the 73
classification methods submitted since 2009. The columns correspond to the test images that contain instances of the class,
with black indicating a missed classification. Six different groups of test images have been highlighted in red. (a–f) A selection
of images from the different groups. The groups are ordered by increasing difficulty.
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(a) Instances identified correctly by 90% of methods on average. The bus is large and in a canonical pose.

(b) Instances identified correctly by 83% of methods on average. Slightly harder images where the bus
is still large but in more varied poses.

(c) Instances identified correctly by 47% of methods on average. Harder images with more cluttered backgrounds,
and smaller buses that are sometimes truncated.

(d) Instances identified correctly by 30% of methods on average. Instances are smaller still and often occluded.

(e) Instances identified correctly by 10% of methods on average. The buses are highly truncated and occluded.

(f) Instances identified correctly by none of the methods.

Fig. 12: Analysis of the matrix of submissions for detection: bus. Each row corresponds to one of the detection
methods submitted since 2009. The columns correspond to the instances of objects of the class, with black indicating a missed
detection. Six different groups of test images have been highlighted in red. (a-f) A selection of images from the different groups.
The groups are ordered by increasing difficulty.
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(a) Instances identified correctly by 96% of methods on average. In each instance the cat’s face is clearly visible.

(b) Instances identified correctly by 69% of methods on average. Slightly harder images where the cat is
still large but it appears in more varied poses.

(c) Instances identified correctly by 42% of methods on average. Harder images where the cat is sometimes
truncated or occluded.

(d) Instances identified correctly by 20% of methods on average. These images have more cluttered
backgrounds and often contain multiple cats in the same image.

(e) Instances identified correctly by 18% of methods on average. The cats are smaller,
rarely facing the camera and at times highly truncated.

(f) Instances identified correctly by none of the methods.

Fig. 13: Analysis of the matrix of submissions for detection: cat. Each row corresponds to one of the detection
methods submitted since 2009. The columns correspond to the instances of objects of the class, with black indicating a missed
detection. Six different groups of test images have been highlighted in red. (a-f) A selection of images from the different groups.
The groups are ordered by increasing difficulty.
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(a) Instances identified correctly by 96% of methods on average. The tv or monitor screen is large, facing
the camera and often brightly lit.

(b) Instances identified correctly by 85% of methods on average. Slightly harder images where the screen is slightly
smaller and the background is slightly more cluttered.

(c) Instances identified correctly by 65% of methods on average. Harder images with more
screens in each image that are sometimes truncated.

(d) Instances identified correctly by 49% of methods on average. The instances are typically highly truncated.

(e) Instances identified correctly by 14% of methods on average. The screens sometimes face away from the camera.

(f) Instances identified correctly by none of the methods.

Fig. 14: Analysis of the matrix of submissions for detection: tvmonitor. Each row corresponds to one of the detection
methods submitted since 2009. The columns correspond to the instances of objects of the class, with black indicating a missed
detection. Six different groups of test images have been highlighted in red. (a-f) A selection of images from the different groups.
The groups are ordered by increasing difficulty.
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Sec. 5.2 we examine the learnt parameters of the super-
classifier to determine how the methods are weighted,
and if particular methods are used for all classes. Fi-
nally, in Sec. 5.3, we use this combination scheme to
identify pairs of methods that tend to provide comple-
mentary information for a given classification task. The
result of this indicates which sites should collaborate to
best improve their methods.

5.1 Is it possible to improve on the best submission by
using a combination of submissions?

The method we investigate for the super-classifier is a
linear classifier for each of the VOC classes, where the
feature vector consists of the real-valued scores supplied
by each submitted method. We have these scores avail-
able for all of the VOC test images, though not for the
VOC training or validation images. For this reason the
investigation is carried out on the VOC test data, for
which we have the ground truth labels.

5.1.1 Training, test data, and evaluation

The 10991 images and labels that form the VOC 2012
test dataset are used both as training data for the
super-classifier, and as test data to evaluate the super-
classifier’s performance.

The images are separated into two sets of approxi-
mately equal size in a stratified manner (i.e. the number
of positive and negative training images in each set are
roughly equal). The super-classifier is trained on one
set and its performance is tested on the other set. The
experiments are then repeated by switching the train
and test datasets, and the method is evaluated as the
average AP across the two folds. To ensure a fair com-
parison, the same two-fold evaluation is also computed
for the individual methods. Despite the stratification
the difference between the AP computed by averaging
the two folds and that computed on all the test data can
be as high as 2.40% AP; see Fig. 15 for the precision-
recall curves of a single method on the ‘boat’ class.

5.1.2 Data preparation and classifier training

The feature vector xi that is used to predict the pres-
ence or absence of a VOC class c in the ith image con-
sists of the M real-valued scores xim submitted by each
of the methods for that image, i.e. it is an M dimen-
sional vector. The scores xim are linearly scaled to en-
sure that the range of values spanned by each particular
method m in the training data is between -1 and 1. The
same linear scaling is also applied to the feature vectors
of the test data.
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Fig. 15: Fold variance for super-classifier train-
ing/test data. Precision-recall curve for a single method
on the ‘boat’ class. The two grey curves are the method’s
performances when evaluated on either half of the test data,
and the red curve for when evaluated on all the test data.

For each VOC class a binary classifier is trained to
predict whether the image contains that object class or
not. We use a support vector machine (SVM) with a
linear kernel, trained using LIBSVM (Chang and Lin,
2011). An optimal value for the parameter C is first
found by optimising classification performance on a
held-out validation set (10% of the training dataset),
and then the SVM is trained on all of the training data.

