Skip to main content
Log in

Shape Description and Matching Using Integral Invariants on Eccentricity Transformed Images

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Matching occluded and noisy shapes is a problem frequently encountered in medical image analysis and more generally in computer vision. To keep track of changes inside the breast, for example, it is important for a computer aided detection system to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants (II) and with geodesic distance, yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants describe the boundaries of planar shapes. However, they provide no information about where a particular feature lies on the boundary with regard to the overall shape structure. Conversely, eccentricity transforms (Ecc) can match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines the boundary signature of a shape obtained from II and structural information from the Ecc to yield results that improve on them separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Alferez, R., & Wang, Y.-F. (1999). Geometric and illumination invariants for object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 505–536.

    Google Scholar 

  • Amanatiadis, A., Kaburlasos, V. G., Gasteratos, A., & Papadakis, S. E. (2011). Evaluation of shape descriptors for shape-based image retrieval. Image Process IET, 5, 493–499.

    Google Scholar 

  • Arrebola, F., & Sandoval, F. (2005). Corner detection and curve segmentation by multiresolution chain-code linking. Pattern Recognition, 38, 1596–1614.

    MATH  Google Scholar 

  • Arun, K. S., & Sarath, K. S. (2011). Evaluation of SUSAN filter for the identification of micro calcification. International Journal of Computational and Applied, 15, 41–44.

    Google Scholar 

  • Bauer, M., Fidler, T., & Grasmair, M. (2011). Local uniqueness of the circular integral invariant. arXiv Prepr. arXiv:1107.4257.

  • Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 509–522.

    Google Scholar 

  • Belongie, S., Malik, J., & Puzicha, J. (2001). Matching shapes. In: Proceedings of the 8th IEEE International Conference on Computer Vision ICCV. ICCV 2001 (pp. 454–461).

  • Bengtsson, A., & Eklundh, J.-O. (1991). Shape representation by multiscale contour approximation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 85–93.

    Google Scholar 

  • Bertsekas, D. P. (1995). Dynamic programming and optimal control. Belmont, MA: Athena Scientific.

    MATH  Google Scholar 

  • Und Bildverarbeitung, A.M. & Ion, D.-IA. (2009). The Eccentricity Transform of n-Dimensional Shapes with and without Boundary.

  • Boué, M., & Dupuis, P. (1999). Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control. SIAM Journal on Numerical Analysis, 36, 667–695.

    MathSciNet  Google Scholar 

  • Brandt, R. D., & Lin, F. (1996). Representations that uniquely characterize images modulo translation, rotation, and scaling. Pattern Recognition Letters, 17, 1001–1015.

    Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., Bruckstein, A. M., & Kimmel, R. (2008). Analysis of two-dimensional non-rigid shapes. International Journal of Computer Vision, 78, 67–88.

    Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006). Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Sciences United States of America, 103, 1168–1172.

    MATH  MathSciNet  Google Scholar 

  • Bruckstein, A. M., Rivlin, E., & Weiss, I. (1997). Scale space semi-local invariants. Image and Vision Computing, 15, 335–344.

    Google Scholar 

  • Calabi, E., Olver, P. J., Shakiban, C., et al. (1998). Differential and numerically invariant signature curves applied to object recognition. International Journal of Computer Vision, 26, 107–135.

    Google Scholar 

  • Cao, W., Hu, P., Liu, Y., et al. (2011). Gaussian-curvature-derived invariants for isometry. Science China Information Sciences, 56(9), 1–12.

    Google Scholar 

  • Chen, Y. W., & Xu, C. L. (2009). Rolling penetrate descriptor for shape-based image retrieval and object recognition. Pattern Recognition Letters, 30, 799–804.

    Google Scholar 

  • Chetverikov, D., & Khenokh, Y. (1999). Matching for shape defect detection. Computer Analysis Images Patterns. pp. 367–374.

  • Cohen, F. S., & Wang, J.-Y. (1994). Part I: Modeling image curves using invariant 3-D object curve models-a path to 3-D recognition and shape estimation from image contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, 1–12.

