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Abstract Low-rank matrix completion is a problem

of immense practical importance. Recent works on the

subject often use nuclear norm as a convex surrogate

of the rank function. Despite its solid theoretical foun-

dation, the convex version of the problem often fails to

work satisfactorily in real-life applications. Real data of-

ten suffer from very few observations, with support not

meeting the randomness requirements, ubiquitous pres-

ence of noise and potentially gross corruptions, some-

times with these simultaneously occurring.

This paper proposes a Proximal Alternating Robust

Subspace Minimization (PARSuMi) method to tackle

the three problems. The proximal alternating scheme

explicitly exploits the rank constraint on the completed

matrix and uses the `0 pseudo-norm directly in the

corruption recovery step. We show that the proposed
method for the non-convex and non-smooth model con-

verges to a stationary point. Although it is not guar-

anteed to find the global optimal solution, in practice

we find that our algorithm can typically arrive at a

good local minimizer when it is supplied with a reason-

ably good starting point based on convex optimization.

Extensive experiments with challenging synthetic and

real data demonstrate that our algorithm succeeds in

a much larger range of practical problems where con-

vex optimization fails, and it also outperforms various

state-of-the-art algorithms.
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1 Introduction

Completing a low-rank matrix from partially observed

entries, also known as matrix completion, is a central

task in many real-life applications. The same abstrac-

tion of this problem has appeared in diverse fields such

as signal processing, communications, information re-

trieval, machine learning and computer vision. For in-

stance, the missing data to be filled in may correspond

to plausible movie recommendations (Koren et al 2009;

Funk 2006), occluded feature trajectories for rigid or

non-rigid structure from motion, namely SfM (Hart-

ley and Schaffalitzky 2003; Buchanan and Fitzgibbon

2005) and NRSfM (Paladini et al 2009), relative dis-

tances of wireless sensors (Oh et al 2010), pieces of un-

collected measurements in DNA micro-array (Friedland

et al 2006), just to name a few.

Fig. 1 Sampling pattern of the Dinosaur sequence: 316 fea-
tures are tracked over 36 frames. Dark area represents loca-
tions where no data is available; sparse highlights are injected
gross corruptions. Middle stripe in grey are noisy observed
data, occupying 23% of the full matrix. The task of this pa-
per is to fill in the missing data and recover the corruptions.
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The common difficulty of these applications lies in

the scarcity of the observed data, uneven distribution of

the support, noise, and more often than not, the pres-

ence of gross corruptions in some observed entries. For

instance, in the movie rating database Netflix (Bennett

et al 2007), only less than 1% of the entries are ob-

served and 90% of the observed entries correspond to

10% of the most popular movies. In photometric stereo,

the missing data and corruptions (arising from shadow

and specular highlight as modeled in Wu et al (2011b))

form contiguous blocks in images and are by no means

random. In structure from motion, the observations fall

into a diagonal band shape, and feature coordinates

are often contaminated by tracking errors (see the il-

lustration in Fig. 1). Therefore, in order for any matrix

completion algorithm to work in practice, these afore-

mentioned difficulties need to be tackled altogether. We

refer to this problem as practical matrix comple-

tion. Mathematically, the problem to be solved is the

following:

Given Ω, Ŵij for all (i, j) ∈ Ω,

find W, Ω̃,

s.t. rank(W ) is small; card(Ω̃) is small;

|Wij − Ŵij | is small ∀(i, j) ∈ Ω|Ω̃.

where Ω is the index set of observed entries whose lo-

cations are not necessarily selected at random, Ω̃ ∈ Ω
represents the index set of corrupted data, Ŵ ∈ Rm×n
is the measurement matrix with only Ŵij∈Ω known,

i.e., its support is contained in Ω. Furthermore, we de-

fine the projection PΩ : Rm×n 7→ R|Ω| so that PΩ(Ŵ )

denotes the vector of observed data. The adjoint of PΩ
is denoted by P∗Ω .

Extensive theories and algorithms have been devel-

oped to tackle some aspect of the challenges listed in the

preceding paragraph, but those tackling the full set of

challenges are far and few between, thus resulting in a

dearth of practical algorithms. Two dominant classes of

approaches are nuclear norm minimization, e.g. Candès

and Recht (2009); Candès et al (2011); Candès and

Plan (2010); Chen et al (2011), and matrix factoriza-

tion, e.g., Koren et al (2009); Buchanan and Fitzgib-

bon (2005); Okatani and Deguchi (2007); Chen (2008);

Eriksson and Van Den Hengel (2010). Nuclear norm

minimization methods minimize the convex relaxation

of rank instead of the rank itself, and are supported

by rigorous theoretical analysis and efficient numerical

computation. However, the conditions under which they

succeed are often too restrictive for it to work well in

real-life applications (as reported in Shi and Yu (2011)

and Jain et al (2012)). In contrast, matrix factoriza-

tion is widely used in practice and are considered very

effective for problems such as movie recommendation

(Koren et al 2009) and structure from motion (Tomasi

and Kanade 1992; Paladini et al 2009) despite its lack

of rigorous theoretical foundation. Indeed, as one fac-

torizes matrix W into UV T , the formulation becomes

bilinear and thus optimal solution is hard to obtain ex-

cept in very specific cases (e.g., in Jain et al (2012)). A

more comprehensive survey of the algorithms and re-

view of the strengths and weaknesses will be given in

the next section.

In this paper, we attempt to solve the practical ma-

trix completion problem under the prevalent case where

the rank of the matrix W and the cardinality of Ω̃ are

upper bounded by some known parameters r and N0

via the following non-convex, non-smooth optimization

model:

min
W,E

1
2‖PΩ(W − Ŵ + E)‖2 + ε

2‖PΩ(W )‖2

s.t. rank(W ) ≤ r, W ∈ Rm×n

‖E‖0 ≤ N0, ‖E‖ ≤ KE , E ∈ Rm×nΩ

(1)

where Rm×nΩ denotes the set of m × n matrices whose

supports are subsets ofΩ and ‖·‖ is the Frobenius norm;

KE is a finite constant introduced to facilitate the con-

vergence proof. Note that the restriction of E to Rm×nΩ

is natural since the role of E is to capture the gross

corruptions in the observed data Ŵij∈Ω . The bound

constraint on ‖E‖ is natural in some problems when

the true matrix W is bounded (e.g., Given the typical

movie ratings of 0-10, the gross outliers can only lie in [-

10, 10]). In other problems, we simply choose KE to be

some large multiple (say 20) of
√
N0×median(PΩ(Ŵ )),

so that the constraint is essentially inactive and has no

impact on the optimization. Note that without mak-

ing any randomness assumption on the index set Ω

or assuming that the problem has a unique solution

(W ∗, E∗) such that the singular vector matrices of W ∗

satisfy some inherent conditions like those in Candès

et al (2011), the problem of practical matrix comple-

tion is generally ill-posed. This motivated us to include

the Tikhonov regularization term ε
2‖PΩ(W )‖2 in (1),

where Ω denotes the complement of Ω, and 0 < ε < 1

is a small constant. Roughly speaking, what the reg-

ularization term does is to pick the solution W which

has the smallest ‖PΩ(W )‖ among all the candidates in

the optimal solution set of the non-regularized prob-

lem. Notice that we only put a regularization on those

elements of W in Ω as we do not wish to perturb those

elements of W in the fitting term. Finally, with the

Tikhonov regularization and the bound constraint on
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‖E‖, we can show that problem (1) has a global mini-

mizer.

By defining H ∈ Rm×n to be the matrix such that

Hij =

{
1 if (i, j) ∈ Ω
√
ε if (i, j) 6∈ Ω,

(2)

and those elements of E and Ŵ in Ω to be zero, we can

rewrite the objective function in (1) in a compact form,

and the problem becomes:

min
W,E

1
2‖H ◦ (W + E − Ŵ )‖2

s.t. rank(W ) ≤ r, W ∈ Rm×n

‖E‖0 ≤ N0, ‖E‖ ≤ KE , E ∈ Rm×nΩ .

(3)

In the above, the notation “◦” denotes the element-wise

product between two matrices.

We propose PARSuMi, a proximal alternating min-

imization algorithm motivated by the algorithm in At-

touch et al (2010) to solve (3). This involves solving

two subproblems each with an auxiliary proximal reg-

ularization term. It is important to emphasize that the

subproblems in our case are non-convex and hence it

is essential to design appropriate algorithms to solve

the subproblems to global optimality, at least empir-

ically. We develop essential reformulations of the sub-

problems and design novel techniques to efficiently solve

each subproblem, provably achieving the global opti-

mum for one, and empirically so for the other. We also

prove that our algorithm is guaranteed to converge to

a limit point, which is necessarily a stationary point of

(3). We emphasize here that the convergence is estab-

lished even though one of the subproblems may not be

solved to global optimality. Together with the initial-

ization schemes we have designed based on the convex

relaxation of (3), our method is able to solve challeng-

ing real matrix completion problems with corruptions

robustly and accurately. As we demonstrate in the ex-

periments, PARSuMi is able to provide excellent recon-

struction of unobserved feature trajectories in the clas-

sic Oxford Dinosaur sequence for SfM, despite struc-

tured (as opposed to random) observation pattern and

data corruptions. It is also able to solve photometric

stereo to high precision despite severe violations of the

Lambertian model (which underlies the rank-3 factor-

ization) due to shadow, highlight and facial expression

difference. Compared to state-of-the-art methods such

as GRASTA (He et al 2011), Wiberg `1 (Eriksson and

Van Den Hengel 2010) and BALM (Del Bue et al 2012),

our results are substantially better both qualitatively

and quantitatively.

Note that in (3) we do not seek convex relaxation

of any form, but rather constrain the rank and the

corrupted entries’ cardinality directly in their original

forms. While it is generally not possible to have an al-

gorithm guaranteed to compute the global optimal so-

lution, we demonstrate that with appropriate initializa-

tions, the faithful representation of the original problem

often offers significant advantage over the convex relax-

ation approach in denoising and corruption recovery,

and is thus more successful in solving real problems.

The rest of the paper is organized as follows. In Sec-

tion 2, we provide a comprehensive review of the exist-

ing theories and algorithms for practical matrix com-

pletion, summarizing the strengths and weaknesses of

nuclear norm minimization and matrix factorization.

In Section 3, we conduct numerical evaluations of pre-

dominant matrix factorization methods, revealing those

algorithms that are less-likely to be trapped at local

minima. Specifically, these features include parameter-

ization on a subspace and second-order Newton-like it-

erations. Building upon these findings, we develop the

PARSuMi scheme in Section 4 to simultaneously handle

sparse corruptions, dense noise and missing data. The

proof of convergence and a convex initialization scheme

are also provided in this section. In Section 5, the pro-

posed method is evaluated on both synthetic and real

data and is shown to outperform the current state-of-

the-art algorithms for robust matrix completion.

2 A survey of results

2.1 Matrix completion and corruption recovery via

nuclear norm minimization

Recently, the most prominent approach for solving a

matrix completion problem is via the following nuclear

norm minimization:

min
W

{
‖W‖∗

∣∣∣PΩ(W − Ŵ ) = 0
}
, (4)

in which rank(X) is replaced by the nuclear norm ‖X‖∗ =∑
i σi(X), where the latter is the tightest convex relax-

ation of rank over the unit (spectral norm) ball. Candès

and Recht (2009) showed that when sampling is uni-

formly random and sufficiently dense, and the underly-

ing low-rank subspace is incoherent with respect to the

standard bases, then the remaining entries of the ma-

trix can be exactly recovered. The guarantee was later

improved in Candès and Tao (2010); Recht (2009), and

extended for noisy data in Candès and Plan (2010);

Negahban and Wainwright (2012) relaxed the equality

constraint to

‖PΩ(W − Ŵ )‖ ≤ δ.

Using similar assumptions and arguments, Candès et al

(2011) and Chandrasekaran et al (2011) concurrently
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MC (Candès
and Recht
2009)

RPCA
(Candès
et al 2011)

NoisyMC
(Candès and
Plan 2010)

StableRPCA
(Zhou et al
2010)

RMC (Li
2013)

RMC (Chen
et al 2011)

Missing data Yes Yes Yes No Yes Yes
Corruptions No Yes No Yes Yes Yes

Noise No No Yes Yes No No
Deterministic Ω No No No No No Yes

Deterministic Ω̃ No No No No No Yes

Table 1 Summary of the theoretical development for matrix completion and corruption recovery.

proposed solution to the related problem of robust prin-

cipal component analysis (RPCA) where the low-rank

matrix can be recovered from sparse corruptions (with

no missing data1). This is formulated as

min
W,E

{
‖W‖∗ + λ‖E‖1

∣∣∣W + E = Ŵ
}
. (5)

Noisy extension and improvement of the guarantee for

RPCA were provided by Zhou et al (2010) and Ganesh

et al (2010) respectively. Chen et al (2011) and Li (2013)

combined (4) and (5) and provided guarantee for the

following

min
W,E

{
‖W‖∗ + λ‖E‖1

∣∣∣PΩ(W + E − Ŵ ) = 0
}
. (6)

In particular, the results in Chen et al (2011) lifted

the uniform random support assumptions in previous

works by laying out the exact recovery condition for a

class of deterministic sampling (Ω) and corruptions (Ω̃)

patterns.

