
Universität des Saarlandes

U
N

IV
E R SIT A

S

S
A

R
A V I E N

S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 327

Cyclic Schemes for
PDE-Based Image Analysis

Sven Grewenig, Joachim Weickert,

Christopher Schroers and Andrés Bruhn

Saarbrücken 2013

Fachrichtung 6.1 – Mathematik Preprint No. 327

Universität des Saarlandes submitted: March 1, 2013

Cyclic Schemes for
PDE-Based Image Analysis

Sven Grewenig
Mathematical Image Analysis Group, Dept. of Mathematics and Computer
Science, Saarland University, Campus E1.7, 66123 Saarbrücken, Germany

grewenig@mia.uni-saarland.de

Joachim Weickert
Mathematical Image Analysis Group, Dept. of Mathematics and Computer
Science, Saarland University, Campus E1.7, 66123 Saarbrücken, Germany

weickert@mia.uni-saarland.de

Christopher Schroers
Mathematical Image Analysis Group, Dept. of Mathematics and Computer
Science, Saarland University, Campus E1.7, 66123 Saarbrücken, Germany

schroers@mia.uni-saarland.de

Andrés Bruhn
Intelligent Systems Group, Institute for Visualization and Interactive

Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart,
Germany

bruhn@vis.uni-stuttgart.de

Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Abstract

The simplest scheme for parabolic, diffusion-like partial differential
equations (PDEs) in image analysis is given by the explicit finite dif-
ference discretisation. If a fixed time step size is used, this scheme is
known to be inefficient due to a severe stability restriction. In this
paper we show that a slight modication can boost the efficiency of the
explicit scheme by several orders of magnitude. All one has to do in
this novel Fast Explicit Diffusion (FED) scheme is to replace the orig-
inally fixed time step size by cycles of varying step sizes. We derive
these cycles from a factorisation of symmetric smoothing filters, and
we show that a box filter gives a favourable compromise between high
efficiency and good smoothing properties.
However, such ideas are not restricted to parabolic problems only.
They can also be adapted for solving elliptic PDEs that arise e.g. as
Euler-Lagrange equations in variational image analysis. Also in this
context, we propose a modification of the simplest iterative solver,
namely the Jacobi method. This time, we introduce cycles of varying
relaxation parameters that can be linked to our FED time step sizes.
As a result, we obtain highly efficient methods for the elliptic case,
so-called Fast-Jacobi (FJ) schemes.
Our novel FED and FJ schemes are applicable to a large range of PDE-
based image analysis problems and can beat classical methods such
as additive operator splittings and (semi-)implicit schemes. Applica-
tions include isotropic nonlinear diffusion filters with widely varying
diffusivities as well as anisotropic diffusion methods for image filter-
ing, inpainting and regularisation in computer vision. Moreover, they
are equally suited for higher dimensional problems as well as higher
order PDEs. Implementations are extremely simple, since the under-
lying explicit scheme or Jacobi method can be used as a black box
solver. Last but not least, these cyclic schemes are perfectly suited for
modern parallel architectures such as GPUs. We also provide a public
domain code package that allows users to experiment with our cyclic
methods.

1 Introduction

Solving image analysis problems with modern parabolic or elliptic partial
differential equations (PDEs) can involve a number of numerical challenges,
e.g.

• The diffusivity in diffusion filtering is a nonlinear function with a range
over many orders of magnitude [1]. Thus, large stopping times are
needed to achieve a desired degree of smoothing.

1

• Filters can involve very pronounced anisotropies [2]. This excludes
some schemes that are efficient for isotropic problems (e.g. additive
operator splittings (AOS) [3, 4]), and L∞-stability may be violated.

• The data domain is not restricted to the 2-D scenario: 3-D filters are
fairly common. Since they involve a huge amount of data, finding
efficient algorithms is indispensable.

• Also higher order PDEs are used, in particular for inpainting problems.
Explicit finite difference schemes require very small time step sizes,
while implicit approaches are burdensome due to the higher stencil size
of higher order PDE methods.

For each of these problem types, individual solutions have been developed.
They may proceed in very different ways and involve different levels of im-
plementation complexity (e.g. additive operator splittings [3, 4] and semi-
implicit schemes [2]). Clearly, it would be desirable to have more generic
tools that are simple to implement and broadly applicable. Moreover, the
general availability of GPUs has shifted the focus of numerical methods from
optimised sequential algorithms to easily implementable parallel methods.