    Google Scholar 

  • Cohen, L. D., & Kimmel, R. (1997). Global minimum for active contour models: A minimal path approach. International Journal of Computer Vision, 24, 57–78.

    Google Scholar 

  • Cohignac, T., Lopez, C., & Morel, J. M. (1994). Integral and local affine invariant parameter and application to shape recognition. Pattern Recognition, 1994. Vol. 1-Conference A: Comput. Vis. & Image Process. In: Proceedings of 12th IAPR International Conference (pp. 164–168).

  • Cole, J. B., Murase, H., & Naito, S. (1991). A Lie group theoretic approach to the invariance problem in feature extraction and object recognition. Pattern Recognition Letters, 12, 519–523.

    Google Scholar 

  • Davidovic, T., Ramljak, D., Selmic, M., & Teodorovic, D. (2010). Parallel bee colony optimization for scheduling independent tasks on identical machines. Proceedings of International Symposium on Operational Research (pp. 389–392).

  • Davies, E. R. (2004). Machine vision: Theory, algorithms, practicalities. Boston: Elsevier.

    Google Scholar 

  • Davis, L. S. (1977). Understanding shape: Angles and sides. IEEE Transactions on Computers, 100, 236–242.

    Google Scholar 

  • Dijkstra, E. W. (1968). Co-operating sequential processes. New York: F. Program. Lang. Acad. Press.

    Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerical Mathematics, 1, 269–271.

    MATH  MathSciNet  Google Scholar 

  • Dijkstra, E. W. (1976). A discipline of programming. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Duchenne, O., Bach, F., Kweon, I.-S., & Ponce, J. (2011). A tensor-based algorithm for high-order graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 2383–2395.

    Google Scholar 

  • Duci, A., Yezzi, A. J., Mitter, S. K., & Soatto, S. (2003). Shape representation via harmonic embedding. Proceedings 9th IEEE International Conference on Computer Vision, 2003 (pp. 656–662).

  • Elad, A., & Kimmel, R. (2003). On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 1285–1295.

    Google Scholar 

  • Fidler, T., Grasmair, M., Pottmann, H., & Scherzer, O. (2007). Inverse problems of integral invariants and shape signatures.

  • Forsyth, D., Mundy, J. L., Zisserman, A., et al. (1991). Invariant descriptors for 3 d object recognition and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 971–991.

    Google Scholar 

  • Forsyth, D., Mundy, J. L., Zisserman, A., & Brown, C. M. (1990). Projectively invariant representations using implicit algebraic curves. Berlin: Springer.

    Google Scholar 

  • Frenkel, M., & Basri, R. (2003). Curve matching using the fast marching method. Energy Minimization Methods in Computer Vision and Pattern Recognition, 2683, 35–51.

    Google Scholar 

  • Gdalyahu, Y., & Weinshall, D. (1999). Flexible syntactic matching of curves and its application to automatic hierarchical classification of silhouettes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 1312–1328.

    Google Scholar 

  • Van Gool, L., Moons, T., & Ungureanu, D. (1996). Affine/photometric invariants for planar intensity patterns. Computer Vision–ECCV’96. Berlin: Springer.

    Google Scholar 

  • Gorelick, L., Galun, M., Sharon, E., et al. (2006). Shape representation and classification using the poisson equation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 1991–2005.

    Google Scholar 

  • Gu, Y.-H., & Tjahjadi, T. (2000). Coarse-to-fine planar object identification using invariant curve features and B-spline modeling. Pattern Recognition, 33, 1411–1422.

    MATH  Google Scholar 

  • Hadley, G. (1964). Nonlinear and Dynamic Programming. Berlin: Addison-Wesley.

    MATH  Google Scholar 

  • Hamza, A. B., & Krim, H. (2006). Geodesic matching of triangulated surfaces. IEEE Transactions on Image Processing, 15, 2249–2258.