We summarize the theoretical and algorithmic progress

in practical matrix completion achieved by each method

in Table 1. It appears that researchers are moving to-

wards analyzing all possible combinations of the prob-

lems; from past indication, it seems entirely plausible

albeit tedious to show that the noisy extension

min
W,E

{
‖W‖∗ + λ‖E‖1

∣∣∣ ‖PΩ(W + E − Ŵ )‖ ≤ δ
}

(7)

will return a solution stable around the desired W and

E under appropriate assumptions. Wouldn’t that solve

the practical matrix completion problem altogether?

The answer is unfortunately no. While this line of

research have provided profound understanding of prac-

tical matrix completion itself, the actual performance of

the convex surrogate on real problems (e.g., movie rec-

ommendation) is usually not competitive against non-

convex approaches such as matrix factorization. Although

convex relaxation is amazingly equivalent to the origi-

nal problem under certain conditions, those well versed

1 Candès et al (2011) actually considered missing data too,
but their guarantee (Theorem 1.2) for (6) is only preliminary
according to their own remarks. A stronger result is released
later by the same group in Li (2013).

in practical problems will know that those theoretical

conditions are usually not satisfied by real data. Due

to noise and model errors, real data are seldom truly

low-rank (see the comments on Jester joke dataset in

Keshavan et al (2009)), nor are they as incoherent as

randomly generated data. More importantly, observa-

tions are often structured (e.g., diagonal band shape

in SfM) and hence do not satisfy the random sampling

assumption needed for the tight convex relaxation ap-

proach. As a consequence of all these factors, the re-

covered W and E by convex optimization are often nei-

ther low-rank nor sparse in practical matrix completion.

This can be further explained by the so-called “Robin

Hood” attribute of `1 norm (analogously, nuclear norm

is the `1 norm in the spectral domain), that is, it tends

to steal from the rich and give it to the poor, decreas-

ing the inequity of “wealth” distribution. Illustrations

of the attribute will be given in Section 5.

Nevertheless, the convex relaxation approach has

the advantage that one can design efficient algorithms

to find or approximately reach the global optimal so-

lution of the given convex formulation. In this paper,

we take advantage of the convex relaxation approach

and use it to provide a powerful initialization for our

algorithm to converge to the correct solution.

2.2 Matrix factorization and applications

Another widely-used method to estimate missing data

in a low-rank matrix is matrix factorization (MF). It

is at first considered as a special case of the weighted

low-rank approximation problem with {0, 1} weight by

Gabriel and Zamir in 1979 and much later by Srebro

and Jaakkola (2003). The buzz of Netflix Prize further

popularizes the missing data problem as a standalone

topic of research. Matrix factorization turns out to be a

robust and efficient realization of the idea that people’s

preferences of movies are influenced by a small number

of latent factors and has been used as a key compo-

nent in almost all top-performing recommendation sys-

tems (Koren et al 2009) including BellKor’s Pragmatic

Chaos, the winner of the Netflix Prize (Koren 2009).



Practical Matrix Completion and corruption recovery using PARSuMi 5

In computer vision, matrix factorization with miss-

ing data is recognized as an important problem too.

Tomasi-Kanade affine factorization (Tomasi and Kanade

1992), Sturm-Triggs projective factorization (Sturm and

Triggs 1996), and many techniques in Non-Rigid SfM

and motion tracking (Paladini et al 2009) can all be

formulated as a matrix factorization problem. Missing

data and corruptions emerge naturally due to occlu-

sions and tracking errors. For a more exhaustive survey

of computer vision problems that can be modelled by

matrix factorization, we refer readers to Del Bue et al

(2012).

Regardless of its applications, the key idea is that

when W = UV T , one ensures that the required rank

constraint is satisfied by restricting the factors U and

V to be in Rm×r and Rn×r respectively. Since the (U, V )

parameterization has a much smaller degree of freedom

than the dimension of W , completing the missing data

becomes a better posed problem. This gives rise to the

following optimization problem:

min
U,V

1

2

∥∥∥PΩ(UV T − Ŵ )
∥∥∥2

(8)

or its equivalence reformulation

min
U

{
1

2

∥∥∥PΩ(UV (U)T − Ŵ )
∥∥∥2
∣∣∣∣UTU = Ir

}
(9)

where the factor V is now a function of U .

Unfortunately, (8) is not a convex optimization prob-

lem. The quality of the solutions one may get by min-

imizing this objective function depends on specific al-

gorithms and their initializations. Roughly speaking,

the various algorithms for (8) may be grouped into

three categories: alternating minimization, first or-

der gradient methods and second order Newton-like

methods.

Simple approaches like alternating least squares (ALS)

or equivalently PowerFactorization (Hartley and Schaf-

falitzky 2003) fall into the first category. They alternat-

ingly fix one factor and minimize the objective over the

other using least squares method. A more sophisticated

algorithm is BALM (Del Bue et al 2012), which uses

the Augmented Lagrange Multiplier method to grad-

ually impose additional problem-specific manifold con-

straints. The inner loop however is still alternating min-

imization. This category of methods has the reputation

of reducing the objective value quickly in the first few

iterations, but they usually take a large number of iter-

ations to converge to a high quality solution (Buchanan

and Fitzgibbon 2005).

First order gradient methods are efficient, easy to

implement and they are able to scale up to million-by-

million matrices if stochastic gradient descent is adopted.

Therefore it is very popular for large-scale recommenda-

tion systems. Typical approaches include Simon Funk’s

incremental SVD (Funk 2006), nonlinear conjugate gra-

dient (Srebro and Jaakkola 2003) and more sophisti-

catedly, gradient descent on the Grassmannian/Stiefel

manifold, such as GROUSE (Balzano et al 2010) and

OptManifold (Wen and Yin 2013). These methods, how-

ever, as we will demonstrate later, easily get stuck in

local minima2.

The best performing class of methods are the sec-

ond order Newton-like algorithms, in that they demon-

strate superior performance in both accuracy and the

speed of convergence (though each iteration requires

more computation); hence they are suitable for small

to medium scale problems requiring high accuracy so-

lutions (e.g., SfM and photometric stereo in computer

vision). Representatives of these algorithms include the

damped Newton method (Buchanan and Fitzgibbon

2005), Wiberg(`2) (Okatani and Deguchi 2007), LM S

and LM M of Chen (2008) and LM GN, which is a vari-

ant of LM M using Gauss-Newton (GN) to approximate

the Hessian function.

As these methods are of special importance in de-

veloping our PARSuMi algorithm, we conduct extensive

numerical evaluations of these algorithms in Section 3

to understand their pros and cons as well as the key fac-

tors that lead to some of them finding global optimal

solutions more often than others.

It is worthwhile to note some delightful recent ef-

forts to scale the first two classes of MF methods to

internet scale, e.g., parallel coordinate descent exten-

sion for ALS (Yu et al 2012) and stochastic gradient

methods in “Hogwild” (Recht et al 2011). It will be an

interesting area of research to see if the ideas in these

papers can be used to make the second order methods

more scalable.

In addition, there are a few other works in each cat-

egory that take into account the corruption problem by

changing the quadratic penalty term of (8) into `1-norm

or Huber function

min
U,V

∥∥∥PΩ(UV T − Ŵ )
∥∥∥

1
, (10)

min
U,V

∑
(ij)∈Ω

Huber
(
(UV T − Ŵ )ij

)
. (11)

Notable algorithms to solve these formulations include

alternating linear programming (ALP) and alternat-

ing quadratic programming (AQP) in Ke and Kanade

(2005), GRASTA (He et al 2011) that extends GROUSE,

2 Our experiment on synthetic data shows that the strong
Wolfe line search adopted by Srebro and Jaakkola (2003) and
Wen and Yin (2013) somewhat ameliorates the issue, though
it does not seem to help much on real data.
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as well as Wiberg `1 (Eriksson and Van Den Hengel

2010) that uses a second order Wiberg-like iteration.

While it is well known that the `1-norm or Huber penalty

term can better handle outliers, and the models (10)

and (11) are seen to be effective in some problems,

there is not much reason for a “convex” relaxation of

the `0 pseudo-norm3, since the rank constraint imposed

by matrix factorization is already highly non-convex.

Empirically, we find that `1-norm penalty offers poor

denoising ability to dense noise and also suffers from

“Robin Hood” attribute. Comparison with this class of

methods will be given later in Section 5, which shows

that our method can better handle noise and corrup-

tions.

The practical advantage of `0 over `1 penalty is well

illustrated in Xiong et al (2011), where Xiong et al pro-

posed an `0-based robust matrix factorization method

which deals with corruptions and a given rank con-

straint. Our work is similar to Xiong et al (2011) in

that we both eschew the convex surrogate `1-norm in

favor of using the `0-norm directly. However, our ap-

proach treats both corruptions and missing data. More

importantly, our treatment of the problem is different

and it results in a convergence guarantee that covers

the algorithm of Xiong et al (2011) as a special case;

this will be further explained in Section 4.

2.3 Emerging theory for matrix factorization

As we mentioned earlier, a fundamental drawback of

matrix factorization methods for low rank matrix com-

pletion is the lack of proper theoretical foundation. How-

ever, thanks to the better understanding of low-rank

structures nowadays, some theoretical analysis of this

problem slowly emerges. This class of methods are es-

sentially designed for solving noisy matrix completion

problem with an explicit rank constraint, i.e.,

min
W

{
1

2

∥∥∥PΩ(W − Ŵ )
∥∥∥2
∣∣∣∣ rank(W ) ≤ r

}
. (12)

From a combinatorial-algebraic perspective, Kiràly and

Tomioka (2012) provided a sufficient and necessary con-

dition on the existence of an unique rank-r solution to

(12). It turns out that if the low-rank matrix is generic,

then unique completability depends only on the support

of the observations Ω. This suggests that the incoher-

ence and random sampling assumptions typically re-

quired by various nuclear norm minimization methods

may limit the portion of problems solvable by the lat-

ter to only a small subset of those solvable by matrix

factorization methods.

3 The cardinality of non-zero entries, which strictly speak-
ing is not a norm.

Around the same time, Wang and Xu (2012) stud-

ied the stability of matrix factorization under arbitrary

noise. They obtained a stability bound for the optimal

solution of (12) around the ground truth, which turns

out to be better than the corresponding bound for nu-

clear norm minimization in Candès and Plan (2010) by

a scale of
√

min (m,n) (in Big-O sense). The study how-

ever bypassed the practical problem of how to obtain

the global optimal solution for this non-convex prob-

lem.

This gap is partially closed by the recent work of

Jain et al (2012), in which the global minimum of (12)

can be obtained up to an accuracy ε with O(log 1/ε) it-

erations using a slight variation of the ALS scheme. The

guarantee requires the observation to be noiseless, sam-

pled uniformly at random and the underlying subspace

of W needs to be incoherent—basically all assumptions

in the convex approach—yet still requires slightly more

observations than that for nuclear norm minimization.

It does not however touch on when the algorithm is

able to find the global optimal solution when the data

is noisy. Despite not achieving stronger theoretical re-

sults nor under weaker assumptions than the convex re-

laxation approach, this is the first guarantee of its kind

for matrix factorization. Given its more effective empir-

ical performance, we believe that there is great room for

improvement on the theoretical front. A secondary con-

tribution of this paper is to find the potentially “right”

algorithm or rather constituent elements of algorithm

for theoreticians to look deeper into.

3 Numerical evaluation of matrix factorization

methods

To better understand the performance of different meth-

ods, we compare the following attributes quantitatively

for all three categories of approaches that solve (8) or

(9)4:

Sample complexity Number of samples required for

exact recovery of random uniformly sampled obser-

vations in random low-rank matrices, an index typ-

ically used to quantify the performance of nuclear

norm based matrix completion.

Hits on global optimal[synthetic] The proportion of

random initializations that lead to the global opti-

mal solution on random low rank matrices with (a)

increasing Gaussian noise, (b) exponentially decay-

ing singular values.

