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Efficient Dictionary Learning with Sparseness-Enforcing Projections

Markus Thom · Matthias Rapp · Günther Palm

Abstract Learning dictionaries suitable for sparse coding
instead of using engineered bases has proven effective in a
variety of image processing tasks. This paper studies the op-
timization of dictionaries on image data where the represen-
tation is enforced to be explicitly sparse with respect to a
smooth, normalized sparseness measure. This involves the
computation of Euclidean projections onto level sets of the
sparseness measure. While previous algorithms for this op-
timization problem had at least quasi-linear time complex-
ity, here the first algorithm with linear time complexity and
constant space complexity is proposed. The key for this is
the mathematically rigorous derivation of a characterization
of the projection’s result based on a soft-shrinkage func-
tion. This theory is applied in an original algorithm called
Easy Dictionary Learning (EZDL), which learns dictionar-
ies with a simple and fast-to-compute Hebbian-like learning
rule. The new algorithm is efficient, expressive and particu-
larly simple to implement. It is demonstrated that despite its
simplicity, the proposed learning algorithm is able to gener-
ate a rich variety of dictionaries, in particular a topographic
organization of atoms or separable atoms. Further, the dic-
tionaries are as expressive as those of benchmark learning
algorithms in terms of the reproduction quality on entire
images, and result in an equivalent denoising performance.
EZDL learns approximately 30 % faster than the already
very efficient Online Dictionary Learning algorithm, and is
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therefore eligible for rapid data set analysis and problems
with vast quantities of learning samples.
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1 Introduction

In a great variety of classical machine learning problems,
sparse solutions are attractive because they provide more
efficient representations compared to non-sparse solutions.
There is an overwhelming evidence that mammalian brains
respect the sparseness principle (Laughlin and Sejnowski
2003), which holds true especially for the mammalian vi-
sual cortex (Hubel and Wiesel 1959; Olshausen and Field
1996, 1997). It suggests itself that sparseness be a funda-
mental prior to a variety of signal processing tasks. In partic-
ular, this includes low-level image processing since natural
images can be represented succinctly using structural primi-
tives (Olshausen and Field 1997; Mairal et al. 2009b). Inter-
esting and biologically plausible sparse representations were
discovered through computer simulations on natural images
(Olshausen and Field 1996, 1997). Related representations
can be obtained by analysis of temporal image sequences
(van Hateren and Ruderman 1998; Olshausen 2003), stereo
image pairs and images with chromatic information (Hoyer
and Hyvärinen 2000), or by enforcing a topographic organi-
zation (Hyvärinen et al. 2001; Kavukcuoglu et al. 2009).

Sparseness alleviates the effects of random noise in a
natural way since it prevents arbitrary combinations of mea-
sured signals (Donoho 1995; Hyvärinen 1999; Elad 2006).
In fact, methods based on sparse representations were shown
to achieve state-of-the-art performance for image denoising
(Mairal et al. 2009b). Further notable image processing ap-
plications that benefit from the efficiency gained through
sparseness are as diverse as deblurring (Dong et al. 2011),
super-resolution (Yang et al. 2010, 2012; Dong et al. 2011),
compression (Skretting and Engan 2011; Horev et al. 2012),
and depth estimation (Tošić et al. 2011).
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Fig. 1 Visualization of Hoyer’s sparseness measure σ . The abscissa
and the ordinate specify the entries of a two-dimensional vector, the
obtained sparseness degree is color coded. The dashed lines are contour
levels at intervals of 0.25.

1.1 Dictionary Learning and Sparseness Measures

Each of these tasks needs a model capable of reproducing
the signals to be processed. In a linear generative model for
sparse coding, a sample x ∈ Rd with d features should be
expressed approximately as a linear combination of only a
few atoms of a larger dictionary:

x≈Wh, where W ∈Rd×n and h ∈Rn is sparsely populated.

Here, W is the dictionary which is fixed for all samples,
and h is a sparse code word that depends on the concrete
sample. The n columns of W represent the atoms, which are
also called bases or filters. This sparse coding framework is
well-suited for overcomplete representations where n� d.
The dictionary can be generated by wavelets, for example,
or adapted to a specific task by solving an optimization prob-
lem on measurement data. The latter is also called dictionary
learning in this context.

Sparseness acts as a regularizer. If h was not constrained
to sparseness, then trivial choices of W would suffice for per-
fect reproduction capabilities. But when h is sparse, then x
can be represented by additive superposition of only a small
number of bases, thus preventing trivial solutions.

A fundamental problem when working with sparse rep-
resentations is how to decide on a function that formally as-
sesses the sparseness of a vector. The L0 pseudo-norm

‖·‖0 : Rn→{0, . . . ,n}, x 7→ |{ i ∈ {1, . . . ,n} | xi 6= 0}| ,

simply counts the nonzero entries of its argument. It is a poor
choice since it is non-continuous, prone to random noise and
fails to fulfill desirable properties of meaningful sparseness
measures (Hurley and Rickard 2009).

Throughout this paper, we will use the smooth, normal-
ized sparseness measure σ proposed by Hoyer (2004):

σ : Rn \{0}→ [0, 1] , x 7→
√

n− ‖x‖1/‖x‖2√
n−1

.

Here, ‖·‖1 and ‖·‖2 denote the Manhattan norm and the
Euclidean norm, respectively. The normalization has been
designed such that σ attains values between zero and one.
When x ∈Rn satisfies σ(x) = 1, then all entries of x but one
vanish. Conversely, when σ(x) = 0, then all the entries of
x are equal. The function σ interpolates smoothly between
these extremes, see Fig. 1. Moreover, it is scale-invariant so
that the same sparseness degree is obtained when a vector
is multiplied with a nonzero number. Hence if a quantity
is given in other units, for example in millivolts instead of
volts, no adjustments whatsoever have to be made.

The sparseness degree with respect to σ does not change
much if a small amount is added to all entries of a vec-
tor, whereas the L0 pseudo-norm would indicate that the
new vector is completely non-sparse. These properties ren-
der Hoyer’s sparseness measure intuitive, especially for non-
experts. It has been employed successfully for dictionary
learning (Hoyer 2004; Potluru et al. 2013), and its smooth-
ness results in improved generalization capabilities in classi-
fication tasks compared to when the L0 pseudo-norm is used
(Thom and Palm 2013).

1.2 Explicit Sparseness Constraints and Projections

A common approach to dictionary learning is the minimiza-
tion of the reproduction error between the original samples
from a learning set and their approximations provided by
a linear generative model under sparseness constraints (Ol-
shausen and Field 1996, 1997; Kreutz-Delgado et al. 2003;
Mairal et al. 2009a). It is beneficial for practitioners and end-
users to enforce explicit sparseness constraints by demand-
ing that all the code words h in a generative model possess
a target sparseness degree of σH ∈ (0, 1). This leads to op-
timization problems of the form

min
W,h
‖x−Wh‖2

2 so that σ(h) = σH .

Here, the objective function is the reproduction error im-
plemented as Euclidean distance. Implicit sparseness con-
straints, on the other hand, augment the reproduction error
with an additive penalty term, yielding optimization prob-
lems such as

min
W,h
‖x−Wh‖2

2 +λ ‖h‖1 .

Here, λ > 0 is a trade-off constant and the Manhattan norm
is used to penalize non-sparse code words as convex relax-
ation of the L0 pseudo-norm (Donoho 2006).

Trading off the reproduction error against an additive
sparseness penalty is non-trivial since the actual resulting
code word sparseness cannot easily be predicted. Explicit
constraints guarantee that the adjusted sparseness degree is
met, making tuning of intransparent scale factors such as λ
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in the example above obsolete. This way, one can concen-
trate on the actual application of the theory rather than hav-
ing to develop an intuition of the meaning of each and every
parameter.

The mathematical tool to achieve explicit sparseness is a
sparseness-enforcing projection operator. This is a vector-
valued function which maps any given point in Euclidean
space to its nearest point that achieves a pre-set target sparse-
ness degree. One use case of this theory is projected gradient
methods (Bertsekas 1999), where a given objective function
should be optimized subject to hard side conditions. Replac-
ing the parameters with their best approximations lying in a
certain set after each update step ensures that the constraints
are satisfied during optimization progress.

1.3 Contributions of this Paper and Related Work

This paper studies dictionary learning under explicit sparse-
ness constraints with respect to Hoyer’s sparseness measure
σ . A major part of this work is devoted to the efficient al-
gorithmic computation of the sparseness-enforcing projec-
tion operator, which is an integral part in efficient dictionary
learning. Several algorithms were proposed in the past to
solve the projection problem (Hoyer 2004; Theis et al. 2005;
Potluru et al. 2013; Thom and Palm 2013). Only Thom and
Palm (2013) provided a complete and mathematically satis-
factory proof of correctness for their algorithm. Moreover,
all known algorithms have at least quasi-linear time com-
plexity in the dimensionality of the vector that should be
projected.

In this paper, we first derive a characterization of the
sparseness projection and demonstrate that its computation
is equivalent to finding the root of a real-valued auxiliary
function, which constitutes a much simpler problem. This
result is used in the proposition of an algorithm for the pro-
jection operator that is asymptotically optimal in the sense of
complexity theory, that is the time complexity is linear and
the space complexity is constant in the problem dimension-
ality. We show through experiments that when run on a real
computing machine the newly proposed algorithm is far su-
perior in its computational demands to previously proposed
techniques, even for small problem dimensionalities.

Existing approaches to dictionary learning that feature
explicit sparseness constraints can be categorized into ones
that use Hoyer’s σ and ones that employ the L0 pseudo-
norm. Hoyer (2004) and Potluru et al. (2013) considered ma-
trix factorization frameworks subject to σ constraints, with
space requirements linear in the number of learning sam-
ples which prevents processing large data sets. Thom and
Palm (2013) designed sparse code words as the result of
the sparseness-enforcing projection operator applied to the
product of the dictionary with the samples. This requires

the computation of the projection’s gradient during learn-
ing, which is feasible yet difficult to implement and has non-
negligible adverse effects on the execution time.

The following approaches consider explicit L0 pseudo-
norm constraints: Aharon et al. (2006), Skretting and Engan
(2010) and Coates and Ng (2011) infer sparse code words in
each iteration compatible to the data and dictionary by em-
ploying basis pursuit or matching pursuit algorithms, which
has a negative impact on the processing time. Zelnik-Manor
et al. (2012) consider block-sparse representations, here the
signals are assumed to reside in the union of few subspaces.
Duarte-Carvajalino and Sapiro (2009) propose to simulta-
neously learn the dictionary and the sensing matrix from ex-
ample image data, which results in improved reconstruction
results in compressed sensing scenarios.

In addition to the contributions on sparseness projec-
tion computation, this paper proposes the Easy Dictionary
Learning (EZDL) algorithm. Our technique aims at dictio-
nary learning under explicit sparseness constraints in terms
of Hoyer’s sparseness measure σ using a simple, fast-to-
compute and biologically plausible Hebbian-like learning
rule. For each presented learning sample, the sparseness-
enforcing projection operator has to be carried out. The abil-
ity to perform projections efficiently makes the proposed
learning algorithm particularly efficient: 30 % less training
time is required in comparison to the optimized Online Dic-
tionary Learning method of Mairal et al. (2009a).

Extensions of Easy Dictionary Learning facilitate alter-
native representations such as topographic atom organiza-
tion or atom sparseness, which includes for example separa-
ble filters. We furthermore demonstrate the competitiveness
of the dictionaries learned with our algorithm with those
computed with alternative sophisticated dictionary learning
algorithms in terms of reproduction and denoising quality
of natural images. Since other tasks, such as deblurring or
super-resolution, build upon the same optimization problem
in the application phase as reproduction and denoising, it
can be expected that EZDL dictionaries will exhibit no per-
formance degradations in those tasks either.

The remainder of this paper is structured as follows. Sec-
tion 2 derives a linear time and constant space algorithm
for the computation of sparseness-enforcing projections. In
Sect. 3, the Easy Dictionary Learning algorithm for explic-
itly sparseness-constrained dictionary learning is proposed.
Section 4 reports experimental results on the performance of
the newly proposed sparseness projection algorithm and the
Easy Dictionary Learning algorithm. Section 5 concludes
the paper with a discussion, and the appendix contains tech-
nical details of the mathematical statements from Sect. 2.
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2 Efficient Sparseness-Enforcing Projections

This section proposes a linear time and constant space al-
gorithm for computation of projections onto level sets of
Hoyer’s σ . Formally, if σ∗ ∈ (0, 1) denotes a target sparse-
ness degree and x ∈ Rn is an arbitrary point, the point from
the level set S := { s ∈ Rn | σ(s) = σ∗ } that minimizes the
Euclidean distance to x is sought. The function that com-
putes argmins∈S ‖x− s‖2 is also called sparseness-enforcing
projection operator since the situation where σ(x) < σ∗ is
of particular interest.

Due to symmetries of σ , the above described optimiza-
tion problem can be reduced to finding the projection of a
vector x ∈ Rn

≥0 with non-negative coordinates onto the set

T :=
{

s ∈ Rn
≥0
∣∣ ‖s‖1 = λ1 and ‖s‖2 = λ2

}
⊆ S,

where λ1 and λ2 are target norms that should be chosen such
that σ∗ = (

√
n− λ1/λ2)/(

√
n−1) (Hoyer 2004; Thom and

Palm 2013). With this choice, σ constantly attains the value
of σ∗ on the entire set T , hence T is a subset of S.

Thom and Palm (2013) proved that T is the intersection
of a scaled canonical simplex and a hypercircle. They fur-
ther demonstrated that projections onto T can be computed
with a finite number of alternating projections onto these
two geometric structures. The proof of correctness of this
method could not rely on the classical alternating projection
method (see for example Deutsch 2001) due to the lacking
convexity of T , rendering the proof arguments quite compli-
cated.

The remainder of this section proceeds as follows. First,
a succinct characterization of the sparseness projection is
given. It is then shown that computing sparseness projec-
tions is equivalent to finding the zero of a monotone real-
valued function. We prove that this can be achieved with op-
timal asymptotic complexity by proposing a new algorithm
that solves the projection problem.

2.1 Representation of the Projection

The main theoretical result of this paper is a representation
theorem that characterizes the projection onto T . This was
gained through an analysis of the intermediate points that
emerge from the alternating projections onto a simplex and a
hypercircle. A closed-form expression can then be provided
by showing that the intermediate points in the projection al-
gorithm satisfy a loop-invariant, a certain property fulfilled
after each step of alternating projections.

Since a mathematical rigorous treatment of this result
is very technical, it is deferred to the appendix. We assume
here that the vector x to be projected is given so that its pro-
jection is unique. Since it is guaranteed that for all points
except for a null set there is exactly one projection (Theis

et al. 2005, Theorem 2.6), we can exclude points with non-
unique projections in our considerations, which is no restric-
tion in practice. We may now state a characterization of the
projection outcome:

Representation Theorem Let x ∈Rn
≥0 and let p ∈ T denote

the unique projection of x onto T . Then there is exactly one
real number α∗ with

p =
λ2

‖q‖2
·q where q := max(x−α

∗ · e, 0) ∈ Rn.

Here, e∈ {1}n is the n-dimensional vector where all entries
are unity. If the indices of the positive coordinates of p are
known, then α∗ can be computed directly from x with an
explicit expression.