5.1.3 Results

Fig. 16 shows, for each object class, the improvement
made by the super-classifier over the best performing
method at that class. The super-classifier outperforms
any individual method on 17 out of 20 object classes.
On classes where it performs better, it boosts perfor-
mance by 4.40% AP on average. The highest increase
in performance is on the ‘potted plant’ class, where
the super-classifier improves performance by 13.00%
AP. Where the super-classifier performs worse, the per-
formance drops by 0.78% AP on average. The aver-
age performance difference across all classes was found
to be +3.62% AP. We compare the super-classifier’s
precision-recall curves with those of the other submis-
sions in Fig. 17 for the ‘person’ and ‘potted plant’ cat-
egories.

5.2 How much does each method contribute to the
super-classifier?

To investigate the role that the scores predicted by each
of the methods plays in training the super-classifier, we
examine the magnitude of the SVM’s weights for each
of its M input dimensions. In this case we do not intend
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Fig. 16: AP increase of super-classifier. Gold indicates
the increase in performance on object classes where the super-
classifier beats all other methods, averaged across the two
folds. The three classes for which performance drops slightly
have been highlighted in red.

to test the performance of the trained SVM but only to
inspect its weight vector, so it is trained on all 10991
feature vectors. As before, an optimal value for the C

parameter is found via cross-validation on 10% of the
data.

Fig. 18 displays the magnitude of the learnt weights
for the scores predicted by each submitted method for
the ‘aeroplane’, ‘bicycle’, ‘person’ and ‘sofa’classes. Sur-
prisingly, the influence of the different methods varies
significantly across object classes. Also note that the
method with the best performance is not necessarily
the strongest influence on the performance of the super-
classifier (as indicated by the PR curves).

5.3 Who should collaborate?

Classifier combination can also be used to identify pairs
of methods which make predictions that provide com-
plementary information about each image in question.
It might be beneficial for the community if such com-
plementary methods incorporate each other’s ideas.

In order to find these so-called ‘complementary’
pairs, we perform two experiments. In the first, we cre-
ate super-classifiers as above, but using the predictions
of only two submitted methods as input features at a
time. For each object class, we select the pair of meth-
ods that achieve the highest combined performance.

In the second experiment we proceed as
above, except that we report the pair of meth-
ods whose combined performance maximises
S1+2 = min(AP1+2/AP1,AP1+2/AP2), where AP1 and
AP2 are the recorded APs for each of the two methods,
and AP1+2 is the performance of the super-classifier
resulting from their combination. This measure ensures
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Fig. 17: PR curves for super-classifier. Precision-recall
curves for the submitted methods along with that of the
super-classifier for one fold. The best performing submitted
method is drawn thicker.

that the combination boosts the performance of both
methods relative to their individual performances.

We report the results of these two experiments in
Tables 14 and 15. In Table 14, we note that the perfor-
mance of the super-classifier trained using only scores
from two methods is often significantly higher than
the best-performing individual method (e.g. for ‘bottle’,
‘chair’ and ‘potted plant’), and for some classes higher
than that of the super-classifier trained for all methods
together (e.g. ‘bicycle’). For all classes NUS_SCM is
one of the chosen collaborators, which is not entirely
surprising given its dominating individual performance
(see Table 5).

From Table 15, we note that for several classes a
large relative increase in performance can be obtained
by combining two moderately performing methods.

5.4 Discussion

We have illustrated the idea of combining the output
from submitted methods for the case of the classifica-
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Fig. 19: Summary of the statistics of the main VOC
dataset over the years.

tion challenge. A similar approach could be carried out
for the other main challenges, detection and segmenta-
tion, and we discuss possible solutions here.

For segmentation we require a VOC class (or back-
ground) prediction for each pixel (i.e. one of 21 choices)
in each test image, and we have available the pixel
level class predictions for all the submitted methods.
Note, we do not have confidence scores for the submit-
ted methods. There are various super-segmenters that
could then be learnt. The simplest would be to take a
majority vote for each pixel across all the submitted
methods. This does not require the ground truth anno-
tation and essentially involves no learning. An alterna-
tive is to learn a multi-way classifier using the class pre-
dictions of the submitted methods as the feature vector.
In this case, if there are M submitted methods, then
the feature vector is a 21M dimensional binary vec-
tor, where each 21 dimensional block arises from one
method and only contains one non-zero entry. There is
then a choice of multi-way classifiers; for example a ran-
dom forest or softmax logistic regression. There is also a
choice in how to sample the training data – whether all
pixels are used, and whether the classes are balanced.

For detection the combination of predictions is more
difficult, as there is a need to first identify which detec-
tions from the different methods are referring to the
same predicted object (e.g. based on overlaps between
bounding boxes), before combining them. This gener-
alises the problem of non-maximum suppression for a
single predictor (see e.g. Dalal and Triggs, 2005; Viola
and Jones, 2004; Felzenszwalb et al, 2010; Leibe et al,
2004) to the output of multiple predictors.

6 Progress Through Time

In this section we examine trends over the 2008–2012
timespan of the challenges: trends in the datasets them-
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Fig. 20: Overall classification AP over the years. The
histograms indicate the number of methods whose mean AP
score fell in specific ranges in each year.

selves, trends in the performance of the algorithms, and
trends in the methods employed.