Our Contribution. The goal of the present paper is to provide a framework
for solving the above mentioned problems simultaneously. We introduce a
class of numerical methods that are broadly applicable, easy to implement,
and well-suited for parallel architectures. In the parabolic case, they are vari-
ants of the simplest numerical method: an explicit finite difference scheme.
While the explicit scheme is usually applied with a fixed time step size that
must satisfy a restrictive stability condition, we apply cycles of varying time
step sizes where up to 50 % of the individual steps may violate this stability
condition. Nevertheless, at the end of one cycle, one approximates a stable
filter. We call these methods Fast Explicit Diffusion (FED) schemes. Due
to the admissible violation of the step size limit, they can give speed-ups of
several orders of magnitude compared to an explicit scheme with fixed time
step size. Similar ideas can be applied in the elliptic setting where we modify
the simple Jacobi over-relaxation (JOR) method such that the relaxation pa-
rameter is no longer fixed, but varied in a cyclic way, too. We will show that
these so-called Fast-Jacobi (FJ) methods are much more efficient than their
JOR predecessor. Both our FED and FJ schemes benefit from their intrin-
sic parallelism that makes them well-suited for modern parallel architectures
such as GPUs. Moreover, they do not require specific implementation efforts:
One can use an existent explicit scheme or JOR method as black box solver

2

that is only modified by adapting its time step size or relaxation parame-
ter in a cyclic way. These concepts have a much broader applicability than
well-established numerical methods in the image analysis community such
as (semi-)implicit methods and additive operator splittings: They are basi-
cally applicable in all parabolic or elliptic scenarios with symmetric system
matrices.

Related Work. Our FED and FJ can be regarded as variants of the so-
called Super Time Stepping (STS) schemes [5, 6, 7, 8] and cyclic Richardson
methods [9, 10, 11]. While Super Time Stepping and cyclic Richardson meth-
ods are classical ideas in numerical analysis, they have not been applied in
the image analysis community so far. Historically they were not highly pop-
ular in the numerical analysis community, since there were more efficient
alternatives available when they have been discovered, or there were subtle
problems to solve in order to guarantee numerical stability. With the wide
availability of GPUs their intrinsic parallelism and their simplicity makes
them methods of choice for modern image analysis problems. Moreover, we
do not only introduce these methods to the image analysis community, but
also derive them in a novel way via factorisations of box filters. This leads
to parameter cycles that differ from those of classical cyclic Richardson or
STS schemes. We will see that these new parameter cycles favour smoothing
properties over rapid convergence. This makes them also attractive as basic
solvers within a multigrid context. For example, the resulting cascadic FED
allows to solve some elliptic problems with higher efficiency.
The present paper extends our conference article [12], in which we have
introduced FED schemes, by the following substantial contributions:

• We present more theoretical insights explaining and illustrating the
connection between linear filters and cyclic diffusion schemes.

• We introduce a novel efficient numerical method for the solution of
elliptic problems: the Fast-Jacobi algorithm.

• We generalize the application of our novel numerical schemes to addi-
tional tasks, in particular to problems of higher order and higher di-
mensionality. Our applications also cover the implementation of such
schemes on modern GPUs.

In this context, it should be mentioned that our conference paper [12] has
lead to a constantly increasing number of applications using such schemes,
e.g. for optic flow computation with a parallel GPU implementation [13],
fast filtering methods on smartphones [14], medical image analysis [15, 16],

3

variational depth-from-defocus [17], and a cyclic projected gradient method
for convex optimisation [18].

Organisation of the Paper. Section 2 deals with the connection between
linear symmetric filters and explicit diffusion schemes in one dimension. To
this end, we present some important definitions, propositions and theorems.
Moreover, we illustrate this connection by means of three examples for filters
whose iterative application approximates Gaussian kernels. In Section 3 we
present a more detailed description of our parabolic FED approach. Section 4
deals with the solution of elliptic problems and considers both the cascadic
FED scheme and the so-called Fast-Jacobi solver. After this, we present five
key applications in Section 5 and conclude the paper in Section 6. Proofs
and additional mathematical details can be found in the Appendix.

2 Filter Factorisation

In this section, we derive and analyse the equivalence between symmetric
1-D filter kernels and explicit diffusion schemes with varying time step sizes.
The derivation is based on a factorisation of the kernels.