In words, the projection p is the point q rescaled to ob-
tain an L2 norm of λ2. The vector q is computed from the in-
put vector x by subtracting the scalar α∗ from all the entries,
and afterwards setting negative values to zero. It is remark-
able that the projection admits such a simple representation
although the target set for the projection is non-convex and
geometrically quite complicated.

The function that maps a scalar ξ ∈ R to max(ξ − t, 0)
for a constant offset t ∈ R is called the soft-shrinkage func-
tion. If t = 0, it is also called the rectifier function. Be-
cause the central element of the projection representation
is a soft-shrinkage operation applied entry-wise to the input
vector, carrying out projections onto level sets of Hoyer’s
sparseness measure can be interpreted as denoising opera-
tion (Donoho 1995; Hyvärinen 1999; Elad 2006).

2.2 Auxiliary Function for the Sparseness Projection

The projection problem can hence be reduced to determin-
ing the soft-shrinkage offset α∗, which is a one-dimensional
problem on the real line. Further, it is reasonable that α∗

must be smaller than the maximum entry of x since other-
wise q would be the null vector, which is absurd. In the usual
case where σ(x)< σ∗ we can further conclude that α∗ must
be non-negative. Otherwise, the result of the projection us-
ing the representation theorem would be less sparse than the
input, which is impossible. Therefore, the projection prob-
lem can be further reduced to finding a number from the
bounded interval [0, xmax) with xmax := maxi∈{1,...,n} xi.

Next, a method for efficiently deciding whether the cor-
rect offset has been found is required. Similar to the projec-
tion onto a canonical simplex (Liu and Ye 2009), we can
design a real-valued function that vanishes exactly at the
wanted offset. The properties of Hoyer’s σ allow us to for-
mulate this function in an intuitive way. We call

Ψ : [0, xmax)→ R, α 7→ ‖max(x−α · e, 0)‖1
‖max(x−α · e, 0)‖2

− λ1

λ2
,
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Fig. 2 Plot of the auxiliary function Ψ and its derivative for a random
vector x. The derivative Ψ ′ was scaled using a positive number for
improved visibility. The steps in Ψ ′ are exactly the places where α

coincides with an entry of x. It is enough to find an α with Ψ(x j) ≥ 0
and Ψ(xk)< 0 for the neighboring entries x j and xk in x, because then
the exact solution α∗ can be computed with a closed-form expression.

the auxiliary function for the projection onto T .
The rationale for the concrete definition of Ψ is as fol-

lows. Due to the representation theorem we know that the
projection p onto T is merely a scaled version of the point
q := max(x−α∗ · e, 0). Moreover σ(p) = σ∗, and due to
the scale-invariance of Hoyer’s σ follows σ(q) = σ∗. The
essence of σ is the ratio of the L1 norm to the L2 norm of
its argument. Hence here the scale constants that make σ

normalized to the interval [0, 1] are omitted and the target
norms are used instead. We therefore have that ‖q‖1/‖q‖2 =
λ1/λ2, and thus Ψ(α∗) = 0. As α∗ is unique, we can conclude
that no other offset of the soft-shrinkage operation leads to
a correct solution. In fact, if α 6= α∗ and when we write
q̃ := max(x−α · e, 0), then we have that σ(q̃) 6= σ∗ and
therefore Ψ(α) 6= 0.

An exemplary plot of Ψ is depicted in Fig. 2. Clearly,
the auxiliary function is continuous, differentiable except for
isolated points and strictly decreasing except for its final part
where it is constant. Since the constant part is always nega-
tive and starts at the offset equal to the second-largest entry
x2nd-max := max{xi | i ∈ {1, . . . ,n} and xi 6= xmax } of x, the
feasible interval can be reduced even more. The step dis-
continuities in Ψ ′ coincide exactly with the entries of the
input vector x. These appealing analytical properties greatly
simplify computation of the zero of Ψ , since standard root-
finding algorithms such as bisection or Newton’s method
(see for example Traub 1964) can be employed to numer-
ically find α∗.

2.3 Linear Time and Constant Space Projection Algorithm

We can improve on merely a numerical solution by exploit-
ing the special structure of Ψ to yield an analytical solution
to the projection problem. This is due to the closed-form

Receive input vector x

and target sparseness σ∗
Increase

sparseness?

Determine interval for

α∗ by finding x2nd-max

Set α to middle

of interval

Determine neighbors

x j and xk of α in x

Evaluate Ψ(α),
Ψ(x j) and Ψ(xk)

Sign

change?

Update interval using

sign of Ψ(α)

Determine α∗ from

closed-form expression

Return
λ2
‖q‖2

·q where

q := max(x−α∗ · e, 0)

Yes
(

σ(x)< σ∗
)

Yes
(

Ψ(x j)≥ 0 and Ψ(xk)< 0
)

No

No

Fig. 3 Flowchart of the proposed algorithm for computing sparseness-
enforcing projections. The algorithm starts with the box at the upper
left and terminates with the box at the lower left.

expression for α∗ which requires the indices of the coordi-
nates in which the result of the projection is positive to be
known. The other way around, when α∗ is known, these in-
dices are exactly the ones of the coordinates in which x is
greater than α∗. When an offset sufficiently close to α∗ can
be determined numerically, the appropriate index set can be
determined and thus the exact value of α∗.

The decision if a candidate offset α is close enough to
the true α∗ can be made quite efficiently, since α∗ is cou-
pled via index sets to individual entries of the input vector x.
Hence, it suffices to find the right-most left neighbor x j of α

in the entries of x, and analogously the left-most right neigh-
bor xk (see Fig. 2 for an example). Whenever Ψ(x j)≥ 0 and
Ψ(xk)< 0, the zero α∗ of Ψ must be located between x j and
xk for continuity reasons. But then all values in x greater than
α∗ are exactly the values greater than or equal to xk, which
can be determined by simply scanning through the entries of
x.

Based upon these considerations, a flowchart of our pro-
posed method for computing sparseness-enforcing projec-
tions is depicted in Fig. 3. The algorithm performs bisection
and continuously checks for sign changes in the auxiliary
function Ψ . As soon as this is fulfilled, α∗ is computed and
the result of the projection is determined in-place. A com-
plete formal presentation and discussion of our proposed al-
gorithm is given in the appendix.

Each intermediate step of the algorithm (that is, deter-
mination of the second-largest entry of x, evaluation of the
auxiliary function, projection result computation by appli-
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cation of soft-shrinkage and scaling) can be carried out in a
time complexity linear in the problem dimensionality n and
a space complexity completely independent of n.

Therefore, to show the overall algorithm possesses the
same asymptotic complexity, it has to be proved that the
number of bisection iterations required for finding α∗ is in-
dependent of n. The length of the initial interval is upper-
bounded by x2nd-max as discussed earlier. Bisection is more-
over guaranteed to stop at the latest once the interval length
is smaller than the minimum pairwise distance between dis-
tinct entries of x,

δ := min
{

xk− x j
∣∣ x j,xk ∈X and x j < xk

}
> 0

where X := {xi | i ∈ {1, . . . ,n}}. This is due to the fact
that it is enough to find a sufficiently small range to de-
duce an analytical solution. The required number of bisec-
tion iterations is then less than dlog2(x2nd-max/δ )e, see Liu
and Ye (2009). This number is bounded from above regard-
less of the dimensionality of the input vector since x2nd-max
is upper-bounded and δ is lower-bounded due to finite ma-
chine precision (Goldberg 1991).

Hence our sparseness-enforcing projection algorithm is
asymptotically optimal in the sense of complexity theory.
There may still be hidden constants in the asymptotic no-
tation that render the proposed algorithm less efficient than
previously known algorithms for a small input dimensional-
ity. Experiments in Sect. 4 demonstrate that this is not the
case.

3 Explicitly Sparseness-Constrained
Dictionary Learning

This section proposes the Easy Dictionary Learning (EZDL)
algorithm for dictionary learning under explicit sparseness
constraints. First, we introduce an ordinary formulation of
the learning algorithm. Sparse code word inference with the
sparseness projection algorithm proposed in Sect. 2 renders
EZDL efficient and particularly simple to implement. We
further discuss extensions that allow concentrating on dif-
ferent aspects of the data set under investigation, such as
topographic organization of the atoms and atom sparseness.
Only little implementation effort is required for these ex-
tensions and their computational demands are low. A de-
scription of the comprehensive EZDL learning algorithm is
accompanied with several strategies that improve the opti-
mization performance.

3.1 EZDL—Easy Dictionary Learning

Conventional dictionary learning algorithms operate in an
alternating fashion, where code words are inferred with a

costly optimization procedure before updating the dictio-
nary. EZDL learns a dictionary by first yielding sparse code
words through simple inference models and then tuning the
dictionary with a simple update step. An inference model
is a function I : Rn → Rn which accepts filter responses in
the form of the product of the dictionary W ∈ Rd×n with
a learning sample x ∈ Rd , u := W T x ∈ Rn, and produces
a representation h := I(u) with certain desirable properties.
Here, the combination with the sparseness-enforcing projec-
tion operator is particularly interesting since it provides a
natural method to fulfill explicit sparseness constraints.

We call the choice I(u) := ΠσH (u) the ordinary infer-
ence model, where ΠσH denotes the Euclidean projection
onto the set of all vectors that achieve a sparseness degree
of σH ∈ (0, 1) with respect to Hoyer’s sparseness measure
σ . This computation can also be interpreted as the trivial
first iteration of a projected Landweber procedure for sparse
code word inference (Bredies and Lorenz 2008).

The dictionary W is adapted to new data by minimiz-
ing the deviation between a learning sample x and its ap-
proximation Wh through the linear generative model. The
goodness of the approximation is here assessed with a dif-
ferentiable similarity measure ρ : Rd ×Rd → R, so that the
EZDL optimization problem becomes:

min
W

ρ(Wh, x).

Note that h is not a variable of the optimization problem
since it is defined as output of an inference model. For the
same reason, h does not need to be constrained further as it
inherently satisfies explicit sparseness constraints.

Although a wide range of similarity measures is possi-
ble, we decided to use the (Pearson product-moment) corre-
lation coefficient since it is invariant to affine-linear transfor-
mations (Rodgers and Nicewander 1988). In the context of
visual data set analysis, this corresponds to invariance with
respect to DC components and gain factors. Moreover, dif-
ferentiability of this similarity measure facilitates gradient-
based learning (Thom and Palm 2013).

If ρ ′ : Rd ×Rd → Rd is the transposed derivative of ρ

with respect to its first argument and g := ρ ′(Wh, x) ∈ Rd

denotes its value in Wh, the gradient of EEZDL for the dic-
tionary is given by(

∂EEZDL

∂W

)T

= ghT ∈ Rd×n.

Therefore, when W is tuned with gradient descent a simple
and biologically plausible Hebbian-like learning rule (Hy-
värinen et al. 2009) results:

W new :=W −η ·ghT , where η > 0 denotes the step size.

This update step can be implemented efficiently with simple
rank-1 updates (Blackford et al. 2002).
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We here assumed h = I(W T x) to be constant and ne-
glected that it actually depends on W . Without this assump-
tion, the gradient would have to be extended with an ad-
ditive term which comprises the gradient of the inference
model (Thom and Palm 2013, Proposition 39). This, in turn,
requires the computation of the sparseness-enforcing pro-
jection operator’s gradient. This gradient can be computed
with simple vector operations as we show in the appendix.
However, this constitutes a significant computational burden
compared to the simple and fast-to-compute EZDL update
step. Section 4 demonstrates through experiments that this
simplification is still perfectly capable of learning dictionar-
ies.

3.2 Topographic Atom Organization and Atom Sparseness

Topographic organization of the dictionary’s atoms similar
to Self-organizing Maps (Kohonen 1990) or Topographic
Independent Component Analysis (Hyvärinen et al. 2001)
can be achieved in a straightforward way with EZDL using
alternative inference models proposed in this section. For
this, the dictionary atoms are interpreted to be arranged on
a two-dimensional grid. A spatial pooling operator subject
to circular boundary conditions can then be used to incorpo-
rate interactions between atoms located adjacent on the grid.
This can, for example, be realized by averaging each entry
of the filter responses in a 3× 3 neighborhood on the grid.
This convolution operation can be expressed as linear oper-
ator applied to the vector u ∈ Rn, represented by a sparsely
populated matrix G ∈ Rn×n. With G containing all atom in-
teractions, we call I(u) := ΠσH (Gu) the topographic infer-
ence model.

An alternative realization of topographic organization is
enforcing structure sparseness on the filter responses re-
shaped as matrix to account for the grid layout. Structure
sparseness can be assessed by application of a sparseness
measure to the vector with the singular values of a matrix.
When the L0 pseudo-norm is used, then this is the rank of a
matrix. The matrix rank can also be measured more robustly
through the ratio of the Schatten 1-norm to the Schatten 2-
norm, which is essentially Hoyer’s sparseness measure σ

applied to the singular values (Lopes 2013).
Clearly, any matrix M ∈ Ra×b where a,b ∈ N can be re-

shaped to a vector m := vec(M) ∈ Rab with the vectoriza-
tion operator that stacks all columns of M on top of an-
other (Neudecker 1969). This linear operation can be in-
verted provided the shape of the original matrix is known,
M = vec−1

a×b(m). In the following, let Πκ∗ denote the pro-
jection onto the set of all matrices that possess a target rank
κ∗ ∈ {1, . . . ,min{a,b}}. A classical result states that any
matrix can be projected onto the set of low-rank matrices
by computation of its Singular Value Decomposition, apply-
ing an L0 pseudo-norm projection to the vector of singular

values thus retaining only the largest ones, and finally com-
puting the reconstruction using the modified singular values
(Eckart and Young 1936).

Based on these considerations, let r and c with n = rc
be natural numbers describing the topographic grid layout
dimensionalities. The rank-κH topographic inference model
is then defined by the composition

I(u) :=
(
vec◦ΠκH ◦vec−1

r×c ◦ΠσH

)
(u).

In words, this inference model operates as follows. It first
approximates the filter responses u with a sparsely populated
vector that attains a sparseness of σH with respect to Hoyer’s
σ . These sparsified filter responses are then laid out on a grid
and replaced with those best approximating filter responses
that meet a lower rank of κH ∈ {1, . . . ,min{r,c}}. Finally,
the grid layout is reshaped to a vector since this should be
the output type of each inference model.

If κH = 1, then there are two vectors y ∈ Rr and z ∈ Rc

such that vec−1
r×c (I(u)) = yzT , that is the filter responses can

be expressed as a dyadic product when reshaped to a grid.
We will demonstrate with experiments that this results in an
interesting topographic atom organization similar to Inde-
pendent Subspace Analysis (Hyvärinen and Hoyer 2000).

Analogous to Non-negative Matrix Factorization with
Sparseness Constraints (Hoyer 2004), the atoms can be en-
forced to be sparse as well. To achieve this, it is sufficient to
apply the sparseness projection to each column of the dic-
tionary after each learning epoch:

W newei := ΠσW (Wei) for all i ∈ {1, . . . ,n},

where ei ∈ Rn is the i-th canonical basis vector that selects
the i-th column from W , and σW ∈ (0, 1) is the target degree
of atom sparseness.

In the situation where the learning samples resemble im-
age patches, the atoms can also be restricted to fulfill struc-
ture sparseness using a low-rank approximation. Suppose
the image patches possess ph× pw pixels, then the following
projection can be carried out after each learning epoch:

W newei :=
(
vec◦ΠκW ◦vec−1

ph×pw

)
(Wei) for all i∈ {1, . . . ,n}.

