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Abstract It is well known that natural images admit sparse
representations by redundant dictionaries of basis functions
such as Gabor-like wavelets. However, it is still an open
question as to what the next layer of representational units
above the layer of wavelets should be. We address this fun-
damental question by proposing a sparse FRAME (Filters,
Random field, And Maximum Entropy) model for repre-
senting natural image patterns. Our sparse FRAME model
is an inhomogeneous generalization of the original FRAME
model. It is a non-stationary Markov random field model
that reproduces the observed statistical properties of filter
responses at a subset of selected locations, scales and orien-
tations. Each sparse FRAME model is intended to represent
an object pattern and can be considered a deformable tem-
plate. The sparse FRAME model can be written as a shared
sparse coding model, which motivates us to propose a two-
stage algorithm for learning the model. The first stage se-
lects the subset of wavelets from the dictionary by a shared
matching pursuit algorithm. The second stage then estimates
the parameters of the model given the selected wavelets. Our
experiments show that the sparse FRAME models are capa-
ble of representing a wide variety of object patterns in natu-
ral images and that the learned models are useful for object
classification.

Keywords Generative models · Markov random fields ·
Shared sparse coding
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1 Introduction

1.1 Background and motivation

Sparsity underlies various types of data arising from dif-
ferent scientific disciplines. For natural images, the semi-
nal work of Olshausen and Field (1996) [42] showed that
natural image patches admit sparse linear representations
by an over-complete or redundant dictionary of basis func-
tions that resemble Gabor wavelets. The dictionary of ba-
sis functions can be learned from training image patches by
minimizing the reconstruction error with a sparsity-inducing
penalty as in the original work of Olshausen and Field. It can
also be learned by pursuit-based algorithms such as K-SVD
[3]. The learned dictionaries prove to be useful for tasks
such as image recovery [5] [12] and image classification [61]
[63].

During the past decade, a rich literature has been devel-
oped on learning dictionaries of wavelets for sparse coding.
See, for example, the recent book by Elad [11] and the ref-
erences therein. However, it remains an open question as to
what the next layer of representational units above the layer
of wavelets should be. The goal of this article is to address
this fundamental question by proposing a class of statisti-
cal models for representing natural image patterns based on
wavelets sparse coding. In this class of models, each model
is composed of a subset of wavelets selected from the dictio-
nary of wavelets. The model assumes that the image inten-
sities are generated by a linear superposition of the selected
wavelets, and the model implies a probability distribution on
the coefficients of the selected wavelets.

1.2 Model and algorithm

One technical difficulty with modeling the coefficients of the
selected wavelets explicitly is that it is difficult to specify the
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multi-dimensional joint distribution of the coefficients, and
yet it is unrealistic to assume that the coefficients are statis-
tically independent. To get around the difficulty, we choose
instead to model the responses of the image to the selected
wavelets by adopting the mathematical form of the FRAME
(Filters, Random field, And Maximum Entropy) model of
Zhu, Wu, and Mumford (1997) [66] .

The FRAME model, which was originally proposed for
stochastic texture patterns, is a spatially stationary or ho-
mogeneous Markov random field model. Furthermore, it is
the maximum entropy distribution that reproduces the ob-
served marginal histograms of responses from a bank of fil-
ters, where for each filter tuned to a specific scale and ori-
entation, the marginal histogram is spatially pooled over all
the pixels in the image domain.

By modifying the original FRAME model, we propose
a sparse FRAME model for representing natural image pat-
terns. It is a generative model with a well-defined probabil-
ity distribution on the image intensities. Unlike the original
FRAME model for texture patterns, each sparse FRAME
model is intended to model an object pattern, and can be
considered a deformable template for this pattern. It is spa-
tially non-stationary or inhomogeneous, and it is the maxi-
mum entropy distribution that reproduces statistical proper-
ties of filter responses at a subset of selected locations, scales
and orientations.

The sparse FRAME model can be written as a shared
sparse coding model, where the observed images are repre-
sented by a commonly shared subset of wavelets at selected
locations, scales and orientations, subject to local perturba-
tions to account for shape deformations. The sparse FRAME
model implicitly assumes a joint probability distribution on
the coefficients of the selected wavelets.

We then propose a two-stage algorithm to learn the sparse
FRAME model from roughly aligned image patches. The
first stage selects a subset of wavelets to simultaneously re-
construct all the observed images, while allowing the se-
lected wavelets to perturb their locations and orientations to
represent each individual image. The second stage of the al-
gorithm then estimates the parameters of the model given the
selected wavelets. This stage implicitly estimates the prob-
ability distribution of the coefficients of the subset of se-
lected wavelets. The computation of the second stage can
be accomplished by stochastic gradient ascent [62], which
seeks to reproduce the observed statistical properties of the
responses of the selected wavelets. Our experiments show
that the learned model or template can synthesize realistic
images and can be used to detect similar object patterns in
the testing images. The learning algorithm can also be used
for clustering images of different patterns.

The above two-stage algorithm can learn a single sparse
FRAME model from a training set of aligned images. It can
also be employed to learn a codebook of sparse FRAME

models or templates from non-aligned training images, so
that each image can be represented by a small number of
spatially translated, rotated and scaled versions of the tem-
plates selected from the learned codebook. We use an unsu-
pervised learning algorithm that iterates the following two
steps: (1) Image encoding: Given the current codebook, se-
lect templates to encode the training images using a tem-
plate matching pursuit algorithm. (2) Codebook re-learning:
Given the encoding of the training images, re-learn the tem-
plates from the training image patches by the two-stage learn-
ing algorithm. Our experiments show that it is possible to
learn codebooks of sparse FRAME models and the learned
models are useful for image classification.

In this paper, we assume that the bank of filters is given.
For example, the filter bank contains Gabor filters and Dif-
ference of Gaussian (DoG) filters as in the original FRAME
model. In other words, we assume that there already exists
a dictionary of wavelets that gives sparse representations of
the observed images. Presumably this dictionary can itself
be learned if there are enough training data. We shall not
pursue this issue in this paper, and shall focus on learning the
generative models based on the given dictionary of wavelets.

1.3 Related work

The two stages of the learning algorithm for training the
sparse FRAME model naturally connect two major frame-
works in image representation and modeling, namely the
sparse coding framework with its root in harmonic analy-
sis and the Markov random field framework with its root in
statistical physics. There have been vast literatures on both
themes of research. In the following, we shall review and
compare with some of the papers that are most relevant to
our work.

Markov random field models. Models in this class are
also called energy-based models [53] [1], exponential fam-
ily models, and Gibbs distributions depending on the con-
text. Examples include the FRAME model [66] as well as
its inhomogeneous extension for face shape data [33], field
of experts [47], product of experts [26], product of t model
[58], restricted Boltzmann machine [52] [27] and its many
recent generalizations such as those found in [45] and the
references therein. A Markov random field model is defined
by an energy function and may involve latent variables or
hidden units. If the latent variables are conditionally inde-
pendent given the observed data or visible units, the latent
variables can be integrated out in closed form, resulting in
a marginal energy-based model. These models usually as-
sume fixed energy functions and do not involve explicit fea-
ture selection. In addition, these models seek to approximate
the probability distributions of the training images but do not
attempt to reconstruct individual training images. Compared
to these models, the sparse FRAME model performs feature
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selection via a linear additive model and can reconstruct the
training images.

Sparse coding models. The sparse FRAME model se-
lects the wavelets via a shared sparse coding scheme. Such
a scheme has been studied in harmonic analysis and signal
processing [7] [55] under the name of simultaneous sparse
coding, and in statistics and machine learning [41] [34] un-
der the names of multi-task learning and support union re-
covery. These methods seek to reconstruct the observed sig-
nals but do not attempt to approximate the probability dis-
tributions of these signals. In contrast, the sparse FRAME
model defines an explicit probability distribution on image
intensities and can synthesize new images by sampling from
this distribution.

There has also been work on learning dictionaries that
are sparse combinations of wavelets from a base dictionary,
such as [48], where the coefficients of sparse linear combi-
nations are fixed. In our model, the coefficients are allowed
to vary according to a certain probability distribution. In ad-
dition, the wavelets are also allowed to perturb their loca-
tions and orientations. Our work is also related to subspace
clustering [2], where each cluster is spanned by a subset
of wavelets or basis functions. In subspace clustering, the
distributions of the coefficients of the basis functions that
span the subspaces are not modeled. In our work, we seek
to model the coefficients or responses of the selected basis
functions.

The proposed model (and the original FRAME model)
is related to “analysis priors” developed in the last few years
by the sparse modeling community [38] [13]. Our learning
algorithm can be viewed as a principled statistical method
to learn the parameters or weights of the analysis prior mod-
els via maximum likelihood. Here our focus is on statistical
modeling and random sampling, whereas the focus of the
analysis priors is on optimization and reconstruction tasks.

Deep learning. Our work is not exactly within the do-
main of deep learning, but is closely related to it. In par-
ticular, we try to understand the layer of representational
units or nodes above the layer of sparse coding wavelets.
Our proposal is that each node is a sparse FRAME model,
which is selectively and sparsely connected to a subset of
wavelets selected for this model. The connection weights
are the parameters of the model. The sparse connections are
obtained by seeking the shared sparse coding of a collec-
tion of image patches of similar patterns. The advantage of
seeking the shared sparse coding is that the time-consuming
explaining-away computation in sparse coding can be mem-
orized in the learning stage by sparse connections, so that
explaining-away sparsification does not need to be recalcu-
lated on-line in the inference stage. In other words, we be-
lieve that “sparse connectivities = shared sparse activities”
or “sparse wiring = shared sparse coding”. In contrast, the
current methods of deep learning are mostly based on stack-

ing restricted Boltzmann machines (RBM) [27] [32] or auto-
encoders [4]. They do not pursue explicit sparse representa-
tions and sparse connections. Our work is also related to the
deconvolution network of [63]. It appears that in the decon-
volution model, given the values of the top layer units, the
values of the units at lower layers are fixed by the learned
weights, and are not allowed to vary. In our model, we allow
the coefficients to vary according to the learned probability
distribution.