2.1 Diffusion Interpretation of Smoothing Kernels

Let f = (fi)i∈Z be a discrete 1-D signal given on a grid with mesh size
h > 0. We define a discrete symmetric filter Lh

2n+1 of finite length (2n+1)h,
n ∈ N, by

Lh
2n+1 fi :=

n∑

k=−n

wk · fi+k , (2.1)

where wk ∈ R are the so-called weights of the filter. We should mention that
the definition of the length comes from the support

[
−(n + 1

2
)h , (n+ 1

2
)h
]
of

the continuous version W (x) of the discrete kernel, which we get by sampling
at the points xk = k · h, i.e. wk = W (xk). Note that the points xk are the
midpoints of the corresponding intervals

[
(k − 1

2
)h , (k + 1

2
)h
]
.

A special linear filter is the central finite difference approximation to the
second order derivative:

∆hfi :=
fi+1 − 2fi + fi−1

h2
. (2.2)

It is important for the numerical solution of the linear heat equation

∂tu(x, t) = ∂xxu(x, t) . (2.3)

4

To see this, let us consider a grid point xj :=
(
j − 1

2

)
h , a time step size

τ > 0 and a discrete point in time tk := k ·τ . Then an explicit discretisation
of the linear heat equation in (xj , tk) is given by

uk+1
j = (I + τ ∆h) u

k
j , (2.4)

where I is the identity operator and uk
j approximates u(xj , tk).

In the following, the operator ∆m
h denotes the m times composition of ∆h,

i.e. it discretises the derivative of order 2m.

The following main theorem establishes an interesting connection between
Lh
2n+1 and 1-D explicit diffusion schemes. We show that every discrete sym-

metric 1-D filter Lh
2n+1 can be written as a weighted sum of discrete even-order

derivative approximations:

Lh
2n+1 =

n∑

m=0

α(n)
m ·∆m

h . (2.5)

Factorising this expansion gives the following result.

Theorem 1 (Diffusion Interpretation of Smoothing Kernels). Let
Lh
2n+1 be an arbitrary discrete symmetric 1-D filter. Then the representation

in Eq. (2.5) is unique. Its coefficients are given by

α(n)
m = h2m ·

n∑

k=m

((
k +m

2m

)

+
(
1 − δ(k+m),0

)
(
k +m− 1

2m

))

wk , (2.6)

where δi,j := 1 for i = j and δi,j := 0 else.
Moreover, if the weights wk sum up to 1, Lh

2n+1 is equivalent to a cycle of n
explicit 1-D linear diffusion steps, i.e.,

Lh
2n+1 =

n−1∏

i=0

(I + τi ∆h) . (2.7)

The time step sizes τi satisfy τi = z−1
i ∈ C, where zi ∈ C \ {0} are the roots

of the polynomial

pL(z) :=

n∑

m=0

α(n)
m · (−z)m . (2.8)

The (total) cycle time θn :=
∑n−1

i=0 τi is given by

θn = h2

n∑

k=1

k2wk . (2.9)

For a detailed proof we refer to the Appendix A.1. Let us now illustrate this
theorem by applying it to three different smoothing kernels.

5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-8h -6h -4h -2h 0 2h 4h 6h 8h
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-8h -6h -4h -2h 0 2h 4h 6h 8h
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-8h -6h -4h -2h 0 2h 4h 6h 8h

Figure 1: Illustration of three kernels that correspond to a diffusion time of
2h2. (a) Left: Binomial kernel with length 17h. (b) Middle: MV kernel
with length 5h. (c) Right: Box kernel with length 7h.

Table 1: Comparison of three filter kernels.

kernel binomial MV box

kernel weights wk
1
4n

(
2n
n+k

)
1
2
· δ|k|,n 1

2n+1

time step sizes τi
h2

4
h2

2
· 1

2 cos2(π 2i+1

4n)
h2

2
· 1

2 cos2(π 2i+1

4n+2)

cycle time θn
h2

4
· n h2

2
· n2 h2

6
· (n2 + n)

cycle time order O(n) O(n2) O(n2)

approx. quality very good poor good

2.2 Three Examples for Filter Factorisations

It is well known [19] that the analytic solution u(x, t) of the 1-D linear heat
equation with initial function u(x, 0) is given by the convolution of u(x, 0)
with a Gaussian of standard deviation σ =

√
2t. In the discrete setting,

the central limit theorem guarantees that a Gaussian convolution can be
approximated by iterative applications of any nonnegative filter kernel whose
weights sum up to 1.