The growth in the amount of data in the main and
segmentation datasets is shown graphically in Fig. 19,
and in detail in Tables 16 and 17. Between 2008 and
2012 the total number of images (objects) in the main
dataset more than doubled from 4332 (12684) to 11540
(31561). Over the same period the number of images
(objects) in the segmentation dataset almost trebled
from 1023 (2369) to 2913 (6934). For action classifica-
tion, training and testing cases went up by about 90%
from 2011 to 2012. Indeed, by 2012 there were 4588
training and validation images, with about 400 exam-
ples of people carrying out each class of action. For the
person layout taster, the number of images (objects)
similarly increased from 245 (367) in 2008 to 609 (850)
in 2012.

To determine the trends in performance, we evaluate
all submissions from 2009 to 2012 using the images in
the VOC 2009 test dataset. All submissions since 2009
have provided predictions for the VOC 2009 test im-
ages, since images were only added to the test set over
the years; thus this dataset provides a common test set
for all submissions. For detection, we also analyse the
submissions using the methods of Hoiem et al (2012),
and thereby identify the types of errors occurring across
time.

We consider the trends for the classification, detec-
tion and segmentation tasks in order. As will be seen,
originally these tasks were treated quite independently
by participants, but as the challenge progressed there
was progressively more cross-fertilisation, with detec-
tion and segmentation being used to enhance the clas-
sification performance for example.
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Class Top Method 1 Method 2 Pair combined All combined
AP Name AP1 Name AP2 AP1+2 AP

aeroplane 97.34 UP 6.00 NUS_SCM 97.34 97.34 97.41
bicycle 84.28 ITI_FUSED 65.35 NUS_SCM 84.28 85.30 84.98
bird 80.89 CVC 69.78 NUS_SCM 80.89 85.09 85.73
boat 85.52 CVC_SP 77.53 NUS_SCM 85.52 86.38 86.80
bottle 61.12 CVC_SP 54.37 NUS_SCM 61.12 69.94 70.27
bus 89.86 CVC 84.79 NUS_SCM 89.86 91.12 91.38
car 86.87 CVC_SP 81.90 NUS_SCM 86.87 93.07 91.54
cat 89.37 CVC_SP 76.54 NUS_SCM 89.37 92.19 91.81
chair 75.56 CVC_SP 65.21 NUS_SCM 75.56 83.49 83.70
cow 77.88 UP 3.93 NUS_SCM 77.88 77.96 76.35
diningtable 75.24 CVC_SP 68.59 NUS_SCM 75.24 82.26 82.86
dog 83.19 CVC_SP 68.94 NUS_SCM 83.19 89.25 89.22
horse 87.53 ITI_FUSED 72.39 NUS_SCM 87.53 88.84 86.73
motorbike 90.14 CVC 79.21 NUS_SCM 90.14 90.78 91.14
person 95.11 CVC_SP 91.62 NUS_SCM 95.11 97.87 98.14
pottedplant 57.99 CVC_SP 56.24 NUS_SCM 57.99 70.11 70.99
sheep 79.34 IMPERIAL 23.86 NUS_SCM 79.34 79.48 79.34
sofa 73.69 ITI_FUSED 57.42 NUS_SCM 73.69 78.56 79.12
train 94.49 UP 5.10 NUS_SCM 94.49 94.49 94.62
tvmonitor 80.95 CVC_SP 77.37 NUS_SCM 80.95 85.75 86.61

Table 14: Collaboration table from super-classifiers I. Collaborator 1 and 2 (C1 and C2) chosen to maximise AP1+2, the
performance of super-classifier resulting from the combination of C1 and C2. Note that the performance of the super-classifier
trained using only scores from two methods as input features (second to last column) is often significantly higher than the
best-performing individual method (second column), and for some classes higher than that of the super-classifier trained all
methods together (last column). NUS_SCM, the best-performing individual method across all classes, is always chosen to be
one of the super-classifier collaborators.

Class Top Method 1 Method 2 Pair combined All combined
AP Name AP1 Name AP2 AP1+2 AP

aeroplane 97.34 ITI 89.09 CVC 89.29 91.03 97.41
bicycle 84.28 ITI_FUSED 65.35 NUS_SCM 84.28 85.30 84.98
bird 80.89 CVC 69.78 NUS_SCM 80.89 85.09 85.73
boat 85.52 ITI_FUSED 72.39 CVC 73.91 74.77 86.80
bottle 61.12 CVC_SP 54.37 NUS_SCM 61.12 69.94 70.27
bus 89.86 CVC 84.79 NUS_SCM 89.86 91.12 91.38
car 86.87 CVC_SP 81.90 NUS_SCM 86.87 93.07 91.54
cat 89.37 CVC_SP 76.54 NUS_SCM 89.37 92.19 91.81
chair 75.56 CVC_SP 65.21 NUS_SCM 75.56 83.49 83.70
cow 77.88 ITI_FUSED 55.37 CVC 59.39 60.16 76.35
diningtable 75.24 CVC_SP 68.59 NUS_SCM 75.24 82.26 82.86
dog 83.19 CVC_SP 68.94 NUS_SCM 83.19 89.25 89.22
horse 87.53 ITI_FUSED 72.39 NUS_SCM 87.53 88.84 86.73
motorbike 90.14 ITI_FUSED 77.39 CVC 79.21 80.68 91.14
person 95.11 UP 88.74 ITI_FUSED 86.78 91.79 98.14
pottedplant 57.99 CVC_SP 56.24 NUS_SCM 57.99 70.11 70.99
sheep 79.34 ITI_FUSED 61.04 CVC 63.09 63.94 79.34
sofa 73.69 ITI_FUSED 57.42 NUS_SCM 73.69 78.56 79.12
train 94.49 ITI_FUSED 85.83 CVC 86.77 87.37 94.62
tvmonitor 80.95 CVC_SP 77.37 NUS_SCM 80.95 85.75 86.61