Hits on global optimal[SfM] The proportion of ran-

dom initializations that lead to the global optimal

4 As a reference, we also included nuclear norm minimiza-
tion that solve (4) where applicable.
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Fig. 2 Exact recovery with increasing number of random observations. Algorithms (random initialization) are evaluated
on 100 randomly generated rank-4 matrices of dimension 100× 100. The number of observed entries increases from 0 to 50n.
To account for small numerical error, the result is considered “exact recovery” if the RMSE of the recovered entries is smaller
than 10−3. On the left, CVX (Grant and Boyd 2012) and TFOCS (Becker et al 2012) (in cyan) solves the nuclear norm based
matrix completion (4), everything else aims to solve matrix factorization (8). On the right, the best solution of MF across all
algorithms is compared to the CVX solver for nuclear norm minimization (solved with the highest numerical accuracy) and a
lower bound (below the bound, the number of samples is smaller than r for at least a row or a column).

Fig. 3 Percentage of hits on global optimal with increasing
level of noise. Five rank-4 matrices are generated by mul-
tiplying two standard Gaussian matrices of dimension 40× 4
and 4×60. 30% of entries are uniformly picked as observations
with additive Gaussian noise N(0, σ). 24 different random ini-
tialization are tested for each matrix. The “global optimal” is
assumed to be the solution with lowest objective value across
all testing algorithm and all initializations.

solution on the Oxford Dinosaur sequence (Buchanan

and Fitzgibbon 2005) used in the SfM community.

The sample complexity experiment in Fig. 2 shows

that the best performing matrix factorization algorithm

attains exact recovery with the number of observed en-

tries at roughly 18%, while CVX for nuclear norm min-

imization needs roughly 36% (even worse for numerical

solvers such as TFOCS). This seems to imply that the

sample requirement for MF is fundamentally smaller

than that of nuclear norm minimization. As MF as-

Fig. 4 Percentage of hits on global optimal for ill-
conditioned low-rank matrices. Data are generated in
the same way as in Fig. 3 with σ = 0.05, except that we fur-
ther take SVD and rescale the ith singular value according
to 1/αi. The Frobenious norm is normalized to be the same
as the original low-rank matrix. The exponent α is given on
the horizontal axis.

sumes known rank of the underlying matrix while nu-

clear norm methods do not, the results we observe are

quite reasonable. In addition, among different MF al-

gorithms, some perform much better than others. The

best few of them achieve something close to the lower
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Fig. 5 Cumulative histogram on the pixel RMSE for 100
randomly initialized runs conducted for each algorithm on
Dinosaur sequence. The curve summarizes how many runs
of each algorithm corresponds to the global optimal solution
(with pixel RMSE 1.0847) on the horizontal axis. Note that
the input pixel coordinates are normalized to between [0, 1]
for the experiments, but to be comparable with Buchanan
and Fitzgibbon (2005), the objective value is scaled back to
the original size.

bound5. This corroborates our intuition that MF is

probably a better choice for problems with known rank.

From Fig. 3 and 4, we observe that the following

classes of algorithms, including LM X series (Chen 2008),

Wiberg (Okatani and Deguchi 2007), Non-linear Con-

jugate Gradient method (NLCG) (Srebro and Jaakkola

2003) and the curvilinear search on Stiefel manifold

(OptManifold (Wen and Yin 2013)) perform signifi-

cantly better than others in reaching the global opti-

mal solution despite their non-convexity. The percent-

age of global optimal hits from random initialization is

promising even when the observations are highly noisy

or when the condition number of the underlying matrix

is very large6.

The common attribute of the four algorithms is that

they are all based on the model (9) which parameter-

izes the factor V as a function of U and then optimizes

over U alone. This parameterization essentially reduces

the problem to finding the best subspace that fits the

data. What is different between them is the way they

update the solution in each iteration. OptManifold and

NLCG adopt a Strong Wolfe line search that allows the

algorithm to take large step sizes, while the second or-

der methods approximate each local neighborhood with

5 The lower bound is given by the percentage of randomly
generated data that have at least one column or row hav-
ing less than r samples. Clearly, having at least r samples
for every column and row is a necessary condition for exact
recovery.
6 When α = 3.5 in Fig. 4, rth singular value is almost as

small as the spectral norm of the input noise.

a convex quadratic function and jump directly to the

minimum of the approximation. This difference appears

to matter tremendously on the SfM experiment (see

Fig. 5). We observe that only the second order meth-

ods achieve global optimal solution frequently, whereas

the Strong Wolfe line search adopted by both OptMan-

ifold and NLCG does not seem to help much on the real

data experiment like it did in simulation with randomly

generated data. Indeed, neither approach reaches the

global optimal solution even once in the hundred runs,

though they are rather close in quite a few runs. De-

spite these close runs, we remark that in applications

like SfM, it is important to actually reach the global

optimal solution. Due to the large amount of missing

data in the matrix, even slight errors in the sampled

entries can cause the recovered missing entries to go

totally haywire with a seemingly good local minimum

(see Fig. 6). We thus refrain from giving any credit to

local minima even if the RMSEvisible error (defined in

(13)) is very close to that of the global minimum.

RMSEvisible :=
‖PΩ(Wrecovered − Ŵ )‖√

|Ω|
. (13)

(a) Local minimum (b) Global minimum

Fig. 6 Comparison of the feature trajectories correspond-
ing to a local minimum and global minimum of (8), given
partial uncorrupted observations. Note that RMSEvisible =
1.1221pixels in (a) and RMSEvisible = 1.0847pixels in
(b). The latter is precisely the reported global minimum
in Okatani and Deguchi (2007); Buchanan and Fitzgib-
bon (2005) and Chen (2008). Despite the tiny difference in
RMSEvisible, the filled-in values for missing data in (a) are
far off.

Another observation is that LM GN seems to work

substantially better than other second-order methods

with subspace or manifold parameterization, reaching

global minimum 93 times out of the 100 runs. Com-

pared to LM S and LM M, the only difference is the

use of Gauss-Newton approximation of the Hessian.

According to the analysis in Chen (2011), the Gauss-

Newton Hessian provides the only non-negative convex
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DN Wiberg LM S LM M LM GN
No. of hits at global min. 2 46 42 32 93
No. of hits on stopping condition 75 47 99 93 98
Average run time(sec) 324 837 147 126 40
No. of variables (m+n)r (m-r)r mr (m-r)r (m-r)r
Hessian Yes Gauss-Newton Yes Yes Gauss-Newton
LM/Trust Region Yes No Yes Yes Yes
Largest Linear system to solve [(m+ n)r]2 |Ω| ×mr mr ×mr [(m− r)r]2 [(m− r)r]2

Table 2 Comparison of various second order matrix factorization algorithms

quadratic approximation that preserves the so-called

“zero-on-(n − 1)-D” structure of a class of nonlinear

least squares problems, into which (8) can be formu-

lated. Compared to the Wiberg algorithm that also

uses Gauss-Newton approximation, the advantage of

LM GN is arguably the better global convergence due

to the augmentation of the LM damping factor. Indeed,

as we verify in the experiment, Wiberg algorithm fails

to converge at all in most of its failure cases. The de-

tailed comparisons of the second order methods and

their running time on the Dinosaur sequence are sum-

marized in Table 2. Part of the results replicate that in

Chen (2008); however, Wiberg algorithm and LM GN

have not been explicitly compared previously. It is clear

from the Table that LM GN is not only better at reach-

ing the optimal solution, but also computationally cheaper

than other methods which require explicit computation

of the Hessian7.

To summarize the key findings of our experimental

evaluation, we observe that: (a) the fixed-rank MF for-

mulation requires less samples than nuclear norm min-

imization to achieve exact recovery; (b) the compact

parameterization on the subspace, strong line search or

second order update help MF algorithms in avoiding

local minima in high noise, poorly conditioned matrix

setting; (c) LM GN with Gauss-Newton update is able

to reach the global minimum with a very high success

rate on a challenging real SfM data sequence.

4 (Partially Majorized) Proximal Alternating

Robust Subspace Minimization for (3)

Our proposed PARSuMi method for problem (3) works

in two stages. It first obtains a good initialization from

an efficient convex relaxation of (3), which will be de-

scribed in Section 4.6. This is followed by the minimiza-

tion of the low rank matrix W and the sparse matrix

E alternatingly until convergence. The efficiency of our

PARSuMi method depends on the fact that the two in-

ner minimizations of W and E admit efficient solutions,

7 Wiberg algoirthm takes longer time mainly because it
sometimes does not converge and exhausts the maximum
number of iterations.

which will be derived in Sections 4.1 and 4.3 respec-

tively. Specifically, in step k, we compute W k+1 from

either

min
W

1

2
‖H ◦ (W − Ŵ + Ek)‖2 +

β1

2
‖H ◦ (W −W k)‖2

subject to rank(W ) ≤ r,
(14)

or its quadratic majorization8, and Ek+1 from

min
E

1

2
‖H ◦ (W k+1 − Ŵ + E)‖2 +

β2

2
‖E − Ek‖2

subject to ‖E‖0 ≤ N0, ‖E‖ ≤ KE , E ∈ Rm×nΩ ,
(15)

where H is defined as in (2). Note that the above it-

eration is different from applying a direct alternating

minimization of (3). We have added the proximal reg-

ularization terms ‖H ◦ (W −W k)‖2 and ‖E −Ek‖2 to

make the objective functions in the subproblems coer-

cive and hence ensuring that W k+1 and Ek+1 are well

defined. As is shown in Attouch et al (2010), the prox-

imal terms are critical to ensure the critical point con-

vergence of the sequence. In addition, we have added a

quadratic majorization safeguard step when computing

W k+1. This is to safeguard the convergence even if our

computed W k+1 fails to be a global minimizer of (14).

Further details of the algorithm and the proof of its

convergence are provided in the subsequent sections.

4.1 Computation of W k+1 in (14)

Our solution for (14) consists of two steps. We first

transform the rank-constrained minimization (14) into

an equivalent subspace fitting problem, then solve the

new formulation using LM GN.

Motivated by the findings in Section 3 where the

most successful algorithms for solving (12) are based

on the formulation (9), we will now derive a similar

equivalent reformulation of (14). Our reformulation of

(14) is motivated by the N -parametrization of (12) due

to Chen (2008), who considered the task of matrix com-

pletion as finding the best subspace to fit the partially

8 We will explain this further shortly.
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observed data. In particular, Chen proposes to solve

(12) using

min
N

{
1

2

∑
i

ŵTi (I − Pi)ŵi

∣∣∣∣∣NTN = I

}
(16)

where N is a m × r matrix whose column space is the

underlying subspace to be reconstructed, Ni is N but

with those rows corresponding to the missing entries in

column i removed. Pi = NiN
+
i is the projection onto

span(Ni) with N+
i being the Moore-Penrose pseudo in-

verse of Ni, and the objective function minimizes the

sum of squares distance between ŵi to span(Ni), where

ŵi is the vector of observed entries in the ith column of

Ŵ .

4.1.1 N-parameterization of the subproblem (14)

First define the matrix H ∈ Rm×n as follows:

Hij =

{√
1 + β1 if (i, j) ∈ Ω
√
ε+ εβ1 if (i, j) 6∈ Ω.

(17)

Let Bk ∈ Rm×n be the matrix defined by

Bkij =


1√

1+β1
(Ŵij − Ekij + β1W

k
ij) if (i, j) ∈ Ω

εβ1√
ε+εβ1

W k
ij if (i, j) 6∈ Ω.

(18)

Define the diagonal matrices Di ∈ Rm×m to be

Di = diag(Hi), i = 1, . . . , n (19)

where Hi is the ith column of H. It turns out that the

N -parameterization for the regularized problem (14)

has a similar form as (16), as shown below.

Proposition 1 (Equivalence of subspace param-

eterization) Let Qi(N) = DiN(NTD2
iN)−1NTDi, which

is the m ×m projection matrix onto the column space

of DiN . The problem (14) is equivalent to the following

problem:

min
N

f(N) :=
1

2

n∑
i=1

‖Bki −Qi(N)Bki ‖2

subject to NTN = I, N ∈ Rm×r
(20)

where Bki is the ith columns of Bk. If N∗ is an optimal

solution of (20), then W k+1, whose columns are defined

by

W k+1
i = D−1

i Qi(N∗)Bki , (21)

is an optimal solution of (14).

Proof We can show by some algebraic manipulations

that the objective function in (14) is equal to

1

2
‖H ◦W −Bk‖2 + constant

Now note that we have

{W ∈ Rm×n | rank(W ) ≤ r}
= {NC | N ∈ Rm×r, C ∈ Rr×n, NTN = I}. (22)

Thus the problem (14) is equivalent to

min
N
{f(N) | NTN = I,N ∈ Rm×r} (23)

where

f(N) := min
C

1

2
‖H ◦ (NC)−Bk‖2.