Figure 1 illustrates three examples for such filter kernels: the binomial kernel,
the so-called maximum variance (MV) kernel, and the box kernel [20]. By
applying Theorem 1, we compute their corresponding time step sizes and
their cycle times. The results are given in Table 1, and detailed derivations
are described in the Appendix A.2, A.3, and A.4. Let us now compare the
three cyclic schemes that correspond to factorisations of these filter kernels
into explicit diffusion steps.

For our comparison, we approximate a 1-D Gaussian kernel with standard
deviation σ =

√
12h . Convolution with such a Gaussian corresponds to a

6

linear diffusion process with stopping time T = 1
2
σ2 = 6h2 . We want to

approximate this Gaussian by three iterations of our kernels. Thus, each
kernel must correspond to a cycle time of 2h2.

Table 1 shows that a binomial filter factorisation leads to constant time step
sizes τi =

h2

4
. Hence, we need 8 time steps to reach a cycle time of 2h2. In

total, 3 · 8 = 24 steps are required for our Gaussian approximation. Due to
the constant time step sizes, it is only possible to obtain a cycle time of order
O(n) in n steps. This is rather inefficient. However, Figure 2(a) shows that
a binomial kernel provides a very good approximation to a Gaussian.

The MV kernel corresponds to a cycle time of h2

2
·n2. Therefore, it requires a

cycle with length n = 2 to yield a cycle time of 2h2. Consequently, 3 · 2 = 6
applications of the explicit scheme are sufficient to approximate our Gaussian
with 3 MV iterations. This illustrates that the variable time steps derived
from the MV filter give much more efficient schemes than the fixed time
step scheme that results from the factorisation of the binomial filter. Indeed,
Table 1 shows that a MV filter factorisation into n explicit diffusion steps
allows a cycle time of order O(n2). However, Figure 2(b) demonstrates that
this high efficiency is achieved at the expense of a very poor approximation
of the Gaussian.

In order to find a better compromise between efficiency and approximation
quality, let us now have a look at a factorisation of the box filter. Since its
cycle time is given by h2

6
· (n2 + n), it follows that n = 3 diffusion steps are

necessary to reach the time 2h2 in one cycle. Thus, for three cycles, 3 · 3 = 9
applications of the explicit scheme are needed. Although this is slightly less
efficient than the MV filter factorisation, one can still obtain a cycle time of
order O(n2) within n steps. Moreover, Figure 2(c) illustrates that the ap-
proximation quality is almost as good as the binomial approximation. Thus,
the box filter factorisation gives us the best of two worlds: high efficiency
and good approximation quality.

3 Fast Explicit Diffusion (FED)

In the last section we have identified the box filter as a favourable kernel for
factorisation into explicit diffusion steps. Let us now study the corresponding
scheme with varying time step sizes in more detail. This will lead us to a
versatile algorithm for all kinds of diffusion problems.

7

 0

 0.04

 0.08

 0.12

-24h -18h -12h -6h 0 6h 12h 18h 24h

Iterated Binomial Kernel

Gaussian

 0

 0.1

 0.2

 0.3

 0.4

-24h -18h -12h -6h 0 6h 12h 18h 24h

Iterated MV Kernel

Gaussian

 0

 0.04

 0.08

 0.12

-24h -18h -12h -6h 0 6h 12h 18h 24h

Iterated Box Kernel

Gaussian

Figure 2: Comparison between the kernels in Fig. 1 after 3 iterations and their
approximated Gaussian. (a) Left: An iterated binomial kernel approximates
the Gaussian very well. (b) Middle: An iterated MV kernel yields a poor
approximation of the Gaussian. Note that the scale in vertical direction
differs from (a) and (c). (c) Right: An iterated box kernel achieves a good
approximation quality.

3.1 Linear FED scheme

We reconsider the 1-D diffusion equation (2.3) and use the same space dis-
cretisation with grid size h > 0 and N grid points xj , j = 1, . . . , N . If
we refrain from a time discretisation, the PDE becomes a time-continuous
system of ordinary differential equations (ODEs):

du

dt
= Au , (3.1)

where u = u(t) ∈ RN is the vector with the entries uj(t) ≈ u(xj , t) , and
the matrix A ∈ RN×N approximates the second order spatial derivative:

A =
1

h2
·












−1 1 0
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
0 1 −1












. (3.2)

If the ODE system (3.1) is discretised in time using forward differences with
time step size τ > 0, and the right hand side is evaluated at the old time
level, we obtain an explicit numerical scheme:

uk+1 = (I + τ A)uk (k ≥ 0). (3.3)

Here we use the approximations uk ∈ RN with the entries uk
j ≈ u(xj , tk).