Here, κW ∈ {1, . . . ,min{ ph, pw }} denotes the target rank of
each atom when reshaped to ph× pw pixels. When the dic-
tionary is used to process images through convolution, small
values of κW are beneficial since computations can then be
speeded up considerably. For example, if κW = 1 each atom
can be expressed as outer product of vectors from Rph and
Rpw , respectively. The convolutional kernel is separable in
this case, and two one-dimensional convolutions lead to the
same result as one two-dimensional convolution, but require
only a fraction of operations (Hoggar 2006).



8 Thom, Rapp, and Palm

3.3 Learning Algorithm

In the previous sections, a simple Hebbian-like learning rule
was derived which depends on abstract inference models.
The core of the inference models is the sparseness-enforcing
projection operator discussed in Sect. 2, which guarantees
that the code words always attain a sparseness degree eas-
ily controllable by the user. On presentation of a learning
sample x, an update step of the dictionary W hence consists
of

(a) determining the filter responses (u :=W T x),
(b) feeding the filter responses through the inference model

involving a sparseness projection (h := I(u)),
(c) computation of the approximation to the original learn-

ing sample (Wh) using the linear generative model,
(d) assessing the similarity between the input sample and its

approximation (ρ(Wh, x)) and the similarity measure’s
gradient (g := ρ ′(Wh, x)), and eventually

(e) adapting the current dictionary using a rank-1 update
(W new :=W −η ·ghT ).

All these intermediate steps can be carried out efficiently.
The sparseness projection can be computed using few re-
sources, and neither its gradient nor the gradient of the entire
inference model is required. After each learning epoch it is
possible to impose additional constraints on the atoms with
atom-wise projections. In doing so, several aspects of the
data set structure can be made more explicit since the atoms
are then forced to become more simple feature detectors.

An example of an individual learning epoch is given in
Algorithm 1, where the topographic inference model and
low-rank structure sparseness are used. In addition, the ex-
plicit expressions for the correlation coefficient and its gra-
dient are given (Thom and Palm 2013, Proposition 40). The
outcome of this parameterization applied to patches from
natural images is depicted in Fig. 9b and will be discussed
in Sect. 4.2.3.

The efficiency of the learning algorithm can be improved
with simple modifications described in the following. To re-
duce the learning time compared to when a randomly ini-
tialized dictionary was used, the dictionary should be ini-
tialized by samples randomly chosen from the learning set
(Mairal et al. 2009a; Skretting and Engan 2010; Coates and
Ng 2011; Thom and Palm 2013). When large learning sets
with millions of samples are available, stochastic gradient
descent has been proven to result in significantly faster op-
timization progress compared to when the degrees of free-
dom are updated only once for each learning epoch (Wil-
son and Martinez 2003; Bottou and LeCun 2004). The step
size schedule η(ν) := η0/ν, where η0 > 0 denotes the initial
step size and ν ∈ N \ {0} is the learning epoch counter, is
beneficial when the true gradient is not available but rather
an erroneous estimate (Bertsekas 1999). After each learn-
ing epoch, all the atoms of the dictionary are normalized to

Algorithm 1 One epoch of the Easy Dictionary Learning algo-
rithm, illustrated for the case of a topographic inference model
and low-rank structure sparseness.

Input: The algorithm accepts the following parameters:
– An existing dictionary W ∈ Rd×n with n atoms.
– Random access to a learning set with samples from Rd

through a function "pick_sample".
– Step size for update steps η ∈ R>0.
– Number of samples to be presented Mepoch ∈ N.
– For the topographic inference model:

– Target degree of dictionary sparseness σH ∈ (0, 1).
– Topography matrix G ∈ Rn×n describing the

interaction between adjacent atoms.
– To obtain low-rank structure sparseness:

– Number of pixels ph× pw so that d = ph pw.
– Target rank κW ∈ {1, . . . ,min{ ph, pw }}.

Output: Updated dictionary W ∈ Rd×n.

// Present samples and adapt dictionary.
1 repeat Mepoch times

// Pick a random sample.
2 x := pick_sample() ∈ Rd ;

// (a) Compute filter responses.
3 u :=W T x ∈ Rn;

// (b) Evaluate topographic inference model.
4 h := ΠσH (Gu) ∈ Rn;

// (c) Compute approximation to x.
5 x̃ :=Wh ∈ Rd ;

// (d) Compute correlation coefficient
ρx̃, x := ρ(Wh, x) and its gradient g. Here,
e ∈ {1}d is the all-ones vector.

6 λ := ‖x̃‖2
2− 1/d ·

(
eT x̃
)2 ∈ R;

7 µ := ‖x‖2
2− 1/d ·

(
eT x
)2 ∈ R;

8 ρx̃, x :=
(
x̃T x− 1/d ·

(
eT x̃
)(

eT x
))

/
√

λ µ ∈ R;
9 g := 1√

λ µ

(
x− eT x/d · e

)
− ρx̃, x

λ

(
x̃− eT x̃/d · e

)
∈ Rd ;

// (e) Adapt dictionary with rank-1 update.
10 W :=W −η ·ghT ∈ Rd×n;
11 end

// Atom-wise projection for low-rank filters.
12 for i := 1 to n do

// Extract i-th atom and normalize.
13 w := Wei/‖Wei‖2 ∈ Rd ;

// Ensure atom has rank κW when reshaped to
ph× pw pixels.

14 w :=
(
vec◦ΠκW ◦vec−1

ph×pw

)
(w) ∈ Rd ;

// Store modified atom back in dictionary.
15 Wei := w;
16 end

unit scale. Since the learning rule is Hebbian-like, this pre-
vents the atoms from growing arbitrarily large or becoming
arbitrarily small (Hyvärinen et al. 2009). This normaliza-
tion step is also common in a multitude of alternative dictio-
nary learning algorithms (Kreutz-Delgado et al. 2003; Hoyer
2004; Mairal et al. 2009a; Skretting and Engan 2010).

Since the dictionary is modified with a rank-1 update
where one of the factors is the result of an inference model
and hence sparse, only the atoms that induce significant fil-
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ter responses are updated. This may result in atoms that are
never updated when the target sparseness degree σH is large.
This behavior can be alleviated by adding random noise to
the inference model’s output prior to updating the dictio-
nary, which forces all the atoms to be updated. We used ran-
dom numbers sampled from a zero-mean normal distribu-
tion, where the standard deviation was multiplicatively an-
nealed after each learning epoch. As optimization proceeds,
the atoms are well-distributed in sample space such that the
lifetime sparseness is approximately equal to the population
sparseness (Willmore and Tolhurst 2001), and randomness
is not needed anymore.

4 Experimental Results

This section reports experimental results on the techniques
proposed in this paper. We first evaluate alternative solvers
for the sparseness projection’s auxiliary function and show
that our algorithm for the sparseness-enforcing projection
operator is significantly faster than previously known meth-
ods. We then turn to the application of the projection in the
Easy Dictionary Learning algorithm. First, the morphology
of dictionaries learned on natural image patches is analyzed
and put in context with previous methods. We further show
that the resulting dictionaries are well-suited for the repro-
duction of entire images. They achieve a reproduction qual-
ity equivalent to dictionaries trained with alternative, signif-
icantly slower algorithms. Eventually, we analyze the per-
formance of the dictionaries when employed for the image
denoising task and find that, analogous to the reproduction
experiments, no performance degradation can be observed.

4.1 Performance of Sparseness-Enforcing Projections

Our proposed algorithm for sparseness projections was im-
plemented as C++ program using the GNU Scientific Li-
brary (Galassi et al. 2009). We first analyzed whether solvers
other than bisection for locating the zero of the auxiliary
function would result in an improved performance. Since
Ψ is differentiable except for isolated points and its deriva-
tives can be computed quite efficiently, Newton’s method
and Halley’s method are straightforward to apply. We fur-
ther verified whether Newton’s method applied to a slightly
transformed variant of the auxiliary function,

Ψ̃ : [0, xmax)→ R, α 7→ ‖max(x−α · e, 0)‖2
1

‖max(x−α · e, 0)‖2
2

− λ 2
1

λ 2
2

,

where the minuend and the subtrahend were squared, would
behave more efficiently. The methods based on derivatives
were additionally safeguarded with bisection to guarantee
new positions are always located within well-defined inter-
vals (Press et al. 2007). This impairs the theoretical property
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Fig. 4 Number of auxiliary function evaluations needed to find the
final interval for the projection onto T using four different solvers. The
error bars indicate±1 standard deviation distance from the mean value.
Since Newton’s method applied to Ψ̃ is consistently outperforming the
other solvers, it is the method of choice for all practical applications.

that only a constant number of steps is required to find a so-
lution, but in practice a significantly smaller number of steps
needs to be made compared to plain bisection.

To evaluate which solver would provide maximum ef-
ficiency in practical scenarios, one thousand random vec-
tors for each problem dimensionality n ∈ {22, . . . ,230} were
sampled and the corresponding sparseness-enforcing projec-
tions for σ∗ := 0.90 were computed using all four solvers.
We have used the very same random vectors as input for all
solvers, and counted the number of times the auxiliary func-
tion needed to be evaluated until the solution was found. The
results of this experiment are depicted in Fig. 4.

The number of function evaluations required by plain bi-
section grew about linearly in log(n). Because the expected
minimum difference of two distinct entries from a random
vector gets smaller when the dimensionality of the random
vector is increased, the expected number of function eval-
uations bisection needs increases with problem dimension-
ality. In either case, the length of the interval that has to be
found is always bounded from below by the machine preci-
sion such that the number of function evaluations with bi-
section is bounded from above regardless of n.

The solvers based on the derivative of Ψ or Ψ̃ , respec-
tively, always required less function evaluations than bisec-
tion. They exhibited a growth clearly sublinear in log(n). For
n= 230≈ 109, Newton’s method required 11 function evalu-
ations in the mean, Halley’s method needed 9 iterations, and
Newton’s method applied to Ψ̃ found the solution in only
4.5 iterations. Therefore, in practice always the latter solver
should be employed.

In another experiment, the time competing algorithms
require for computing sparseness projections on a real com-
puting machine was measured for a comparison. For this, the
algorithms proposed by Hoyer (2004), Potluru et al. (2013),
and Thom and Palm (2013) were implemented using the
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complexity of the competing methods is at least quasi-linear, which
becomes noticeable especially for large problem dimensionalities.

GNU Scientific Library (Galassi et al. 2009) by means of
C++ programs. An Intel Core i7-4960X processor was used
and all algorithms were run in a single-threaded environ-
ment. Random vectors were sampled for each problem di-
mensionality n ∈ {22, . . . ,230} and initially projected to at-
tain a sparseness of 0.50 with respect to Hoyer’s σ . This ini-
tial projection better reflects the situation in practice where
not completely random vectors have to be processed. Next,
all four algorithms were used to compute projections with
a target sparseness degree of σ∗ := 0.90 and their run time
was measured. The original algorithm of Hoyer (2004) was
the slowest, so by taking the ratio of the run times of the
other algorithms to the run time of that slowest algorithm
the relative speed-up was obtained.

Figure 5 visualizes the results of this experiment. For
all tested problem dimensionalities, the here proposed lin-
ear time algorithm dominated all previously described meth-
ods. While the speed-up of the algorithms of Potluru et al.
(2013) and Thom and Palm (2013) relative to the original
algorithm of Hoyer (2004) were already significant, espe-
cially for small to medium dimensionalities, they got rel-
atively slow for very large vectors. This is not surprising,
because both methods start with sorting the input vector and
have to store that permutation to be undone in the end.

The algorithm proposed in this paper is based on root-
finding of a monotone function and requires no sorting. Only
the left and right neighbors of a scalar in a vector have to be
found. This can be achieved by scanning linearly through
the input vector, which is particularly efficient when huge
vectors have to be processed. For n = 230, the proposed al-
gorithm was more than 15 times faster than the methods
of Hoyer (2004), Potluru et al. (2013) and Thom and Palm
(2013). Because of this appealing asymptotic behavior, there
is now no further obstacle to applying smooth sparseness
methods to large-scale problems.

4.2 Data Set Analysis with EZDL

We used the Easy Dictionary Learning algorithm as a data
analysis tool to visualize the structure of patches from nat-
ural images under different aspects, which facilitates quali-
tative statements on the algorithm performance. For our ex-
periments, we used the McGill calibrated color image data-
base (Olmos and Kingdom 2004), where the images had ei-
ther 768×576 pixels or 576×768 pixels. The images were
desaturated (SMPTE RP 177-1993, Annex B.4) and quan-
tized to 8-bit precision. We extracted 10 000 patches with
16× 16 pixels from each of the 314 images of the "Fo-
liage" collection. The patches were extracted at random po-
sitions. Patches with vanishing variance were omitted since
they carry no information. In total, we obtained 3.1 million
samples for learning.

We learned dictionaries on the raw pixel values of this
learning set and on whitened image patches. The learning
samples were normalized to zero mean and unit variance
as the only pre-processing for the raw pixel experiments.
The whitened data was obtained using the canonical pre-
processing from Section 5.4 of Hyvärinen et al. (2009) with
128 principal components. EZDL was applied using each
proposed combination of inference model and atom con-
straints. We presented 30 000 randomly selected learning
samples in each of one thousand epochs, which corresponds
to about ten sweeps through the entire learning set. The ini-
tial step size was set to η0 := 1.

A noisy version of the final dictionary could already be
observed after the first epoch, demonstrating the effective-
ness of EZDL for quick analysis. Since the optimization
procedure is probabilistic in the initialization and selection
of training samples, we repeated the training five times for
each parameter set. We observed only minor variations be-
tween the five dictionaries for each parameter set.

In the following, we present details of dictionaries opti-
mized on raw pixel values and analyze their filter character-
istics. Then, we consider dictionaries learned with whitened
data and dictionaries with separable atoms trained on raw
pixel values and discuss the underlying reasons for their spe-
cial morphology.

4.2.1 Raw Pixel Values

Using the ordinary inference model, we trained two-times
overcomplete dictionaries with n := 256 atoms on the nor-
malized pixel values, where the dictionary sparseness de-
gree was varied between 0.700 and 0.999. This resulted in
the familiar appearance of dictionaries with Gabor-like fil-
ters, which resemble the optimal stimulus of visual neurons
(Olshausen and Field 1996, 1997). While for small values of
σH the filters were mostly small and sharply bounded, high
sparseness resulted in holistic and blurry filters.



Efficient Dictionary Learning with Sparseness-Enforcing Projections 11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.70 0.75 0.80 0.85 0.90 0.95 1.00

V
a

lu
e

 o
f 

G
a

b
o

r 
P

a
ra

m
e

te
r

Dictionary Sparseness σH

Spatial Frequency
Envelope Width x'
Envelope Width y'

Fig. 6 Mean values of three influential parameters of Gabor functions
fitted to the atoms of the dictionaries learned with EZDL, in depen-
dence on the target degree of dictionary sparseness σH . An increase in
sparseness results in filters with a reduced spatial frequency, but with a
significant increase in the width of the Gaussian envelope.

We used the methods developed by Jones and Palmer
(1987) and Ringach (2002) for a more detailed analysis. In
doing so, a two-dimensional Gabor function as defined in
Equation (1) of Ringach (2002), that is a Gaussian envelope
multiplied with a cosine carrier wave, was fit to each dictio-
nary atom using the algorithm of Nelder and Mead (1965).
We verified that these Gabor fits accurately described the at-
oms, which confirmed the Gabor-like nature of the filters.