Table 15: Collaboration table from super-classifiers II. Collaborator 1 and 2 (C1 and C2) chosen to maximise S1+2,
where S1+2 = min(AP1+2/AP1,AP1+2/AP2), and AP1+2 is the performance of super-classifier resulting from the combination
of C1 and C2. For comparison, the best performance of a single method is shown in the Top AP column.
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Fig. 18: Super-classifier weight vectors and AP. Precision-recall curves and bars are colour-coded to indicate matching
methods. The influence of the methods varies significantly for different object classes. Also note that the strongest influence
on the performance of the super-classifier is not necessarily the method with the best performance. Method UP is only used
in the ‘person’ class since it only participated in that class.
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2008
Images 236 192 305 207 243 100 466 328 351 74 105 388 198 204 2002 180 64 134 151 215 4332
Objects 370 307 549 453 575 150 1022 380 910 197 218 484 306 297 5070 436 234 251 176 299 12684

2009
Images 407 348 505 325 420 258 730 543 668 172 271 649 328 338 2779 332 131 308 324 353 7054
Objects 587 506 833 654 905 386 1499 624 1716 403 414 790 503 494 6717 702 427 447 391 541 19539

2010
Images 579 471 666 432 583 353 1030 1005 925 248 415 1199 425 453 3548 450 290 406 453 490 10103
Objects 814 663 1061 824 1186 539 2060 1142 2339 553 587 1439 653 644 8563 911 847 611 541 714 26691

2011
Images 670 552 765 508 706 421 1161 1080 1119 303 538 1286 482 526 4087 527 325 507 544 575 11540
Objects 954 790 1221 999 1482 637 2364 1227 2906 702 747 1541 750 751 10129 1099 994 786 656 826 31561

2012
Images 670 552 765 508 706 421 1161 1080 1119 303 538 1286 482 526 4087 527 325 507 544 575 11540
Objects 954 790 1221 999 1482 637 2364 1227 2906 702 747 1541 750 751 10129 1099 994 786 656 826 31561

Table 16: Statistics of the main VOC dataset over the years. For the trainval dataset, the number of images containing
at least one object of the given class, and the corresponding number of object instances are shown. Note that because images
may contain objects of several classes, the totals shown in the images rows are not simply the sum of the corresponding row.
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2008
Images 58 50 59 60 58 52 80 65 89 44 67 65 67 59 343 60 47 60 57 69 1023
Objects 67 68 77 87 96 71 153 73 188 89 71 82 78 75 619 128 121 72 66 88 2369

2009
Images 87 77 107 87 86 77 114 98 124 66 88 101 92 83 417 88 61 97 86 99 1499
Objects 101 101 138 123 136 107 190 116 260 129 92 123 117 100 720 163 152 117 98 128 3211

2010
Images 116 97 136 106 117 99 161 169 170 82 104 156 105 103 526 115 83 117 106 113 1928
Objects 136 124 176 153 176 147 276 195 348 161 108 194 136 126 925 209 209 138 118 148 4203

2011
Images 131 110 166 117 144 113 187 190 210 89 120 185 111 112 632 127 93 144 125 126 2223
Objects 158 144 214 176 259 166 345 219 431 186 127 224 149 139 1170 229 232 165 138 163 5034

2012
Images 178 144 208 150 183 152 255 250 271 135 157 249 147 157 888 167 120 183 167 157 2913
Objects 218 197 277 232 357 237 457 286 550 284 168 299 204 204 1738 322 308 209 189 198 6934

Table 17: Statistics of the segmentation dataset over the years. For the trainval dataset, the number of images
containing at least one object of the given class, and the corresponding number of object instances are shown. Note that
because images may contain objects of several classes, the totals shown in the images rows are not simply the sum of the
corresponding row.

6.1 Classification

In Fig. 20 we plot histograms of the mean AP scores
achieved on the classification task by the various meth-
ods in the different years. The diversity in perfor-
mances has gradually increased, as has the highest
AP achieved. We also plot, for each class, the AP of
the best-performing method in each year on that class
in Fig. 21. This shows improved performance between
2009 and 2012 for all classes, although these increases
are not always monotonic over the intervening years.

The basic classification method that was dominant
in VOC 2007 was the bag-of-visual-words (Csurka et al,
2004). Local features were extracted (e.g. SIFT descrip-
tors, Lowe 2004), vector quantised into a visual vocab-
ulary (e.g. using k-means), and each image represented
by histograms of how often the extracted features were
assigned to each visual word. A support vector machine
(SVM) classifier was then used on top of this histogram
representation.

One idea to go beyond the simple bag-of-words
(BOW) representation was to use histograms on re-
gions of the image, e.g. spatial pyramid matching (SPM,
Lazebnik et al 2006), where representations for a nested
pyramid of regions are computed.

An alternative approach is classification-by-
detection, making use of the output of a classifier
looking at a specific region of the image (e.g. a sliding
window detector), and combining the results of these
detections.