The matrix I ∈ RN×N denotes the unit matrix.

8

To define a cyclic explicit scheme we assume uk+1, 0 := uk and replace the
constant time step size in Eq. (3.3) by a cycle of varying time step sizes τi:

uk+1, i+1 = (I + τi A) uk+1, i (i = 0, . . . , n−1). (3.4)

After the complete cycle we get uk+1 := uk+1, n. For our Fast Explicit
Diffusion (FED) scheme, we use the varying time step sizes that originate
from the factorisation of the box filter:

τi =
h2

2
· 1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, ..., n−1). (3.5)

Note that vector uk =
(
uk
j

)N

j=1
approximates the values u(xj, k · θn), where

θn =
h2

6
·
(
n2 + n

)
(3.6)

is the time of one cycle with n time steps; cf. Table 1. Thus, we may interpret
a full FED cycle with time θn as a single super time step in the sense of [7].
This interpretation will also be useful later on when we consider nonlinear
problems.

Our FED scheme has a very interesting property: Some of the time step
sizes τi violate the stability condition τ ≤ h2

2
for the explicit scheme (3.3)

with constant time step size. This is caused by the factor 1

2 cos2(π· 2i+1

4n+2)
in

Eq. (3.5), which can be significantly larger than 1. It is easy to see that
up to 50 percent of the time step sizes can violate the stability constraint.
Table 2 illustrates this: It shows both the smallest and largest three time
step sizes for different n. Note that for n = 1000, the largest time step size
is more than 200000 times larger than the stability limit. The total time
after one cycle with 1000 iterations is more than 333 times larger than for
an explicit scheme with constant step size given by the stability limit. This
demonstrates the substantial speed-up that can be achieved with unstable
time step sizes. However, at the end of a full cycle we obtain a stable scheme,
since it is equivalent to a box filter.

So far, the times θn of the FED cycles cover only a discrete set of values. To
allow arbitrary cycle times T , we simply compute the minimum cycle length
n with θn ≥ T and multiply the time step sizes by the factor q := T/θn ≤ 1.

3.2 Extension to Arbitrary Diffusion Problems

Our FED scheme has been motivated in the 1-D setting with explicit linear
diffusion filtering. This was for didactic reasons only: Since box filtering is

9

Table 2: The first three and last three step sizes of 1-D FED with h = 1.

n 50 100 250 500 1000

τ0 0.250060 0.250015 0.250002 0.250001 0.250000

τ1 0.250545 0.250137 0.250022 0.250006 0.250001

τ2 0.251518 0.250382 0.250061 0.250015 0.250004
...

...
...

...
...

...

τn−3 28.79 113.79 706.52 2820.19 11269.25

τn−2 64.68 255.93 1589.57 6345.33 25355.72

τn−1 258.48 1023.45 6358.01 25381.06 101422.61

θn 425.00 1683.33 10458.33 41750.00 166833.33

already highly efficient, there is no practical use to factorise it into explicit
linear diffusion steps. However, we have learned how to speed up an explicit
scheme by replacing iterations with a constant time step size by cycles with
varying time step sizes. Let us now show that this principle is very general
and leads to highly efficient schemes in more challenging situations: We
will see that it can be applied to one- and multidimensional diffusion-like
processes, regardless if they are linear or nonlinear, isotropic or anisotropic,
second order or higher order.

According to Gershgorin’s theorem [21], the eigenvalues of the matrix A ∈
RN×N from Eq. (3.2) lie in the interval

[
− 4

h2 , 0
]
. These eigenvalues deter-

mine the stability in the Euclidean norm: A stable explicit step requires a
time step size τ such that all eigenvalues of the iteration matrix I + τA are
in the interval [−1, 1]. This is guaranteed if the time step size τ does not
exceed a limit τmax that satisfies

τmax =
2

µmax(A)
=

h2

2
, (3.7)

where µmax(A) corresponds to the largest modulus of the eigenvalues of A.