    Google Scholar 

  • Hann, C., & Hickman, M. S. (2002). Projective curvature and integral invariants. Acta Applied Mathematics, 74, 177–193.

    MATH  MathSciNet  Google Scholar 

  • Helgason, S. (1984). Groups & geometric analysis: Radon transforms, invariant differential operators and spherical functions. Burlington, ON: Elsevier.

    Google Scholar 

  • Helmsen, J., Puckett, E., Colella, P., & Dorr, M. (1996). Two new methods for simulating photolithography development in 3D. In: Proceedings of SPIE (pp. 253–261).

  • Highnam, R., Brady, M., Yaffe, M. J., et al. (2010). Robust breast composition measurement-volparaTM. Digital mammography (pp. 342–349). Berlin: Springer.

    Google Scholar 

  • Hong, B. W. (2004). Image segmentation, shape, and registration: Application to mammography. Oxford: University of Oxford.

    Google Scholar 

  • Hong, B-W., & Brady, M. (2003). Segmentation of mammograms in topographic approach. In VIE 2003. International Conference on Visual Information Engineering (pp. 157–160).

  • Huang, C.-L., & Huang, D.-H. (1998). A content-based image retrieval system. Image and Vision Computing, 16, 149–163.

    Google Scholar 

  • Huang, Q. X., Flöry, S., Gelfand, N., et al. (2006). Reassembling fractured objects by geometric matching. ACM Transactions on Graphics, 25(3), 569–578.

    Google Scholar 

  • Huang, Z., & Cohen, F. S. (1996). Affine-invariant B-spline moments for curve matching. IEEE Transactions on Image Processing, 5, 1473–1480.

    Google Scholar 

  • Ion, A., Artner, N. M., Peyré, G., et al. (2011). Matching 2D and 3D articulated shapes using the eccentricity transform. Computer Vision and Image Understanding, 115, 817–834.

    Google Scholar 

  • Ion, A., Artner, N. M., & Peyré, G., et al. (2008). 3D shape matching by geodesic eccentricity. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Work 2008. CVPRW’08 (pp. 1–8).

  • Ion, A., Peyré, G., & Haxhimusa, Y., et al. (2007). Shape matching using the geodesic eccentricity transform-a study. In: Proceedings of 31st Annual Workshop Austrian Association Pattern (pp. 97–104).

  • Janan, F., & Brady, M. (2012). Region matching in the temporal study of mammograms using integral invariant scale-space. Breast imaging (pp. 173–180). Berlin: Springer.

    Google Scholar 

  • Jeffreys, M., Harvey, J., & Highnam, R. (2010). Comparing a new volumetric breast density method (VolparaTM) to cumulus. Digital mammography. Berlin: Springer.

    Google Scholar 

  • Van Kaick, O., Hamarneh, G., Zhang, H., & Wighton, P. (2007). Contour correspondence via ant colony optimization. In:Proceedings of the 15th Pacific Conference on Computer Graphics and Applications (pp. 271–280).

  • Van Kaick, O., Zhang, H., Hamarneh, G., & Cohen-Or, D. (2011). A survey on shape correspondence. Computer Graphics Forum, 30, 1681–1707.

    Google Scholar 

  • Kanatani, K. (1990). Group-theoretical methods in image understanding. Berlin: Springer.

    MATH  Google Scholar 

  • Kendall, D. G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16, 81–121.

    MATH  MathSciNet  Google Scholar 

  • Kimmel, R. (2004). Fast marching methods. Numerical geometry of images. New York: Springer.

    Google Scholar 

  • Kimmel, R., & Sethian, J. A. (1996). Fast marching methods for robotic navigation with constraints. Berkeley, CA: Center for Pure and Applied Mathematics Report, University of California.

    Google Scholar 

  • Kimmel, R., & Sethian, J. A. (2001). Optimal algorithm for shape from shading and path planning. Journal of Mathematical Imaging and Vision, 14, 237–244.

    MATH  MathSciNet  Google Scholar 

  • Kliot, M., & Rivlin, E. (1998). Invariant-based shape retrieval in pictorial databases. Computer vision–ECCV’98. Berlin: Springer.