Our method can be extended to learning hierarchical mod-
els. After learning one layer of sparse FRAME models, we
can treat these models as re-usable parts, and continue to
compose them into higher layers of sparse FRAME models.

Compositional models. The sparse FRAME model is a
special case of compositional models advocated by S. Ge-
man et al. for vision [22]. In particular, it follows the And-Or
grammar studied by Zhu and Mumford [65], where the com-
position of the wavelets forms an And-node, and the pertur-
bation of each selected wavelet and the variation of its co-
efficient form an Or-node. Our model is also related to [64]
[18] , which are about compositions of edgelets but which
are not based on explicit generative models as in our work.

Compared to our own previous work, this paper can be
considered a fusion of the original FRAME model [66] and
the active basis model [59] [29]. While the active basis model
focuses on the “sketching” aspect, this paper adds the “paint-
ing” aspect. In order to avoid MCMC computation in learn-
ing, the active basis model makes the simplifying assump-
tions that the selected wavelets are orthogonal and their co-
efficients are statistically independent. In this paper, we do
not make such simplifying assumptions, and thus our model
is more rigorously defined and is capable of synthesizing re-
alistic image patterns. This paper is an expanded version of
our conference paper [60].

1.4 Contributions

The following are the main contributions of this paper. (1)
We propose an inhomogeneous dense FRAME model for
object patterns, and we show that it can model a wide va-
riety of objects in natural scenes. (2) We propose a sparse
FRAME model and connect it to the shared sparse coding
model. We then propose a two-stage algorithm for learning
the sparse FRAME model. (3) We show that it is possible
to learn codebooks of sparse FRAME models from non-
aligned and unannotated images.

2 Inhomogeneous FRAME model

This section presents a dense version of the inhomogeneous
FRAME model to lay the foundation for the next section
which will focus on the sparsified version.
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Fig. 1: The inhomogeneous FRAME is a generative model
that seeks to represent and generate object patterns as shown
above.

2.1 Model and learning algorithm

Notation. We start by modeling roughly aligned images of
object patterns from the same category, such as the images
in Figure 1. Let {Im,m = 1, ...,M} be a set of training
images defined on an image domain D. We use the notation
Bx,s,α to denote a basis function such as a Gabor wavelet
centered at pixel x (which is a two-dimensional vector), and
tuned to scale s and orientation α.Bx,s,α is also an image on
D, although it is non-zero only within a local range. We as-
sume that Bx,s,α are translated, dilated and rotated versions
of each other. We assume that s and α take values within
a finite and properly discretized range. The inner product
〈I, Bx,s,α〉 can be considered the filter response of I to a fil-
ter of scale s and orientation α at pixel x. We assume that
Bx,s,α are all normalized to have unit `2 norm.

Model. The inhomogeneous FRAME model is a proba-
bility distribution defined on I,

p(I;λ) =
1

Z(λ)
exp

(∑
x,s,α

λx,s,α(〈I, Bx,s,α〉)

)
q(I), (1)

where q(I) is a known reference distribution or a null model,
λx,s,α() are one-dimensional functions that depend on (x, s, α),
λ = {λx,s,α,∀x, s, α}, and

Z(λ) =

∫
exp

(∑
x,s,α

λx,s,α(〈I, Bx,s,α〉)

)
q(I)dI (2)

= Eq

[
exp

(∑
x,s,α

λx,s,α(〈I, Bx,s,α〉)

)]
(3)

is the normalizing constant, where the notation Eq means
the expectation with respect to the probability distribution
q.

In the original FRAME model for stochastic textures
[66], λx,s,α() is assumed to be independent of x (but de-
pendent of s and α, which index the scale and orientation of
the filter). So the model is spatially stationary. For model-
ing object patterns that are not spatially stationary, λx,s,α()

must depend on x, in addition to s and α.
In the original homogeneous FRAME, the potential func-

tions λs,α() (we drop the subscript x due to stationarity) are

estimated non-parametrically as step functions. In the inho-
mogeneous FRAME, we have to estimate λx,s,α() for each
individual x. With small data sets, we may not afford esti-
mating λx,s,α() non-parametrically. We therefore decide to
parametrize

λx,s,α(r) = λx,s,α|r|, (4)

where r = 〈I, Bx,s,α〉, and with slight abuse of notation,
λx,s,α on the right hand side of the above equation becomes
a constant (instead of a function as on the left hand side).
The parametrization (4) is inspired by the Laplacian distri-
bution that can account for heavy tails in the distributions of
filter responses. It is possible to replace the function |r| by
other classes of parametrized functions to encourage heavy
tails of the responses, and we shall investigate this issue in
future work.

In many Markov random field models including the orig-
inal FRAME model, the reference measure q(I) is simply
the uniform measure. In our work, we assume q(I) to be the
Gaussian white noise model, under which the image inten-
sities follow independent N(0, σ2) distributions. So

q(I) =
1

(2πσ2)|D|/2
exp

(
− 1

2σ2

∑
x

I(x)2

)
, (5)

where |D| is the number of pixels in the image domain. q(I)
itself is a maximum entropy model relative to a uniform
measure, and it reproduces the marginal mean and variance
of the image intensities. In our work, we normalize the ob-
served images to have marginal mean 0 and variance 1, so
we choose σ2 = 1. This q(I) can be considered an initial
model or a model of the background residual image with the
foreground object removed. As a result, p(I;λ) in equation
(1) can be written as an exponential family model relative to
the uniform measure.

Maximum likelihood learning. The inhomogeneous ver-
sion of the FRAME model is a special case of the exponen-
tial family model, and the parameter λ = (λx,s,α,∀x, s, α)

can be estimated from the training images {Im,m = 1, ...,M}
by maximum likelihood. The log-likelihood function is

L(λ) =
1

M

M∑
m=1

log p(Im;λ) (6)

=
1

M

M∑
m=1

∑
x,s,α

λx,s,α|〈Im, Bx,s,α〉| − logZ(λ) (7)

+
1

M

M∑
m=1

log q(Im).

The maximization of L(λ) can be accomplished by gradient
ascent. The gradient is

∂L(λ)

∂λx,s,α
=

1

M

M∑
m=1

|〈Im, Bx,s,α〉| −Ep(I;λ) [|〈I, Bx,s,α〉|] ,

∀x, s, α, (8)
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where Ep(I;λ)[|〈I, Bx,s,α〉|] is the expectation of |〈I, Bx,s,α〉|
with I following the distribution p(I;λ). Ep(I;λ)[|〈I, Bx,s,α〉|]
is the derivative of logZ(λ).

The gradient ascent algorithm then becomes

λ(t+1)
x,s,α = λ(t)

x,s,α + γt

(
1

M

M∑
m=1

|〈Im, Bx,s,α〉| −

Ep(I;λ(t)) [|〈I, Bx,s,α〉|]

)
, (9)

where γt is the step size. The analytic form of the expecta-
tion under the current model at step t, Ep(I;λ(t))[|〈I, Bx,s,α〉|],
is not available, so we approximate it from a sample set
of synthesized images {Ĩm,m = 1, ..., M̃} generated from
p(I;λ(t)):

Ep(I;λ)[|〈I, Bx,s,α〉|] ≈
1

M̃

M̃∑
m=1

|〈Ĩm, Bx,s,α〉|. (10)

The synthesized images {Ĩm} can be sampled from p(I;λ(t))

by Hamiltonian Monte Carlo (HMC) [40]. Unlike the Gibbs
sampler [21], HMC makes use of the gradient of the energy
function, and it is particularly natural for our model. The
computation of HMC involves a bottom-up convolution step
followed by a top-down convolution step. Both steps can be
efficiently implemented in Matlab by GPU. With HMC and
warm start, {Ĩm} are produced by M̃ parallel chains. All
the synthesized images presented in the figures of this paper
are generated by the HMC algorithm along the learning pro-
cess. More details about simulation by the HMC algorithm
are presented in Section 8.1 in the appendix.

With Ep(I;λ)[|〈I, Bx,s,α〉|] approximated according to (10),
we arrive at the stochastic gradient algorithm analyzed by
Younes (1999) [62] :

λ(t+1)
x,s,α = λ(t)

x,s,α + γt

(
1

M

M∑
m=1

|〈Im, Bx,s,α〉| −

1

M̃

M̃∑
m=1

|〈Ĩm, Bx,s,α〉|

)
. (11)

This is the algorithm we use for maximum likelihood esti-
mation of λ.

Computing normalizing constants. Thanks to HMC, we
can simulate from p(I;λ) without knowing its normalizing
constant, thus estimating λ by MLE. Nevertheless, comput-
ing the normalizing constant Z(λ) is still required in situa-
tions such as fitting a mixture model or learning a codebook
of models. The ratio of the normalizing constants at two con-
secutive steps is

Z(λ(t+1))

Z(λ(t))
= Ep(I;λ(t))

[
exp

( ∑
x,s,α

(λ(t+1)
x,s,α − λ(t)

x,s,α)

×|〈I, Bx,s,α〉|
)]

(12)

which can be approximated by averaging over the sampled
images {Ĩm} as an application of importance sampling [20]:

Z(λ(t+1))

Z(λ(t))
≈ 1

M̃

M̃∑
m=1

[
exp

( ∑
x,s,α

(λ(t+1)
x,s,α − λ(t)

x,s,α)

×|〈Ĩm, Bx,s,α〉|
)]
. (13)

Starting from λ(0) = 0 and logZ(λ(0)) = 0, we can com-
pute logZ(λ(t)) along the learning process by iteratively up-
dating its value as follows:

logZ(λ(t+1)) = logZ(λ(t)) + log
Z(λ(t+1))

Z(λ(t))
. (14)

The calculation ofZ is based on running parallel Markov
chains for a sequence of distributions p(I;λ(t)). The set-
ting is similar to annealed importance sampling [39] and
bridge sampling [20]. We shall explore these methods in fu-
ture work.