Keeping this in mind, it is straightforward to replace the matrix A by any
symmetric, negative semidefinite matrix P that results from a space discreti-
sation of a suitable parabolic PDE. Such symmetric, negative semidefinite
matrices can originate from PDEs that are one- or multidimensional, of sec-
ond or higher order, linear or nonlinear, isotropic or anisotropic. All one has
to change in our setting is to adapt the time step sizes to the largest modulus
of the eigenvalues µmax(P). Thus, we consider the generalisation of the FED
time step sizes in Eq. (3.5), where we replace the 1-D explicit diffusion limit

10

τmax =
h2

2
by the general limit τmax =

2
µmax(P)

of the explicit scheme

uk+1 = (I + τ P)uk (k ≥ 0). (3.8)

with constant time step size τ . Therefore, a general FED scheme uses the
time step sizes

τi =
2

µmax(P)
· 1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, . . . , n−1). (3.9)

One cycle with n such time steps can be seen as a super time step of size

θn =
2

µmax(P)
· n

2 + n

3
, (3.10)

which simply replaces h2

2
in Eq. (3.6) by 2

µmax(P)
. More details about the

stability of the general FED scheme are given in the Appendix A.5.

Let us just explain how nonlinear problems can be handled that lead to a
matrix P (u) which depends on the evolving data u(t). In this case, we can
either use a worst case a priori estimate for the values µmax(P (·)), or one
can update it a posteriori after each cycle. For the experiments in Section 5,
we use an a priori estimate. With uk+1, 0 := uk our FED cycle for nonlinear
problems is given by

uk+1, i+1 =
(
I + τi P (uk)

)
uk+1, i (i = 0, ..., n−1). (3.11)

Note that we keep the nonlinearities P (uk) constant during the whole cycle,
i.e. we perform one super time step with P (uk) for the computation of
uk+1 := uk+1, n. As we will see later, this strategy makes also sense with
respect to the numerical stability.

3.3 Connection to Super Time Stepping

Our FED scheme uses different time step sizes, where some of them may vio-
late the stability limit. A similar method has been proposed by Yuan’Chzhao-
Din and Saul’yev [5, 6]. Later, Gentzsch et al. [7, 8] as well as Alexiades et
al. [22, 23] have used the same idea under the name Super Time Stepping
(STS). Contrary to our derivation, they have used a direct approach that
is not based on a filter factorisation: They sought a set of different time
step sizes that keeps stability after each cycle, and at the same time max-
imises the cycle time. In our filter factorisation framework, their method
would factorise the MV kernel

(
1
2
, 0, . . . , 0, 1

2

)
. Since this kernel is very sen-

sitive with respect to high frequencies, they had to introduce an additional

11

damping parameter ν > 0 that ensures better attenuation properties for
high frequencies. This regularisation can be seen as a trade-off between ef-
ficiency and damping quality, since larger values for ν scale down the cycle
time. Hence, different damping parameters yield different results. In our
FED framework, such an additional damping parameter is not necessary.

3.4 Numerical Stability

In the context of STS it is well-known that although the ordering of the ex-
plicit diffusion steps does not matter in exact arithmetic, it can influence the
result in practice due to numerical rounding errors when n is large. Similar
problems can also be observed for FED. To address this issue, we advocate
two strategies that rearrange the sequence of the FED time step sizes within
the cycles: κ-cycles and Leja ordering.

3.4.1 κ-Cycles

Gentzsch et al. [7] have proposed to rearrange the original sequence of the
explicit time steps τ0, . . . , τn−1 within so-called κ-cycles.

To illustrate the principle by an example, let us assume that we have a
cycle of length n = 11. Then the indices from 0 to 5 correspond to stable
steps, while the indices from 6 to 10 represent unstable steps. To avoid an
error accumulation towards the end of the cycle, we rearrange the indices
in smaller subgroups that contain stable and unstable steps. For instance,
we can choose the rearrangement 0, 3, 6, 9 , 1, 4, 7, 10 , 2, 5, 8 . Note that
the indices within the groups differ by multiples of 3. Such a rearrangement
represents a κ-cycle with κ = 3.

In general, a κ-cycle can be formulated as follows: Let p be the smallest
prime number with p ≥ n. For m = 0, . . . , p−1, we compute the values

Φ(m) =
(
m · κ

)
mod p , (3.12)

where κ ∈ {2, . . . , n−1} steers the rearrangement. This yields a new se-
quence Φ(0), Φ(1), . . . ,Φ(p−1). Since we want to cover only values from 0
to n−1, we drop all indices Φ(m) larger than n−1. So, we get a feasible
rearrangement of the original sequence.