    Google Scholar 

  • Lasenby, J., Bayro-Corrochano, E., Lasenby, A. N., & Sommer, G. (1996). A new framework for the formation of invariants and multiple-view constraints in computer vision. In: Proceedings of International Conference on Image Processing 1996 (pp. 313–316).

  • Latecki, L. J., Lakamper, R., & Eckhardt, T. (2000). Shape descriptors for non-rigid shapes with a single closed contour. In: Proceedings of IEEE Conference of Computer Vision Pattern Recognition 2000 (pp. 424–429).

  • Lenz, R. (1990). Group theoretical methods in image processing. New York: Springer.

    Google Scholar 

  • Leordeanu, M., & Hebert, M. (2005). A spectral technique for correspondence problems using pairwise constraints. In: Proceedings of 10th IEEE Intrernational Conference on Computer Vision, 2005. ICCV 2005 (pp. 1482–1489).

  • Ling, H., & Jacobs, D. W. (2007). Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 286–299.

    Google Scholar 

  • Li, S. Z. (1992). Matching: Invariant to translations, rotations and scale changes. Pattern Recognition, 25, 583–594.

    MathSciNet  Google Scholar 

  • Li, S. Z. (1999). Shape matching basedon invariants. In O. M. Omidvar (Ed.), Progress in neural networks: Shape recognition (Vol. 6, pp. 203–228). Intellect.

  • Maciel, J., & Costeira, J. P. (2003). A global solution to sparse correspondence problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 187–199.

    Google Scholar 

  • Manay, S., Cremers, D., Hong, B.-W., et al. (2006). Integral invariants for shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 1602–1618.

    Google Scholar 

  • Manay, S., Hong, B.-W., Yezzi, A. J., & Soatto, S. (2004). Integral invariant signatures. Berlin: Springer.

    Google Scholar 

  • Mansoory, M. S., Ashtiyani, M., & Sarabadani, H. (2011). Automatic Crack Detection in Eggshell Based on SUSAN Edge Detector Using Fuzzy Thresholding. Modern Applied Science 5

  • Mardia, K. V., & Dryden, I. L. (1989). Shape distributions for landmark data. Advances in Applied Probability, 21, 742–755.

    MATH  MathSciNet  Google Scholar 

  • Mateus, D., Horaud, R., & Knossow, D., et al. (2008). Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: IEEE Conference on Computer Vision Pattern Recognition, 2008. CVPR 2008 (pp. 1–8).

  • Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1615–1630.

    Google Scholar 

  • Mokhtarian, F., Abbasi, S., & Kittler, J. (1997). Efficient and robust retrieval by shape content through curvature scale space. Software Engineering and Knowledge Engineering, 8, 51–58.

    Google Scholar 

  • Mokhtarian, F., & Mackworth, A. (1986). Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1), 34–43.

    Google Scholar 

  • Mokhtarian, F., & Mackworth, A. K. (1992). A theory of multiscale, curvature-based shape representation for planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 789–805.

    Google Scholar 

  • Mumford, D. (1991). Mathematical theories of shape: Do they model perception? San Diego’,91. San Diego, CA: Academic Press.

    Google Scholar 

  • Mumford, D., Latto, A., & Shah, J. (1984) The representation of shape. In: Proceedings of IEEE Workshop Computer Vision (pp. 183–191).

  • Nasreddine, K., Benzinou, A., & Fablet, R. (2009). Shape geodesics for boundary-based object recognition and retrieval. Image Process, pp. 405–408.

  • Nielsen, L., & Sparr, G. (1991). Projective area-invariants as an extension of the cross-ratio. CVGIP: Image Understanding, 54, 145–159.

    MATH  Google Scholar 

  • Olver, P. J. (1995). Equivalence, invariants and symmetry. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2002). Shape distributions. ACM Transactions on Graphics, 21, 807–832.