2.2 Summary of the learning algorithm

Pseudocode of the algorithm for learning the inhomogeneous
FRAME model is shown in Algorithm 1. The algorithm stops
when the gradient of the log-likelihood is close to 0, i.e.,
when the statistics of the synthesized images closely match
those of the observed images. Figure 2 displays the synthe-
sized images {Ĩm} generated by the models learned from
training images shown in Figure 1 (a separate model is learned
from each training set). Figure 3 illustrates the learning pro-
cess by showing the synthesized images with λ being up-
dated by the algorithm. The synthesized image starts from
Gaussian white noises sampled from q(I), then gradually
gets similar to the observed images in the overall shape and
appearance.

The computational complexity of Algorithm 1 is of the
order O(U × M̃ × L ×K ×HB ×WB) with U being the
number of updating steps for λ, M̃ the number of synthe-
sized images, L the number of leapfrog steps in HMC, K
the number of filters, and HB and WB the average win-
dow sizes (height and width) of the filters. As to the ac-
tual running time, for the cat example, each iteration of a
single chain takes about 2 seconds on a current PC, with
L = 30,K = 240100, HB = 12, and WB = 12.

Experiment 1: Learning dense FRAME. Figure 4 dis-
plays some images generated by the dense models learned
from roughly aligned training images. We run a single chain
in the learning process, i.e., M̃ = 1 in this experiment. The
learned models can generate a wide variety of natural image
patterns. Typical sizes of the images are 70× 70.

In the appendix, Section 8.2 gives a justification of the
inhomogeneous FRAME model by the maximum entropy
principle.
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Fig. 3: Learning sequence by inhomogeneous FRAME. The sizes of the images are 70 × 70. A separate model is learned
from each training set shown in Fig 1 (Top: Hummingbird. The number of training images is 5 as shown in Fig. 1. Bottom:
Cat. The number of training images is 12, with 6 of them shown in Fig. 1.) Synthesized images generated in iterations
t = 1, 4, 7, 10, 13, 20, 50, 100, 200, 300, 400, and 500.

Fig. 2: Synthesized images generated by the inhomogeneous
FRAME models learned separately from a training set of
5 hummingbird images and another training set of 12 cat
images. Some of the images are displayed in Fig. 1. The
sizes of the images are 70× 70.

3 Sparse FRAME model

Sparsification. In model (1), the (x, s, α) in
∑
x,s,α is over

all the pixels x and all the scales s and orientations α. We
call such a model the dense FRAME. It is possible to spar-
sify the model by selecting only a small set of (x, s, α) so
that

∑
x,s,α is restricted to this selected subset. More explic-

itly, we can write the sparsified model as

p(I;B, λ) =
1

Z(λ)
exp

(
n∑
i=1

λi|〈I, Bxi,si,αi〉|

)
q(I), (15)

where B = (Bxi,si,αi , i = 1, ..., n) are the selected basis
functions, and λ = (λi, i = 1, ..., n) collects the parameters.
Given the selected basis functions B, the model can still be
trained by maximum likelihood as in the previous section,
and properties such as maximum entropy still hold. The fol-
lowing are the reasons why a sparsified model is desirable.
(1) It makes the computation faster. (2) It leads to more reli-
able parameter estimates because it involves a much smaller
number of parameters. Estimation efficiency or accuracy is
an important aspect of statistical modeling. (3) The MCMC
sampling may converge faster if the selected basis functions
are not heavily correlated. (4) It is connected to the linear ad-
ditive sparse coding model for image reconstruction. (5) It

Algorithm 1 Learning algorithm for dense FRAME
Input:

training images {Im,m = 1, ...,M}
Output:

λ = {λx,s,α, ∀x, s, α} and logZ(λ)

1: Create a filter bank {Bx,s,α, ∀x, s, α}
2: Initialize λ(0)

x,s,α ← 0, ∀x, s, α.
3: Calculate observed statistics:

Hobsx,s,α ← 1
M

∑M
m=1 |〈Im, Bx,s,α〉|, ∀x, s, α.

4: Initialize synthesized images Ĩm as Gaussian white noise images
5: Initialize logZ(λ(0))← 0
6: Let t← 0
7: repeat
8: Generate {Ĩm,m = 1, ..., M̃} from p(I;λ(t)) by HMC
9: Calculate synthesized statistics:

Hsynx,s,α ← 1
M̃

∑M̃
m=1 |〈Ĩm, Bx,s,α〉|, ∀x, s, α.

10: Update λ(t+1)
x,s,α ← λ

(t)
x,s,α+γt(Hobsx,s,α−H

syn
x,s,α), ∀x, s, α.

11: Compute Z ratio Z(λ(t+1))

Z(λ(t))
by Eq. (13)

12: Update logZ(λ(t+1))← logZ(λ(t)) + log Z(λ(t+1))

Z(λ(t))

13: Let t← t+ 1
14: until

∑
x,s,α |Hobsx,s,α −H

syn
x,s,α| ≤ ε

allows the selected basis functions to perturb their locations
and orientations to account for shape deformations.

Deformation. To be more specific about the above point
(5), we may treat p(I;B, λ) as a deformable template, so
that when it is fitted to each training image Im, we may
allow the basis functions in B = (Bxi,si,αi , i = 1, ..., n)

to perturb their locations and orientations so that B is de-
formed to Bm = (Bxi+∆xm,i,si,αi+∆αm,i , i = 1, ..., n),
where (∆xm,i, ∆αm,i) are the perturbations of the loca-
tion and orientation of the i-th basis functionBxi,si,αi . Both
∆xm,i and∆αm,i are assumed to vary within limited ranges
(default setting: ∆xm,i ∈ [−3, 3] pixels along the normal
direction of the Gabor wavelet, and ∆αm,i ∈ {−1, 0, 1} ×
π/16). When we fit the model p(I;B, λ) to Im, we model
Im by p(Im;Bm, λ), in which Bxi,si,αi in (15) is changed
to Bxi+∆xm,i,si,αi+∆αm,i .
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Fig. 4: Synthesis by dense FRAME. Images generated by the
dense FRAME models learned from different categories of
objects. The training images are collected from the internet
and are cropped so that the training images for each category
are roughly aligned. Typical number of training images for
each category is around 10.

3.1 Shared sparse coding

We can select Bxi,si,αi or (xi, si, αi) in model (15) sequen-
tially using a procedure like projection pursuit [19] or fil-
ter pursuit [66], but the computational speed of such a se-
quential procedure can be slow. In this article, we choose
to employ a different strategy by exploring the connection
between sparse FRAME and shared sparse coding.

For simplicity, let us temporarily ignore the issue of de-
formation. For the sparse model in equation (15), the num-
ber of selected basis functions n is always much smaller
than the number of pixels |D|. We can then project each
Im ∼ p(I;λ) onto the subspace spanned by the selected
basis functions B = (Bxi,si,αi , i = 1, ..., n), so that

Im =

n∑
i=1

cm,iBxi,si,αi + εm, (16)

where cm,i are the least squares reconstruction coefficients
of the linear projection, and εm is the resulting residual im-
age that resides in the |D| − n dimensional residual sub-
space that is orthogonal to the subspace spanned by B =

(Bxi,si,αi , i = 1, ..., n). Equation (16) is a shared space
coding model, where the small set of basis functions B =

(Bxi,si,αi , i = 1, ..., n) is shared by the training images
{Im,m = 1, ...,M}.

With the Gaussian white noise background model q(I)
where each I(x) ∼ N(0, σ2) independently, the sparse model
(15) implies that Cm = (cm,i, i = 1, ..., n) follows a cer-
tain distribution pC(C;λ), εm is the projection of the Gaus-
sian white noise image onto the |D| − n residual subspace,
and Cm and εm are independent of each other. The log-
likelihood of Im can be decomposed into the log-likelihood
ofCm and the log-likelihood of the projected Gaussian white
noise εm. While the former depends on λ, the latter only de-
pends on the squared norm of the residual image ‖εm‖2 =

‖Im −
∑n
i=1 cm,iBxi,si,αi‖2.

The above consideration suggests a two-stage learning
algorithm for fitting the sparse FRAME model. In the first
stage, we selected B = (Bxi,si,αi , i = 1, ..., n) by minimiz-
ing the overall least squares reconstruction error

∑M
m=1 ‖εm‖2.

In the second stage, we then estimate λ given the selected B.
In the appendix, Section 8.3 gives a more detailed expla-

nation of the connections between the sparse FRAME model
and the shared sparse coding model. In particular, it shows
that the sparse FRAME model is equivalent to the shared
sparse coding model with an implied joint distribution on
the coefficients of the selected basis functions.

Now let us consider the issue of deformation. Since model
(15) is deformable, we can also make the sparse coding model
(16) deformable by allowing the shared basis functions to
perturb their locations and orientations to account for the
shape deformation in each image. This leads to the deformable
shared sparse coding first proposed in our previous work on
active basis [59]

Im =

n∑
i=1

cm,iBxi+∆xm,i,si,αi+∆αm,i + εm, (17)

where (∆xm,i, ∆αm,i) are the perturbations of the location
and orientation of the i-th basis function.

3.2 The two-stage learning algorithm

This subsection describes the learning algorithm for train-
ing the sparse FRAME model, which consists of two stages.
(1) Selecting B = (Bxi,si,αi , i = 1, ..., n) by shared sparse
coding. (2) Estimating λ = (λi, i = 1, ..., n) given the se-
lected B.

Stage 1: Deformable shared sparse coding. For training
images {Im,m = 1, ...,M}, we select the basis functions
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Algorithm 2 Stage 1: Deformable shared matching pursuit
Input:

training images {Im,m = 1, ...,M}
Output:

selected basis functions B = {Bxi,si,αi , i = 1, ..., n}

1: Initialize i ← 0. For m = 1, ...,M , initialize the residual image
εm ← Im.

2: Let i← i+ 1. Then we select

(xi, si, αi) = arg max
x,s,α

M∑
m=1

max
∆x,∆α

|〈εm, Bx+∆x,s,α+∆α〉|2,

where max∆x,∆α is local max pooling within the small ranges
of ∆xm,i and ∆αm,i.

3: For eachm, given (xi, si, αi), infer the perturbations in locations
and orientations by retrieving the arg-max in the local max pooling
of step 2:

(∆xm,i,∆αm,i) = arg max
∆x,∆α

|〈εm, Bxi+∆x,si,αi+∆α〉|
2.