Over 2008–2012 there were various developments of
these methods. For example the winning NEC/UIUC
entry in 2009 used local coordinate coding (LCC, Yang
et al 2009) to replace the vector quantisation step, so
that a feature vector could be represented by more than
one template. In 2010 the winning entry from NUS/PSL
used multiple kernels to combine BOW-type represen-
tations with the outputs of the object detector due to
Felzenszwalb et al (2010). The 2011 entry from the Uni-
versity of Amsterdam used classification-by-detection,
but instead of using sliding windows they proposed can-
didate windows based on multiple segmentations (Van
de Sande et al, 2011). The 2012 winning entry from
NUS/PSL was described in Sec. 3.1.

We note that recent work by Krizhevsky et al (2012)
on deep convolutional neural networks (CNNs) has sig-
nificantly outperformed methods similar to those de-
scribed above on the large scale ImageNet classification
challenge. These networks, trained on ImageNet, have
subsequently been applied to VOC classification in two
different ways: the first is to ‘remove’ the final classi-
fication layer of the CNN, and use the remaining ar-
chitecture to compute image level features; the second
is to use the ImageNet data as supervised pre-training,
and then refine the network by training with VOC data.
Both have led to impressive performance improvements
on the VOC classification task (Donahue et al, 2013;
Oquab et al, 2014; Zeiler and Fergus, 2013). This is an-
other important development in the image level feature
learning/encoding story.
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Fig. 21: Classification AP by class over the years. For
each year and class we plot the AP obtained by the best-
performing method at that class in that year.

6.2 Detection

In Fig. 22 we plot histograms of the mean AP scores
achieved on the detection task by the various meth-
ods in the different years. Again the diversity in per-
formances has gradually increased, as has the highest
AP achieved. We also plot, for each class, the AP of
the best-performing method in each year on that class
in Fig. 23. For most classes the AP of the best per-
forming method has gradually increased over the years,
although this trend is less strong than for the classifi-
cation task (see Fig. 21).

The reference method for object detection in VOC
2008–2012 was the deformable part model (DPM;
Felzenszwalb et al, 2010). The method is based on
a coarse scale ‘root’ filter using a histogram of ori-
ented gradients representation (HOG; Dalal and Triggs,
2005), plus finer-scale HOG part templates that can
move relative to the root. This model is applied ev-
erywhere in the image using efficient sliding windows.
The outputs are post-processed involving regression to
predict the bounding box from the root and part lo-
cations, greedy non-maximum suppression, and rescor-
ing of each bounding box with an SVM using contex-
tual information about the maximal strengths of detec-
tions for all classes. Teams led by Felzenszwalb were
joint winners of the challenge in 2008 and 2009, and
the released code meant that this method was widely
used/developed by others.

The team from the National Laboratory of Pattern
Recognition, Chinese Academy of Sciences which won in
2010 enhanced the DPM method by incorporating local
binary pattern (LBP) features in addition to HOG, and
including spatial, global and inter-class context into the
post-processing SVM.
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Fig. 22: Overall detection AP over the years. The his-
tograms indicate the number of methods whose mean AP
score fell in specific ranges in each year.

Also in 2010, the MIT/UCLA team (Zhu et al, 2010)
extended the DPM model by allowing a 3-layer archi-
tecture (corresponding to a root, parts and sub-parts),
and by incorporating data terms involving a histogram
of ‘visual words’ for region appearance as well as HOG
features for edges.

One issue with the DPM is that it performs search
densely in the image, and uses relatively simple matches
between the HOG input representation and filters. In
VOC 2009, Vedaldi et al (2009) used a cascade of meth-
ods of increasing complexity using linear, quasi-linear
and non-linear kernels, with the idea that the more ex-
pensive non-linear methods need only be run on a sub-
set of locations determined by the cheaper methods.
In the VOC 2011 and 2012 contests this group instead
re-scored the top 100 candidates output by the DPM,
using a SVM with inputs including additional features,
geometry, and context (described in more detail in Sec-
tion 3.2).

Another way of avoiding sliding windows search is
to hypothesise bounding boxes bottom up, e.g. based on
multiple segmentations (Van de Sande et al, 2011). This
is the route, termed ‘selective search’, followed by the
University of Amsterdam entry which won in 2012, and
allowed them to use more computationally expensive
features and classifiers.

In more recent work (Girshick et al, 2014), the CNN
features described in Section 6.1 have been used to rep-
resent the selective search bounding boxes, and have
achieved a substantial improvement in detection per-
formance.

6.2.1 Patterns of errors through time

Hoiem et al (2012) produced a very interesting analy-
sis of patterns of false-positive and false-negative errors
made by two different detection algorithms on the Pas-
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Fig. 23: Detection AP by class over the years. For
each year and class we plot the AP obtained by the best-
performing method at that class in that year.

cal VOC 2007 dataset (for which ground truth is also
publicly available for the test set). We have carried out
a similar analysis on the top three performing methods
from both 2009 and 2012.

For false positives (FPs), Hoiem et al (2012, Sec. 2)
looked at four kinds of errors. These are: localisation,
where the target category is detected with a misaligned
bounding box (with overlap between 0.1 and 0.5, while
the threshold for a correct detection is set at 0.5); con-

fusion with similar objects, where the groups of similar
objects are taken to be {all vehicles}, {all animals in-
cluding person}, {chair, diningtable, sofa}, {aeroplane,
bird}; confusion with other VOC objects, describes re-
maining false positives which have at least 0.1 over-
lap with an object with a non-similar label; all other
FPs are classified as confusion with background. Let the
number of true positives of class j in the test set be
Nj . Following Hoiem et al (2012), we consider the top
ranked Nj detections for class j, and compute the per-
centage that are correct, and the four kinds of errors
(localisation, similar objects, dissimilar objects, back-
ground). These results are plotted as pie charts by
Hoiem et al (2012, Fig. 2).