The differences in the dictionaries due to varying sparse-
ness degrees became apparent through analysis of the pa-
rameters of the fitted Gabor functions. Figure 6 shows the
mean values of three influential Gabor parameters in de-
pendence on σH . All parameters change continuously and
monotonically with increasing sparseness. The spatial fre-
quency, a factor in the cosine wave of the Gabor function,
constantly decreases for increasing dictionary sparseness.
The width of the Gaussian envelope, here broken down into
the standard deviation in both principal orientations x′ and
y′, is monotonically increasing. The envelope width in y′ di-
rection increases earlier, but in the end the envelope width
in x′ direction is larger.

It can be concluded that more sparse code words result
in filters with lower frequency but larger envelope. Since an
increased sparseness reduces the model’s effective number
of degrees of freedom, it prevents the constrained dictionar-
ies from adapting precisely to the learning data. Similar to
Principal Component Analysis, low-frequency atoms here
minimize the reproduction error best when only very few ef-
fective atoms are allowed (Hyvärinen et al. 2009; Olshausen
and Field 1996).

Histograms of the spatial phase of the filters, an additive
term in the cosine wave of the Gabor function, are depicted
in Fig. 7. For σH = 0.75, there is a peak at π/2 which corre-
sponds to odd-symmetric filters (Ringach 2002). The distri-
bution is clearly bimodal for σH = 0.99, with peaks at 0 and
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Fig. 7 Histograms of the spatial phase of fitted Gabor functions for
σH = 0.75 (left) and σH = 0.99 (right). Low sparseness yields dictio-
naries where odd-symmetric filters dominate, whereas high dictionary
sparseness results in a significant amount of both even-symmetric and
odd-symmetric filters.

π/2 corresponding to even-symmetric and odd-symmetric fil-
ters, respectively. While the case of small σH matches the re-
sult of ordinary sparse coding, the higher dictionary sparse-
ness results in filters with the same characteristics as the op-
timal stimulus of macaque visual neurons (Ringach 2002).

This analysis proves that EZDL’s minimalistic learning
rule is capable of generating biologically plausible dictio-
naries, which constitute a particularly efficient image coding
scheme. To obtain dictionaries with diverse characteristics,
it is enough to adjust the target degree of dictionary sparse-
ness on a normalized scale. A major component in the learn-
ing algorithm is the sparseness projection, enforcing local
competition among the atoms (Rozell et al. 2008) due to its
absolute order-preservation property (Thom and Palm 2013,
Lemma 12).

4.2.2 Whitened Image Patches

Whitening as a pre-processing step helps to reduce sampling
artifacts and decorrelates the input data (Hyvärinen et al.
2009). It also changes the intuition of the similarity measure
in EZDL’s objective function, linear features rather than sin-
gle pixels are considered where each feature captures a mul-
titude of pixels in the raw patches. This results in differences
in the filter structure, particularly in the emergence of more
low-frequency filters.

The dictionary depicted in Fig. 8a was learned using the
topographic inference model with average-pooling of 3× 3
neighborhoods. We set the dictionary sparseness degree to
σH := 0.85 and the number of atoms to n := 256, arranged
on a 16× 16 grid. The dictionary closely resembles those
gained through Topographic Independent Component Anal-
ysis (Hyvärinen et al. 2001, 2009) and Invariant Predictive
Sparse Decomposition (Kavukcuoglu et al. 2009). It should
be noted that here the representation is two times overcom-
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plete due to the whitening procedure. Overcomplete repre-
sentations are not inherently possible with plain Independent
Component Analysis (Bell and Sejnowski 1997; Hyvärinen
et al. 2009) which limits its expressiveness, a restriction that
does not hold for EZDL.

The emergence of topographic organization can be ex-
plained by the special design of the topographic inference
model. The pooling operator acts as spatial low-pass filter
on the filter responses, so that each smoothed filter response
carries information on the neighboring filter responses. Fil-
ter response locality is retained after the sparseness projec-
tion, hence adjacent atoms receive similar updates with the
Hebbian-like learning rule. Hence, there are only small dif-
ferences between filters within the same vicinity. The learn-
ing process is similar to that of Self-organizing Maps (Ko-
honen 1990), where only the atom with the maximum filter
response and the atoms in its direct surrounding are updated.
However, EZDL simultaneously updates multiple clusters
since the sparse code words laid out on the grid are mul-
timodal.

Further, it is notable that we achieved a topographic or-
ganization merely through a linear operator G by simple
average-pooling. This stands in contrast to the discussion
from Bauer and Memisevic (2013) where the necessity of
a nonlinearity such as multiplicative interaction or pooling
with respect to the Euclidean norm was assumed. Our result
that a simple linear operator plugged into the ordinary infer-
ence model already produces smooth topographies proves
that linear interactions between the atoms are sufficient de-
spite their minimality.

Figure 8b shows a dictionary obtained with the rank-1
topographic inference model, using a sparseness degree of
σH := 0.85 and n := 256 filters on a 16×16 grid. Here, the
sparse code words reshaped to a matrix are required to have
unit rank which results in a specially organized filter layout.
For example, rows three and four almost exclusively contain
low-frequency filters, and the filters in the sixth column are
all oriented vertically. The grouping of similar atoms into the
same rows and columns is related to Independent Subspace
Analysis, which yields groups of Gabor-like filters where
all filters in a group have approximately the same frequency
and orientation (Hyvärinen and Hoyer 2000).

The rank-1 topographic inference model guarantees that
code words can be expressed as the dyadic product of two
vectors, where the factors themselves are sparsely populated
because the code words are sparse. This causes the code
words to possess a sparse rectangular structure when re-
shaped to account for the grid layout, that is non-vanishing
activity is always concentrated in a few rows and columns.
The Hebbian-like learning rule therefore induces similar up-
dates to atoms located in common rows or columns, which
explains the obtained group layout.

(a) Topographic inference model.

(b) Rank-1 topographic inference model.

Fig. 8 Two times overcomplete dictionaries trained with EZDL on
whitened natural image patches.

4.2.3 Rank-1 Filters on Raw Pixel Values

Enforcing the filters themselves to have rank one by setting
κW := 1 resulted in bases similar to Discrete Cosine Trans-
form (Watson 1994). This was also observed recently by
Hawe et al. (2013) who considered a tensor decomposition
of the dictionary, and by Rigamonti et al. (2013) who min-
imized the Schatten 1-norm of the atoms. Note that EZDL
merely replaces the atoms after each learning epoch by their
best rank-1 approximation. The computational complexity
of this operation is negligible compared to an individual
learning epoch using tens of thousands of samples and hence
does not slow down the actual optimization.

If no ordering between the filters was demanded, a mul-
titude of checkerboard-like filters and vertical and horizontal
contrast bars was obtained, see Fig. 9a for a dictionary with
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(a) Ordinary inference model.

(b) Topographic inference model.

Fig. 9 Dictionaries trained with EZDL on raw pixels, the atoms were
replaced by their best rank-1 approximation after each epoch.

n := 256 atoms and a sparseness degree of σH := 0.85. At-
oms with diagonal structure cannot be present at all in such
constrained dictionaries because diagonality requires a filter
rank greater than one. Although all filters were paraxial due
to the rank-1 constraint, they still resembled contrast fields
because of their grating-like appearance. This is due to the
representation’s sparseness, which is known to induce this
appearance.

A similar filter morphology was obtained with a topo-
graphic filter ordering using a 16×16 grid, though the filters
were blurrier, as shown in Fig. 9b. Here, checkerboard-like
filters are located in clusters, and filters with vertical and
horizontal orientation are spatially adjacent. This is as ex-
pected, because with a sparse topography there are only a
few local blobs of active entries in each code word, caus-
ing similar atoms to be grouped together and dissimilar at-

oms to be distant from each other. In the space of rank-1
filters, there can be either vertical or horizontal structures,
or checkerboards combining both principal orientations.

The lack of fine details can be explained by the restric-
tion of topographic organization, which reduces the effective
number of degrees of freedom. Analogously to the situation
in Sect. 4.2.1 where the dictionary sparseness was increased,
the reproduction error can be reduced by a large amount us-
ing few filters with low frequencies. For the same reason,
there are few such checkerboard-like filters: Minimization
of the reproduction error is first achieved with principal ori-
entations before checkerboards can be used to encode details
in the image patches.

In conclusion, these results show that the variety of the
dictionaries produced by EZDL can be vast simply by adapt-
ing easily interpretable parameters. The algorithm covers
and reproduces well-known phenomena from the literature,
and allows a precise visualization of a data set’s structure. A
first impression of the final dictionaries can already be ob-
tained after one learning epoch, which takes no more than
one second on a modern computer.

4.3 Experiments on the Reproduction of Entire Images

It was demonstrated in Sect. 4.2 that the Easy Dictionary
Learning algorithm produces dictionaries that correspond to
efficient image coding schemes. We now analyze the suit-
ability of EZDL dictionaries trained on raw pixel values for
the reproduction of entire images. This is a prerequisite for
several image processing tasks such as image enhancement
and compression, since here essentially the same optimiza-
tion problem should be solved as during reproduction with
a given dictionary.

Our analysis allows quantitative statements as the origi-
nal images and their reproduction through sparse coding can
be numerically compared on the signal level. Further, the
EZDL dictionaries are compared with the results of the On-
line Dictionary Learning algorithm by Mairal et al. (2009a)
and the Recursive Least Squares Dictionary Learning Algo-
rithm by Skretting and Engan (2010) in terms of reproduc-
tion quality and learning speed.

The evaluation methodology was as follows. First, dic-
tionaries with different parameter sets were trained on 3.1
million 8× 8 pixels natural image patches extracted from
the "Foliage" collection of the McGill calibrated color im-
age database (Olmos and Kingdom 2004). As in Sect. 4.2,
10 000 patches were picked from random positions from
each of the desaturated and quantized images. All patches
were normalized to zero mean and unit variance before train-
ing. The dictionaries were designed for a four times over-
complete representation, they had n := 256 atoms for sam-
ples with 64 pixels. After training, dictionary quality was
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(a) Reproduction quality in dependence on the number of Landweber
iterations carried out for inference. The four curves show different com-
binations of dictionary sparseness σH and inference sparseness σI .
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(b) Achieved reproduction quality in dependence on the inference
sparseness σI for four different dictionary sparseness degrees σH . Large
values of σH yield the best performance for large σI .

Fig. 10 Results on the reproduction of entire images using Easy Dictionary Learning dictionaries. (a) While one Landweber iteration suffices for
learning, better reproduction performance is yielded if the Landweber procedure is run until convergence. (b) The relation between the dictionary
sparseness σH and the inference sparseness σI is influential. Hardly any information loss can be observed for σI < σH , while the case σI > σH
shows dictionaries should be trained for very sparse code words when demanding such a sparseness for reproduction.

measured using the 98 images of the "Flowers" collection
from the same image database. This evaluation set was dis-
joint from the learning set.

Each single image was subsequently divided into non-
overlapping blocks with 8× 8 pixels. All blocks were nor-
malized to zero mean and unit variance, and then the opti-
mized dictionaries were used to infer a sparse code word for
each block. The resulting code word was then fed through a
linear generative model using the currently investigated dic-
tionary, and the mean value and variance were restored to
match that of the original block.

Sparse code word inference was achieved with a pro-
jected Landweber procedure (Bredies and Lorenz 2008), es-
sentially the same as projected gradient descent starting with
the null vector. Using the sparseness-enforcing projection
operator after each iteration, the code words were tuned to
attain an inference sparseness σI , which need not necessar-
ily be equal to the sparseness degree used for dictionary
learning. The correlation coefficient was used as the sim-
ilarity measure for inference to benefit from invariance to
shifting and scaling. Automatic step size control was carried
out with the bold driver heuristic (Bishop 1995). We note
that due to the representation theorem on the sparseness pro-
jection this process can also be understood as Iterative Soft-
Thresholding (Bredies and Lorenz 2008).

A reproduced image is yielded by applying this pro-
cedure to all distinct blocks of the original image using a
single dictionary. The deviation between this output image
and the original image was assessed with the SSIM index
(Wang and Bovik 2009), which yielded qualitatively similar
results as the peak signal-to-noise ratio. The SSIM index is,
however, normalized to values between zero and one, and

it respects the local structure of images since it examines
11×11 pixels neighborhoods through convolution. Because
it measures the visual similarity between images, it is more
intuitive than measures based on the pixel-wise squared er-
ror (Wang and Bovik 2009). This evaluation method yielded
one number from the interval [0, 1] for each image and dic-
tionary. Each parameterization for dictionary learning was
used to train five dictionaries to compensate probabilistic
effects, and here the mean of the resulting 490 SSIMs is re-
ported.

4.3.1 EZDL Results

Figure 10 visualizes the results obtained for dictionaries pro-
duced by Easy Dictionary Learning using dictionary sparse-
ness degrees σH ∈ {0.75, 0.85, 0.95, 0.99}. One thousand
learning epochs were carried out, presenting 30 000 sam-
ples in each epoch, and using an initial step size of η0 := 1.
During dictionary learning, only the first trivial iteration of
a Landweber procedure is carried out for sparse code word
inference by computing h := ΠσH (W

T x) for the ordinary in-
ference model.

We first analyzed the impact of carrying out more Land-
weber iterations during the image reproduction phase, and
the effect of varying the inference sparseness degree σI . A
huge performance increase can be obtained by using more
than one iteration for inference (Fig. 10a). Almost the op-
timal performance is achieved after ten iterations, and af-
ter one hundred iterations the method has converged. For
σI = 0.75, the performance of dictionaries with σH = 0.75
and σH = 0.85 is about equal yielding the maximum SSIM
of one. This value indicates that there is no visual difference
between the reproduced images and the original images.
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(a) Results of the Online Dictionary Learning (ODL) algorithm by
Mairal et al. (2009a), where λ trades off between sparseness and re-
production capabilities in a model with implicit sparseness constraints.
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(b) Results of the Recursive Least Squares Dictionary Learning Algo-
rithm (RLS-DLA) by Skretting and Engan (2010). Here, ζ denotes the
target L0 pseudo-norm of the code words for inference.

Fig. 11 Experimental results on image reproduction where alternative dictionary learning algorithms were used. The dictionaries behave similarly
to Easy Dictionary Learning dictionaries if the dictionary sparseness parameter and the inference sparseness are varied.

When the inference sparseness σI is increased to 0.85, a
difference in the choice of the dictionary sparseness σH be-
comes noticeable. For σH = 0.85, performance already de-
grades, and the degradation is substantial if σH = 0.75. It is
more intuitive when σH and σI are put in relation. Almost no
information is lost in the reproduction by enforcing a lower
inference sparseness than dictionary sparseness (σI < σH ).
Performance is worse if σI > σH which is plausible because
the dictionary was not adapted for a higher sparseness de-
gree. In the natural case σI = σH the performance mainly
depends on their concrete value, where higher sparseness
results in worse reproduction capabilities.

To further investigate this behavior, we set the number of
Landweber iterations to 100 and varied σI smoothly in the
interval [0.50, 1.0) for the four different dictionary sparse-
ness degrees. The results of this experiment are depicted in
Fig. 10b. For σI ≤ 0.80 there is hardly any difference in the
reproduction quality irrespective of the value of σH . The dif-
ference when training dictionaries with different sparseness
degrees first becomes visible for large values of σI . Perfor-
mance is here better using dictionaries where very sparse
code words were demanded during learning. Hence, tasks
that require high code word sparseness should use dictionar-
ies trained with high values of the dictionary sparseness.