To derive (20) from the above, we need to obtain f(N)

explicitly as a function of N . For a given N , the un-

constrained minimization problem over C in f(N) has

a strictly convex objective function in C, and hence the

unique global minimizer satisfies the following optimal-

ity condition:

NT ((H ◦H) ◦ (NC)) = NT (H ◦Bk). (24)

By considering the ith column Ci of C, we get

NTD2
iNCi = NTDiBki , i = 1, . . . , n. (25)

Since N has full column rank and Di is positive def-

inite, the coefficient matrix in the above equation is

nonsingular, and hence

Ci = (NTD2
iN)−1NTDiBki .

Now with the optimal Ci above for the given N , we

can show after some algebra manipulations that f(N)

is given as in (20). ut

We can see that when β1 ↓ 0 in (20), then the prob-

lem reduces to (16), with the latter’s ŵi appropriately

modified to take into account of Ek. Also, from the

above proof, we see that the N -parameterization re-

duces the feasible region of W by restricting W to only

those potential optimal solutions among the set of W

satisfying the expression in (21). This seems to imply

that it is not only equivalent but also advantageous to

optimize over N instead of W . While we have no the-

oretical justification of this conjecture, it is consistent

with our experiments in Section 3 which show the supe-

rior performance of those algorithms using subspace pa-

rameterization in finding global minima and vindicates

the design motivations of the series of LM X algorithms

in Chen (2008).
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4.1.2 LM GN updates

Now that we have shown how to handle the regulariza-

tion term and validated the equivalence of the trans-

formation, the steps to solve (14) essentially general-

ize those of LM GN (available in Section 3.2 and Ap-

pendix A of Chen (2011)) to account for the general

mask H. The derivations of the key formulae and their

meanings are given in this section.

In general, Levenberg-Marquadt solves the non-linear

problem with the following sum-of-squares objective func-

tion

L(x) =
1

2

∑
i=1:n

‖yi − fi(x)‖2, (26)

by iteratively updating x as follows:

x← x+ (JTJ + λI)−1JT r,

where J = [J1; . . . ; Jn] is the Jacobian matrix and Ji is

the Jacobian matrix of fi; r is the concatenated vector

of residual ri := yi−fi(x) for all i, and λ is the damping

factor that interpolates between Gauss-Newton update

and gradient descent. We may also interpret the iter-

ation as a Damped Newton method with a first order

approximation of the Hessian matrix using JTJ .

Note that the objective function of (20) can be ex-

pressed in the form of (26) by taking x := vec(N), data

yi := Bki , and function

fi(x := vec(N)) = Qi(N)Bki = Qiyi

Proposition 2 Let T ∈ Rmr×mr be the permutation

matrix such that vec(XT ) = T vec(X) for any X ∈
Rm×r. The Jacobian of fi(x) = Qi(N)yi is given as

follows:

Ji(x) = (ATi yi)T ⊗ ((I −Qi)Di) + [(Diri)T ⊗ Ai]T . (27)

Also JTJ =
∑n
i=1 J

T
i Ji, J

T r =
∑n
i=1 J

T
i ri, where

JTi Ji = (ATi yiyTi Ai)⊗ (Di(I −Qi)Di)

+ T T [(DirirTi Di)⊗ (ATi Ai)]T (28)

JTi ri = vec(Diri(ATi yi)T ). (29)

In the above, ⊗ denotes the Kronecker product.

Proof Let Ai = DiN(NTD2
iN)−1. Given sufficiently

small δN , we can show that the directional derivative

of fi at N along δN is given by

f ′i(N + δN) = (I −Qi)DiδNATi yi + AiδNTDiri.

By using the property that vec(AXB) = (BT⊗A)vec(X),

we have

vec(f ′i(N + δN)) = [(ATi yi)T ⊗ ((I −Qi)Di)]vec(δN)

+[(Diri)T ⊗ Ai]vec(δNT )

Algorithm 1 Levenberg-Marquadt method for (14)

Input: Ŵ , Ek,Wk, H̄, objective function L(x) and initial
Nk; numerical parameter λ, ρ > 1.
Initialization: Compute yi = Bki for i = 1, ..., n, and
x0 = vec(Nk), j = 0.
while not converged do

1. Compute JT r and JT J using (29) and(28).
2. Compute ∆x = (JT J + λI)−1JT r
while L(x+∆x) < L(x) do

(1) λ = ρλ.
(2) ∆x = (JT J + λI)−1JT r.

end while
3. λ = λ/ρ.
4. Orthogonalize N = orth[reshape(xj +∆x)].
5. Update xj+1 = vec(N).
6. Iterate j = j + 1

end while
Output: Nk+1 = N , Wk+1 using (21) with Nk+1 replac-
ing N∗.

From here, the required result in (27) follows.

To prove (28), we make use of the following proper-

ties of Kronecker product: (A ⊗ B)(C ⊗D) = (AC) ⊗
(BD) and (A⊗B)T = AT ⊗BT . By using these prop-

erties, we see that JTi Ji has four terms, with two of the

terms containing involving Di(I − Qi)Ai or its trans-

pose. But we can verify that QiAi = Ai and hence

those two terms become 0. The remaining two terms

are those appearing in (28) after using the fact that

(I −Qi)2 = I −Qi. Next we prove (29). We have

JTi ri = vec(Di(I −Qi)ri(ATi yi)T ) + T Tvec(ATi rirTi Di).

By noting that ATi ri = 0 and Qiri = 0, we get the

required result in (29). ut

The complete procedure of solving (14) is summarized
in Algorithm 1. In all our experiments, the initial λ is

chosen as 1e− 6 and ρ = 10.

4.2 Quadratic majorization of (14)

Recall that while the LM GN method may be highly

successful in computing a global minimizer for (14) em-

pirically, W k+1 may fail to be a global minimizer oc-

casionally. Thus before deriving the update rule for

Ek+1, we consider minimizing a quadratic majorization

of (14) as a safeguard step to ensure the convergence of

the PARSuMi iterations. Recall that (14) is equivalent

to

W k+1 = argmin
W

{
1

2
‖H ◦ (W − B̂k)‖2

∣∣∣∣rank(W ) ≤ r
}

where B̂k = H
−1 ◦ Bk with H and Bk defined as in

(17) and (18) respectively.
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For convenience, we denote the above objective func-

tion F (W, B̂k). Suppose that we have positive vectors

p ∈ Rm and q ∈ Rn such that

H̄2
ij ≤ piqj ∀ i = 1, . . . ,m, j = 1, . . . , n. (30)

Note that the above inequality always holds if p, q are

chosen to be

pi = max{H̄ij | j = 1, . . . , n}, i = 1, . . . ,m

qj = max{H̄ij | i = 1, . . . ,m}, j = 1, . . . , n. (31)

Let Gk = ∇WF (W k, B̂k). We majorize F (W, B̂k) by

bounding its Taylor expansion at W k

F (W, B̂k)− F (W k, B̂k) = 〈Gk,W −W k〉

+
1

2
〈W − B̂k, (H̄ ◦ H̄) ◦ (W − B̂k)〉

≤ 〈Gk,W −W k〉+
1

2
〈W −W k, P (W −W k)Q〉

=
1

2
‖P 1/2WQ1/2 − Uk‖2 − 1

2
‖P−1/2GkQ−1/2‖2 (32)

where P = diag(p) andQ = diag(q), Uk = P 1/2W kQ1/2−
P−1/2GkQ−1/2.

Proposition 3 The minimizer of quadratic majoriza-

tion function in (32) is given in closed-form by

W k+1
QM ∈ P−1/2Πr(U

k)Q−1/2. (33)

Here Πr(U
k) denotes the set of best rank-r approxima-

tion of Uk.

The proof is simple and is given in the Appendix. Note

that this is a nonconvex minimization, yet we have an

efficient closed-form solution thanks to SVD.

As we shall see later in Algorithm 4, the global mini-

mizer W k+1
QM in (33) of the quadratic majorization func-

tion of F (W, B̂k) is used as a safeguard when the com-

puted solution W k+1 from (14) is inferior (which nec-

essarily implies that W k+1 is not a global optimal solu-

tion) to W k+1
QM . By doing so, the convergence of PAR-

SuMi can be ensured, as we shall prove in Theorem 1.

4.3 Sparse corruption recovery step (15)

In the sparse corruption step, we need to solve the `0-

constrained least squares minimization (15). This prob-

lem is combinatorial in nature, but fortunately, for our

problem, we show that a closed-form solution can be

obtained. Let x := PΩ(E). Observe that (15) can be

expressed in the following equivalent form:

min
x

{
‖x− b‖2 | ‖x‖0 ≤ N0, ‖x‖2 −K2

E ≤ 0
}

(34)

where b = PΩ(Ŵ −W k+1 + β2E
k)/(1 + β2).

Algorithm 2 Closed-form solution of (15)

Input:Ŵ ,Wk+1, Ek, Ω.
1. Compute b using (34).
2. Compute x using (35).
Output: Ek+1 = P∗Ω(x).

Algorithm 3 (Partially Majorized) Proximal Alternat-

ing Robust Subspace Minimization (PARSuMi)

Input:Observed data Ŵ , sample mask Ω, parameter r,N0.
Initialization W 0 and E0 (typically by Algorithm 5 de-
scribed in Section 4.6), k = 0.
repeat

1a. Solve (14) using Algorithm 1 with Wk,Ek,Nk, ob-
tain updates W̃k+1 and Ñk+1

1b. Evaluate (33) with Wk,Ek obtain updates Ŵk+1.

2. Assign Wk+1 = argminW∈{W̃ k+1,Ŵ k+1} F (W, B̂k),

and then assign the corresponding N(k+1).
3. Solve (15) using Algorithm 2 with Wk+1, Ek; obtain
updates Ek+1.

until ‖Wk+1 −Wk‖ < ‖Wk‖ · 10−6 and ‖Ek+1 −Ek‖ <
‖Ek‖ · 10−6

Output: Accumulation points W and E

Proposition 4 Let I be the set of indices of the N0

largest (in magnitude) component of b. Then the nonzero

components of the optimal solution x of (34) is given

by

xI =

{
KEbI/‖bI‖ if ‖bI‖ > KE

bI if ‖bI‖ ≤ KE.
(35)

The proof (deferred to the Appendix) involves check-

ing the optimality conditions of (34) assuming known

support set and finding the optimal support set in a

decoupled fashion.

The procedure to obtain the optimal solution of (15)

is summarized in Algorithm 2. We remark that this is

a very special case of `0-constrained optimization; the

availability of the exact closed form solution depends on

both terms in (15) being decomposable into individual

(i, j) term. In general, if we change the operator M →
H ◦M in (15) to a general linear transformation (e.g.,

a sensing matrix in compressive sensing), or change the

norm ‖·‖ of the proximal term to some other norm such

as spectral norm or nuclear norm, then the problem

becomes NP-hard.

4.4 Algorithm

Our method is summarized in Algorithm 3. Note that

we do not need to know the exact cardinality of the

corrupted entries; N0 can be taken as an upper bound

of the allowable number of corruptions. As a rule of

thumb, 10-15% of |Ω| is a reasonable size. The surplus
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in N0 will only label a few noisy samples as corrup-

tions, which should not affect the recovery of either W

or E, so long as the remaining |Ω|−N0 samples are still

sufficient. The other parameter r is typically given by

the physical model of the problem. For those problems

where r is not known, choosing r is analogous to choos-

ing the regularization parameter as in other machine

learning tasks. A large r will lead to overfitting and

poorly estimated missing data while an overly small r

will cause underfitting of the observed data.

4.5 Convergence to a critical point

In this section, we show the convergence of Algorithm

3 to a critical point.

Note that due to the non-convex nature of the sub-

problem (14), Algorithm 1 is guaranteed to converge

only to a local minimum. Therefore, the result in At-

touch et al (2010) that requires global optimal solutions

in all subproblems cannot be directly applied in our case

for the critical point convergence proof. Empirically, we

cannot hope LM GN to always find the global optimal

solution of (14) either, as our experiments on LM GN

in Section 3 clearly demonstrated. As a result, we de-

sign the partial majorization (Step 1b) in Algorithm 3

to safeguard against the case when the computed solu-

tion from Step 1a is not a global optimal solution. The

safeguard step is powerful in that we do not need to

assume anything on the computed solution of the sub-

problem before we can prove the overall critical point

convergence.

We start our convergence proof by first defining

an equivalent formulation of (3) in terms of closed,

bounded sets. The convergence proof is then based on

the indicator functions for these closed and bounded

sets, which have the key lower semicontinuous property.

LetKW = 2‖Ŵ‖+KE . Define the closed and bounded

sets:

W = {W ∈ Rm×n | rank(W ) ≤ r, ‖H ◦W‖ ≤ KW }

E = {E ∈ Rm×nΩ | ‖E‖0 ≤ N0, ‖E‖ ≤ KE}.