Figure 25 plots these results for three groups (an-
imals, vehicles, furniture) and four individual classes
from both 2009 and 2012. For 2012, the three top per-
forming methods were OXFORD, UVA_HYBRID, and
UVA_MERGED. There is a marked trend that the
percentage of background errors has increased between
2009 and 2012, while in general the confusions with
similar and dissimilar objects have decreased.

Following Hoiem et al (2012) we also examined the
impact of object characteristics (object size, aspect ra-
tio and truncation) on false negatives. Object size was
measured by the bounding box area. Objects in each
class were partitioned into five size categories, depend-
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Fig. 26: Overall segmentation accuracy over the
years. The histograms indicate the number of methods whose
mean segmentation accuracy score fell in specific ranges in
each year.

ing on the object’s percentile size within its category:
extra-small (XS: bottom 10%), small (S: next 20%),
medium (M: next 40%); large (L: next 20%) and extra-
large (XL: top 10%). For aspect ratio (defined as bound-
ing box width divided by height), objects were cate-
gorised as extra-tall, tall, medium, wide and extra-wide,
using the same percentiles. For truncation, the Pascal

VOC annotation of truncated/not-truncated was used.
For object size the results are plotted in Fig. 24. For
all classes we observe trends similar to those noted by
Hoiem et al (2012) in that the normalised precision (see
Eq. 6) increases as function of size, except that there
is sometimes a drop for extra-large objects, which are
often highly truncated. In general (data not shown) per-
formance with respect to aspect ratio is better for less-
extreme aspect ratios, and it is better for non-truncated
objects than truncated ones (except that the top three
methods in 2009 and 2012 all prefer truncated over non-
truncated cats).

6.3 Segmentation

Fig. 26 shows histograms of the mean segmentation ac-
curacy scores achieved on the segmentation task by the
methods in the different years. Notice that the highest
accuracy achieved has increased at a steady and signif-
icant pace from each year to the next.

Fig. 27 shows, for each class, the accuracy of the
best-performing method in each year on that class.
For most classes the accuracy of the best performing
method has increased between 2009 and 2012, although
often not monotonically with the year. In particular, in
the final years from 2011 to 2012 there was substantial
improvement in all classes except bus. This gives hope
that there is scope for further improvement in years to
come, although note from Table 17 that there was an
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Fig. 24: Per-Category Analysis of Characteristics: Object size. norm. prec. det. (’+’) with standard error bars (red).
Black dashed lines indicate the overall value of this measure. Key: XS=extra-small; S=small; M=medium; L=large; XL =extra-
large. Following Hoiem et al (2012) standard error is used for the average precision statistic as a measure of significance, rather
than confidence bounds.
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Fig. 25: Patterns of errors through time. Percentage of top-ranked detections that are correct (Cor), or are false positives
due to poor localisation (Loc), confusion with similar objects (Sim), confusion with other VOC objects (Oth), or confusion with
background or unlabelled objects (BG). For each label there are six bars: the left three (blue) are 2009 results (OXFORD_MKL,
UOC_LSVM, NEC) while the right three (yellow) are 2012 results (OXFORD, UVA_HYBRID, UVA_MERGED).
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Fig. 27: Segmentation accuracy by class over the
years. For each year and class we plot the accuracy obtained
by the best-performing method on that class in that year.

increase of over 30% in the amount of data between
these years.

We will now discuss the evolution of the methods
used in the segmentation challenge since its inception
in 2007. In the first year of the segmentation challenge
we expected few submissions due to the newness of the
challenge and so each participant in the detection chal-
lenge was entered automatically in the segmentation
challenge to provide a baseline set of methods. This was
achieved by filling in the predicted bounding boxes to
produce a segmentation. The 2008 segmentation com-
petition had six participants and was the first year
where the segmentation methods beat the automatic
entries from the detection challenge. The methods used
included:

– use of bottom-up segmentations (superpixels),
– MRFs, including high-order potentials,
– refinement of bounding boxes from a detector,
– use of image-level classifiers from the classification

challenge.

The 2009 competition had probably the broadest set
of entries, twelve in all, whose methods built on and ex-
tended those used in the previous year. Key extensions
were:

– use of multiple bottom-up segmentations to avoid
making early incorrect boundary decisions,

– Hierarchical MRFs e.g. modelling object co-
occurrence,

– use of parts-based instance models to refine detec-
tions,

– deeper integration of segmentation model with de-
tection/classification models,

– use of 3D information.

From 2010 until the final competition in 2012, par-
ticipants used combinations and refinements of these

techniques. The two dominant methods were: hierarchi-
cal random fields with a range of potentials, and the use
of multiple bottom-up segmentations, combined with a
classifier to predict the degree of overlap of a segment
with an object. In 2012 the number of participating
organisations was down to three, suggesting that the
methods used were performing so well it was difficult
for a new participant to enter the competition with an
original method and get competitive results. That said,
the above results through time suggest that segmenta-
tion methods are still improving rapidly and we should
expect further improvements on these methods in the
immediate future.

7 Discussion and the Future

This section appraises certain choices we made in run-
ning the challenge and gives suggestions for future chal-
lenge organisers.