4.3.2 Comparison with Alternative Dictionary Learning
Algorithms

For a comparison, we conducted experiments using the On-
line Dictionary Learning (ODL) algorithm of Mairal et al.
(2009a) and the Recursive Least Squares Dictionary Learn-
ing Algorithm (RLS-DLA) by Skretting and Engan (2010).
For inference of sparse code words, ODL minimizes the re-
production error under implicit sparseness constraints. RLS-

DLA uses an external vector selection algorithm for infer-
ence, hence explicit constraints such as a target L0 pseudo-
norm can be demanded easily. Both algorithms update the
dictionary after each sample presentation.

ODL does not require any step sizes to be adjusted. The
crucial parameter for dictionary sparseness here is a num-
ber λ ∈ R>0, which controls the trade-off between repro-
duction capabilities and code word sparseness. We trained
five dictionaries for each λ ∈ {0.50, 1.00, 1.50, 2.00} us-
ing n := 256 atoms and presenting 30 000 learning samples
in each of one thousand epochs. Then, the same evaluation
methodology as before with σI ∈ [0.50, 1.0) was used to as-
sess the reproduction capabilities. The results are shown in
Fig. 11a. The choice of λ is not as influential compared to
σH in EZDL. There are only small performance differences
for σI < 0.925, and for σI ≥ 0.925 hardly any difference can
be observed. Similar to the EZDL experiments, large values
of λ result in better performance for large σI and worse per-
formance for small σI .

RLS-DLA provides a forgetting factor parameter which
behaves analogously to the step size in gradient descent.
We used the default forgetting factor schedule which in-
terpolates between 0.99 and 1 using a cubic function over
one thousand learning epochs. For inference, we chose an
optimized Orthogonal Matching Pursuit variant (Gharavi-
Alkhansari and Huang 1998) where a parameter ζ ∈ N con-
trols the number of non-vanishing coordinates in the code
words. We trained five dictionaries with n := 256 atoms for
each ζ ∈ {4, 8, 16, 32}. Thirty thousand randomly drawn
learning samples were presented in each learning epoch. The
resulting reproduction performance is shown in Fig. 11b.
Again, for large values of σI the dictionaries with the most
sparse code words during learning perform best, that is those
trained with small values of ζ .
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Fig. 12 Comparison of dictionary performance when the dependency
on the dictionary sparseness degrees λ , ζ and σH was eliminated, for
ODL, RLS-DLA and EZDL, respectively. All three algorithms produce
dictionaries equally well-suited to the reproduction of entire images.

To compare all three dictionary learning algorithms in-
dependent of the concrete dictionary sparseness, we took the
mean SSIM value that belonged to the best performing dic-
tionaries for each feasible value of σI . This can also be in-
terpreted as using the convex hull of the results shown in
Fig. 10b and Fig. 11. This yielded one curve for each dictio-
nary learning algorithm, depicted in Fig. 12. There is only
a minor difference between the curves over the entire range
of σI . It can hence be concluded that the algorithms learn
dictionaries which are equally well-suited for the reproduc-
tion of entire images. Although EZDL uses a very simple
learning rule, this is sufficient enough to achieve a perfor-
mance competitive with that of two state-of-the-art dictio-
nary learning algorithms.

4.3.3 Comparison of Learning Speed

We moreover compared the learning speed of the methods
and investigated the influence of the initial step size on the
EZDL dictionaries. In doing so, we carried out reproduc-
tion experiments on entire images using dictionaries pro-
vided by the learning algorithms after certain numbers of
learning epochs. In each of one thousand overall epochs,
30 000 learning samples where input to all three algorithms.
The dictionary sparseness parameters were set to σH := 0.99
for EZDL, to λ := 2.00 for Online Dictionary Learning, and
to ζ := 4 for the Recursive Least Squares Dictionary Learn-
ing Algorithm.

Timing measurements on an Intel Core i7-4960X pro-
cessor have shown that one EZDL learning epoch takes ap-
proximately 30 % less time than a learning epoch of ODL.
RLS-DLA was roughly 25 times slower than EZDL. Al-
though the employed vector selection method was present
as part of an optimized software library, only a fairly unop-
timized implementation of the actual learning algorithm was
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Fig. 13 Reproduction quality in dependence on the number of samples
presented to Online Dictionary Learning, the Recursive Least Squares
Dictionary Learning Algorithm, and Easy Dictionary Learning, where
the initial step size η0 was varied for the latter. All approaches achieved
the same performance after 1000 learning epochs.

available. Therefore, a comparison of this algorithm with re-
gard to execution speed would be inequitable.

The inference sparseness was set to σI := 0.99 and one
hundred Landweber iterations were carried out for sparse
code word inference. The SSIM index was eventually used
to assess the reproduction performance. Figure 13 visualizes
the results of the learning speed analysis, averaged over all
images from the evaluation set and five dictionaries trained
for each parameterization to compensate probabilistic ef-
fects. Online Dictionary Learning is free of step sizes, dic-
tionary performance increased instantly and constantly with
each learning epoch. Only small performance gains could be
observed after 100 learning epochs.

The performance of dictionaries trained with RLS-DLA
was initially better than that of the ODL dictionaries, but
improved more slowly. After a hundred epochs, however, it
was possible to observe a significant performance gain. Al-
though tweaking the forgetting factor schedule may have led
to better early reproduction capabilities, RLS-DLA achieved
a performance equivalent to that of ODL after 1000 epochs.

If EZDL’s initial step size was set to unity, performance
first degraded, but started to improve after the fifth epoch.
After 100 epochs, the performance was identical to ODL’s,
and all three methods obtained equal reproduction capabil-
ities after 1000 epochs. Reduction of the initial step size
caused the dictionaries to perform better after few sample
presentations. The quality of Online Dictionary Learning
was achieved after 20 epochs for η0 = 1/4, and for η0 = 1/16

the EZDL dictionaries were always better in the mean until
the 100th epoch. There is hardly any quality difference after
1000 epochs, a very small initial step size resulted however
in a slightly worse performance.

The choice of the initial step size for EZDL is hence not
very influential. Although η0 = 1 caused small overfitting
during the very first epochs, the dictionaries quickly recov-
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ered so that no significant difference in reproduction capa-
bilities could be observed after 100 epochs. Since an EZDL
epoch is 30 % faster than an Online Dictionary Learning
epoch, our proposed method produces better results earlier
on an absolute time scale.

4.4 Image Denoising Experiments

We have demonstrated in Sect. 4.3 that dictionaries learned
with Easy Dictionary Learning are as good as those obtained
from the Online Dictionary Learning algorithm of Mairal
et al. (2009a) and the Recursive Least Squares Dictionary
Learning Algorithm by Skretting and Engan (2010) in terms
of the reproduction quality of entire images. In a final exper-
iment, we investigated the suitability of EZDL dictionaries
for image denoising using the image enhancement proce-
dure proposed by Mairal et al. (2009b).

This method carries out semi-local block matching and
finds sparse code words by imposing a group sparseness
penalty on the Euclidean reproduction error. In doing so,
a pre-learned dictionary is used which explains the appear-
ance of uncorrupted images and further helps to resolve am-
biguities if block matching fails to provide large enough
groups. A linear generative model is finally used to find es-
timators of denoised image patches from the sparse code
words. This procedure is quite robust if the input data is
noisy, since sparseness provides a strong prior which well
regularizes this ill-posed inverse problem (Kreutz-Delgado
et al. 2003; Foucart and Rauhut 2013).

The denoising approach of Mairal et al. (2009b) also
provides the possibility of dictionary adaptation while de-
noising concrete input data. We did not use this option as it
would hinder resilient statements on a dictionary’s eligibil-
ity if it would be modified with another dictionary learning
algorithm during denoising.

The methodology of the experiment was as follows. We
used the four-times overcomplete dictionaries trained on the
8× 8 pixels image patches from the "Foliage" collection
of the McGill calibrated color image database (Olmos and
Kingdom 2004) as models for uncorrupted images. The dic-
tionary sparseness parameters were σH := 0.99 for EZDL,
λ := 2.00 for ODL and ζ := 4 for RLS-DLA. For evalu-
ation, we used the 81 images of the "Animals" collection
from the McGill database, and converted them to 8-bit gray-
scales as in the previous experiments. The images were syn-
thetically corrupted with additive white Gaussian noise. Five
noisy images were generated for each original image and
each standard deviation from {2.5, 5.0, . . . , 47.5, 50.0}.

These images were then denoised using the candidate
dictionaries, where the window size for block matching was
set to 32 pixels. Then, the similarity between the recon-
structions and the original images was measured with the
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Fig. 14 Denoising performance in terms of the peak signal-to-noise
ratio (PSNR) using the denoising method proposed by Mairal et al.
(2009b). There is only a small performance difference between dictio-
naries trained with ODL, RLS-DLA and EZDL.

peak signal-to-noise ratio. We also evaluated the SSIM in-
dex, which led to qualitatively similar results.

The results are depicted in Fig. 14. Denoising perfor-
mance degrades if the noise strength is increased. There is
hardly any difference between the dictionaries trained with
the three algorithms. The RLS-DLA and EZDL dictionaries
perform slightly better for small synthetic noise levels, but
this improvement is visually imperceptible. This result is not
surprising, since Sect. 4.3 demonstrated that all three learn-
ing algorithms produce dictionaries equally well-suited for
the reproduction of entire images.

The denoising procedure of Mairal et al. (2009b) aims
at reproduction capabilities as well, with the modification of
employing noisy samples as input. Image enhancement and
compression applications such as those proposed by Yang
et al. (2010, 2012), Dong et al. (2011), Skretting and En-
gan (2011) and Horev et al. (2012) which also use problem
formulations based on the reproduction error can hence be
expected to benefit from more efficiently learned dictionar-
ies as well.

5 Conclusions

This paper proposed the EZDL algorithm which features ex-
plicit sparseness constraints with respect to Hoyer’s smooth
sparseness measure σ . Pre-defined sparseness degrees are
ensured to always be attained using a sparseness-enforcing
projection operator. Building upon a succinct representation
of the projection, we proved that the projection problem can
be formulated as a root-finding problem. We presented a
linear time and constant space algorithm for the projection
which is superior to previous approaches in terms of theo-
retical computational complexity and execution time on real
computing machines.

EZDL adapts dictionaries to measurement data through
simple rank-1 updates. The sparseness projection serves as
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foundation for sparse code word inference. Due to the pro-
jection efficiency and since no complicated gradients are
required, our proposed learning algorithm is significantly
faster than even the optimized ODL algorithm. Topographic
atom organization and atom sparseness can be realized with
very simple extensions, allowing for versatile sparse repre-
sentations of data sets. Its simplicity and efficiency does not
hinder EZDL from producing dictionaries competitive with
those generated by ODL and RLS-DLA in terms of the re-
production and denoising performance on natural images.
Alternative image processing methods based on sparse rep-
resentations rely on dictionaries subject to the same criteria,
and can thus be expected to benefit from EZDL’s advantages
as well.

Acknowledgements The authors are grateful to Heiko Neumann, Flo-
rian Schüle, and Michael Gabb for helpful discussions. We would like
to thank Julien Mairal and Karl Skretting for making implementations
of their algorithms available. Parts of this work were performed on
the computational resource bwUniCluster funded by the Ministry of
Science, Research and Arts and the Universities of the State of Baden-
Württemberg, Germany, within the framework program bwHPC. This
work was supported by Daimler AG, Germany.

Appendix: Technical Details and Proofs for Section 2

This appendix studies the algorithmic computation of Euclidean pro-
jections onto level sets of Hoyer’s σ in greater detail, and in particular
proves the correctness of the algorithm proposed in Sect. 2.

For a non-empty subset M⊆Rn of the Euclidean space and a point
x ∈ Rn, we call

projM(x) := {y ∈M | ‖y− x‖2 = infz∈M ‖z− x‖2 }

the set of Euclidean projections of x onto M (Deutsch 2001). Since we
only consider situations in which projM(x) = {y} is a singleton, we
may also write y = projM(x).

Without loss of generality, we can compute projT (x) for a vector
x ∈ Rn

≥0 within the non-negative orthant instead of projS(x) for an ar-
bitrary point x ∈ Rn to yield sparseness-enforcing projections, where
T and S are as defined in Sect. 2. First, the actual scale is irrelevant
as we can simply re-scale the result of the projection (Thom and Palm
2013, Remark 5). Second, the constraint that the projection lies in the
non-negative orthant Rn

≥0 can easily be handled by flipping the signs
of certain coordinates (Thom and Palm 2013, Lemma 11). Finally, all
entries of x can be assumed non-negative with Corollary 19 from Thom
and Palm (2013).

We note that T is non-convex because of the ‖s‖2 = λ2 constraint.
Moreover, T 6= /0 for all target sparseness degrees σ∗ ∈ (0, 1) which
we show here by construction (see also Remark 18 in Thom and Palm
(2013) for further details): Let ψ :=

(
λ1−

√
nλ 2

2−λ 2
1/
√

n−1
)
/n > 0 and

ω := λ1− (n−1)ψ > 0, then the point q := ∑
n−1
i=1 ψei +ωen ∈ Rn lies

in T , where ei ∈Rn denotes the i-th canonical basis vector. Since all co-
ordinates of q are positive, T always contains points with an L0 pseudo-
norm of n. If we had used the L0 pseudo-norm to measure sparseness,
then q would have the same sparseness degree as, for example, the vec-
tor with all entries equal to unity. If, however, σ∗ is close to one, then
there is only one large value ω in q and all the other entries equaling ψ

are very small but positive. This simple example demonstrates that in
situations where the presence of noise cannot be eliminated, Hoyer’s σ

is a much more robust sparseness measure than the L0 pseudo-norm.

Representation Theorem

Before proving a theorem on the characterization of the projection onto
T , we first fix some notation. As above, let ei ∈ Rn denote the i-th
canonical basis vector and let furthermore e := ∑

n
i=1 ei ∈ Rn be the

vector where all entries are one. We note that if a point x resides in the
non-negative orthant, then ‖x‖1 = eT x. Subscripts to vectors denote the
corresponding coordinate, except for e and ei. For example, we have
that xi = eT

i x. We abbreviate ξ ∈ R≥0 with ξ ≥ 0 when it is clear that
ξ is a real number. When I ⊆ {1, . . . ,n} is an index set with d := |I|
elements, say i1 < · · ·< id , then the unique matrix VI ∈ {0,1}d×n with
VIx =

(
xi1 , . . . , xid

)T ∈Rd for all x ∈Rn is called the slicing operator.
A useful relation between the L0 pseudo-norm, the Manhattan norm
and the Euclidean norm is ‖x‖2 ≤ ‖x‖1 ≤ ‖x‖

1/2
0 ‖x‖2 ≤

√
n‖x‖2 for all

points x ∈ Rn.
We are now in a position to formalize the representation theorem:

Theorem 1 Let x ∈ Rn
≥0 \T and p := projT (x) be unique. Then there

is exactly one number α∗ ∈ R such that

p = β
∗ ·max(x−α

∗ · e, 0) ,

where β ∗ := λ2/‖max(x−α∗·e, 0)‖2 > 0 is a scaling constant. Moreover, if
I := { i ∈ {1, . . . ,n} | pi > 0}= {i1, . . . , id}, d := |I| and i1 < · · ·< id ,
denotes the set of the d coordinates in which p does not vanish, then

α
∗ =

1
d

‖VIx‖1−λ1

√
d ‖VIx‖2

2−‖VIx‖2
1

dλ 2
2 −λ 2

1

 .