We will first show that (3) is equivalent to the problem

given in the next proposition.

Proposition 5 Let f(W,E) := 1
2‖H ◦(W +E−Ŵ )‖2.

The problem (3) is equivalent to the following problem:

min
{
f(W,E) |W ∈ W, E ∈ E

}
. (36)

Proof Observe that the only difference between (3) and

(36) is the inclusion of the bound constraint on ‖H ◦
W‖ in (36). To show the equivalence, we only need to

show that any minimizer (W,E) of (3) must satisfy the

bound constraint in W. By definition, we know that

f(W,E) ≤ f(0, 0) =
1

2
‖Ŵ‖2.

Now for any (W,E) such that rank(W ) ≤ r, E ∈ E and

‖H ◦W‖ > KW , we must have

‖H ◦ (W + E − Ŵ )‖ ≥ ‖H ◦W‖ − ‖H ◦ (E − Ŵ )‖

> KW − ‖E‖ − ‖Ŵ‖ ≥ ‖Ŵ‖.

Hence f(W,E) > 1
2‖Ŵ‖

2 = f(0, 0). This implies that

we must have ‖H ◦ (W )‖ ≤ KW . ut

To establish the convergence of PARSuMi, it is more

convenient for us to consider the following generic prob-

lem which includes (36) as a special case. Let X , Y, Z be

finite-dimensional inner product spaces, and f : X →
R ∪ {∞}, g : Y → R ∪ {∞} are lower semi-continuous

functions. We consider the problem:

min
x,y
{L(x, y) := f(x) + g(y) + q(x, y)} (37)

where q(x, y) = 1
2‖Ax + By − c‖2 and A : X → Z,

B : Y → Z are given linear maps. For (36), we have

X = Z = Rm×n, Y = Rm×nΩ , A(x) = H ◦ x, B(y) =

H ◦ y, c = Ŵ . and f , g are the following indicator

functions,

f(x) =

{
0 if x ∈ W
∞ otherwise

g(y) =

{
0 if y ∈ E
∞ otherwise

Note that in this case, f are g are lower semicontin-

uous since indicator functions of closed sets are lower

semicontinuous (Rudin 1987).

To denote the corresponding majorization safeguard,

we define, for a fixed (x̂, ŷ) and given M � A∗A

Q(x; x̂, ŷ) := q(x̂, ŷ) + 〈∇xq(x̂, ŷ), x− x̂〉+
1

2
‖x− x̂‖2M

(38)

L̂(x; x̂, ŷ) := Q(x; x̂, ŷ) + f(x) + g(ŷ) (39)

where ‖ · ‖M is defined in the last part of Algorithm 4.

Then, we have that

q(x, ŷ) = Q(x; x̂, ŷ)− 1

2
‖x− x̂‖2M−A∗A (40)

L(x, ŷ) = L̂(x; x̂, ŷ)− 1

2
‖x− x̂‖2M−A∗A (41)

Consider the partially majorized proximal alternat-

ing minimization (PMPAM) outlined in Algorithm 4,

which we have modified from Attouch et al (2010). The

algorithm alternates between minimizing x and y, but
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with the important addition of the quadratic Moreau-

Yoshida regularization term (which is also known as

the proximal term) in each step. The importance of

Moreau-Yoshida regularization for convex matrix opti-

mization problems has been demonstrated and studied

in Liu et al (2009); Yang et al (2012); Wu et al (2011a).

For our non-convex, non-smooth setting here, the im-

portance of the proximal term will become clear when

we prove the convergence of Algorithm 4. For our prob-

lem (36), the positive linear maps S and T in Algorithm

4 correspond to β1(H ◦H)◦ and β2I respectively, where

β1, β2 are given positive parameters. Our algorithm dif-

fers from that in Attouch et al (2010) by having the

safeguard step (in Step 1b and Step 2) to ensure that

critical point convergence can be achieved even if the

computed solution in Step 1a is not globally optimal.

Observe that one can bypass Step 1a in Algorithm 4

completely and always choose to use Step 1b. But the

minimization in Step 1b based on quadratic majoriza-

tion may not reduce the merit function L(x, yk)+ 1
2‖x−

xk‖2S as quickly as the minimization in Step 1a. Thus it

is necessary to have Step 1a to ensure that Algorithm 4

converges at a reasonable speed. We note that a similar

safeguard step can be introduced for the subproblem in

Step 3 if the global optimality of yk+1 is not guaranteed.

Algorithm 4 Partially majorized proximal alternating

minimization (PMPAM)

Input:(x0, y0) ∈ X ×Y; positive linear operators S and T .
Choose M such that M � A∗A+ S in (38).
repeat

1a. Compute x̃k+1 ∈ argmin{L(x, yk) + 1
2
‖x− xk‖S}.

1b. Compute x̂k+1 ∈ argmin
{
L̂(x;xk, yk)

}
2. Consider condition (I) L(x̃k+1, yk) + 1

2
‖x̃k+1 −

xk‖S ≤ L(x̂k+1, yk) + 1
2
‖x̂k+1 − xk‖S . Set

xk+1 =

{
x̃k+1 if condition (I) holds

x̂k+1 otherwise.

3. yk+1 = argmin{L(xk+1, y) + β2

2
‖y − yk‖2T }

until convergence
Output: Accumulation points x and y

In the above, S and T are given positive definite

linear maps, and ‖x − xk‖2S = 〈x − xk, S(x − xk)〉,
‖y − yk‖2T = 〈y − yk, T (y − yk)〉. Note that Step 1b is

to safeguard against the possibility that the computed

x̃k+1 is not a global optimal solution of the subproblem.

We assume that it is possible to compute the global op-

timal solution x̂k+1 analytically.

Note that for our problem (36), the global minimizer

of the nonconvex subproblem in Step 1b can be com-

puted analytically as discussed in Section 4.2. Next we

show that any limit point of {(xk, yk)} is a stationary

point of L even if x̃k+1 computed in Step 1a is not a

global minimizer of the subproblem.

Theorem 1 Let {(xk, yk)} be the sequence generated
by Algorithm 4, and (x̃k+1, x̂k+1) are the intermediate
iterates at iteration k.

(a) For all k ≥ 0, we have that

L(x̂k+1, yk) +
1

2
‖x̂k+1 − xk‖2S +

1

2
‖x̂k+1 − xk‖2M−A∗A−S

= L̂(x̂k+1;xk, yk) ≤ L(xk, yk), (42)

L(xk+1, yk) +
1

2
‖xk+1 − xk‖2S ≤ L(x̂k+1, yk) +

1

2
‖x̂k+1 − xk‖2S .

(43)

(b) For all k ≥ 0, we have that

L(xk+1, yk+1)+
1

2
‖xk+1−xk‖2S+

1

2
‖yk+1−yk‖2T ≤ L(xk, yk).

(44)

Hence
∑∞
k=0 ‖xk+1 − xk‖2S + ‖yk+1 − yk‖2T < ∞ and

lim
k→∞

‖xk+1 − xk‖ = 0 = lim
k→∞

‖yk+1 − yk‖.

(c) Let {(xk′ , yk′)} be any convergent subsequence of

{(xk, yk)} with limit (x̄, ȳ). Then limk→∞ L(xk, yk) =

limk→∞ L(xk+1, yk) = limk→∞ L̂(x̂k+1;xk, yk) = L(x̄, ȳ).

Furthermore limk→∞ ‖x̂k+1 − xk‖ = 0.

(d) Let {(xk′ , yk′)} be any convergent subsequence of

{(xk, yk)} with limit (x̄, ȳ). Then (x̄, ȳ) is a stationary

point of L.

The full proof is given in the Appendix. Here we ex-

plain the four parts of Theorem 1. Part(a) establishes

the non-increasing monotonicity of the proximal regu-

larized update. Leveraging on part(a), part(b) ensures

the existence of the limits. Using Part(a), (b) and (c),

(d) then shows the critical point convergence of Algo-

rithm 4.

4.6 Convex relaxation of (3) as initialization

Due to the non-convexity of the rank and `0 cardinality

constraints, it is expected that the outcome of Algo-

rithm 3 depends on initializations. A natural choice for

the initialization of PARSuMi is the convex relaxation

of both the rank and `0 function:

min
{
f(W,E)+λ‖W‖∗+γ‖E‖1 |W ∈ Rm×n, E ∈ Rm×nΩ

}
(45)

where f(W,E) = 1
2‖H ◦ (W + E − Ŵ )‖2, ‖ · ‖∗ is the

nuclear norm, and λ and γ are regularization parame-

ters.

Problem (45) can be solved efficiently by the quadratic

majorization-APG (accelerated proximal gradient) frame-

work proposed by Toh and Yun (2010). At the kth iter-

ation with iterate (W̄ k, Ēk), the majorization step re-

places (45) with a quadratic majorization of f(W,E),
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so that W and E can be optimized independently, as

we shall see shortly. Let Gk = (H ◦H)◦(W̄ k+Ēk+Ŵ ).

By some simple algebra, we have

f(W,E)− f(W̄ k, Ēk) =
1

2
‖H ◦ (W − W̄ k + E − Ēk)‖2

+ 〈W − W̄ k + E − Ēk, Gk〉
≤ ‖W − W̄ k‖2 + ‖E − Ēk‖2 + 〈W − W̄ k + E − Ēk, Gk〉

= ‖W − W̃ k‖2 + ‖E − Ẽk‖2 + constant

where W̃ k = W̄ k − Gk/2 and Ẽk = Ēk − Gk/2. At

each step of the APG method, one minimizes (45) with

f(W,E) replaced by the above quadratic majorization.

As the resulting problem is separable in W and E, we

can minimize them separately, thus yielding the follow-

ing two optimization problems:

W k+1 = argmin
1

2
‖W − W̃ k‖2 +

λ

2
‖W‖∗ (46)

Ek+1 = argmin
1

2
‖E − Ẽk‖2 +

γ

2
‖E‖1 (47)

The main reason for performing the above majoriza-

tion is because the solutions to (46) and (47) can read-

ily be found with closed-form solutions. For (46), the

minimizer is given by the Singular Value Thresholding

(SVT) operator. For (47), the minimizer is given by the

well-known soft thresholding operator (Donoho 1995).

The APG algorithm, which is adapted from Beck and

Teboulle (2009) and analogous to that in Toh and Yun

(2010), is summarized below.

Algorithm 5 An APG algorithm for (45)

Input: Initialize W 0 = W̄ 0 = 0, E0 = Ē0 = 0, t0 = 1,
k = 0
repeat

1. Compute Gk = (H ◦H) ◦ (W̄k + Ēk + Ŵ ), W̃k, Ẽk.

2. Update Wk+1 by applying the SVT on W̃k in (46).
3. Update Ek+1 by applying the soft-thresholding op-
erator on Ẽk in (47).

4. Update step size tk+1 = 1
2

(1 +
√

1 + 4t2k).

5. (W̄k+1, Ēk+1) = (Wk+1, Ek+1) + tk−1
tk+1

(Wk+1 −
Wk, Ek+1 − Ek)

until Convergence
Output: Accumulation points W and E

As has already been proved in Beck and Teboulle

(2009), the APG algorithm, including the one above,

has a very nice worst case iteration complexity result

in that for any given ε > 0, the APG algorithm needs at

most O(1/
√
ε) iterations to compute an ε-optimal (in

terms of function value) solution.

The tuning of the regularization parameters λ and

γ in (45) is fairly straightforward. For λ, we use the sin-

gular values of the converged W as a reference. Starting

from a relatively large value of λ, we reduce it by a con-

stant factor in each pass to obtain a W such that its sin-

gular values beyond the rth are much smaller than the

first r singular values. For γ, we use the suggested value

of 1/
√

max(m,n) from RPCA (Candès et al 2011). In

our experiments, we find that we only need a ballpark

figure, without having to do a lot of tuning. Taking

λ = 0.2 and γ = 1/
√

max(m,n) serve the purpose well.

4.7 Other heuristics

In practice, we design two heuristics to further boost

the quality of the convex initialization. These are tricks

that allow PARSuMi to detect corrupted entries better

and are always recommended.

We refer to the first heuristic as “Huber Regres-

sion”. The idea is that the quadratic loss term in our

matrix completion step (14) is likely to result in a dense

spread of estimation error across all measurements. There

is no guarantee that those true corrupted measurements

will hold larger errors comparing to the uncorrupted

measurements. On the other hand, we note that the

quality of the subspace Nk obtained from LM GN is

usually good despite noisy/corrupted measurements. This

is especially true when the first LM GN step is initial-

ized with Algorithm 5. Intuitively, we should be better

off with an intermediate step, using Nk+1 to detect the

errors instead of W k+1, that is, keeping Nk+1 as a fixed

input and finding coefficient C and E simultaneously

with

min
E,C

1

2
‖H ◦ (Nk+1C − Ŵ + E)‖2

subject to ‖E‖0 ≤ N0.