    Google Scholar 

  • Ozcan, E., & Mohan, C. K. (1997). Partial shape matching using genetic algorithms. Pattern Recognition Letters, 18, 987–992.

    Google Scholar 

  • Petrakis, E. G. M., Diplaros, A., & Milios, E. (2002). Matching and retrieval of distorted and occluded shapes using dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1501–1516.

    Google Scholar 

  • Peyré, G. (2011). The numerical tours of signal processing part 2: Multiscale processings. Computing in Science & Engineering, 13(5), 68–71.

    Google Scholar 

  • Peyré, G., Péchaud, M., Keriven, R., & Cohen, L. D. (2010). Geodesic methods in computer vision and graphics. Foundations and Trends in Computer Graphics and Vision, 5, 197–397.

    Google Scholar 

  • Pottmann, H., Wallner, J., Huang, Q.-X., & Yang, Y.-L. (2009). Integral invariants for robust geometry processing. Computer Aided Geometric Design, 26, 37–60.

    MATH  MathSciNet  Google Scholar 

  • Qu, Z.-G., Wang, P., Gao, Y.-H., & Wang, P. (2011). Randomized SUSAN edge detector. Optical Engineering, 50, 110502–110502.

    Google Scholar 

  • Rafajlowicz, E. (2007). SUSAN edge detector reinterpreted, simplified and modified. Multidimensional, pp. 69–74.

  • Reiss, T. H. (1993). Recognizing planar objects using invariant image features. New York: Springer.

    MATH  Google Scholar 

  • Reuter, M., Wolter, F-E., & Peinecke, N. (2005). Laplace-spectra as fingerprints for shape matching. In: Proceedings of 2005 ACM Symposium on Solid Physical Modelling (pp. 101–106).

  • Rezai-Rad, G., & Aghababaie, M. (2006). Comparison of SUSAN and sobel edge detection in MRI images for feature extraction. In: Information and Communication Technologies 2006. ICTTA’06. 2nd (pp. 1103–1107).

  • Rosin, P. L. (2011). Shape description by bending invariant moments. Computer Analysis of Images and Patterns (pp. 253–260). Berlin: Springer.

    Google Scholar 

  • Rothwell, C. A., Zisserman, A., Forsyth, D. A., & Mundy, J. L. (1995). Planar object recognition using projective shape representation. International Journal of Computer Vision, 16, 57–99.

    Google Scholar 

  • Rothwell, C. A., Zisserman, A., Forsyth, D. A., & Mundy, J. L. (1992). Canonical frames for planar object recognition. Computer vision–ECCV’92 (pp. 757–772). Berlin: Springer.

    Google Scholar 

  • Ruggeri, M. R., Patanè, G., Spagnuolo, M., & Saupe, D. (2010). Spectral-driven isometry-invariant matching of 3D shapes. International Journal of Computer Vision, 89, 248–265.

    Google Scholar 

  • Rusinol, M., Dosch, P., & Lladós, J. (2007). Boundary shape recognition using accumulated length and angle information. Pattern Recognition and Image Analysis. Berlin: Springer.

    Google Scholar 

  • Sampat, M. P., Markey, M. K., & Bovik, A. C. (2005). Computer-aided detection and diagnosis in mammography. Handbook of Image and Video Processing, 2, 1195–1217.

    Google Scholar 

  • Sato, J., & Cipolla, R. (1997). Affine integral invariants for extracting symmetry axes. Image and Vision Computing, 15, 627–635.

    Google Scholar 

  • Sato, J., & Cipolla, R. (1996). Affine integral invariants and matching of curves. In: Proceedings of 13th International Conference on Pattern Recognition, 1996 (pp. 915–919).

  • Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2003). On aligning curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 116–125.

    Google Scholar 

  • Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2001). Alignment-based recognition of shape outlines. Visual Form 2001. Berlin: Springer.

    Google Scholar 

  • Sethian, J. A. (1999). Level set methods and fast marching methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Sharma, A., & Horaud, R. (2010). Shape matching based on diffusion embedding and on mutual isometric consistency. In: Computer Vision and Pattern Recognition Workshops (pp. 29–36).