Proof It is possible to prove this claim either constructively or im-
plicitly, where both variants differ in whether the set I of all positive
coordinates in the projection can be computed from x or must be as-
sumed to be known. We first present a constructive proof based on a
geometric analysis conducted in Thom and Palm (2013), which con-
tributes to deepening our insight into the involved computations. As
an alternative, we also provide a rigorous proof using the method of
Lagrange multipliers which greatly enhances the unproven analysis of
Potluru et al. (2013, Section 3.1).

We first note that when there are α∗ ∈ R and β ∗ > 0 so that we
have p= β ∗ ·max(x−α∗ · e, 0), then β ∗ is determined already through
α∗ because it holds that λ2 = ‖p‖2 = β ∗ · ‖max(x−α∗ · e, 0)‖2. We
now show that the claimed representation is unique, and then present
the two different proofs for the existence of the representation.

Uniqueness: It is d ≥ 2, since d = 0 would violate that ‖p‖1 > 0
and d = 1 is impossible because σ∗ 6= 1. We first show that there
are two distinct indices i, j ∈ I with pi 6= p j . Assume this was not
the case, then pi =: γ , say, for all i ∈ I. Let j := argmini∈I xi be the
index of the smallest coordinate of x which has its index in I. Let
ψ :=

(
λ1 −

√
dλ 2

2−λ 2
1/
√

d−1
)
/d ∈ R and ω := λ1 − (d − 1)ψ ∈ R be

numbers and define s := ∑i∈I\{ j}ψei +ωe j ∈ Rn. Then s ∈ T like in
the argument where we have shown that T is non-empty. Because of
‖p‖1 = ‖s‖1 and ‖p‖2 = ‖s‖2, it follows that ‖x− p‖2

2 −‖x− s‖2
2 =

2xT (s− p) = 2∑i∈I\{ j} xi(ψ−γ)+2x j(ω−γ)≥ 2x j((d−1)ψ +ω−
dγ) = 2x j (‖s‖1−‖p‖1) = 0. Hence s is at least as good an approxima-
tion to x as p, violating the uniqueness of p. Therefore, it is impossible
that the set { pi | i ∈ I } is a singleton.

Now let i, j ∈ I with pi 6= p j and α∗1 ,α
∗
2 ,β

∗
1 ,β

∗
2 ∈ R such that

p = β ∗1 ·max(x−α∗1 · e, 0) = β ∗2 ·max(x−α∗2 · e, 0). Clearly β ∗1 6= 0
and β ∗2 6= 0 as d 6= 0. It is 0 6= pi− p j = β ∗1 (xi−α∗1 )−β ∗1 (x j−α∗1 ) =
β ∗1 (xi − x j), thus xi 6= x j holds. Moreover, 0 = pi − p j + p j − pi =
(β ∗1 −β ∗2 )(xi−x j), hence β ∗1 = β ∗2 . Finally, we have that 0 = pi− pi =
β ∗1 (xi−α∗1 )−β ∗2 (xi−α∗2 ) = β ∗1 (α

∗
2 −α∗1 ), which yields α∗1 = α∗2 , and

hence the representation is unique.
Existence (constructive): Let H := {a ∈ Rn | eT a = λ1 } be the hy-

perplane on which all points in the non-negative orthant have an L1
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norm of λ1 and let C := Rn
≥0 ∩H be a scaled canonical simplex. Fur-

ther, let L := {q ∈ H | ‖q‖2 = λ2 } be a circle on H, and for an arbi-
trary index set I ⊆ {1, . . . ,n} let LI := {a ∈ L | ai = 0 for all i 6∈ I } be
a subset of L where all coordinates not indexed by I vanish. With The-
orem 2 and Appendix D from Thom and Palm (2013) there exists a
finite sequence of index sets I1, . . . , Ih ⊆ {1, . . . ,n} with I j ) I j+1 for
j ∈ {1, . . . ,h−1} such that projT (x) is the result of the finite sequence

r(0) := projH(x), s(0) := projL(r(0)),

r(1) := projC(s(0)), s(1) := projLI1
(r(1)), . . .

r( j) := projC(s( j−1)), s( j) := projLI j
(r( j)), . . .

r(h) := projC(s(h−1)), s(h) := projLIh
(r(h)) = p.

All intermediate projections yield unique results because p was re-
stricted to be unique. The index sets contain the indices of the entries
that survive the projections onto C, I j := { i ∈ {1, . . . ,n} | ri( j) 6= 0}
for j ∈ {1, . . . ,h}. In other words, p can be computed from x by al-
ternating projections, where the sets L and LI j are non-convex for all
j ∈ {1, . . . ,h}. The expressions for the individual projections are given
in Lemma 13, Lemma 17, Proposition 24, and Lemma 30, respectively,
in Thom and Palm (2013).

Let I0 := {1, . . . ,n} for completeness, then we can define the fol-
lowing constants for j ∈ {0, . . . ,h}. Let d j :=

∣∣I j
∣∣ be the number of

relevant coordinates in each iteration, and let

β j :=

√
d jλ

2
2 −λ 2

1

d j‖VI j x‖2
2−‖VI j x‖2

1
and α j :=

1
d j

(
‖VI j x‖1− λ1

β j

)
be real numbers. We have that d jλ

2
2 −λ 2

1 ≥ dhλ 2
2 −λ 2

1 ≥ 0 by construc-
tion which implies β j > 0 for all j ∈ {0, . . . ,h}. We now claim that the
following holds:

(a) si( j) = β j · (xi−α j) for all i ∈ I j for all j ∈ {0, . . . ,h}.
(b) α0 ≤ ·· · ≤ αh and β0 ≤ ·· · ≤ βh.
(c) xi ≤ α j for all i 6∈ I j for all j ∈ {0, . . . ,h}.
(d) p = βh ·max(x−αh · e, 0).

We start by showing (a) with induction. For j = 0, we have r(0) =
x+ 1/n · (λ1−‖x‖1)e using Lemma 13 from Thom and Palm (2013).
With Lemma 17 stated in Thom and Palm (2013), we have s(0) =
δ r(0)+(1−δ )m with m = λ1/n ·e and δ 2 =

(
λ 2

2 − λ 2
1/n
)/
‖r(0)−m‖2

2.
We see that ‖r(0)−m‖2

2 = ‖x− ‖x‖1/n · e‖2
2 = ‖x‖2

2− ‖x‖
2
1/n and there-

fore δ = β0, and thus s(0) = β0 ·(x− 1/n · (‖x‖1− λ1/β0)e), so the claim
holds for the base case.

Suppose that (a) holds for j and we want to show it also holds for
j+ 1. It is r( j+ 1) = projC(s( j)) by definition, and Proposition 31 in
Thom and Palm (2013) implies r( j + 1) = max(s( j)− t̂ · e, 0) where
t̂ ∈ R can be expressed explicitly as t̂ = 1/d j+1 ·

(
∑i∈I j+1

si( j)− λ1
)
,

which is the mean value of the entries that survive the simplex pro-
jection up to an additive constant. We note that t̂ is here always non-
negative, see Lemma 28(a) in Thom and Palm (2013), which we will
need to show (b). Since I j+1 ( I j we yield si( j) = β j · (xi −α j) for
all i ∈ I j+1 with the induction hypothesis, and therefore we have that
t̂ = 1/d j+1 ·

(
β j‖VI j+1 x‖1−d j+1β jα j−λ1

)
. We find that ri( j+1)> 0 for

i ∈ I j+1 by definition, and we can omit the rectifier so that ri( j+1) =
si( j)− t̂. Using the induction hypothesis and the expression for t̂ we
have ri( j+1) = β jxi− β j/d j+1 · ‖VI j+1 x‖1 + λ1/d j+1. For projecting onto
LI j+1 , the distance between r( j + 1) and mI j+1 = λ1/d j+1 ·∑i∈I j+1

ei is
required for computation of δ 2 =

(
λ 2

2 − λ 2
1/d j+1

)/
‖r( j+1)−mI j+1‖2

2,
so that Lemma 30 from Thom and Palm (2013) can be applied. We
have that ‖r( j + 1)−mI j+1‖2

2 = ∑i∈I j+1

(
β jxi− β j/d j+1 · ‖VI j+1 x‖1

)
2 =

β 2
j ·
(
‖VI j+1 x‖2

2−‖VI j+1 x‖21/d j+1

)
, and further δ = β j+1/β j. Now let i∈ I j+1

be an index, then we have si( j+ 1) = δ ri( j+ 1)+ (1− δ ) · λ1/d j+1 =
β j+1 ·

(
xi− 1/d j+1 ·

(
‖VI j+1 x‖1− λ1/β j+1

))
using Lemma 30 from Thom

and Palm (2013). Therefore (a) holds for all j ∈ {0, . . . ,h}.

Let us now turn to (b). From the last paragraph, we know that
δ = β j+1/β j for all j ∈ {0, . . . ,h−1} for the projections onto LI j+1 . On
the other hand, we have that ‖r( j+1)−mI j+1‖2

2 = ‖r( j+1)‖2
2−λ 2

1/d j+1

from the proof of Lemma 30(a) from Thom and Palm (2013), and
‖r( j+ 1)‖2

2 ≤ λ 2
2 holds from the proof of Lemma 28(f) in Thom and

Palm (2013), so δ ≥ 1 which implies β0≤ ·· · ≤ βh. As noted above, the
separator for projecting onto C satisfies t̂ ≥ 0 for all j ∈ {0, . . . ,h−1}.
By rearranging this inequality and using β j ≤ β j+1, we conclude that
α j ≤ 1/d j+1 ·

(
‖VI j+1 x‖1− λ1/β j

)
≤ α j+1, hence α0 ≤ ·· · ≤ αh.

For (c) we want to show that the coordinates in the original vector
x which will vanish in some iteration when projecting onto C are al-
ready small. The base case j = 0 of an induction for j is trivial since
the complement of I0 is empty. In the induction step, we note that
the complement of I j+1 can be partitioned into IC

j+1 = IC
j ∪
(
I j ∩ IC

j+1

)
since I j+1 ( I j . For i ∈ IC

j we already know that xi ≤ α j ≤ α j+1 by
the induction hypothesis and (b). We have shown in (a) that si( j) =
β j · (xi−α j) for all i ∈ I j , and if i ∈ I j \ I j+1 then si( j) ≤ t̂ since 0 =
ri( j + 1) = max(si( j)− t̂, 0). By substituting the explicit expression
for t̂ and solving for xi we yield xi ≤ 1/d j+1 ·

(
‖VI j+1 x‖1−λ1/β j

)
≤ α j+1,

and hence the claim holds for all i 6∈ I j+1.

If we can now show that (d) holds, then the claim of the theorem
follows by setting α∗ := αh and β ∗ := βh. We note that by construction
p = s(h) and si(h) ≥ 0 for all coordinates i ∈ {1, . . . ,n}. When i ∈ Ih,
then si(h) = βh ·(xi−αh) with (a), which is positive by requirement, so
when the rectifier is applied nothing changes. If i 6∈ Ih then xi−αh ≤ 0
by (c), and indeed βh ·max(xi−αh, 0) = 0 = si(h). The expression
therefore holds for all i ∈ {1, . . . ,n}, which completes the constructive
proof of existence.

Existence (implicit): Existence of the projection is guaranteed by
the Weierstraß extreme value theorem since T is compact. Now let
f : Rn → R, s 7→ ‖s− x‖2

2, be the objective function, and let the con-
straints be represented by the functions h1 : Rn → R, s 7→ eT s− λ1,
h2 : Rn→ R, s 7→ ‖s‖2

2−λ 2
2 , and gi : Rn→ R, s 7→ −si, for all indices

i ∈ {1, . . . ,n}. All these functions are continuously differentiable. If
p = projT (x), then p is a local minimum of f subject to h1(p) = 0,
h2(p) = 0 and g1(p)≤ 0, . . . , gn(p)≤ 0.

For application of the method of Lagrange multipliers we first have
to show that p is regular, which means that the gradients of h1, h2
and gi for i 6∈ I evaluated in p must be linearly independent (Bertsekas
1999, Section 3.3.1). Let J := IC = { j1, . . . , jn−d}, say, then |J| ≤ n−2
since d ≥ 2. Hence we have at most n vectors from Rn for which we
have to show linear independence. Clearly h′1(s) = e, h′2(s) = 2s and
g′i(s) = −ei for all i ∈ {1, . . . ,n}. Now let u1,u2 ∈ R and v ∈ Rn−d

with u1e+2u2 p−∑
n−d
µ=1 vµ e jµ = 0 ∈ Rn. Then, let µ ∈ {1, . . . ,n−d},

then p jµ = 0 by definition of I and hence by pre-multiplication of the
equation above with eT

jµ we yield u1− vµ = 0 ∈ R. Therefore u1 = vµ

for all µ ∈ {1, . . . ,n− d}. On the other hand, if i ∈ I then pi > 0 and
eT

i e jµ = 0 for all µ ∈ {1, . . . ,n− d}. Hence u1 + 2u2 pi = 0 ∈ R for
all i ∈ I. In the first paragraph of the uniqueness proof we have shown
there are two distinct indices i, j ∈ I with pi 6= p j . Since u1 +2u2 pi =
0 = u1 +2u2 p j and thus 0 = 2u2(pi− p j) we can conclude that u2 = 0,
which implies u1 = 0. Then v1 = · · ·= vn−d = 0 as well, which shows
that p is regular.

The Lagrangian is L : Rn ×R×R×Rn → R, (s, α, β , γ) 7→
f (s)+αh1(s)+βh2(s)+∑

n
i=1 γigi(s), and its derivative with respect to

its first argument s is given by L′(s, α, β , γ) := ∂/∂ s L(s, α, β , γ) =
2(s−x)+α ·e+2β ·s−γ ∈Rn. Now, Proposition 3.3.1 from Bertsekas
(1999) guarantees the existence of Lagrange multipliers α̃, β̃ ∈ R and
γ̃ ∈Rn with L′(p, α̃, β̃ , γ̃) = 0, γ̃i ≥ 0 for all i ∈ {1, . . . ,n} and γ̃i = 0
for i ∈ I. Assume β̃ = −1, then 2x = α̃ · e− γ̃ since the derivative of
L must vanish. Hence xi = α̃/2 for all i ∈ I, and therefore { pi | i ∈ I }
is a singleton with Remark 10 from Thom and Palm (2013) as p was
assumed unique and T is permutation-invariant. We have seen earlier
that this is absurd, so β̃ 6=−1 must hold.
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Write α∗ := α̃/2, β ∗ := 1/(β̃+1) and γ∗ := γ̃/2 for notational con-
venience. We then obtain p = β ∗(x− α∗ · e + γ∗) because L′ van-
ishes. Then h1(p) = 0 implies that λ1 = ∑i∈I pi = ∑i∈I β ∗(xi−α∗) =
β ∗(‖VIx‖1 − dα∗), and with h2(p) = 0 follows that λ 2

2 = ∑i∈I p2
i =

(β ∗)2 · (‖VIx‖2
2−2α∗‖VIx‖1 +d · (α∗)2). By taking the ratio λ 2

1/λ 2
2 and

after elementary algebraic transformations we arrive at the quadratic
equation a · (α∗)2 + b ·α∗ + c = 0, where a := d ·

(
d− λ 2

1/λ 2
2

)
, b :=

2‖VIx‖1 ·
(

λ 2
1/λ 2

2 −d
)

and c := ‖VIx‖2
1−‖VIx‖2

2 ·λ
2
1/λ 2

2 are reals. The dis-
criminant is ∆ := b2−4ac= 4 ·λ 2

1/λ 2
2 ·
(
d− λ 2

1/λ 2
2

)
·
(
d‖VIx‖2

2−‖VIx‖2
1
)
.