Let the coefficient

cm,i ← 〈εm, Bxi+∆xm,i,si,αi+∆αm,i〉,

and update the residual image by explaining away:

εm ← εm − cm,iBxi+∆xm,i,si,αi+∆αm,i .

4: Stop if i = n, else go back to step 2.

{Bxisi,αi , i = 1, ..., n} by minimizing

M∑
m=1

‖Im −
n∑
i=1

cm,iBxi+∆xm,i,si,αi+∆αm,i‖2. (18)

The minimization can be accomplished by the shared match-
ing pursuit algorithm [36] [59] that selects basis functions to
encode multiple images simultaneously, while inferring lo-
cal perturbations by local max pooling [46]. The algorithm
is presented in Algorithm 2.

We can replace the matching pursuit component in the
above algorithm by the orthogonal matching pursuit [43],
which is more computationally expensive. We can also re-
place the matching pursuit component by penalized least
squares such as basis pursuit [6] or Lasso [54], or more pre-
cisely using a penalty such as the `1/`2 group norm [41].
The computation can be much more expensive than shared
matching pursuit.

Simultaneous sparse approximation of multiple signals
has been studied in the harmonic analysis and machine learn-
ing literature [55] [41]. However, perturbations of the se-
lected basis functions are not considered in these papers.
Such a deformable shared matching pursuit algorithm was
first proposed by [59], but it implemented a modified version
that enforces approximated orthogonality of the selected ba-
sis functions.

Stage 2: Sparse FRAME as deformable template. After
selecting B = {Bxi,si,αi , i = 1, ..., n}, we can then model

Fig. 5: Reconstruction and synthesis by sparse FRAME
model (hummingbirds). The number of selected wavelets
is 300. The first row contains symbolic sketches of se-
lected Gabor wavelets at different scales, where each Gabor
wavelet is illustrated by a bar. The first 4 sketches corre-
spond to 4 different scales. The last one is the superposi-
tion of the 4 scales, where smaller scales appear darker. The
next 4 rows display examples of the training images, the de-
formed sketches, the reconstructed images, and the residual
images. The last row displays examples of synthesized im-
ages generated by the learned model. The number of train-
ing images is 5 as shown in Fig. 1. The sizes of images are
scaled to 100 × 100.

{Im} by the sparse FRAME model (15), by estimating λ
via MLE. p(I;B, λ) in (15) now serves as the deformable
template in that the log-likelihood of Im is

L(Im|B, λ) =

n∑
i=1

λi max
∆x,∆α

|〈Im, Bxi+∆x,si,αi+∆α〉|

− logZ(λ), (19)

which serves as the template matching score. We allow each
selected Bxi,si,αi to perturb its location and orientation to
account for shape deformation, where the perturbation is in-
ferred by the local max pooling in Algorithm 2.

In the learning algorithm, again, let λ(t) be the current
estimate of λ, and let {Ĩm,m = 1, ..., M̃} be the synthe-
sized images drawn from p(I;λ(t)) by M̃ parallel chains.
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Fig. 6: Reconstruction and synthesis (cats). See caption of
Fig. 5. The number of training images is 12, with 6 of them
shown in Fig. 1. The sizes of images are scaled to 100 ×
100. The number of selected wavelets is 300.

Then we update λ by

λ
(t+1)
i = λ

(t)
i + γt

(
1

M

M∑
m=1

max
∆x,∆α

|〈Im, Bxi+∆x,si,αi+∆α〉|

− 1

M̃

M̃∑
m=1

|〈Ĩm, Bxi,si,αi〉|

)
.

(20)

The learned p(I;B, λ) models the appearance of the unde-
formed template. There is no local max pooling on the syn-
thesized images, which have not undergone shape deforma-
tions or warping. The local max pooling is only applied to
the observed images to filter out the shape deformations in
the observed images. Thus there is an explicit separation be-
tween appearance and shape variations.

Again the synthesized images can be sampled by the
HMC algorithm. For HMC computation, the energy func-
tion is

U(I) = −
n∑
i=1

λi|〈I, Bxi,si,αi〉|+
1

2
|I|2, (21)

and the gradient of this energy function is

∂U

∂I
= −

n∑
i=1

λisign(〈I, Bxi,si,αi〉)Bxi,si,αi + I, (22)

so HMC is like a generative process based on linear superpo-
sitions of B = (Bxi,si,αi , i = 1, ..., n). With the separation
between appearance and shape, the learned model for ap-
pearance may not be very multi-modal, therefore the HMC
sampling can be quite fast.

Algorithm 3 Stage 2: Parameter estimation in sparse model
Input:

(1) training images {Im,m = 1, ...,M},
(2) selected basis functions B = {Bxi,si,αi , i = 1, ..., n}
(3) inferred perturbations {∆xm,i,∆αm,i,m = 1, ...,M, i =
1, ..., n} by local max pooling.

Output:
λ = {λi, i = 1, ..., n} and logZ(λ)

1: Initialize λ(0)
i ← 0, i = 1, ..., n.

2: Calculate observed statistics:
Hobsi ← 1

M

∑M
m=1 |〈Im, Bxi+∆xm,i,si,αi+∆αm,i〉|,

for i = 1, ..., n.
3: Initialize synthesized images Ĩm as Gaussian white noises images
4: Initialize logZ(λ(0))← 0
5: Let t← 0
6: repeat
7: Generate {Ĩm,m = 1, ..., M̃} from p(I;B, λ(t)) by HMC
8: Calculate synthesized statistics:

Hsyni ← 1
M̃

∑M̃
m=1 |〈Ĩm, Bxi,si,αi〉|, for i = 1, ..., n.

9: Update λ(t+1)
i ← λ

(t)
i + γt(Hobsi −Hsyni ), i = 1, ..., n.

10: Compute Z ratio Z(λ(t+1))

Z(λ(t))
by Eq. (13)

11: Update logZ(λ(t+1))← logZ(λ(t)) + log Z(λ(t+1))

Z(λ(t))

12: Let t← t+ 1
13: until

∑
i |Hobsi −Hsyni | ≤ ε

The algorithm is presented in Algorithm 3. After we
learn λ and compute Z(λ) as in (13), we can use the learned
model as a deformable template to be matched to the testing
image, where the template matching score can be computed
according to (19).

Figure 5 illustrates the basic idea of training the sparse
FRAME model. The training images are scaled to 100 ×
100. The number of selected basis functions (Gabor and
large DoG wavelets), n, is set at 300. In principle it can be
automatically determined by criteria like BIC. In the first
stage, by using the deformable shared matching pursuit al-
gorithm (see Algorithm 2) on the training images, we select
n wavelets B = (Bxi,si,αi , i = 1, ..., n), which are dis-
played in the first row, where each Bxi,si,αi is symbolized
by a bar. The first four plots in the first row display the se-
lected Bxi,si,αi at 4 different scales si, from the largest to
the smallest. The last plot in the first row is a superposi-
tion of the 4 scales, with smaller scales appearing darker.
The next four rows of the figure display four training im-
ages Im, the symbolic sketches of the deformed templates,
Bm = (Bxi+∆xm,i,si,αi+∆αm,i , i = 1, ..., n), the recon-
structed images obtained by the linear superpositions of the
perturbed basis functions,

∑n
i=1 cm,iBxi+∆xm,i,si,αi+∆αm,i ,
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and the residual image εm. At the second stage, we fit the
sparse FRAME model with the n selected wavelets (see Al-
gorithm 3). The synthesized images Ĩm generated from the
learned model p(I;B, λ) are projected onto the subspace
spanned by B. The last row displays projections of four syn-
thesized images. These synthesized images show the appear-
ances before shape deformations. Figure 6 shows another
example.

Fig. 7: Synthesis by sparse FRAME. Images generated by
the sparse FRAME models learned from different categories
of objects. Typical sizes of the images are 80 × 80. Typi-
cal number of selected wavelets is 300. The training images
are the same as or similar to those for training the dense
FRAME models in Fig. 4.

Experiment 2: Synthesis by Sparse FRAME. Figure 7
displays some images generated by the sparse models learned
from roughly aligned images. The experiment setting is the
same as that in Figure 5 except that the image sizes are
typically 80 × 80, and the allowed displacement of Gabor
wavelet is up to 2 pixels. The number of wavelets is 300. We
run M̃ = 36 parallel chains in the learning algorithm. Even
though the number of wavelets are greatly reduced com-
pared to the dense model, the sparse model can still generate
realistic object patterns, including highly textured patterns.
Because of the relatively small number of parameters, it is
unlikely that the model memorizes the training images.

As to the actual running time, for the cat example, with
12 training images, the shared matching pursuit in stage 1

(a)

(b)

Fig. 8: Comparison of synthesized images generated by (a)
dense FRAME and (b) sparse FRAME, where the number of
selected wavelets is 300. Image sizes are about 100 × 100.

takes 95 seconds. For the algorithm of learning λ in stage 2,
each iteration takes 2.8 second. The total running time is 6.5
minutes.

For a comparison of different models and learning meth-
ods, Figure 8 displays synthesized images generated by the
dense FRAME and the sparse FRAME respectively.

4 Detection

After learning the sparse FRAME model p(I;B, λ), where
B = (Bxi,si,αi , i = 1, ..., n) and λ = (λi, i = 1, ..., n),
from the roughly aligned training images, we can use the
learned model to detect the object in a testing image by de-
formable template matching.

Let I be a testing image defined on the domain D. We
can scan the template over D, and at each location X ∈ D,
we match the template to the image patch of I within the
bounding box centered atX by computing the log-likelihood
or the template matching score based on (19),

L(I | BX , λ) =

n∑
i=1

λi max
∆x,∆α

|〈I, BX+xi+∆x,si,αi+∆α〉|

− logZ(λ), (23)

where we use BX = (BX+xi+∆x,si,αi+∆α, i = 1, ..., n) to
denote the spatially translated and deformed version of the
template B. The perturbations of the basis functions are in-
ferred by local max pooling as above. We then choose the
location X that achieves the maximum template matching
score as the center of the detected object. In practice, the
template can be partially outside the image domain D when
we scan the template near the boundary of D. In this case,
we only need to set the filter responses outside D to be zero.
Also, to deal with the scaling issue, we can apply the above
algorithm at multiple resolutions of the testing image, and
then choose the resolution that achieves the maximum tem-
plate matching score as the optimal resolution.