  • Sharon, E., & Mumford, D. (2006). 2d-shape analysis using conformal mapping. International Journal of Computer Vision, 70, 55–75.

    Google Scholar 

  • Shashua, A., & Navab, N. (1996). Relative affine structure: Canonical model for 3D from 2D geometry and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 873–883.

    Google Scholar 

  • Shi, J., Chen, F., Lu, J., & Chen, G. (2013). An evolutionary image matching approach. Applied Soft Computing, 13, 3060–3065.

    Google Scholar 

  • Siddiqi, K., Shokoufandeh, A., Dickinson, S. J., & Zucker, S. W. (1999). Shock graphs and shape matching. International Journal of Computer Vision, 35, 13–32.

    Google Scholar 

  • Si-ming, H., Bing-han, L., & Wei-zhi, W. (2011). Moving shadow detection based on Susan algorithm. In: IEEE International Conference on Computer Science and Automation Engineering (pp. 16–20).

  • Smith, S. M., & Brady, J. M. (1997). SUSAN: A new approach to low level image processing. International Journal of Computer Vision, 23, 45–78.

    Google Scholar 

  • Sniedovich, M. (2010). Dynamic programming: Foundations and principles. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Sonka, M., Hlavac, V., & Boyle, R. (1999). Image processing, analysis, and machine vision. London: Chapman and Hall Publishers.

    Google Scholar 

  • Squire, D. M., & Caelli, T. M. (2000). Invariance signatures: Characterizing contours by their departures from invariance. Computer Vision and Image Understanding, 77, 284–316.

    Google Scholar 

  • Sundar, H., Silver, D., Gagvani, N., & Dickinson, S. (2003). Skeleton based shape matching and retrieval. Shape Modeling International, 2003, 130–139.

    Google Scholar 

  • Taubin, G., & Cooper, D. B. (1991). Object recognition based on moment (or algebraic) invariants. IBM TJ Watson Research Center.

  • Teodorovic, D., Davidovic, T., & Selmic, M. (2011). Bee colony optimization: The applications survey. ACM Transactions on Computational Logic, 1529, 3785.

  • Thomas, T. Y. (1934). The differential invariants of generalized spaces. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Tian, J., Ma, L., & Yu, W. (2011a). Ant colony optimization for wavelet-based image interpolation using a three-component exponential mixture model. Expert Systems With Applications, 38, 12514–12520.

    Google Scholar 

  • Tian, J., Yu, W., Chen, L., & Ma, L. (2011b). Image edge detection using variation-adaptive ant colony optimization. Transactions on Computational Collective Intelligence V. Berlin: Springer.

    Google Scholar 

  • Torresani, L., Kolmogorov, V., & Rother, C. (2008). Feature correspondence via graph matching: Models and global optimization. Computer Vision-ECCV 2008. Berlin: Springer.

    Google Scholar 

  • Trucco, E. (1995). Geometric invariance in computer vision. AI Communications, 8, 193–194.

    Google Scholar 

  • Tsai, Y.-H. R., Cheng, L.-T., Osher, S., & Zhao, H.-K. (2003). Fast sweeping algorithms for a class of Hamilton–Jacobi equations. SIAM Journal on Numerical Analysis, 41, 673–694.

    MATH  MathSciNet  Google Scholar 

  • Tsitsiklis, J. N. (1995). Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control, 40, 1528–1538.

    MATH  MathSciNet  Google Scholar 

  • Veltkamp, R. C. (2001). Shape matching: Similarity measures and algorithms. In: SMI 2001 International Conference on Shape Modeling and Applications (pp. 188–197).

  • Veltkamp, R. C., & Hagedoorn, M. (2001). State of the art in shape matching. London: Springer.

    Google Scholar 

  • Wang, S., Wang, Y., Jin, M., et al. (2007). Conformal geometry and its applications on 3d shape matching, recognition, and stitching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 1209–1220.