Unfortunately, there is no panacea for the choice of κ. However, it is possible
to create a look-up table (using test problems) with suitable values κ = κ(n)
that ensure better robustness against numerical rounding errors. We have
used κ-cycles in our conference paper [12].

12

3.4.2 Leja Ordering

Since suitable κ-cycles can only be found experimentally and therefore might
depend on the setting of the test problems, we discuss an approach that is
independent of such test settings: It is based on the so-called Leja order-
ing [24, 25] that has already been successfully applied to iterative solvers [26].

We sketch only the practical application of Leja ordering and refer e.g. to [26]
for a theoretical justification. We consider a set S consisting of ℓ + 1 real
numbers {x0, . . . , xℓ}. This set is Leja ordered, if the numbers are arranged
such that

j
∏

k=0

|xj+1 − xk| = max
x∈S

j
∏

k=0

|x− xk| , j = 0, . . . , ℓ−1 , (3.13)

where |x0| = max
x∈S

|x|. In some cases it might happen that at least two

numbers fulfil the maximum condition. Then we just take the smallest value
to have a unique rearrangement.

Applying the Leja algorithm on the set of the roots {zi | i = 0, ..., n−1}
of the polynomial pL(z) from Theorem 1 yields a new sequence of the time
step sizes τi = z−1

i . The main advantage compared to κ-cycles is that the
arrangement given by the Leja algorithm only depends on the input points
zi. The Leja ordering can be computed conveniently in advance to create a
look-up table with the Leja ordered sequences.

In the case of our previous example with cycle length n = 11, the Leja
ordering yields the index sequence 0, 10, 5, 7, 3, 9, 2, 6, 1, 8, 4. We observe that
this rearrangement differs from the κ-cycle arrangement.

We use the Leja ordering within our experiments, since it gives an even higher
numerical robustness than κ-cycles and thus allows larger cycle lengths. In
realistic applications with n ≤ 1000, however, both strategies are absolutely
unproblematic.

3.4.3 Other Orderings

Besides the two presented rearrangements, there are further strategies such
as the one by Lebedev and Finogenov [27]. It is based on a simple recursion
relation. Unfortunately this recursion only works for cycle lengths n = 2k,
k ∈ N. In the worst case, this strategy can double the cycle length and
therefore the effort. However, for cycle lengths n = 2k, it can be an elegant
and powerful alternative to κ-cycles and Leja ordering.

13

1. Input Data:
image f , stopping time T , number M of FED cycles

2. Initialisation:

(a) Compute the smallest n such that the time θn of one FED
cycle fulfils θn ≥ T/M , and define q := T/(M · θn) ≤ 1.

(b) Compute the time step sizes τ̃i := q · τi with τi according
to (3.9).

(c) Choose a suitable ordering for the step sizes τ̃i
(e.g. κ-cycles or Leja ordering).

(d) If the problem is linear, compute the corresponding matrix P .

3. Filtering Loop: (k = 0, . . . ,M−1)

(a) If the problem is nonlinear, compute the corresponding matrix
P (uk).

(b) Perform one FED cycle with the above ordering of the n ex-
plicit time steps τ̃i, and increase k by 1.

(c) Go back to (a), if the stopping time T is not yet reached
(k < M−1).

Figure 3: General FED algorithm for diffusion filtering.

3.5 General FED Algorithm

At this point, we can give a summary of the general FED algorithm. It is
shown in Fig. 3. Note that FED is essentially an explicit scheme with some
overhead that is not time critical. Besides the rearrangement of the sequence,
it is very important to update the nonlinearities only after one complete
cycle. Updates within a cycle can be dangerous, because the stability of the
intermediate results – and therefore a correct evaluation of the nonlinearities
– can not be guaranteed for rearranged cycles.

Note that in the linear 1-D diffusion setting, one FED cycle represents a box
filter. Since several iterations of a box filter are required to give a good ap-
proximation of Gaussian convolution (and thus of the correct linear diffusion
result), one should also use more than one cycle to improve the accuracy
of the FED scheme in other scenarios. For linear problems already M = 3
cycles can be sufficient, while nonlinear problems can require more cycles due
to their nonlinear updates. Examples are given in Section 5.