Since VIx∈Rd we have that d‖VIx‖2
2−‖VIx‖2

1≥ 0. Moreover, the num-
ber d is not arbitrary. As p exists by the Weierstraß extreme value theo-
rem with ‖p‖0 = d, ‖p‖1 = λ1 and ‖p‖2 = λ2, we find that λ1 ≤

√
dλ2

and hence ∆ ≥ 0, so there must be a real solution to the equation above.
Solving the equation shows that

α
∗ ∈

{
1
d

(
‖VIx‖1±λ1

√
d‖VIx‖2

2−‖VIx‖2
1

dλ 2
2 −λ 2

1

)}
,

hence from h1(p) = 0 we obtain

β
∗ ∈
{
∓
√

dλ 2
2 −λ 2

1

/√
d‖VIx‖2

2−‖VIx‖2
1

}
.

Suppose α∗ is the number that arises from the "+" before the square
root, then β ∗ is the number with the "−" sign, thus β ∗ < 0. We have
seen earlier that there are two distinct indices i, j ∈ I with pi 6= p j .
We can assume pi > p j , then 0 < pi− p j = β ∗(xi− x j) which implies
that xi < x j . This is not possible as it violates the order-preservation
property of projections onto permutation-invariant sets (Lemma 9(a)
from Thom and Palm 2013). Thus our choice of α∗ was not correct in
the first place, and α∗ must be as stated in the claim.

It remains to be shown that p is the result of a soft-shrinkage func-
tion. If i ∈ I, then 0 < pi = β ∗(xi−α∗), and β ∗ > 0 shows xi > α∗

such that pi = β ∗ ·max(xi−α∗, 0). When i 6∈ I, we have 0 = pi =
β ∗(xi − α∗ + γ∗i ) where γ∗i ≥ 0 and still β ∗ > 0, thus xi ≤ α∗ and
pi = β ∗ ·max(xi−α∗, 0) holds. Therefore, the representation holds
for all entries. ut

Finding the set I containing the indices of the positive coordinates
of the projection result is the key for algorithmic computation of the
projection. Based on the constructive proof this could, for example, be
achieved by carrying out alternating projections whose run-time com-
plexity is between quasi-linear and quadratic in the problem dimen-
sionality n and whose space complexity is linear. An alternative is the
method proposed by Potluru et al. (2013), where the input vector is
sorted and then each possible candidate for I is checked. Due to the
sorting, I must be of the form I = {1, . . . ,d}, where now only d is un-
known (see also the proof of Theorem 3 from Thom and Palm 2013).
Here, the run-time complexity is quasi-linear and the space complexity
is linear in the problem dimensionality since also the sorting permu-
tation has to be stored. When n gets large, algorithms with a smaller
computational complexity are mandatory.

Properties of the Auxiliary Function

We have already informally introduced the auxiliary function in Sect.
2.2. Here is a satisfactory definition:

Definition 2 Let x ∈ Rn
≥0 \T be a point such that projT (x) is unique

and σ(x)< σ∗. Let xmax denote the maximum entry of x, then

Ψ : [0, xmax)→ R, α 7→ ‖max(x−α · e, 0)‖1
‖max(x−α · e, 0)‖2

− λ1

λ2
,

is called auxiliary function for the projection onto T .

We call Ψ well-defined if all requirements from the definition are
met. Note that the situation where σ(x)≥ σ∗ is trivial, because in this
sparseness-decreasing setup we have that all coordinates of the projec-
tion must be positive. Hence I = {1, . . . ,n} in Theorem 1, and α∗ can
be computed with the there provided formula.

We need more notation to describe the properties of Ψ . Let x ∈Rn

be a point. We write X := {xi | i ∈ {1, . . . ,n}} for the set that con-
tains the entries of x. Let xmin := minX be short for the smallest entry
of x, and xmax := maxX and x2nd-max := maxX \{xmax } denote the
two largest entries of x. Further, q : R→ Rn, α 7→ max(x−α · e, 0),
denotes the curve that evolves from application of the soft-shrinkage
function to x. The Manhattan norm and Euclidean norm of points from
q is given by `1 : R→R, α 7→ ‖q(α)‖1, and `2 : R→R, α 7→ ‖q(α)‖2,
respectively. Therefore, Ψ = `1/`2− λ1/λ2 and Ψ̃ from Sect. 4.1 can be
written as `2

1/`2
2−λ 2

1/λ 2
2 , such that its derivative can be expressed in terms

of Ψ ′ using the chain rule.
The next result provides statements on the auxiliary function’s an-

alytical nature and links its zero with the projection onto T :

Lemma 3 Let x ∈Rn
≥0 \T be given such that the auxiliary function Ψ

is well-defined. Then the following holds:

(a) Ψ is continuous on [0, xmax).
(b) Ψ is differentiable on [0, xmax)\X .
(c) Ψ is strictly decreasing on [0, x2nd-max), and on [x2nd-max, xmax) it

is constant.
(d) There is exactly one α∗ ∈ (0, x2nd-max) with Ψ(α∗) = 0. It is then

projT (x) = (λ2/`2(α
∗)) ·q(α∗).

Proof In addition to the original claim, we also give explicit expres-
sions for the derivative of Ψ and higher derivatives thereof in part (c).
These are necessary to show that Ψ is strictly decreasing and constant,
respectively, on the claimed intervals and for the explicit implementa-
tion of Algorithm 2.

(a) The function q is continuous because so is the soft-shrinkage
function. Hence `1, `2 and Ψ are continuous as compositions of con-
tinuous functions.

(b) The soft-shrinkage function is differentiable everywhere ex-
cept at its offset. Therefore, Ψ is differentiable everywhere except for
when its argument coincides with an entry of x, that is on [0, xmax)\X .

(c) We start with deducing the first and second derivative of Ψ .
Let x j,xk ∈X ∪{0}, x j < xk, such that there is no element from X
between them. We here allow x j = 0 and xk = xmin when 0 6∈X for
completeness. Then the index set I := { i ∈ {1, . . . ,n} | xi > α } of non-
vanishing coordinates in q is constant for α ∈ (x j, xk), and the deriva-
tive of Ψ can be computed using a closed-form expression. For this, let
d := |I| denote the number of non-vanishing coordinates in q on that
interval. With `1(α) = ∑i∈I (xi−α) = ∑i∈I xi−dα we obtain `′1(α) =

−d. Analogously, it is ∂/∂α `2(α)2 = ∂/∂α ∑i∈I (xi−α)2 = −2`1(α),
and the chain rule yields `′2(α) = ∂

∂α

√
`2(α)2 = −`1(α)/`2(α). Applica-

tion of the quotient rule gives Ψ ′(α) =
(
`1(α)2/`2(α)2−d

)
/`2(α). The

second derivative is of similar form. We find ∂/∂α `1(α)2 =−2d`1(α),
and hence ∂/∂α

(
`1(α)2/`2(α)2

)
= 2(`1(α)/`2(α)2) ·

(
`1(α)2/`2(α)2−d

)
. We

have ∂/∂α (1/`2(α)) = `1(α)/`2(α)3 and with the product rule we see that
Ψ ′′(α) = 3(`1(α)/`2(α)3) ·

(
`1(α)2/`2(α)2−d

)
= 3Ψ ′(α) · `1(α)/`2(α)2.

First let α ∈ (x2nd-max, xmax). It is then d = 1, that is q has exactly
one non-vanishing coordinate. In this situation we find `1(α) = `2(α)
and Ψ ′ ≡ 0 on (x2nd-max, xmax), thus Ψ is constant on (x2nd-max, xmax)
as a consequence of the mean value theorem from real analysis. Be-
cause Ψ is continuous, it is constant even on [x2nd-max, xmax).

Next let α ∈ [0, x2nd-max) \X , and let x j , xk, I and d as in the
first paragraph. We have d ≥ 2 since α < x2nd-max. It is furthermore
`1(α)≤

√
d`2(α) as d = ‖q(α)‖0. This inequality is in fact strict, be-

cause q(α) has at least two distinct nonzero entries. Hence Ψ ′ is neg-
ative on the interval (x j, xk), and the mean value theorem guarantees
that Ψ is strictly decreasing on this interval. This property holds for the
entire interval [0, x2nd-max) due to the continuity of Ψ .
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(d) The requirement σ(x) < σ∗ implies ‖x‖1/‖x‖2 > λ1/λ2 and thus
Ψ(0)> 0. Let α ∈ (x2nd-max, xmax) be arbitrary, then `1(α) = `2(α) as
in (c), and hence Ψ(α)< 0 since λ2 < λ1 must hold. The existence of
α∗ ∈ [0, x2nd-max) with Ψ(α∗) = 0 then follows from the intermediate
value theorem and (c). Uniqueness of α∗ is guaranteed because Ψ is
strictly monotone on the relevant interval.

Define p := projT (x), then with Theorem 1 there is an α̃ ∈ R
so that p = (λ2/‖max(x−α̃·e, 0)‖2) ·max(x− α̃ · e, 0) = (λ2/`2(α̃)) · q(α̃).
Since p ∈ T we obtain Ψ(α̃) = 0, and the uniqueness of the zero of Ψ

implies that α∗ = α̃ . ut

As described in Sect. 2.3, the exact value of the zero α∗ of Ψ

can be found by inspecting the neighboring entries in x of a candidate
offset α . Let x j,xk ∈ X be these neighbors with x j ≤ α < xk such
that there is no element from X between x j and xk. When Ψ changes
its sign from x j to xk, we know that its root must be located within this
interval. Further, we then know that all coordinates with a value greater
than x j must survive the sparseness projection, which yields the set I
from Theorem 1 and thus the explicit representation of the projection.
The next result gathers these ideas and shows that it is easy to verify
whether a change of sign in Ψ is on hand.

Lemma 4 Let x ∈ Rn
≥0 \ T be given such that Ψ is well-defined and

let α ∈ [0, xmax) be arbitrary. If α < xmin, let x j := 0 and xk := xmin.
Otherwise, let x j := max{xi | xi ∈X and xi ≤ α } be the left neighbor
and let xk := min{xi | xi ∈X and xi > α } be the right neighbor of α .
Both exist as the sets where the maximum and the minimum is taken
are nonempty. Define I := { i ∈ {1, . . . ,n} | xi > α } and d := |I|. Then:

(a) When Ψ(x j) ≥ 0 and Ψ(xk) < 0 then there is exactly one number
α∗ ∈ [x j, xk) with Ψ(α∗) = 0.

(b) It is `1(ξ ) = ‖VIx‖1− dξ and `2
2(ξ ) = ‖VIx‖2

2− 2ξ ‖VIx‖1 + dξ 2

for ξ ∈ {x j, α, xk }.
(c) If the inequalities λ2`1(x j) ≥ λ1`2(x j) and λ2`1(xk) < λ1`2(xk)

are satisfied and p := projT (x) denotes the projection of x onto T ,
then I = { i ∈ {1, . . . ,n} | pi > 0} and hence p can be computed
exactly with Theorem 1.

Proof The claim in (a) is obvious with Lemma 3.
(b) We find that `1(α)=∑i∈I(xi−α)= ‖VIx‖1−dα and `2(α)2 =

∑i∈I(xi−α)2 = ‖VIx‖2
2−2α‖VIx‖1 +dα2.

We have K = I \ K̃ with K := { i ∈ {1, . . . ,n} | xi > xk } and K̃ :=
{ i ∈ {1, . . . ,n} | xi = xk }. One yields that `1(xk) = ∑i∈K(xi − xk) =

∑i∈I(xi − xk)−∑i∈K̃(xi − xk) = ‖VIx‖1 − dxk. The claim for `2(xk)
2

follows analogously.
Likewise I = J \ J̃ with J := { i ∈ {1, . . . ,n} | xi > x j } and J̃ :=

{ i ∈ {1, . . . ,n} | xi = x j }, and hence follows `1(x j) = ∑i∈J(xi− x j) =

∑i∈I(xi− x j)+∑i∈J̃(xi− x j) = ‖VIx‖1−dx j . The value of `2(x j)
2 can

be computed in the same manner.
(c) The condition in the claim is equivalent to the case ofΨ(x j)≥ 0

and Ψ(xk) < 0, hence with (a) there is a number α∗ ∈ [x j, xk) with
Ψ(α∗) = 0. Note that α 6= α∗ in general. Write p := projT (x) and let
J := { i ∈ {1, . . . ,n} | pi > 0}. With Theorem 1 follows that i ∈ J if
and only if xi > α∗. But this is equivalent to xi > x j , which in turn is
equivalent to xi > α , therefore I = J must hold. Thus we already had
the correct set of non-vanishing coordinates of the projection in the first
place, and α∗ and β ∗ can be computed exactly using the formula from
the claim of Theorem 1, which yields the projection p. ut

Proof of Correctness of Projection Algorithm

In Sect. 2.3, we informally described our proposed algorithm for car-
rying out sparseness-enforcing projections, and provided a simplified
flowchart in Fig. 3. After the previous theoretical considerations, we
now propose and prove the correctness of a formalized algorithm for

Algorithm 2 Linear time and constant space evaluation of the
auxiliary function Ψ .

Input: Point to be projected x ∈ Rn
≥0, target norms λ1,λ2 ∈ R,

position α ∈ [0, xmax) where Ψ should be evaluated.
Output: Values Ψ(α),Ψ ′(α),Ψ ′′(α), Ψ̃(α), Ψ̃ ′(α) ∈ R,

finished ∈ { true, false} indicating whether the correct
interval has been found, numbers `1, `

2
2 ∈ R and d ∈ N

needed to exactly compute α∗ with Ψ(α∗) = 0.

// Initialize.
1 `1 := 0; `2

2 := 0; d := 0;
2 x j := 0; ∆x j :=−α; xk := ∞; ∆xk := ∞;

// Scan through x.
3 for i := 1 to n do
4 t := xi−α;
5 if t > 0 then
6 `1 := `1 + xi; `2

2 := `2
2 + x2

i ; d := d +1;
7 if t < ∆xk then xk := xi; ∆xk := t;
8 else
9 if t > ∆x j then x j := xi; ∆x j := t;

10 end
11 end

// Compute Ψ(α), Ψ ′(α) and Ψ ′′(α).
12 `1(α) := `1−dα; `2(α)2 := `2

2−2α`1 +dα2;
13 Ψ(α) := `1(α)/

√
`2(α)2− λ1/λ2;

14 Ψ ′(α) :=
(
`1(α)2/`2(α)2−d

)
/
√
`2(α)2;

15 Ψ ′′(α) := 3Ψ ′(α) · `1(α)/`2(α)2;

// Compute Ψ̃(α) and Ψ̃ ′(α).
16 Ψ̃(α) := `1(α)2/`2(α)2− λ 2

1/λ 2
2 ;

17 Ψ̃ ′(α) := 2`1(α)/
√

`2(α)2 ·Ψ ′(α);

// Check for sign change from Ψ(x j) to Ψ(xk).