In addition to spatial translation in scanning, we can also
allow geometric transformations such as rotation and left-
right flipping of the template. The geometrically transformed
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Fig. 10: Detection. (a) Symbolic sketch template representing 250 selected wavelets. (b) A synthesized image generated by
the learned model. We do not include the large DoG filters in the model, so the synthesized image lacks regional contrast.
(c) Testing images with bounding boxes locating the detected objects.

Fig. 9: Geometric transformation. Flipping: the first row
shows an example of left/right flipping transformation,
where the first two images are the synthesized image and
the symbolic sketch template of the learned model, while
the next two images correspond to the flipped model de-
rived from the learned model. Rotation: the other example
illustrated in the next two rows displays the rotated models
at four different orientations (-90, -45, 45, and 90 degrees)
by showing their synthesized images and symbolic sketches.
The middle column is from the original learned model.

versions of the learned model can be obtained by directly ap-
plying the operations of dilation, rotation, flipping, or even
changing the aspect ratio to B = {Bxi,si,αi , i = 1, ..., n}
without changing the values of λ. This amounts to simple
affine transformations of (xi, si, αi, i = 1, ..., n). Figure
9 shows two examples of geometric transformations of the
sparse FRAME model: flipping and rotation. It displays syn-
thesized images generated by the transformed models, which

are derived from the learned model, as well as the corre-
sponding symbolic sketches representing the selected wavelets.
For better performance in detection, we can first generate a
collection of models at different orientations and aspect ra-
tios from the learned model. After that, we use these trans-
formed models to detect the object. We choose the combi-
nation of the transformed template and image resolution that
gives the best match in terms of the template matching score,
and infer the hidden location, orientation, and scale of the
detected object in the testing image.

Experiment 3: Detection by sparse FRAME. Figure 10
shows examples of detection. We learn the model from eight
roughly aligned training images, with M̃ = 36. The tem-
plate size is 100× 100. The two images displayed in Figure
10(a) and 10(b) are symbolic sketches showing 250 wavelets
selected by deformable shared matching pursuit algorithm
and a synthesized image generated by the learned model.
We transform the learned model into a collection of models
at 9 different orientations, and then run the detection algo-
rithm over 17 resolutions of the testing images using these
transformed templates. Figure 10(c) displays the detection
results by drawing bounding boxes on the detected objects.

This detection algorithm can be combined with the two-
stage learning algorithm to learn from training images that
are not well aligned by alternating the following two steps.
(1) Re-learning the model from the currently aligned train-
ing images by the two-stage algorithm. (2) Re-aligning the
training images by the detection algorithm.

5 Clustering

Model-based clustering can be accomplished by the EM-
type algorithm [9] that fits mixtures of sparse FRAME mod-
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Fig. 12: The clustering dataset. One example image is shown for each of the 22 clusters distributed in 7 clustering tasks.

Table 1: Comparison of conditional purity (the first two rows) and conditional entropy (the last two rows) between sparse
FRAME and k-means for clustering.

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7
k-means (purity) 0.623±0.016 0.870±0.043 0.933±0.141 0.825±0.121 0.911±0.086 0.888±0.091 0.687±0.110
FRAME (purity) 0.943±0.063 0.990±0.016 0.938±0.131 0.895±0.132 1.000±0.000 0.879±0.141 0.741±0.111

k-means (entropy) 0.652±0.009 0.376±0.086 0.092±0.195 0.243±0.167 0.226±0.084 0.199±0.126 0.639±0.161
FRAME (entropy) 0.145±0.157 0.037±0.060 0.090±0.191 0.155±0.189 0.000±0.000 0.179±0.208 0.497±0.192

Fig. 11: Clustering. Each row illustrates one clustering ex-
periment by displaying a synthesized image and a train-
ing example for each cluster. The number of images within
each cluster is around 15 to 20. Typical template sizes are
100× 100. Typical number of wavelets for each template is
300.

els. Suppose we have M images from K clusters. For each
image Im, we define (z

(k)
m , k = 1, ...,K) as a hidden indica-

tor vector, where z(k)
m = 1 if Im comes from cluster k, other-

wise z(k)
m = 0. The EM-like clustering algorithm is a greedy

scheme that infers {z(k)
m } and {B(k), λ(k), k = 1, ...,K} by

maximizing the overall log-likelihood

M∑
m=1

K∑
k=1

z(k)
m L(Im|B(k), λ(k)), (24)

where B(k) are the basis functions selected for cluster k,
λ(k) are the corresponding parameters, andL(Im|B(k), λ(k))

is the log-likelihood or template matching score defined by
(19).

The algorithm is initialized by randomly generating {z(k)
m },

and then iterates the following two steps:
Re-learning: Given {(z(k)

m , k = 1, ...,K),m = 1, ...,M},
learn the sparse FRAME model p(I;B(k), λ(k)) from im-
ages classified into the k-th cluster: {Im, zkm = 1}, for each
k = 1, ...,K.

Classification: Given the learned models of the K clus-
ters: {p(I;B(k), λ(k)), k = 1, ...,K}, assign each image Im
to a cluster k∗ that maximizes the template matching score
L(Im|B(k), λ(k)) over all k = 1, ...,K. Set z(k∗)

m = 1, and
set z(k)

m = 0 for k 6= k∗.
In the above algorithm, the classification step corresponds

to the E-step of the EM algorithm, except that we adopt hard
classification instead of computing the expectation of zm for
each image Im. The re-learning step corresponds to the M-
step of the EM algorithm. The algorithm usually converges
within a few iterations.

Experiment 4: Model-based clustering. Figure 11 illus-
trates 5 experiments. The EM-type algorithm usually con-
verges within 3-5 iterations, at which point all the images are
correctly separated into their respective clusters. For each
cluster, we generate M̃ = 144 parallel chains in learning be-
cause we need to compute Z(λ) accurately for each model,
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as multiple models compete to explain the images. The same
M̃ = 144 is used for the experiments in the remaining part
of the paper.

Experiment 5: Numerical evaluation on clustering. To
evaluate the clustering accuracies, we use two measures:
conditional purity and conditional entropy [56]. For a ran-
dom training image, let x be its true category label and y be
the inferred category label. The conditional purity is defined
as
∑
y p(y) maxx p(x|y) (the larger the better), and the con-

ditional entropy is
∑
y p(y)

∑
x p(x|y) log(1/p(x|y)) (the

smaller the better), where both p(y) and p(x|y) can be es-
timated from the training data. We also introduce a new
dataset for clustering. Figure 12 provides an overview of
the dataset. It contains 7 clustering tasks. The numbers of
clusters vary from 2 to 5 and are assumed known in these
tasks. The number of images in each cluster is typically 15
except in one experiment. We compare the performance of
the sparse FRAME with that of the K-means method based
on HoG [8] features by performing experiments on these 7
clustering tasks. Table 1 displays the clustering accuracies
and standard errors based on 10 repetitions of each experi-
ment.

6 Unsupervised learning from non-aligned images

In the previous section, we consider learning a single sparse
FRAME model or template from roughly aligned images.
The two-stage learning algorithm can serve as a basis for
learning a codebook of sparse FRAME templates from non-
aligned images without any annotation and labeling, so that
the training images can be represented by spatially trans-
lated, rotated, scaled and deformed versions of templates se-
lected from the learned codebook. Here we follow the learn-
ing scheme in our previous work on compositional sparse
coding [29].

6.1 Learning a codebook of sparse FRAME models

Figure 13 shows two experiments. In the first experiment,
a single template is learned. In the second experiment, a
codebook of two templates (brick and floor tile patterns) are
learned. In each experiment, the images on the top row are
generated from the learned models. The image on the left
of the second row is the observed image, and the image on
the right of the second row is reconstructed by the learned
templates.

Single template with spatial translation. To fix the nota-
tion, we shall assume temporarily that the templates are only
allowed spatial translations in encoding the training images.
We start from generalizing the representation (17) by assum-
ing that the template may appear at location Xm in image

Fig. 13: Unsupervised learning. In each experiment, a code-
book of sparse FRAME templates (of size 100×100 pixels)
is learned from the training image. The images on the top
row are generated from the learned templates. The image on
the left of the second row is the observed training image.
The image on the right of the second row is reconstructed
using spatially translated, rotated and deformed versions of
the learned templates.

Im, then we can write the representation as

Im =

n∑
i=1

cm,iBXm+xi+∆xm,i,si,αi+∆αm,i + εm (25)

= CmBXm + εm, (26)

where BXm = (BXm+xi+∆xm,i,si,αi+∆αm,i , i = 1, ..., n)

is the deformed template spatially translated to Xm, Cm =

(cm,i, i = 1, ..., n), and by definition

CmBXm =

n∑
i=1

cm,iBXm+xi+∆xm,i,si,αi+∆αm,i . (27)

BXm explains the part of Im that is covered by BXm . For
each image Im and each Xm, the log-likelihood is

L(Im | BXm) =

n∑
i=1

λi max
∆x,∆α

|〈Im, BXm+xi+∆x,si,αi+∆α〉|

− logZ(λ), (28)

which is a slight generalization of (19) and which is the log-
likelihood score (23) used for object detection. For nota-
tional simplicity, we drop λ in L(Im | BXm). We always
assume that λ is estimated by MLE.
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Fig. 14: Codebook learning. See caption of Fig. 13. In the
second experiment (brick walls and ivy leaves), the image
on the left of the third row is the testing image. The image
on the right of the third row is reconstructed by the templates
learned from the training image, which is on the left of the
second row.