(48)

To make it computationally tractable, we relax (48) to

min
E,C

1

2
‖H ◦ (Nk+1C − Ŵ + E)‖2 + η0‖E‖1 (49)

where η0 > 0 is a penalty parameter. Note that each

column of the above problem can be decomposed into

the following Huber loss regression problem (E is ab-

sorbed into the Huber penalty)

min
Cj

m∑
i=1

Huberη0/Hij (Hij((N
k+1Cj)i − Ŵij)). (50)

Since Nk+1 is known, (49) can be solved very efficiently

using the APG algorithm, whose derivation is similar to

that of Algorithm 5, with soft-thresholding operations

on C and E. To further reduce the Robin Hood effect

(that haunts all `1-like penalties) and enhance sparsity,

we may optionally apply the iterative re-weighted Hu-

ber minimization (a slight variation of the method in
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Candès et al (2008)), that is, solving (50) for lmax it-

erations using an entrywise weighting factor inversely

proportional to the previous iteration’s fitting residual.

In the end, the optimal columns Cj ’s are concatenated

into the optimal solution matrix C∗ of (49), and we set

W k+1 = Nk+1C∗.

With this intermediate step between the W step and

the E step, it is much easier for the E step to detect

the support of the actual corrupted entries.

The above procedure can be used in conjunction

with another heuristic that avoids adding false posi-

tives into the corruption set in the E step when the

subspace N has not yet been accurately recovered. This

is achieved by imposing a threshold η on the minimum

absolute value of Ek’s non-zero entries, and shrink this

threshold by a factor (say 0.8) in each iteration. The

“Huber regression” heuristic is used only when η > η0,

and hence only in a very small number of iteration

before the support of E has been reliably recovered.

Afterwards the pure PARSuMi iterations (without the

Huber step) will take over, correct the Robin Hood ef-

fect of Huber loss and then converge to a high quality

solution.

Note that our critical point convergence guarantee

in Section 4.5 is not hampered at all by the two heuris-

tics, since after a small number of iterations, η ≤ η0

and we come back to the pure PARSuMi.

5 Experiments and discussions

In this section, we present the methodology and results
of various experiments designed to evaluate the effec-

tiveness of our proposed method. The experiments re-

volve around synthetic data and two real-life datasets:

the Oxford Dinosaur sequence, which is representative

of data matrices in SfM works, and the Extended YaleB

face dataset (Lee et al 2005), which we use to demon-

strate how PARSuMi works on photometric stereo prob-

lems.

In the synthetic data experiments, our method is

compared with the state-of-the-art algorithms for the

objective function in (10) namely Wiberg `1 (Eriksson

and Van Den Hengel 2010) and GRASTA (He et al

2011). ALP and AQP (Ke and Kanade 2005) are left

out since they are shown to be inferior to Wiberg `1
in Eriksson and Van Den Hengel (2010). For the sake

of comparison, we perform the experiment on recov-

ery effectiveness using the same small matrices as in

Section 5.1 of Eriksson and Van Den Hengel (2010).

Other synthetic experiments are conducted with more

reasonably-sized matrices. Whenever appropriate, we

also include a comparison to a variant of RPCA that

handles missing data (Wu et al 2011b) which solves

(6) using the augmented Lagrange multiplier (ALM)

algorithm (we will call it ALM-RPCA from here on-

wards). This serves as a representative of the nuclear

norm based methods.

The real data from the SfM and photometric stereo

problems contain many challenges typical in practical

scenarios. They contain large contiguous areas of miss-

ing data, and potentially highly corrupted observations

which may not be sparse too. For instance, in the YaleB

face dataset, grazing illumination tends to produce large

area of missing data (well over 50%) and often large

number of outliers too (due to specular highlights).

The PARSuMi method outperformed a variety of other

methods in the experiments, even uncovering hitherto

unknown corruptions inherent in the Dinosaur data from

SfM. The results also corroborate those obtained in the

synthetic data experiments, in that our method can

handle a substantially larger fraction of missing data

and corruptions, thus providing empirical evidence for

the efficacy of PARSuMi under practical scenarios.

For a summary of the parameters used in the exper-

iments, please refer to the Appendix.

5.1 Convex Relaxation as an Initialization Scheme

We first investigate the results of our convex initializa-

tion scheme by testing on a randomly generated 100×
100 rank-4 matrix. A random selection of 70% and 10%

of the entries are considered missing and corrupted re-

spectively. Corruptions are generated by adding large

uniform noise between [−1, 1]. In addition, Gaussian

noise N (0, σ) for σ = 0.01 is added to all observed en-

tries. From Fig. 7, we see that the convex relaxation

outlined in Section 4.6 was able to recover the error

support, but there is considerable difference in magni-

tude between the recovered error and the ground truth,

owing to the “Robin Hood” attribute of `1-norm as a

convex proxy of `0. Nuclear norm as a proxy of rank also

suffers from the same woe. Similar observations can be

made on the results of the Dinosaur experiments, which

we will show later.

Despite the problems with the solution of the convex

initialization, we find that it is a crucial step for PAR-

SuMi to work well in practice. As can be seen from

Fig. 7, the detected error support can be quite accu-

rate. This makes the E-step of PARSuMi more likely

to identify the true locations of corrupted entries.
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Fig. 7 The Robin Hood effect of Algorithm 5 on detected
sparse corruptions EInit. Left: illustration of a random selec-
tion of detected E vs. true E. Note that the support is mostly
detected, but the magnitude falls short. Right: scatter plot
of the detected E against true E (perfect recovery falls on the
y = x line, false positives on the y-axis and false negatives on
the x-axis).

(a) False negatives (b) False positives

Fig. 8 Recovery of corruptions from poor initialization.

5.2 Impacts of poor initialization

When the convex initialization scheme fails to obtain

the correct support of the error, the “Huber Regression”

heuristic may help PARSuMi to identify the support of

the corrupted entries. We illustrate the impact by in-

tentionally mis-tuning the parameters of Algorithm 5

such that the initial E bears little resemblance to the

true injected corruptions. Specifically, we test the cases

when the initialization fails to detect many of the cor-

rupted entries (false negatives) and when many entries

are wrongly detected as corruptions (false positives).

From Fig. 8, we see that PARSuMi is able to recover

the corrupted entries to a level comparable to the mag-

nitude of the injected Gaussian noise in both experi-

ments9.

9 Note that a number of false positives persist in the second
experiment. This is understandable because false positives of-
ten contaminate an entire column or row, making it impossi-
ble to recover that column/row in later iterations even if the
subspace is correctly detected. To avoid such an undesirable
situation, we prefer “false negatives” over “false positives”
when tuning Algorithm 5. In practice, it suffices to keep the
initial E relatively sparse.

Fig. 9 A histogram representing the frequency of different
magnitudes of RMSE in the estimates generated by each
method.

In most of our experiments, we find that PARSuMi

is often able to detect the corruptions perfectly from a

simple initializations with all zeros, even without the

“Huber Regression” heuristic. This is especially true

when the data are randomly generated with benign

sampling pattern and well-conditioned singular values.

However, in challenging applications such as SfM, a

good convex initialization and the “Huber Regression”

heuristic are always recommended.

5.3 Recovery effectiveness from sparse corruptions

For easy benchmarking, we use the same synthetic data

in Section 5.1 of Eriksson and Van Den Hengel (2010)

to investigate the quantitative effectiveness of our pro-

posed method. A total of 100 random low-rank matrices

with missing data and corruptions are generated and

tested using PARSuMi, Wiberg `1 and GRASTA.

In accordance with Eriksson and Van Den Hengel

(2010), the ground truth low rank matrixW ∈ Rm×n,m =

7, n = 12, r = 3, is generated as W = UV T , where

U ∈ Rm×r, V ∈ Rn×r are generated using uniform dis-

tribution, in the range [-1,1]. 20% of the data are desig-

nated as missing, and 10% are added with corruptions,

both at random locations. The magnitude of the corrup-

tions follows a uniform distribution [−5, 5]. Root mean

square error (RMSE) is used to evaluate the recovery

precision:

RMSE :=
‖Wrecovered −W‖F√

mn
. (51)

Out of the 100 independent experiments, the number of

runs that returned RMSE values of less than 5 are 100

for PARSuMi, 78 and 58 for Wiberg `1 (with two differ-

ent initializations) and similarly 94 and 93 for GRASTA.

These are summarized in Fig. 9.
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5.4 Recovery under varying level of corruptions,

missing data and noise

To gain a holistic understanding of our proposed method,

we perform a series of systematically parameterized ex-

periments on 40×60 rank-4 matrices (with the elements

of the factors U, V drawn independently from the uni-

form distribution on [−1, 1]), with conditions ranging

from 0-80% missing data, 0-20% corruptions of range

[-2,2], and Gaussian noise with σ in the range [0,0.1].

By fixing the Gaussian noise at a specific level, the re-

sults are rendered in terms of phase diagrams showing

the recovery precision as a function of the missing data

and outliers. The precision is quantified as the differ-

ence between the recovered RMSE and the oracle bound

RMSE 10. As can be seen from Fig. 10, our algorithm

obtains near optimal performance at an impressively

large range of missing data and outlier at σ = 0.0111.

For comparison, we also displayed the results for

closely related methods, e.g., ALM-RPCA (Wu et al

2011b), GRASTA (He et al 2011), DRMF (Xiong et al

2011), LM GN (Chen 2011) as well as Algorithm 5 (our

initialization). Wiberg `1 is omitted because it is too

slow. Among all the methods we compared, PARSuMi

is able to successfully reconstruct the largest range of

matrices with almost optimal numerical accuracy. Also,

the results for DRMF and LM GN are well-expected

since they are not designed to handle both missing data

and outliers.

5.5 SfM with missing and corrupted data on Dinosaur

In this section, we apply PARSuMi to the problem of

SfM using the Dinosaur sequence and investigate how

well the corrupted entries can be detected and recov-

ered in real data. We have normalized image pixel di-

mensions (width and height) to be in the range [0,1];

all plots, unless otherwise noted, are shown in the nor-

malized coordinates.

To simulate data corruptions arising from wrong

feature matches, we randomly add sparse error of the

range [-2,2]12 to 1% of the sampled entries. This is a

10 See the Appendix for details.
11 The phase diagrams for other levels of noise look very
much like Fig. 10; we therefore did not include them in the
paper.
12 In SfM data corruptions are typically matching failures.
Depending on where true matches are, error induced by a
matching failure can be arbitrarily large. If we constrain true
match to be inside image frame [0, 1](which is often not the
case), then the maximum error magnitude is 1. We found it
appropriate to at least double the size to account for general
matching failures in SfM, hence [−2, 2].

(a) PARSuMi (b) Our initialization

(c) ALM-RPCA (d) GRASTA

(e) DRMF (f) LM GN

Fig. 10 Phase diagrams (darker is better) of RMSE with
varying proportion of missing data and corruptions with
Gaussian noise σ = 0.01.

PARSuMi Wiberg `1 GRASTA
No. of success 9/10 0/10 0/10
Run time (mins):
min/avg/max

2.2/2.9/5.2 76/105/143 0.2/0.5/0.6

Min RMSE (origi-
nal pixel unit)

1.454 2.715 22.9

Min RMSE exclud-
ing corrupted en-
tries

0.3694 1.6347 21.73

Table 3 Summary of the Dinosaur experiments. Note that
because there is no ground truth for the missing data, the
RMSE is computed only for those observed entries as in
Buchanan and Fitzgibbon (2005).

more realistic (and much larger13) definition of outliers

for SfM compared to the [-50,50] pixel range used to

evaluate Wiberg `1 in Eriksson and Van Den Hengel

(2010).

We conducted the experiment 10 times each for PAR-

SuMi, Wiberg `1 (with SVD initialization) and GRASTA

(random initialization as recommended in the original

paper) and count the number of times they succeed.

13 [-50,50] in pixel is only about [-0.1,0.1] in our normalized
data, which could hardly be regarded as “gross” corruptions.
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As there are no ground truth to compare against, we

cannot use the RMSE to evaluate the quality of the

filled-in entries. Instead, we plot the feature trajectory

of the recovered data matrix for a qualitative judge-

ment. As is noted in Buchanan and Fitzgibbon (2005),

a correct recovery should consist of all elliptical trajec-

tories. Therefore, if the recovered trajectories look like

that in Fig. 6(b), we count the recovery as a success.