18 finished := λ2(`1−dx j)≥ λ1

√
`2

2−2x j`1 +dx2
j and

λ2 (`1−dxk)< λ1

√
`2

2−2xk`1 +dx2
k ;

19 return
(
Ψ(α),Ψ ′(α),Ψ ′′(α),Ψ̃(α),Ψ̃ ′(α),finished, `1, `

2
2,d
)
;

the projection problem. Here, the overall method is split into an algo-
rithm that evaluates the auxiliary function Ψ and, based on its deriva-
tive, returns additional information required for finding its zero (Al-
gorithm 2). The other part, Algorithm 3, implements the root-finding
procedure and carries out the necessary computations to yield the re-
sult of the projection. It furthermore returns information that will be
required for computation of the projection’s gradient, which we will
discuss below.

Theorem 5 Let x ∈ Rn
≥0 and p := projT (x) be unique. Then Algo-

rithm 3 computes p in a number of operations linear in the problem
dimensionality n and with only constant additional space.

Proof We start by analyzing Algorithm 2, which evaluates Ψ at any
given position α . The output includes the values of the auxiliary func-
tion, its first and second derivative, and the value of the transformed
auxiliary function and its derivative. There is moreover a Boolean value
which indicates whether the interval with the sign change of Ψ has
been found, and three additional numbers required to compute the zero
α∗ of Ψ as soon as the correct interval has been found.

Let I := { i ∈ {1, . . . ,n} | xi > α } denote the indices of all entries
in x larger than α . In the blocks from Line 1 to Line 11, the algorithm
scans through all the coordinates of x. It identifies the elements of I,
and computes numbers `1, `2

2, d, x j and xk on the fly. After Line 11, we
clearly have that `1 = ‖VIx‖1, `2

2 = ‖VIx‖2
2 and d = |I|. Additionally, x j
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Algorithm 3 Linear time and constant space algorithm for pro-
jections onto T . The auxiliary function Ψ is evaluated by calls
to "auxiliary", which are carried out by Algorithm 2. This al-
gorithm operates in-place, the input vector is overwritten by the
output vector upon completion.

Input: Point to be projected x ∈ Rn
≥0, target norms λ1,λ2 ∈ R,

solver ∈ {Bisection, Newton, NewtonSqr, Halley}.
Output: Projection projT (x) ∈ T as first element replacing the

input vector, numbers `1, `
2
2 ∈ R and d ∈ N needed to

compute the projection’s gradient with Algorithm 4.

// Skip root-finding if decreasing sparseness.
1
(
Ψ(α),Ψ ′(α),Ψ ′′(α),Ψ̃(α),Ψ̃ ′(α),finished, `1, `

2
2,d
)

:=
auxiliary(x, λ1, λ2, 0);

2 if Ψ(α)≤ 0 then go to Line 19;

// Sparseness should be increased.
3 lo := 0; up := x2nd-max; α := lo+1/2 · (up− lo);
4
(
Ψ(α),Ψ ′(α),Ψ ′′(α),Ψ̃(α),Ψ̃ ′(α),finished, `1, `

2
2,d
)

:=
auxiliary(x, λ1, λ2, α);

// Start root-finding procedure.
5 while not finished do

// Update bisection interval.
6 if Ψ(a)> 0 then lo := α else up := α;

// One iteration of root-finding.
7 if solver = Bisection then α := lo+1/2 · (up− lo);
8 else // Use solvers based on derivatives.
9 if solver = Newton then α := α−Ψ(α)/Ψ ′(α);

10 else if solver = NewtonSqr then α := α−Ψ̃(α)/Ψ̃ ′(α);
11 else if solver = Halley then
12 h := 1− (Ψ(α)Ψ ′′(α))/(2Ψ ′(α)2);
13 α := α−Ψ(α)/(max(0.5, min(1.5, h)) ·Ψ ′(α));
14 end

// Use bisection if α out of bounds.
15 if α < lo or α > up then α := lo+1/2 · (up− lo);
16 end

// Evaluate auxiliary function anew.
17

(
Ψ(α),Ψ ′(α),Ψ ′′(α),Ψ̃(α),Ψ̃ ′(α),finished, `1, `

2
2,d
)

:=
auxiliary(x, λ1, λ2, α);

18 end

// Correct interval has been found, compute α∗.

19 α∗ :=
1
d

(
`1−λ1

√
d`2

2− `2
1

/√
dλ 2

2 −λ 2
1

)
;

// Compute result of the projection in-place.
20 ρ := 0;
21 for i := 1 to n do
22 t := xi−α∗; if t > 0 then xi := t; ρ := ρ + t2 else xi := 0;
23 end
24 for i := 1 to n do xi := (λ2/√ρ) · xi;
25 return

(
x, `1, `

2
2, d
)
;

and xk are the left and right neighbors, respectively, of α . Therefore,
the requirements of Lemma 4 are satisfied.

The next two blocks spanning from Line 12 to Line 17 compute
scalar numbers according to Lemma 4(b), the definition of Ψ , the first
two derivatives thereof given explicitly in the proof of Lemma 3(c), the
definition of Ψ̃ and its derivative given by the chain rule. In Line 18,
it is checked whether the conditions from Lemma 4(c) hold using the
statements from Lemma 4(b). The result is stored in the Boolean vari-
able "finished".

Finally all computed numbers are passed back for further process-
ing. Algorithm 2 clearly needs time linear in n and only constant addi-
tional space.

Algorithm 3 performs the actual projection in-place, and outputs
values needed for the gradient of the projection. It uses Algorithm 2
as sub-program by calls to the function "auxiliary". The algorithm
first checks whether Ψ(0) ≤ 0, which is fulfilled when σ(x) ≥ σ∗. In
this case, all coordinates survive the projection, computation of α∗ is
straightforward with Theorem 1 using I = {1, . . . ,n}.

Otherwise, Lemma 3(d) states that α∗ ∈ (0, x2nd-max). We can find
α∗ numerically with standard root-finding algorithms since Ψ is con-
tinuous and strictly decreasing on the interval (0, x2nd-max). The con-
crete variant is chosen by the parameter "solver" of Algorithm 3, imple-
mentation details can be found in Traub (1964) and Press et al. (2007).

Here, the root-finding loop starting at Line 5 is terminated once
Algorithm 2 indicates that the correct interval for exact computation of
the zero α∗ has been identified. It is therefore not necessary to carry
out root-finding until numerical convergence, it is enough to only come
sufficiently close to α∗. Line 19 computes α∗ based on the projection
representation given in Theorem 1. This line is either reached directly
from Line 2 if σ(x) ≥ σ∗, or when the statements from Lemma 4(c)
hold. The block starting at Line 20 computes max(x−α∗ · e, 0) and
stores this point’s squared Euclidean norm in the variable ρ . Line 24
computes the number β ∗ from Theorem 1 and multiplies every entry
of max(x−α∗ · e, 0) with it, such that x finally contains the projec-
tion onto T . It would also be possible to create a new vector for the
projection result and leave the input vector untouched, at the expense
of additional memory requirements which are linear in the problem
dimensionality.

When solver = Bisection, the loop in Line 5 is repeated a constant
number of times regardless of n (see Sect. 2.3), and since Algorithm 2
terminates in time linear in n, Algorithm 3 needs time only linear in
n. Further, the amount of additional memory needed is independent
of n, as for Algorithm 2, such that the overall space requirements are
constant. Therefore, Algorithm 3 is asymptotically optimal in the sense
of complexity theory. ut

Gradient of the Projection

Thom and Palm (2013) have shown that the projection onto T can be
grasped as a function almost everywhere which is differentiable almost
everywhere. An explicit expression for the projection’s gradient was
derived, which depended on the number of alternating projections re-
quired for carrying out the projection. Based on the characterization we
gained through Theorem 1, we can derive a much simpler expression
for the gradient which is also more efficient to compute:

Theorem 6 Let x ∈ Rn
≥0 \ T such that p := projT (x) is unique. Let

α∗,β ∗ ∈ R, I ⊆ {1, . . . ,n} and d := |I| be given as in Theorem 1.
When xi 6= α∗ for all i ∈ {1, . . . ,n}, then projT is differentiable in x
with ∂/∂x projT (x) =V T

I GVI , where the matrix G ∈ Rd×d is given by

G :=
√

b
a Ed − 1√

ab

(
λ

2
2 ẽẽT +d p̃p̃T −λ1

(
ẽ p̃T + p̃ẽT )) ,

with a := d ‖VIx‖2
2−‖VIx‖2

1 ∈ R≥0 and b := dλ 2
2 − λ 2

1 ∈ R≥0. Here,
Ed ∈ Rd×d is the identity matrix, ẽ := VIe ∈ {1}d is the point where
all coordinates are unity, and p̃ :=VI p ∈ Rd

>0.

Proof When xi 6= α∗ for all i ∈ {1, . . . ,n}, then I and d are invariant
to local changes in x. Therefore, α∗, β ∗ and projT are differentiable as
composition of differentiable functions. In the following, we derive the
claimed expression of the gradient of projT in x.

Let x̃ := VIx ∈ Rd , then α∗ = 1/d ·
(
‖x̃‖1−λ1

√
a/b
)
. Define q̃ :=

VI ·max(x−α∗ · e, 0), then q̃ = x̃−α∗ · ẽ ∈ Rd
>0 because xi > α∗ for

all i ∈ I. Further p̃ = λ2 · q̃/‖q̃‖2, and we have p = V T
I VI p = V T

I p̃ since
pi = 0 for all i 6∈ I. Application of the chain rule yields

∂ p
∂x

=
∂V T

I p̃
∂ p̃

· ∂

∂ q̃

(
λ2 ·

q̃
‖q̃‖2

)
· ∂ (x̃−α∗ · ẽ)

∂ x̃
· ∂VIx

∂x
,
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Algorithm 4 Product of the gradient of the projection onto T
with an arbitrary vector.

Input: A point y ∈ Rn, target norms λ1,λ2 ∈ R, and the results
of Algorithm 3: Projection p = projT (x), numbers
`1, `

2
2 ∈ R and d ∈ N.

Output: z := (∂/∂x projT (x)) · y ∈ Rn.

// Scan and slice input vectors.
1 j := 0; p̃ ∈ {0}d ; ỹ ∈ {0}d ; sumỹ := 0; scpp̃, ỹ := 0;
2 for i := 1 to n where pi > 0 do
3 j := j+1; p̃ j := pi; ỹ j := yi;
4 sumỹ := sumỹ + ỹ j; scp p̃, ỹ := scpp̃, ỹ + p̃ j · ỹ j;
5 end

// Compute gradient product in sliced space.
6 a := d`2

2− `2
1; b := dλ 2

2 −λ 2
1 ;

7 ỹ :=
√

b/a · ỹ;
8 ỹ := ỹ+

√
1/ab ·

(
λ1 · sumỹ−d · scpp̃, ỹ

)
· p̃;

9 ỹ := ỹ+
√

1/ab ·
(
λ1 · scpp̃, ỹ−λ 2

2 · sumỹ
)
· ẽ;

// Un-slice to yield final result.
10 j := 0; z ∈ {0}n;
11 for i := 1 to n where pi > 0 do j := j+1; zi := ỹ j;
12 return z;

and with H := λ2 · (∂/∂ q̃ (q̃/‖q̃‖2)) · (∂/∂ x̃ (x̃−α∗ · ẽ)) ∈ Rd×d follows
∂ p/∂x =V T

I HVI , thus it only remains to show G = H.
One obtains ∂/∂ q̃ (q̃/‖q̃‖2) =

(
Ed − q̃q̃T/‖q̃‖22

)
/‖q̃‖2. Since all the

entries of q̃ and x̃ are positive, their L1 norms equal the dot product
with ẽ. We have ‖q̃‖1 = ‖VIx‖1− dα∗ = λ1

√
a/b, and we obtain that

‖q̃‖2
2 = ‖x̃‖2

2−α∗ ·
(
‖x̃‖1 +λ1

√
a/b
)
= ‖x̃‖2

2− 1/d ·
(
‖x̃‖2

1−λ 2
1 · a/b

)
=

a/d ·
(
1+ λ 2

1/b
)
= λ 2

2 · a/b. Now we can compute the gradient of α .
Clearly b is independent of x̃. It is ∂a/∂ x̃ = 2dx̃T − 2‖x̃‖1ẽT ∈ R1×d .
Since x̃ = q̃+α∗ · ẽ it follows that dx̃−‖x̃‖1ẽ = dq̃−λ1

√
a/b · ẽ, and

hence ∂
√

a/∂ x̃ =
√

1/a ·
(
dq̃−λ1

√
a/b · ẽ

)T . Therefore, we conclude that
∂α∗/∂ x̃ =

(
λ 2

2/b
)
· ẽT − (λ1/

√
ab) · q̃T ∈ R1×d .

By substitution into H and multiplying out we see that

H =
√

b
a

(
Ed − b

λ 2
2 a

q̃q̃T
)(

Ed −
λ 2

2
b ẽẽT + λ1√

ab
ẽq̃T
)

=
√

b
a

(
Ed −

λ 2
2
b ẽẽT + λ1√

ab
ẽq̃T

− b
λ 2

2 a
q̃q̃T + λ1√

ab
q̃ẽT − λ 2

1
λ 2

2 a
q̃q̃T
)

,

where q̃q̃T ẽẽT = q̃
(
q̃T ẽ
)

ẽT = λ1
√

a/b · q̃ẽT and q̃q̃T ẽq̃T = λ1
√

a/b · q̃q̃T

have been used. The claim then follows with b/λ 2
2 a+ λ 2

1/λ 2
2 a = d/a and

q̃ =
√

a/b · p̃. ut

The gradient has a particular simple form, as it is essentially a
scaled identity matrix with additive combination of scaled dyadic prod-
ucts of simple vectors. In the situation where not the entire gradient but
merely its product with an arbitrary vector is required (as for example
in conjunction with the backpropagation algorithm), simple vector op-
erations are already enough to compute the product:

Corollary 7 Algorithm 4 computes the product of the gradient of the
sparseness projection with an arbitrary vector in time and space linear
in the problem dimensionality n.

Proof Let y ∈ Rn be an arbitrary vector in the situation of Theorem 6,
and define ỹ :=VIy ∈ Rd . Then one obtains

Gỹ =
√

b
a ỹ+ 1√

ab

(
λ1 · ẽT ỹ−d · p̃T ỹ

)
· p̃

+ 1√
ab

(
λ1 · p̃T ỹ−λ

2
2 · ẽT ỹ

)
· ẽ ∈ Rd .

Algorithm 4 starts by computing the sliced vectors p̃ and ỹ, and com-
putes "sumỹ" which equals ẽT ỹ and "scp p̃, ỹ" which equals p̃T ỹ after
Line 5. It then computes a and b using the numbers output by Algo-
rithm 3. From Line 7 to Line 9, the product Gỹ is computed in-place by
scaling of ỹ, adding a scaled version of p̃, and adding a scalar to each
coordinate. Since (∂/∂x projT (x)) · y = V T

I Gỹ, it just remains to invert
the slicing. The complexity of the algorithm is clearly linear, both in
time and space. ut

It has not escaped our notice that Corollary 7 can also be used
to determine the eigensystem of the projection’s gradient, which may
prove useful for further analysis of gradient-based learning methods
involving the sparseness-enforcing projection operator.
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