A codebook of templates and objective function. With
the above notation such as that in (26), now suppose we
have a codebook of T templates, and let us denote them by
{B(t), t = 1, ..., T}. Then we can represent the image Im
by Km templates that are spatially translated and deformed
versions of these T templates in the codebook:

Im =

Km∑
k=1

Cm,kB
(tm,k)
Xm,k

+ εm, (29)

where each B
(tm,k)
Xm,k

is obtained by translating the template of
type tm,k, i.e., B(tm,k), to location Xm,k, and deforming it
to match Im by local max pooling in (28). For now, let us as-
sume that the Km templates do not overlap with each other,
i.e., B(tm,k) span orthogonal subspaces for k = 1, ...,Km,
such as in the first example of Figure 13. Then the dimen-
sions that they explain are independent of each other, and
the log-likelihood score is

L(Im | B
(tm,k)
Xm,k

, k = 1, ...,Km) =

Km∑
k=1

L(Im | B
(tm,k)
Xm,k

).(30)

Our goal is to learn the codebook of T templates from the
training images {Im}, while inferring the representation of
each Im, i.e., {(tm,k, Xm,k), k = 1, ...,Km}, by maximiz-
ing the objective function which is defined as the sum of the
log-likelihood (30) over all the training images {Im},
M∑
m=1

[
Km∑
k=1

L(Im | B
(tm,k)
Xm,k

, k = 1, ...,Km)

]
, (31)

subject to the constraint that for each Im, the encoding tem-
plates {B(tm,k)

Xm,k
, k = 1, ...,Km} do not overlap.

Fig. 15: Codebook learning. A codebook of 4 models (each
has 250 wavelets) is learned from 20 images. The first row
displays the synthesized images (100×100) from the 4 mod-
els. The second and third rows display two training images
(left) and their reconstructions (right) by the 4 models.

Codebook learning algorithm. To initialize the unsuper-
vised learning algorithm, we first learn the codebook of tem-
plates from randomly cropped image patches. Specifically,
for each B(t), we randomly cropped some image patches
from training images, and then we learn B(t) and the as-
sociated parameters λ(t) from these image patches using the
two-stage algorithm described in the previous sections. Then
we iterate the following two steps that seek to maximize the
objective function (31):
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Fig. 16: Codebook learning. In each of the 3 experiments,
synthesized images (100 × 100) from the models of the
learned codebook are displayed together with the training
images and their sketches by the learned models, where each
Gabor wavelet is illustrated by a bar, and the templates ap-
pear in different colors (red and green) or with their bound-
ing boxes (in green). Grape experiment: each model has
37 wavelets, learned from 1 image. Lotus experiment: each
model has 30 wavelets, learned from 7 images. Cat experi-
ment: each model has 40 wavelets, learned from 20 images.

(1) Image encoding by template matching pursuit. This
step assumes that the codebook {B(t)} is given, and it seeks
to maximize (31) over the encoding of each image Im by
{(tm,k, Xm,k), k = 1, ...,Km}. Specifically, for each tem-
plate in the codebook, we scan it over each image Im and
compute the log-likelihood score, i.e., compute R

(t)
m (X) =

L(Im | B(t)
X ) for all t and X . Starting from k = 1, we se-

quentially select (Xm,k, tm,k) = arg maxX,tR
(t)
m (X) sub-

ject to the constraint that B(tm,k)
Xm,k

does not overlap with pre-
viously selected templates and that the log-likelihood score
of the selected template is above a threshold such as 0.

(2) Template re-learning. This step assumes that the en-
coding of each image Im, i.e., {(tm,k, Xm,k)}, is given,
and it seeks to maximize (31) by re-learn the codebook of
templates {(B(t), λ(t)), t = 1, ..., T}. Specifically, for each
template t in the codebook, we re-learn (B(t), λ(t)) from the

image patches currently encoded by this template using the
two-stage learning algorithm.

The above algorithm is a greedy algorithm for maximiz-
ing the objective function (31). In fact, it can be considered
a combination of detection and clustering studied in the pre-
vious sections. Even though the initial templates are ran-
dom and meaningless, meaningful templates can usually be
learned after a small number of iterations. These templates
seek to explain different patterns in the observed images.
According to our experience, meaningful templates can usu-
ally be learned regardless of the starting point of the algo-
rithm.

In practical implementation of the above learning algo-
rithm, we allow the templates to vary their rotations and
scales in addition to spatial translation. We also allow the
templates to have limited overlap, that is, after each tem-
plate is selected, it only inhibits other templates within a
limited distance from its center. Our experiences show that
prohibiting overlap between the selected templates can re-
sult in parts of images left unexplained. Allowing limited
overlap can avoid this problem.

In the template matching pursuit process, when a tem-
plate is selected, it explains away part of the residual image
by least squares projection. So after the template matching
pursuit process, the observed images are reconstructed ac-
cording to (29).

The number of templates in the codebook as well as the
numbers of basis functions in the templates can be selected
by BIC-like criteria, as suggested by [29]. In this paper, we
hand picked these parameters.

Experiment 6: Unsupervised learning of codebooks. We
can learn a codebook of sparse FRAME models from non-
aligned images without annotation. Figure 14 illustrates 3
experiments of codebook learning. In each experiment, the
images on the top row are synthetic images generated by
the learned models. The input image is shown on the left
of the second row. The image on the right of the second
row is the reconstructed image using the learned templates.
In the second experiment of brick walls and ivy leaves, the
templates are learned from the training image in the second
row, and they can be used to reconstruct the testing image
in the third row. Figure 15 displays another example of a
codebook learned from multiple images. Figure 16 displays
results from another set of experiments, where for the sake
of efficiency, we select n = 40 Gabor wavelets of a sin-
gle scale, so the synthesized images mainly capture the edge
patterns. Each experiment displays 100 × 100 images syn-
thesized by the models in the learned codebook, together
with the training image and the sketch of the image by the
learned models (in different colors in the first two experi-
ments or with green bounding boxes in the last experiment).
There is one training image in the first experiment, while
there are multiple training images in the other two experi-
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ments. As to the running time, for the lotus example, each
encoding and re-learning iteration takes about 2.6 minutes.
We run 15 iterations.

6.2 Using learned codebooks for object classification

The learned codebook of sparse FRAME models can serve
as “words” in the “bag-of-word” method for object classifi-
cation. Suppose we have a codebook of T models {B(t), t =

1, ..., T} learned from training images. For each image Im,
we denote R

(t)
m (X,S,A) = L(Im | B(t)

X,S,A) as the log-
likelihood of B(t) at location X , scale S, and orientation A.
Both S and A are assumed to take values within a finite and
properly discretized range. Let

r(t)
m (A) = max(max

X,S
R(t)
m (X,S,A), 0) (32)

be the maximum score at orientationA. Then each image Im
can be represented by a T ×NA-dimensional feature vector
(r

(t)
m (A), t = 1, ..., T,∀A), where NA is the number of pos-

sible values A can take. After extracting features, we can
use any discriminative method to train classifiers (e.g. linear
logistic regression or SVM [57]) on such feature vectors for
object classification. Spatial pyramid matching (SPM) [31]
can also be utilized to further boost the classification perfor-
mance.

Experiment 7: Binary classification. We evaluate the above
“bag-of-word” representation extracted by a codebook of
sparse FRAME templates on a binary classification task.
We test it on a collection of 16 categories from Caltech-101
[15], all 5 categories from ETHZ Shape [17] and all 3 cat-
egories from Graz-02 [37] datasets. The task is to separate
each category from a negative background category. We re-
size all images to 150 × 150 pixels without changing their
aspect ratios and convert them to grey level images. We ran-
domly choose 30 positive and 30 negative images respec-
tively as training data, and keep the rest as testing data. For
Caltech-101 and Graz-02, negative images are chosen from
the background category, while for ETHZ, negative exam-
ples are chosen from images other than the target category.
For each category, we learn a codebook of T = 10 sparse
FRAME templates. Each template is of the size 100 × 100

and has n = 40 wavelets. We set scale S ∈ {0.8, 1, 1.2}
and orientation A ∈ {±1, 0} × π/16. Binary classification
is done with linear logistic regression with regularization by
`2 norm [14]. We compare our results with those obtained
by SIFT [35] features and SVM classifier, where SIFT fea-
tures are quantized into “words” by K-means clustering (K
= 50, 100, 500) and fed into linear or kernel SVM. The best
result among these six combinations (3 numbers of words
× two types of SVM) is then reported. Table 2 shows the
comparison results of the binary classification experiments.

Table 3: Classification accuracies (%) on the animal faces
dataset.

HoG+SVM HIT Mixture of Part-based Our
HIT LSVM method

70.8 71.6 75.6 77.6 79.4

All experiments are repeated five times with different ran-
domly selected training and testing images, and the average
accuracies and the 95% confident intervals are reported. It
can be seen that our method generally outperforms the SIFT
+ SVM method, despite the fact that we use much smaller
codebooks (10 “words” versus 50, 100, 500 “words”).

Experiment 8: Multi-class classification. Our second set
of experiments is on the LHI-Animal-Faces dataset [51],
which consists of around 2200 images for 20 categories of
animal or human faces. We randomly select half of the im-
ages per class for training and the rest for testing. We learn
a codebook of 10 sparse FRAME models for each category
in an unsupervised way. We then combine the codebooks of
all the categories (in total 20 × 10 = 200 codewords). The
maps of the template matching scores from the models in the
combined codebook are computed for each image, and they
are then fed into SPM, which equally divides an image into
1, 4, 16 areas, and concatenates the maximum scores at dif-
ferent image areas into a feature vector. We use multi-class
SVM to train image classifiers based on the feature vectors,
and then evaluate the classification accuracies of these clas-
sifiers on the testing data using the one-versus-all rule. Our
classification rate is 79.4%. For comparison, Table 3 lists
four published results [51] on this dataset obtained by other
methods: (a) HoG feature trained with SVM, (b) Hybrid Im-
age Template (HIT) [51], (c) multiple transformation invari-
ant HITs (Mixture of HIT) [51], and (d) part-based HoG fea-
ture trained with latent SVM [16]. Our method outperforms
the other methods in terms of classification accuracy on this
dataset.