  • Wang, Y., & Teoh, E. K. (2004). A novel 2D shape matching algorithm based on B-spline modeling. In: 2004 International Conference on Image Processing, ICIP 2004 (pp. 409–412).

  • Wang, Y., Teoh, E. K., & Shen, D. (2004). Lane detection and tracking using B-Snake. Image and Vision Computing, 22, 269–280.

    Google Scholar 

  • Wang, Y., Teoh, E. K., & Shen, D. (2001). Structure-adaptive B-snake for segmenting complex objects. In: Proceedings 2001 International Conference On Image Processing (pp. 769–772).

  • Weiss, I. (1993). Noise-resistant invariants of curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15, 943–948.

    Google Scholar 

  • White, R., Kamath, C., & Newsam, S. (2004). Matching Shapes Using Local Descriptors. United States. Department of Energy.

  • Xingfang, Y., Yumei, H., & Yan, L. (2010). An improved SUSAN corner detection algorithm based on adaptive threshold. In IEEE - 2010 2nd International Conference on Signal Processing Systems (ICSPS, Vol. 2).

  • Xu, C., & Duan, H. (2010). Artificial bee colony (ABC) optimized edge potential function (EPF) approach to target recognition for low-altitude aircraft. Pattern Recognition Letters, 31, 1759–1772.

    Google Scholar 

  • Xu, C., Liu, J., & Tang, X. (2009). 2D shape matching by contour flexibility. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 180–186.

    Google Scholar 

  • Xu, J. (2008). Shape matching using morphological structural shape components. In: 15th IEEE International Conference on Image Processing, 2008. ICIP 2008 (pp. 2596–2599).

  • Xu, S., Han, L., & Zhang, L. (2006). An algorithm to edge detection based on SUSAN filter and embedded confidence. In: 6th International Conference on Intelligent Systems Design and Applications 2006 (ISDA’06) (pp. 720–723).

  • Xu, Y., Wang, B., Liu, W., & Bai, X. (2010). Skeleton graph matching based on critical points using path similarity. Computer Vision-ACCV 2009. Berlin: Springer.

    Google Scholar 

  • Yang, Y-L., Lai, Y-K., Hu, S-M., & Pottmann, H. (2006). Robust principal curvatures on multiple scales. In: Symposium on Geometry Processing (pp. 223–226).

  • Yu, B., Guo, L., Zhao, T., & Qian, X. (2010). A curve matching algorithm based on Freeman Chain Code. In: Intell. Comput. Intell. Syst. (pp. 669–672).

  • Zahn, C. T., & Roskies, R. Z. (1972). Fourier descriptors for plane closed curves. IEEE Transactions on Computers, 100, 269–281.

    MathSciNet  Google Scholar 

  • Zeng, J., & Li, D. (2011). SUSAN edge detection method for color image. Jisuanji Gongcheng yu Yingyong, 47, 194–196.

    Google Scholar 

  • Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37, 1–19.

    MATH  Google Scholar 

  • Zhang, S., & Ma, K-K. (2000). A novel shape matching method using biological sequence dynamic alignment. In: 2000 IEEE International Conference on Multimedia and Expo (ICME) (pp. 343–346).

  • Zhao, H. (2005). A fast sweeping method for eikonal equations. Mathematics of Computation, 74, 603–627.

    MATH  MathSciNet  Google Scholar 

  • Zhou, D., et al. (2011). Hybrid corner detection algorithm for brain magnetic resonance image registration. In: IEEE - 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI, Vol. 1).

  • Zisserman, A., Forsyth, D., Mundy, J., et al. (1995). 3D object recognition using invariance. Artificial Intelligence, 78, 238–239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faraz Janan.

Additional information

Communicated by Gerard Medioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janan, F., Brady, M. Shape Description and Matching Using Integral Invariants on Eccentricity Transformed Images. Int J Comput Vis 113, 92–112 (2015). https://doi.org/10.1007/s11263-014-0773-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-014-0773-x

Keywords

Navigation