(a) Input (b) ALM-RPCA

(c) Wiberg `1 (d) GRASTA

(e) Our initialization (f) PARSuMi

Fig. 11 Comparison of recovered feature trajectories with
different methods. It is clear that under dense noise and gross
outliers, neither convex relaxation nor `1 error measure yields
satisfactory results. Solving the original non-convex problem
with (e) as an initialization produces a good solution.

The results are summarized in Table 3. Notably,

PARSuMi managed to correctly detect the corrupted

entries and fill in the missing data in 9 runs while

Wiberg `1 and GRASTA failed on all 10 attempts. Typ-

ical feature trajectories recovered by each method are

(a) Initialization via Algorithm 5 and the final recovered errors by

PARSuMi (Algorithm 3)

(b) Difference of the recovered and ground truth error (in original pixel

unit)

Fig. 12 Sparse corruption recovery in the Dinosaur experi-
ments: The support of all injected outliers are detected by Al-
gorithm 5 (see (a)), but the magnitudes fall short by roughly
20% (see (b)). Algorithm 3 is able to recover all injected
sparse errors, together with the inherent tracking errors in
the dataset (see the red spikes in (b)).

shown in Fig. 11. Note that only PARSuMi is able to

recover the elliptical trajectories satisfactorily.

For comparison, we also include the input (partially

observed trajectories) and the results of our convex ini-

tialization in Fig. 11(a) and 11(e) respectively.

An interesting and somewhat surprising finding is

that the result of PARSuMi is even better than the

global optimal solution for data containing supposedly

no corruptions (and thus can be obtained with `2 method)

(see Fig. 6(b), which is obtained under no corruptions

in the observed data)! In particular, the trajectories are

now closed.

The reason becomes clear when we look at Fig. 12(b),

which shows two large spikes in the vectorized difference

between the artificially injected corruptions and the re-

covered corruptions by PARSuMi. This suggests that

there are hitherto unknown corruptions inherent in the

Dinosaur data. We trace the two large ones into the raw

images, and find that they are indeed data corruptions

corresponding to mismatched feature points from the

original dataset; our method managed to recover the

correct feature matches (left column of Fig. 13).
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(a) Zoom-in view: recovered matching error in frame 13

(b) Zoom-in view: recovered matching error in frame 15

Fig. 13 Original tracking errors in the Dinosaur data identi-
fied (yellow box) and corrected by PARSuMi (green box with
red star) in frame 13 feature 86 (a) and frame 15 feature 144
(b).

The result shows that PARSuMi recovered not only

the artificially added errors, but also the intrinsic errors

in the data set. In Buchanan and Fitzgibbon (2005), it

was observed that there is a mysterious increase of the

objective function value upon closing the trajectories

by imposing orthogonality constraint on the factorized

camera matrix. Our discovery of these intrinsic tracking

errors explained this matter evidently. It is also the rea-

son why the `2-based algorithms (see Fig. 6(b)) find a

global minimum solution that is of poorer quality (tra-

jectories fail to close loop).

To complete the story, we generated the 3D point

cloud of Dinosaur with the completed data matrix. The

results viewed from different directions are shown in

Fig. 14.

Fig. 14 3D point cloud of the reconstructed Dinosaur.

5.6 Photometric Stereo

Another intuitive application for PARSuMi is photo-

metric stereo, a problem of reconstructing the 3D shape

of an object from images taken under different lighting

conditions. In the most ideal case of Lambertian surface

model (diffused reflection), the data matrix obtained by

concatenating vectorized images together is of rank 3.

Real surfaces are of course never truly Lambertian.

There are usually some localized specular regions ap-

pearing as highlights in the image. Moreover, since there

is no way to obtain a negative pixel value, all negative

Fig. 15 Illustration of the synthetic data and their surface
normal. Note that there are specular regions and shadows.

inner products will be observed as zero. This is the so-

called attached shadow. Images of non-convex object

often also contain cast shadow, due to the blocking of

light path. If these issues are teased out, then the seem-

ingly naive Lambertian model is able to approximate

many surfaces very well.

Wu et al (2011b) subscribed to this low-rank factor-

ization model and proposed to model all dark regions

as missing data, all highlights as sparse corruptions and

then use a variant of RPCA (identical to (6)) to recover

the full low-rank matrix. The solution however is only

tested on noise-free synthetic data and toy-scale real

examples. Del Bue et al (2012) applied their BALM on

photometric stereo too, attempting on both synthetic

and real data. Their contribution is to impose the nor-

mal constraint of each normal vector during the opti-

mization.

We compare PARSuMi with the aforementioned two

methods on several photometric stereo datasets. Quan-

titatively, we use the Caesar and Elephant data in Wu

et al (2011b) and compare the reconstructed surface

normal against the ground truth. The data is illustrated

in Fig. 15 and the comparison is detailed in Table 4. As

we can see, PARSuMi has the smallest reconstruction

error among the three methods in all experiments.

We also conducted a qualitative comparison of the

methods on a real-life data using Subject 3 in the Ex-

tended YaleB dataset since it was initially used to eval-

uate BALM in Del Bue et al (2012)14. As we do not

have any ground truth, we can only compare the recon-

struction qualitatively.

From Fig. 16, we can clearly see that PARSuMi is

able to recover the missing pixels in the image much

better than the other two methods. In particular, Fig. 16(a)

and 16(b) shows that PARSuMi’s reconstruction (in the

illuminated half of the face) has fewest artifacts. This

can be seen from the unnatural grooves that the red ar-

rows point to in Fig. 16(b). Moreover, we know from the

original image that the light comes from the right-hand-

side of the subject; thus all the pixels on the left side of

14 The authors claimed that it is Subject 10 (Del Bue et al
2012, Figure 9), but careful examination of all faces shows
that it is in fact Subject 3.
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Dataset PARSuMi ALM-RPCA (Wu
et al 2011b)

BALM (Del Bue et al
2012)

Oracle (a lower
bound)

Elephant 7.13e-2 (16.7 min) 7.87e-2 (1.1 min) 3.55 (1.1 min) model error
Caesar 1.83e-1 (28.6 min) 2.71e-1 (7.2 min) 3.11 (5.2 min) model error
Elephant + N (0, 0.05) 2.35 (28.3 min) 2.62 (1.5 min) 4.37 (1.1 min) 1.70 + model error
Caesar + N (0, 0.05) 2.34 (99.2 min) 2.53 (8.3 min) 4.06 (6.6 min) 1.73 + model error

Table 4 Angular error (in degree) and runtime (in minutes) comparison for the synthetic data photometric stereo experiments.
The lowest estimation error is labeled in boldface. The oracle column gives the information-theoretic limit, it depends on an
unknown model error as we are using a Lambertian model to deal with the data rendered by the Cook-Torrence model.

his face (e.g. the red ellipse area in Fig. 16(b)) should

have negative filled-in values and therefore should be

dark in the image. Neither BALM nor ALM-RPCA’s

reconstructed images comply to this physical law.

To see this more clearly, we invert the pixel values of

the reconstructed image in Fig. 16(c). This is equivalent

to inverting the direction of lighting. From the tag of the

image, we know that the original lighting is −20◦ from

the subject’s right posterior and 40◦ from the top, so the

inverted light should illuminate the left half of his face

from 20◦ left frontal and 40◦ from below. As is shown in

the comparison, only PARSuMi’s result revealed what

should be correctly seen with a light shining from this

direction.

In addition, we reconstruct the 3D depth map with

the classic method by Horn (1990). In Fig. 16(d), the

shape from PARSuMi reveals much richer depth infor-

mation than those from the other two algorithms, whose

reconstructions appear flattened. This is a known low-

frequency bias problem for photometric stereo and it is

often caused by errors in the surface normal estimation

Nehab et al (2005). The fact that BALM and ALM-

RPCA produces a flatter reconstruction is a strong in-

dication that their estimations of the surface normal

are noisier than that of PARSuMi.

From our experiments, we find that PARSuMi is

able to successfully reconstruct the 3D face for all 38

subjects with little artifacts. As illustrated in Fig. 17,

our 3D reconstructions of the features seem to reveal

the characteristic features of subjects across different

ethnic groups. Moreover, due to the robust `0 penalty,

PARSuMi is able to effectively recover the input images

from many different types of irregularities, e.g. spec-

ular regions, different facial expressions, or even im-

age corruptions caused by hardware malfunctions (see

Fig. 18 and 20). This makes it possible for PARSuMi

to be integrated reliably into engineering systems that

function with minimal human interactions 15.

15 For the best of our knowledge, all previous works that
use this dataset for photometric 3D reconstruction manually
removed a number of images of poor qualities, e.g.Del Bue
et al (2012)

(a) Comparison of the recovered image

(b) Comparison of the recovered image (details)

(c) Taking the negative of (b) to see the filled-in missing pixels. This

is as if the lighting direction is inverted.

(d) Comparison of the reconstructed 3D surfaces (albedo rendered).

Fig. 16 Qualitative comparison of algorithms on Subject 3.
From left to right, the results are respectively for PARSuMi,
BALM and ALM-RPCA. In (a), they are preceded by the
original image and the image depicting the missing data in
green.

5.7 Speed

The computational complexity of PARSuMi is cheap

for some problems but not for others. Since PARSuMi

uses LM GN for its matrix completion step, the nu-

merical cost is dominated by either solving the linear

system (JTJ + λI)δ = Jr which requires the Cholesky

factorization of a potentially dense mr × mr matrix,

or the computation of J which requires solving a small

linear system of normal equation involving the m × r
matrix N for n times. As the overall complexity of

O(max(m3r3,mnr2)) scales merely linearly with num-
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(a) Subject 02 (b) Subject 5

(c) Subject 10 (d) Subject 15

(e) Subject 12 (f) Subject 22

Fig. 17 The reconstructed surface normal and 3D shapes
for Asian (first row), Caucasian (second row) and African
(third row), male (first column) and female (second column),
in Extended YaleB face database.(Zoom-in to look at details)

ber of columns n but cubic with m and r, PARSuMi is

computationally attractive when solving problems with

smallm and r, and potentially large n, e.g., photometric

stereo and SfM (since the number of images is usually

much smaller than the number of pixels and feature

points). However, for a typical million by million data

matrix as in social networks and collaborative filtering,

PARSuMi will take an unrealistic amount of time to

run.

Experimentally, we compare the runtime between

our algorithm and Wiberg `1 method in our Dinosaur

experiment in Section 5.5. Our Matlab implementation

is run on a 64-bit Windows machine with a 1.6 GHz

Core i7 processor and 4 GB of memory. We see from

Table 3 that there is a big gap between the speed per-

formance. The near 2-hour runtime for Wiberg `1 is dis-

couragingly slow, whereas ours is vastly more efficient.

On the other hand, as an online algorithm, GRASTA is

inherently fast. Examples in He et al (2011) show that it

works in real time for live video surveillance. However,

our experiment suggests that it is probably not appro-

priate for applications such as SfM, which requires a

higher numerical accuracy.

The runtime comparison for the photometric stereo

problems is shown in Table 4. We remark that PAR-

SuMi is roughly ten times slower than other methods.

The pattern is consistent for the YaleB face data too,

where PARSuMi takes 23.4 minutes to converge while

(a) Cast shadow and attached shadow are recovered. Region of cast

shadow is now visible, and attached shadow is also filled with mean-

ingful negative values.

(b) Facial expressions are set to normal.

(c) Rare corruptions in image acquisition are recovered.

(d) Light comes 20 degrees from behind and 65 degrees from above).

Fig. 18 Illustrations of how PARSuMi recovers missing data
and corruptions. From left to right: original image, input im-
age with missing data labeled in green, reconstructed image
and detected sparse corruptions.

BALM and RPCA takes only 4.8 and 1.7 minutes re-

spectively.

We note that PARSuMi is currently not optimized

for computation. Speeding up the algorithm for applica-

tion on large scale dataset would require further effort

(such as parallelization) and could be a new topic of

research. For instance, the computation of Jacobians

Ji and the evaluation of the objective function can be

easily done in parallel and the Gauss-Newton update

(a positive definite linear system of equations) can be

solved using the conjugate gradient method; hence, we

do not even need to store the matrix in memory. Fur-

thermore, since PARSuMi seeks to find the best sub-

space, perhaps using only a small portion of the data

columns is sufficient. If the subspace is correct, the

rest of the columns can be recovered in linear time

with our iterative reweighted Huber regression tech-

nique (see Section 4.7). A good direction for future re-
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search is perhaps on how to choose the best subset of

data to feed into PARSuMi.