Experiment 9: Domain transfer. Classifiers learned from
one domain (the source domain) may perform poorly on
other domains (the target domains), because that training
and testing data may not come from the same distribution.
Learning domain-invariant feature representations can deal
with this problem. In this experiment, we test our proposed
representation for the task of domain transfer on four do-
main datasets, and compare with published results [49] [24]
[23] [61] [30] [28] [50]. The four datasets are: Amazon,
Webcam, DSLR and Caltech-256 [25]. Each dataset is re-
garded as a domain. For the experiment with single source
training, 10 classes common to all 4 datasets are extracted:
backpack, touring-bike, calculator, head-phones, computer-
keyboard, laptop-101, computer-monitor, computer-mouse,
coffee-mug, and video-projector. For the experiment with



Learning Sparse FRAME Models for Natural Image Patterns 17

Table 2: Accuracies (%) on binary classification tasks for 24 categories from Caltech-101, ETHZ Shape and Graz-02 data
sets.

Datasets SIFT+SVM Our method Datasets SIFT+SVM Our method
Watch 90.1±1.0 89.1±1.6 Sunflower 76.0±2.5 89.6±3.7
Laptop 73.5±5.3 89.8±2.7 Chair 62.5±5.0 82.9±4.7
Piano 84.5±4.2 93.8±2.6 Lamp 61.5±4.5 86.6±4.3
Ketch 82.2±0.8 83.3±6.5 Dragonfly 66.0±4.0 89.9±5.7
Motorbike 93.9±1.2 92.2±2.9 Umbrella 73.4±4.4 90.0±0.7
Guitar 70.0±2.4 77.3±6.3 Cellphone 68.7±5.1 95.7±1.8
Schooner 64.3±2.2 87.7±2.8 Face 91.8±2.3 94.4±2.3
Ibis 67.8±6.0 85.3±2.7 Starfish 73.1±6.7 90.0±2.3
ETHZ-Bottle 68.6±3.2 77.5±5.6 ETHZ-Cup 66.0±3.3 62.5±3.0
ETHZ-Swans 64.2±1.5 74.0±7.5 ETHZ-Giraffes 61.5±6.4 73.3±4.8
ETHZ-Apple 55.0±1.8 65.8±6.1 Graz02-Person 70.4±1.2 68.2±3.8
Graz02-Car 64.0±6.7 59.6±5.5 Graz02-Bike 68.5±2.8 71.3±5.1

Table 4: Results on the domain transfer experiment

(a) Classification accuracies (%) on single source four domains benchmark ( C: caltech, A: amazon, D: DSLR, W: webcam)

Method C→A C→D A→C A→W W→C W→A D→A D→W
Metric [49] 33.7±0.8 35.0±1.1 27.3±0.7 36.0±1.0 21.7±0.5 32.3±0.8 30.3±0.8 55.6±0.7
SGF [24] 40.2±0.7 36.6±0.8 37.7±0.5 37.9±0.7 29.2±0.7 38.2±0.6 39.2±0.7 69.5±0.9
GFK [23] 46.1±0.6 55.0±0.9 39.6±0.4 56.9±1.0 32.8±0.7 46.2±0.7 46.2±0.6 80.2±0.4

FDDL [61] 39.3±2.9 55.0±2.8 24.3±2.2 50.4±3.5 22.9±2.6 41.1±2.6 36.7±2.5 65.9±4.9
MMDT [28] 49.4±0.8 56.5±0.9 36.4±0.8 64.6±1.2 32.2±0.8 47.7±0.9 46.9±1.0 74.1±0.8
SDDL [50] 49.5±2.6 76.7±3.9 27.4±2.4 72.0±4.8 29.7±1.9 49.4±2.1 48.9±3.8 72.6±2.1
Our method 62.2±1.6 52.2±4.0 46.7±2.5 53.2±4.9 39.1±3.0 53.2±4.4 55.3±2.9 72.4±3.1

(b) Classification accuracies (%) on multiple sources three domains benchmark

Source Target SGF [24] RDALR [30] FDDL [61] Our method
DLSR, amazon webcam 52±2.5 36.9±1.1 41.0±2.4 52.2±1.4

amazon, webcam DSLR 39±1.1 31.2±1.3 38.4±3.4 54.5±3.3
webcam, DSLR amazon 28±0.8 20.9±0.9 19.0±1.2 32.1±1.6

multiple sources training, all 31 classes in Amazon, Webcam
and DSLR are used. We use the evaluation protocol in [23].
We randomly sample labeled data in the source domain as
training examples, and unlabeled data in the target domain
as testing examples. We learn a combined codebook (by
learning a codebook of 3 templates with n = 40 wavelets
for each category and combining them together), then use it
to extract feature vectors and train classifiers by multi-class
SVM using the same scheme as in Experiment 8. We eval-
uate the classification accuracies of these classifiers on the
testing domain. For each pair of source and target domains,
we report averaged accuracies on target domains as well as
standard errors. Table 4 shows the comparisons of recogni-
tion accuracies on target domains for single source training
and multiple source training, where the accuracies and stan-
dard errors are obtained from 10 repetitions. It can be seen
that our method performs significantly better than previous

methods on 8 out of 11 sub-tasks, and on-par with the best
performing method on the other sub-tasks, even though we
do not make use of any domain adaptation techniques. This
suggests that the learned codebooks of models capture in-
trinsically meaningful patterns.

7 Conclusion

We propose that the sparse FRAME models form the layer
of representational units above the layer of wavelets sparse
coding. A sparse FRAME model makes use of wavelet sparse
coding to generate image intensities, while accounting for
the distribution of the coefficients of the selected wavelets
as well as perturbations of their locations and orientations.

As a generative model, the sparse FRAME model has
the following characteristics. (1) It can reconstruct the train-
ing images, and reconstruction is used for selecting the basis
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functions. (2) It can synthesize new images, and synthesis is
required for estimating parameters and calculating the nor-
malizing constant. (3) It separates shape deformations and
appearance variations. (4) It gives interpretable sketches. (5)
Codebooks of models can be learned in an unsupervised
manner. (6) It combines rich traditions of harmonic analy-
sis and Markov random field models.

While we have shown that it is possible to learn code-
books of sparse FRAME models, much remains to be un-
derstood about learning large codebooks reliably from big
training data sets.

Reproducibility
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8 Appendix

8.1 Simulation by Hamiltonian Monte Carlo

To approximate Ep(I;λ(t))[|〈I, Bx,s,α〉|] in equation (9), we
need to draw a synthesized sample set {Ĩm} from p(I;λ(t))

by HMC [10]. We can write p(I;λ) as p(I) ∝ exp(−U(I)),
where I ∈ R|D| and

U(I) = −
∑
x,s,α

λx,s,α|〈I, Bx,s,α〉|+
1

2
|I|2 (33)

(assuming σ2 = 1). In physics context, I can be regarded
as a position vector and U(I) the potential energy function.
To allow Hamiltonian dynamics to operate, we need to in-
troduce an auxiliary momentum vector φ ∈ R|D| and the
corresponding kinetic energy function K(φ) = |φ|2/2m,
where m represents the mass. After that, a fictitious physi-
cal system described by the canonical coordinates (I,φ) is
defined, and its total energy is H(I,φ) = U(I) + K(φ).
Instead of sampling from p(I) directly, HMC samples from
the joint canonical distribution p(I,φ) ∝ exp(−H(I,φ)),
under which I ∼ p(I) marginally and φ follows a Gaussian
distribution and is independent of I. Each time HMC draws
a random sample from the marginal Gaussian distribution of
φ, and then evolves according to the Hamiltonian dynamics
that conserves the total energy.

In practical implementation, the leapfrog algorithm is
used to discretize the continuous Hamiltonian dynamics as
follows, with ε being the step-size:

φ(t+ε/2) = φ(t) − (ε/2)
∂U

∂I
(I(t)), (34)

I(t+ε) = I(t) + ε
φ(t+ε/2)

m
, (35)

φ(t+ε) = φ(t+ε/2) − (ε/2)
∂U

∂I
(I(t+ε)), (36)

that is, a half-step update of φ is performed first and then it
is used to compute I(t+ε) and φ(t+ε).

A key step in the leapfrog algorithm is the computation
of the derivative of the potential energy function
∂U

∂I
= −

∑
x,s,α

λx,s,αsign(〈I, Bx,s,α〉)Bx,s,α + I, (37)

where the map of responses rx,s,α = 〈I, Bx,s,α〉 is com-
puted by bottom-up convolution of the filter corresponding
to (s, α) with I for each (s, α). Then the derivative is com-
puted by top-down linear superposition of the basis func-
tions:−

∑
x,s,α λx,s,αsign(rx,s,α)Bx,s,α+I, which can again

be computed by convolution. Both bottom-up and top-down
convolutions can be carried out efficiently by GPUs.

The discretization of the leapfrog algorithm cannot keep
H(I,φ) exactly constant, so a Metropolis acceptance/rejection
step is used to correct the discretization error. Starting with
the current state, (I,φ), the new state (I?,φ?), afterL leapfrog
steps, is accepted as the next state of the Markov chain with
probability min[1, exp(−H(I?,φ?) +H(I,φ))]. If it is not
accepted, the next state is the same as the current state.

In summary, a complete description of the HMC sampler
for inhomogeneous FRAME is as follows:

(i) Generate the momentum vector φ from its marginal
distribution p(φ) ∝ exp(−K(φ)), which is the zero-mean
Gaussian distribution with covariance matrix mI (I is the
identity matrix).

(ii) PerformL leapfrog steps to reach the new state (I?,φ?).

(iii) Perform acceptance/rejection of the proposed state
(I?,φ?).

L, ε, and m are parameters of the algorithm, which need
to be tuned to obtain good performance.