7.1 Design choices: what we think we got right

7.1.1 Standard method of assessment

Having software that provides a standard method of
assessment is essential. For the challenge we provided
the following: (i) The train, validation and test splits;
(ii) A standard evaluation protocol; and (iii) Evaluation
software that computes the evaluation measures. This
includes a baseline classifier, detector and segmenter,
and the software to run everything ‘out of the box’,
from training through to generating a PR curve and
AP on the validation (or test) data.

So, for example, in the classification challenge it is
only necessary to replace the call to the baseline clas-
sifier we supplied with a call to the new classifier to
be trained and evaluated, and then the PR curve and
AP measure are generated automatically on the valida-
tion data. Providing the splits and evaluation code has
meant that results on VOC can be consistently com-
pared in publications.

The lesson here is that all challenges should provide
code for their standard method of assessment. In cases
where this is not provided we still see many examples
in papers of authors evaluating the results in different
ways – for example some using micro-averaging (giving
equal weight to each image) and others using macro-
averaging (giving equal weight to each class) – so that
results are not comparable.

It is also a good idea to provide written guidelines
for annotation, see Pascal-VOC-annotation-guidelines
(2012), so that there is little ambiguity and instead
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greater consistency in the labelling; and ‘best practice’
guidelines, see Pascal-VOC-best-practice-guidelines
(2012), so that participants know how the organisers
intend the data to be used for training, validation and
testing.

7.1.2 Measuring performance on the test data

There are (at least) three possibilities on how to obtain
the performance on the test data from participants: (i)
Release test data and annotation and participants can
assess performance themselves; (ii) Release test data,
but test annotation is withheld – participants submit
results and organisers assess performance (e.g. using an
evaluation server); (iii) No release of test data – partic-
ipants have to submit software and organisers run this
and assess performance.

We now discuss these options and our reasons for
choosing (ii). The first option (release test data anno-
tations) is the most liberal, but is open to abuse – for
example, since participants have the test annotations
then the test data could be used for choosing parame-
ters, and only the best result reported (optimising on
the test data). There was some evidence that this was
happening with the VOC 2007 release, and this was one
of the reasons that we adopted option (ii) from VOC
2008 onwards.

In the second option (withhold test annotation) par-
ticipants simply run their method over the test data and
return the results (e.g. a confidence score for each im-
age for each class for the classification challenge) in a
standard form. The performance can then be assessed
automatically by an evaluation server. Since the data
consists of images, there is still some danger that perfor-
mance of different parameter choices will be assessed by
eye on the test data. It is also theoretically possible for
participants to hand-annotate the test data, though we
rely on participants’ honesty and to some extent also
the limited time available between the release of the
test data and submission of the results to prevent this.
Note, this danger may not apply to other challenges
where the test data is more abstract than images (e.g.
feature vectors).

The third option (participants submit code) is the
most safe as there is no release of test data at all. How-
ever, there are potentially huge computational and soft-
ware costs both in being able to run the supplied soft-
ware on other machines (e.g. the software may use a
mix of Matlab/C/GPUs) and in providing the compu-
tational infrastructure (clusters, sufficient memory) to
run the code over the test dataset in a reasonable time.

Given the potential costs of the third option, we
adopted the second. Other than some participants mak-

ing multiple similar submissions (which contravenes the
best practice of choosing the method submitted using
the validation set), there were no problems that we were
aware of. Here it should be added that in case of mul-
tiple submissions, participants were forced to select a
single submission without knowing the respective test
scores.

7.1.3 Augmentation of dataset each year

Each year new images were added to the dataset and
data splits (into training, validation and test) of earlier
years maintained. The statistics on how the data was
augmented are given in Tables 16 and 17. Both the
number of images and number of objects more than
doubled between 2008 and 2012.

This had a number of useful consequences: first, it
has mitigated overfitting to the data (which might have
happened if the data had not changed from year to
year); and second, since the earlier year’s data is avail-
able as subsets, progress can be measured from 2008
to 2012 using the same test set. For example, the 2009
dataset is a subset of 2010, 2011 and 2012, and as the
assignments to training, validation and test are main-
tained, performance of all methods can be measured
each year using the same 2009 test data (albeit with
different training and validation data each year).

Note, the alternative of releasing an entirely new
dataset each year would also prevent overfitting, but
the disadvantages are that performance would then be
measured on a different test set each year. Also there
would be the additional cost of preparing entirely new
releases of similar sizes, compared to more gradually
increasing the sizes.

7.2 Room for improvement

The biggest risk when running a competition like VOC
is that it reduces the diversity of methods within the
community. A good strategy for a participant is to make
an incremental improvement on the previous year’s win-
ning method. New methods that have the potential to
give substantial improvements may be discarded before
they have a chance to mature, because they do not yet
beat existing mature methods. Our attempts to solve
this problem were:

– to add new competitions (such as the segmentation
and action competitions) with different objectives
that required new methods to be developed. How-
ever, the existing challenges were kept largely fixed
so that we could track progress over time, as we saw
in Sec. 6.
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– to encourage novelty explicitly through invited talks
and novelty prizes at the annual workshop. How-
ever, it was difficult to assess novelty in an objective
fashion and it was easier to favour methods which
combined an element of novelty with close to state-
of-the-art performance.

However, we feel that there is still room for improve-
ment in maintaining diversity. To this end, we will now
suggest some other strategies that may help increase
diversity in future competitions.