6 Conclusion

In this paper, we have presented a practical algorithm

(PARSuMi) for low-rank matrix completion in the pres-

ence of dense noise and sparse corruptions. Despite the

non-convex and non-smooth optimization formulation,

we are able to derive a set of update rules under the

proximal alternating scheme such that the convergence

to a critical point can be guaranteed. The method was

tested on both synthetic and real life data with chal-

lenging sampling and corruption patterns. The various

experiments we have conducted show that our method

is able to detect and remove gross corruptions, suppress

noise and hence provide a faithful reconstruction of the

missing entries. By virtue of the explicit constraints on

both the matrix rank and cardinality, and the novel re-

formulation, design and implementation of appropriate

algorithms for the non-convex and non-smooth model,

our method works significantly better than the state-

of-the-art algorithms in nuclear norm minimization, `2
matrix factorization and `1 robust matrix factoriza-

tion in real life problems such as SfM and photometric

stereo.

Moreover, we have provided a comprehensive re-

view of the existing results pertaining to the “prac-

tical matrix completion” problem that we considered

in this paper. The review covered the theory of ma-

trix completion and corruption recovery, and the the-

ory and algorithms for matrix factorization. In par-

ticular, we conducted extensive numerical experiments

which reveals (a) the advantages of matrix factoriza-

tion over nuclear norm minimization when the under-

lying rank is known, and (b) the two key factors that af-

fect the chance of `2-based factorization methods reach-

ing global optimal solutions, namely “subspace param-

eterization” and “Gauss-Newton” update. These find-

ings provided critical insights into this difficult problem,

upon the basis which we developed PARSuMi as well

as its convex initialization.

The strong empirical performance of our algorithm

calls for further analysis. For instance, obtaining the

theoretical conditions for the convex initialization to

yield good support of the corruptions should be plau-

sible (following the line of research discussed in Sec-

tion 2.1), and this in turn guarantees a good starting

point for the algorithm proper. Characterizing how well

the following non-convex algorithm works given such

initialization and how many samples are required to

guarantee high-confidence recovery of the matrix re-

main open questions for future study.

Other interesting topics include finding a cheaper

but equally effective alternative to the LM GN solver

for solving (20), parallel/distributed computation, in-

corporating additional structural constraints, selecting

optimal subset of data for subspace learning and so on.

Step by step, we hope this will eventually lead to a

practically working robust matrix completion algorithm

that can be confidently embedded in real-life applica-

tions.

A Appendix

A.1 Proofs

Proof (Proof of Proposition 4) Given a subset I of {1, . . . , |Ω|}
with cardinality at most N0 such that bI 6= 0. Let J =
{1, . . . , |Ω|}\I. Consider the problem (34) for x ∈ R|Ω| sup-
ported on I, we get the following:

vI := min
xI

{
‖xI − bI‖2 + ‖bJ‖2 | ‖xI‖2 −K2

E ≤ 0
}
,

which is a convex minimization problem whose optimality
conditions are given by

xI − bI + µxI = 0, µ(‖xI‖2 −K2
E) = 0, µ ≥ 0

where µ is the Lagrange multiplier for the inequality con-
straint. First consider the case where µ > 0. Then we get
xI = KEbI/‖bI‖, and 1 +µ = ‖bI‖/KE (hence ‖bI‖ > KE).
This implies that vI = ‖b‖2 +K2

E − 2‖bI‖KE . On the other
hand, if µ = 0, then we have xI = bI and vI = ‖bJ‖2 =
‖b‖2 − ‖bI‖2. Hence

vI =

{
‖b‖2 +K2

E − 2‖bI‖KE if ‖bI‖ > KE

‖b‖2 − ‖bI‖2 if ‖bI‖ ≤ KE .

In both cases, it is clear that vI is minimized if ‖bI‖ is max-
imized. Obviously ‖bI‖ is maximized if I is chosen to be the
set of indices corresponding to the N0 largest components of
b. ut

Proof (Proof of Theorem 1) (a) The equality in (42) follows
directly from (41). By the minimal property of x̂k+1, we have
that

L̂(x̂k+1;xk, yk) ≤ L̂(ξ;xk, yk) ∀ ξ ∈ X . (52)

Thus when ξ = xk, we get L̂(x̂k+1;xk, yk) ≤ L̂(xk;xk, yk) =
L(xk, yk), and the required inequality in (42) follows. On the
other hand, the inequality (43) follows readily from the defi-
nition of xk+1.

(b) If xk+1 = x̃k+1, then from the definition of xk+1 and
(42), we have that,

L(xk+1, yk) +
1

2
‖xk+1 − xk‖2S

≤L(x̂k+1, yk) +
1

2
‖x̂k+1 − xk‖S ≤ L(xk, yk).

(53)

On the other hand, if xk+1 = x̂k+1, we have from (42) that

L(xk+1, yk) +
1

2
‖xk+1 − xk‖2S ≤ L(xk, yk). (54)
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By the minimal property of yk+1, we have that ∀ η ∈ Y

L(xk+1, yk+1) +
1

2
‖yk+1 − yk‖2T ≤ L(xk+1, η) +

1

2
‖η − yk‖2T .

In particular, when η = yk, we get

L(xk+1, yk+1) +
1

2
‖yk+1 − yk‖2T ≤ L(xk+1, yk). (55)

By combining (53)-(54) and (55), we get the inequality (44).

(c) Note that by using the result in part (b), we also have
limk′→∞ xk′+1 = x̄ and limk′→∞ yk′+1 = ȳ. From (42), (43)
and (52), we have ∀ k ≥ 0, ξ ∈ X

L(xk+1, yk) +
1

2
‖xk+1 − xk‖2S ≤ L̂(ξ;xk, yk). (56)

Thus ∀ ξ ∈ X

lim sup
k′→∞

f(xk′+1) + q(x̄, ȳ) ≤ f(ξ) +Q(ξ; x̄, ȳ). (57)

By taking ξ = x̄, we get

lim sup
k′→∞

f(xk′+1) ≤ f(x̄) +Q(x̄; x̄, ȳ)− q(x̄, ȳ) = f(x̄). (58)

On the other hand, since f is lower semicontinuous, we have
that lim infk′→∞ f(xk′+1) ≥ f(x̄). Thus limk′→∞ f(xk′+1) =
f(x̄). Similarly, we can show that limk′→∞ g(yk′+1) = g(ȳ).
As a result, we have

lim
k′→∞

L(xk′+1, yk′+1) = L(x̄, ȳ). (59)

Since {L(xk, yk)} is a nonincreasing sequence, the above re-
sult implies that

lim
k→∞

L(xk, yk) = L(x̄, ȳ) = inf
k
L(xk, yk).

Also, (53)-(54) and (55) implies that

lim
k→∞

L(xk+1, yk) = L(x̄, ȳ).

From (42) and (43), we have

L(xk+1, yk) +
1

2
‖xk+1 − xk‖2S

≤ L̂(x̂k+1;xk, yk) ≤ L(xk, yk).

Thus limk→∞ L̂(x̂k+1;xk, yk) = L(x̄, ȳ).
Now by (42) and (43) again, we have

1

2
‖xk+1 − xk‖2S +

1

2
‖x̂k+1 − xk‖2M−A∗A−S

≤ L̂(x̂k+1;xk, yk)− L(xk+1, yk).

Thus limk→∞ ‖x̂k+1−xk‖2M−A∗A−S = 0. Since M−A∗A−
S � 0, we also get limk→∞ ‖x̂k+1 − xk‖2 = 0.

(d) From the optimality of x̂k+1, we have that

0 ∈ ∂L̂(x̂k+1;xk, yk)

= ∂f(x̂k+1) +A∗(Axk +Byk − c) +M(x̂k+1 − xk)

= ∂f(x̂k+1) +A∗(Ax̂k+1 +Byk+1 − c)−∆xk+1

where ∆xk+1 = −(M−A∗A)(x̂k+1−xk)−A∗B(yk−yk+1).
Thus

∆xk+1 ∈ ∂xL(x̂k+1, yk+1). (60)

From the optimality of yk+1, we have that

0 ∈ ∂g(yk+1) +B∗(Axk+1 +Byk+1 − c) + T (yk+1 − yk)

= ∂yL(x̂k+1, yk+1) + T (yk+1 − yk) +B∗A(xk+1 − x̂k+1)

Hence ∆yk+1 := −T (yk+1 − yk) − B∗A(xk+1 − x̂k+1) ∈
∂yL(x̂k+1, yk+1).

From part (b) and (c), we have that

lim
k′→∞

‖x̂k′+1 − xk′‖ = 0, lim
k′→∞

‖x̂k′+1 − xk′+1‖ = 0,

lim
k′→∞

x̂k′+1 = x̄, lim
k′→∞

yk′+1 = ȳ.

Thus
lim
k′→∞

∆xk′+1 = 0 = lim
k′→∞

∆yk′+1.

By the closedness property of ∂L (Clarke 1990, Proposition
2.1.5), we get

(0, 0) ∈ ∂L(x̄, ȳ).

Thus (x̄, ȳ) is a stationary point of L. ut

A.2 Software/code used

The point cloud in Fig. 14 are generated using VincentSfM-
Toolbox (Rabaud n.d.). Source codes of BALM, GROUSE,
GRASTA, Damped Newton, Wiberg, LM X used in the ex-
periments are released by the corresponding author(s) of Del
Bue et al (2012); Balzano et al (2010); He et al (2011); Buchanan
and Fitzgibbon (2005); Okatani and Deguchi (2007); Wu et al
(2011b) and Chen (2008). In particular, we are thankful that
Balzano et al (2010) and Wu et al (2011b) shared with us
a customized version of GROUSE and ALM-RPCA that are
not yet released online. For Wiberg `1 (Eriksson and Van
Den Hengel 2010), we have optimized the computation for
Jacobian and adopted the commercial LP solver: cplex. The
optimized code performs identically to the released code in
small scale problems, but it is beyond the scope for us to ver-
ify for larger scale problems. In addition, we implemented Si-
monFunk’s SVD ourselves. The ALS implementation is given
in the released code package of LM X. For OptManifold,
TFOCS and CVX, we use the generic optimization packages
released by the author(s) of Wen and Yin (2013); Becker et al
(2011); Grant and Boyd (2008) and customize for the par-
ticular problem. For NLCG, we implement the derivations
in Srebro and Jaakkola (2003) and used the generic NLCG
package (Overton n.d.).

A.3 Additional experimental results

Illustration of the decomposition on Subject 3 of Extended
YaleB dataset is given in Fig. 19. Additional qualitative com-
parisons on the recovery of the image is given in Fig. 20.

A.4 The lower bounds in the experiments

– The lower bound in Fig. 2: the lower bound is obtained
by the data set that contains less than r data points per-
column and per-row. It is clear from Kiràly and Tomioka
(2012) that this is an easy-to-check necessary condition
of recoverability.
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Fig. 20 Additional comparisons in the quality of face image
recovery. From left to right, they are original image, miss-
ing data mask (in green), results for PARSuMi, BALM and
missing-RPCA.

– The oracle RMSE for Phase Diagram: We also adapt
the oracle lower bound from Candès and Plan (2010) to
represent the theoretical limit of recovery accuracy un-
der noise. Our extended oracle bound under both sparse
corruptions and Gaussian noise is:

RMSEoracle = σ

√
(m+ n− r)r

p− e
, (61)

This is used for benchmarking in our phase diagram ex-
periments.

– The oracle angular error in Table 4: For the Caesar and
Elephant experiments, we use (61) (ignoring corruptions
by taking e = 0) but transformed it by taking

arcsin
√

1− (n · n̂)2,

where n̂ is the surface normal obtained by an oracle pro-
jection of the noisily observed image.

A.5 Summary of parameters used in the experiments

– Parameters in our formulation: We assume r (the un-
derlying rank) to be known. N0 is chosen to be an upper
bound of the number of corrupted entries. In experiments,
we use 120% of the actual number of corruptions. In prac-
tice, we should choose N0 = 0.1|Ω| or 0.15|Ω|. ε = 1e −

10 (almost negligible).KE = 20

√
N0 ×median(P)Ω(Ŵ )

(very large, negligible). In theory, we only need ε > 0 and
KE <∞ to ensure the convergence. In practice, unless it
is meaningful to choose an effective KE , we will choose it
large enough so that it has no impact on the optimization.

– Parameters for PARSuMi : β1 = β2 = 1e−3√
maxm,n

. For

Algorithm 1, ρ = 10 and initial λ = 1e− 6.
– Parameters for APG: γ = 1√

maxm,n
λ = 0.2
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(a) The 64 original face images (b) Input images with missing data (in green)

(c) The 64 recovered rank-3 face images (d) Sparse corruptions detected

Fig. 19 Results of PARSuMi on Subject 3 of Extended YaleB. Note that the facial expressions are slightly different and
some images have more than 90% of missing data. Also note that the sparse corruptions detected unified the irregular facial
expressions and recovered those highlight and shadow that could not be labeled as missing data by plain thresholding.
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