8.2 Maximum entropy justification

The inhomogeneous FRAME model can be justified by the
maximum entropy principle. Suppose the true distribution
that generates the observed images {Im} is f(I). Let λ?

solve the population version of the maximum likelihood equa-
tion:

Ep(I;λ)[|〈I, Bx,s,α〉|] = Ef [|〈I, Bx,s,α〉|], ∀x, s, α. (38)

Let Ω be the set of all the distributions p(I) such that

Ep[|〈I, Bx,s,α〉|] = Ef [|〈I, Bx,s,α〉|], ∀x, s, α. (39)

http://www.stat.ucla.edu/~jxie/sparseFRAME.html
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Then f ∈ Ω. LetΛ be the set of all the distributions {pλ,∀λ},
where pλ(I) = p(I;λ). Then q ∈ Λ since q(I) = p(I;λ =

0). Thus pλ? is the intersection between Λ and Ω. In Fig-
ure 17, Λ and Ω are illustrated by blue and green curves
respectively, where each point on the curves is a probability
distribution. The two curves Λ and Ω are “orthogonal” in
the sense that for any pλ ∈ Λ and for any p ∈ Ω, it can be
easily proved that the the Pythagorean property

KL(p||pλ) = KL(p||pλ?) + KL(pλ? ||pλ) (40)

holds [44], where KL(p||q) is the Kullback-Leibler diver-
gence from p to q. This Pythagorean property leads to the
following dual properties of pλ? :

(1) Maximum likelihood: Among all pλ ∈ Λ, pλ? achieves
the minimum of KL(f ||pλ).

(2) Maximum entropy or minimum divergence: Among
all p ∈ Ω, pλ? achieves the minimum of KL(p||q). Thus pλ?
can be considered the minimal modification of the reference
distribution q to match the statistical properties of the true
distribution f .

The above justification is also true for the sparse FRAME
model.

Fig. 17: Illustration of the maximum entropy principle. Each
curve illustrates a set of probability distributions. Ω is the
set of distributions that reproduce statistical properties of
filter response of the true distribution f . Λ is the set of
distributions of the model. The two curves are orthogonal
to each other in the sense of the Pythagorean property of
the Kullback-Leibler divergences. So pλ? can be considered
the minimal modification of the reference distribution q to
match the statistical properties of f .

For sparsification, in principle, we can select Bxi,si,αi
sequentially using a procedure like projection pursuit [19]
or filter pursuit [66]. Suppose we have selected k basis func-
tions (Bxi,si,αi , i = 1, ..., k), and let pk be the fitted model
with the corresponding λ = (λi, i = 1, ..., k) estimated
by MLE. Suppose we are to select the next basis function
Bxk+1,sk+1,αk+1

. Let pk+1 be the fitted model. Then we want
to minimize KL(f ||pk+1) = KL(f ||pk) − KL(pk+1||pk),
that is, we want to maximize KL(pk+1||pk), which serves as
the pursuit index. The problem with such a procedure is that

each time we need to fit pk which involves MCMC compu-
tation, and the pursuit index is also difficult to compute. So
we choose to pursue a different approach by exploring the
connection between sparse FRAME and the shared sparse
coding.

8.3 Sparse FRAME and shared sparse coding

From sparse FRAME to shared sparse coding. Let us as-
sume that the reference distribution q(I) in the sparse FRAME
model (15) is a Gaussian white noise model so that the pixel
intensities follow N(0, σ2) independently. For sparse FRAME,
it is natural to assume that the number of selected basis func-
tions n is much less than the number of pixels in I, i.e.,
n� |D|, where D is the image domain. For notational con-
venience, we can make I and Bi = Bxi,si,αi , i = 1, ..., n

into |D|-dimensional vectors, and let B = (B1, ..., Bn) be
the resulting |D| × n matrix.

The connection between sparse FRAME and shared sparse
coding is most evident if we temporarily assume that the
selected basis functions (Bi, i = 1, ..., n) are orthogonal
(with unit `2 norm as assumed before). Extension to non-
orthogonal B is straightforward but requires tedious nota-
tion (such as (BTB)−1). For B, we can construct n̄ = |D|−
n basis vectors of unit norm B̄1, ..., B̄n̄ that are orthogo-
nal to each other and that are also orthogonal to (Bi, i =

1, ..., n). Thus each image I =
∑n
i=1 riBi +

∑n̄
i=1 r̄iB̄i,

where ri = 〈I, Bi〉, and r̄i = 〈I, B̄i〉. So we have the linear
additive model I =

∑n
i=1 riBi + ε, with ε =

∑n̄
i=1 r̄iB̄i

being the least squares residual image.
Under the Gaussian white noise q(I), ri and r̄i are all

independent N(0, σ2) random variables because of the or-
thogonality of (B, B̄). Let R be the column vector whose
elements are ri, and R̄ be the column vector whose elements
are r̄i. Then under the sparse FRAME model (15), only the
distribution of R is modified during the change from q(I) to
p(I;B, λ), which changes the distribution of R from Gaus-
sian white noise q(R) to

p(R;λ) =
1

Z(λ)
exp

(
n∑
i=1

λi|ri|

)
q(R), (41)

while the distribution of the residual coordinates R̄ remains
Gaussian white noise, and R and R̄ remain independent.
That is, p(R, R̄;λ) = p(R;λ)q(R̄).

Thus the sparse FRAME model implies a linear addi-
tive model I =

∑n
i=1 riBi + ε, where R ∼ p(R;λ) and

ε is a Gaussian white noise in the n̄-dimensional residual
space, and ε is independent of R. If we observe independent
training images {Im,m = 1, ...,M} from the model, then
Im =

∑n
i=1 rm,iBi + εm, i.e., {Im} share a common set of

basis functions B = (Bi, i = 1, ..., n) that provide sparse
coding for multiple images simultaneously.
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From shared sparse coding to sparse FRAME. Conversely,
suppose we are given a shared sparse coding model of the
form I =

∑n
i=1 ciBi + ε = BC + ε, where C is a column

vector whose components are ci. Assume C ∼ p(C) and
ε ∼ N(0, Iσ2), where I is the |D|-dimensional identity ma-
trix, and ε and C are independent. Let δ = BT ε, each com-
ponent of which δi = 〈ε, Bi〉 ∼ N(0, σ2) independently.
Then we can write I = BR + B̄R̄, where R = C + δ, and
ε̄ = B̄R̄ is the projection of ε onto the space of B̄. Let p̃(R)

be the density of R = C + δ, which is obtained by convolv-
ing p(C) with Gaussian white noise density. Then p(I) =

p̃(R)q(R̄) = q(I)p̃(R)/q(R) since q(I) = q(R)q(R̄) un-
der Gaussian white noise model (dI = dRdR̄ under or-
thogonality so there is no Jacobian term). If we choose to
model p̃(R)/q(R) = exp (

∑n
i=1 λi|ri|) /Z(λ), we arrive at

the sparse FRAME model.
Selection of basis functions. For orthogonal B, as shown

above, the probability density p(I;B, λ) = q(R̄)p(R;λ) =

q(R̄)q(R) exp (
∑n
i=1 λi|ri|) /Z(λ). Given a set of training

images {Im,m = 1, ...,M}, and for a candidate set of ba-
sis functions B = (Bi, i = 1, ..., n), we can estimate λ =

(λi, i = 1, ..., n) by MLE, giving us λ?, and the resulting
log-likelihood is

M∑
m=1

log p(Im;B, λ?)

=

M∑
m=1

[
log q(R̄m) + log p(Rm;λ?)

]
(42)

= − 1

2σ2

M∑
m=1

||Im −BRm||2 −
Mn̄

2
log(2πσ2) (43)

+

M∑
m=1

log p(Rm;λ?). (44)

Suppose we are to choose a B from a collection of candi-
dates. Ideally we should maximize the sum of (43) and (44).
We may interpret (43) to be the negative coding length of
the residual image ε by the Gaussian white noise model, and
interpret (44) to be the negative coding length of the coeffi-
cientsR by the fitted model p(R;λ?). If σ2 is small, (43) can
be more important, while the coding length of R for differ-
ent B may not differ too much in comparison. So we choose
to seek a B to maximize only (43) or equivalently minimize
the overall reconstruction error

∑M
m=1 ||Im−BRm||2. This

reflects a two-stage strategy in modeling {Im}. First, we find
a set of basis functions B to reconstruct {Im} as accurately
as possible. Then we fit a statistical model for the recon-
struction coefficients.

Non-orthogonality. Even if B is not orthogonal, which
is the case in our work, the connection between the sparse
FRAME and shared sparse coding still holds. The responses
R = BT I, but the reconstruction coefficients become C =

(BTB)−1R. The projection of I onto the subspace spanned

by B is BC. We can continue to assume the implicit B̄ =

(B̄i, i = 1, ..., n̄) to be orthonormal, and that they are or-
thogonal to the columns of B. We can also continue to let
R̄ = B̄T I. In this setting, R and R̄ are still independent un-
der the Gaussian white noise model q(I) because B and B̄

are still orthogonal to each other. Under the sparse FRAME
model (15), it is still the case that only the distribution of R
is modified during the change from q(I) to p(I;B, λ), while
the distribution of R̄ remains white noise and is indepen-
dent of R. The distribution of R implies a distribution of the
reconstruction coefficients C because they are linked by a
linear transformation. In fact, the distribution of C is:

pC(C;λ) =
1

Z(λ)
exp(〈λ, |BTBC|〉)qC(C), (45)

where qC(C) is the distribution of C under the reference
distribution q(I), and for a vector u, |u| means the vector
obtained by taking the absolute values of u component-wise.
Now the distributions ofR andC involve the Jacobian terms
such that dRdR̄ = |det(BTB)|1/2dI = |det(BTB)|dCdR̄.
In fact p(I;B, λ) = pC(C;λ)qR̄(R̄)|det(BTB)|−1/2. By
the same logic as in (43) and (44), we still want to find B

to minimize the overall reconstruction error
∑M
m=1 ‖Im −

BCm‖2.
Under the shared sparse coding model, it is tempting to

model the coefficients C of the selected basis functions di-
rectly. However, C is still a multi-dimensional vector, and
direct modeling of C can be difficult. One may assume that
the components of C are statistically independent for sim-
plicity, but this assumption is unlikely to be realistic. So af-
ter selecting the basis functions, we choose to model the im-
age intensities by the inhomogeneous FRAME model. Even
though this model only matches the marginal distributions
of filter responses of the selected basis functions, the model
does not assume that the responses are independent.
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