7.2.1 Multiple evaluation metrics

The design of the evaluation metric for a competition
is often controversial since small changes in the metric
can give substantial advantages to one method or an-
other. Indeed the metrics used in each VOC competi-
tion have typically been changed or refined at least once
during the lifetime of the competition. These changes
may have reduced but not eliminated another type of
reduction in diversity: that methods may end up over-
fitting to the particular evaluation metrics selected for
each competition.

One possible suggestion that may mitigate this is
to use and publish several different metrics when eval-
uating participants in each competition. Each metric
should pick up on a different aspect of the success of
a method. Not only would this reduce overfitting but
it would provide more detail into the strengths and
weaknesses of each method, help inform collaboration
between teams with different strengths, and encourage
the discussion and development of informative metrics.
However, it would still be necessary to combine the met-
rics somehow to determine the competition winner.

Another suggestion would be to report a diversity
metric. This could be a metric across all participants,
which would allow the diversity to be tracked over time
making any reduction in diversity more visible and en-
couraging more discussion and improvements relating
to diversity. Alternatively (or in addition), there could
be an evaluation metric that indicates how different
each participant is from the average participant – ef-
fectively giving additional weight to participants that
do well on images where other participants do badly.

7.2.2 Community boosting

This idea can be taken further by formalising it into
a community-level boosting algorithm. The idea would
be to attach weights to each test image and upweight
images that were poorly handled by the community of
methods in the previous year’s challenge. These weights
would then be used when calculating evaluation metrics

to favour methods that differ from the previous year,
and thus encourage greater diversity.

One way this could be achieved in practice would
be to combine together the previous year’s methods, for
example, by using a super-classifier like the one used in
Sec. 5. This super-classifier would then be used as the
‘weak learner’ in a standard boosting algorithm to com-
pute the image weights for the current year. The result
would be a boosting algorithm running at one iteration
per year. This would have the interesting side benefit
of producing a classifier that combined all methods of
all years into a single ‘strong’ classifier.

Boosting is known to suffer from overfitting and this
could be a problem here, although the small number of
iterations should limit the scope for overfitting. Another
issue is this could lead the community to focus on spe-
cialised solutions to niche problems. Nonetheless, we
believe this approach would be worth considering for
future challenges.

7.2.3 Community analysis of results

Our current analysis has been centred around rather
global evaluation metrics, i.e. a set of numbers that
cannot summarise all aspects. However, as the work
by Hoiem et al (2012) has shown, there are many inter-
esting and relevant aspects that could well stay under
the radar but would warrant further attention. This is
especially the case for failure cases that may be rare –
and would therefore hardly impact global performance
measures – but nonetheless need solving if object recog-
nition is to come of age. It would therefore be interest-
ing to make all submissions public, e.g. by extending
the evaluation server so that everyone can query them.
However, this is not our current intention, as it would
require additional resources, and would also create com-
plications with the policy of withholding the testing an-
notations from future participants.

7.3 Conclusions and impact

The Pascal VOC challenges and workshops have cer-
tainly contributed to the surge in interest in category
recognition in the computer vision community over the
last decade, and have been mentioned in thousands of
papers. They have been used for research areas that we
did not have in mind at all when they were created, such
as studying dataset bias (Torralba and Efros, 2011) –
where algorithm performance is compared across dif-
ferent training and testing datasets (e.g. VOC vs. Im-
ageNet), or automatically inferring attributes for each
object (e.g. has wheel, has head) with additional anno-
tation provided to support this (Farhadi et al, 2009).
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Our current intention is to keep the VOC 2008–2012
test data annotations secret (so as to minimise the ef-
fects of overfitting), and to keep the evaluation server
available (Pascal-VOC-evaluation-server, 2012). We
have added a leaderboard so that future submissions
may be easily recorded and compared. We intend for
this leaderboard to include the bootstrapping technique
described in Sec. 3.5, so that the significance of the dif-
ference between entries on the leaderboard can be as-
sessed.

We note here some of the particular successes of the
period. First, has been the development of a new class
of object category detector, the DPM of Felzenszwalb
et al (2010), with open source code provided to the
community. Second, has been the steady increase in per-
formance over all the three main challenges. Third, has
been the development of cross fertilisations between the
challenges – detectors used as part of the segmentation
and classification methods, and (unsupervised) segmen-
tation used to propose windows in detection methods –
where originally methods were myopic in only applying
to one of the three challenges. Fourth, VOC has con-
tributed to establishing the importance of benchmarks,
and in turn has led to efforts to refine and analyse the
results in more detail, e.g Hoiem et al (2012). Finally,
VOC has led to a new generation of challenges with
far greater number of classes (e.g. ImageNet), with ex-
plorations of more structure (e.g. parts and attributes),
and with finer grain visual categorisations (e.g. distin-
guishing between sub-ordinate classes of flowers, birds,
dogs).

Winston Churchill famously said “democracy is the

worst form of government except all those other forms

that have been tried from time to time”. It could equally
be said that organising a challenge is the worst way
to track and encourage progress in a research commu-
nity, except for all the other ways. Certainly a widely
adopted challenge can be a curse as well as a blessing.
In running the Pascal VOC challenge, we have tried
to steer a course that maximises the community bene-
fits and minimises the costs, and believe that we have
had some reasonable success in doing so. As we move
into a new generation of machine vision problems, chal-
lenges will continue to play a critical role in assessing,
recognising and communicating progress. We wish the
organisers of these challenges the very best in steering
their own paths through the uncharted territory ahead.
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