14

4 FED-based Methods for Elliptic Problems

Our FED scheme was designed for diffusion-like problems where we are in-
terested in the temporal evolution. They correspond to parabolic PDEs.
However, let us now explain how we can use FED ideas also for elliptic
PDEs. They can appear e.g. as Euler–Lagrange equations for variational
image analysis methods, or as nontrivial steady state of parabolic evolutions
with additional reaction terms. We have basically two possibilities: We can
approximate a solution by means of a parabolic process with a large stop-
ping time, or we directly solve the corresponding elliptic equation. We shall
discuss both options now.

4.1 Cascadic FED (CFED)

The first choice implies the application of a parabolic FED scheme. To reach
this steady state as quickly as possible, we embed our FED method into a
coarse-to-fine strategy [28], i.e. we use results computed on a coarse level as
an initialisation for a finer scale. This can be regarded as a simple multigrid
approach [29, 30]. It saves a lot of computational effort, since a small or
medium stopping time is already sufficient on each level. Therefore, we scale
down the image data via linear interpolation to a certain coarse level and
apply the FED scheme on this image. Afterwards we interpolate the corre-
sponding solution to the next finer level and apply again FED. We use this
procedure recursively until the finest (original) level is reached. To simplify
matters, we always use the same parameter settings for the diffusion process
on each level. We call this the Cascadic Fast Explicit Diffusion (CFED)
approach.

4.2 Fast-Jacobi Solver

For the direct solution of elliptic equations, we now propose the so-called
Fast-Jacobi (FJ) method. It combines the simple Jacobi over-relaxation
(JOR) method [21] together with varying relaxation parameters that are
based on the FED time step sizes. More precisely, we consider a linear sys-
tem with N equations:

Bx = c , (4.1)

where B ∈ RN×N is a symmetric, positive definite system matrix, c ∈ RN

the given right hand side, and x ∈ RN the unknown solution.

We can solve this linear system by means of JOR iterations. With D :=

15

diag(B), one JOR step with relaxation parameter ωi > 0 is given by

xi+1 = xi + ωiD
−1
(
c − Bxi

)
(4.2)

where the upper index denotes the iteration level. The original JOR method
uses a constant relaxation parameter, which means ωi = ω for all i ≥ 0. If
ω = 1, it corresponds to the standard Jacobi method.

In contrast to these classical approaches, Fast-Jacobi with cycle length n uses
the varying parameters

ωi = ωmax ·
1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, ..., n− 1). (4.3)

with

ωmax :=
2

µmax(D−1B)
. (4.4)

The value ωmax plays a similar role as the time step size limit τmax in the case
of the parabolic FED, and Eq. (4.3) is the elliptic analogue to (3.9).

To understand the stability of the Fast-Jacobi method and its relation to
FED, it is instructive to investigate the error ei := xi − x. It is easy to see
that it satisfies

ei+1 =
(

I − ωi D
−1B

)

ei . (4.5)

This is an FED scheme for the matrix D−1B. The multiplication of B with
D−1 can be interpreted as local adjustments of the relaxation parameters (or
time step sizes). Such an adjustment can be very helpful as a preconditioner
for matrices B whose diagonal entries strongly vary in their orders of magni-
tude. In terms of diffusion, this corresponds to a diffusivity function with a
range over many orders of magnitude. Thus, one can expect that an elliptic
problem with strongly varying diagonal entries can be solved more efficiently
with Fast-Jacobi than with the FED approach.
With ωmax = 2

µmax(D−1B)
one obtains stable cyclic schemes, since the eigen-

values of I − ωmax D
−1B are in the interval [−1, 1]. This avoids error ex-

plosion in (4.5).

A summary of the whole algorithm is depicted in Fig. 4. Besides the use of
multiple cycles, one can further improve the convergence by embedding the
Fast-Jacobi method into a coarse-to-fine approach similarly to CFED.

4.3 Connection to the Cyclic Richardson Method

The idea to use varying parameters for simple iterative algorithms has a long
tradition. Already in 1910, Richardson [9] has introduced the following cyclic

16

1. Input Data:

linear system Bx = c, cycle length n, number of cycles M , feasible
ωmax > 0

2. Initialisation:

(a) Compute the relaxation parameters ωi according to Eq. (4.3).

(b) Choose a suitable ordering for the parameters: {ω̃0, . . . , ω̃n−1}.
(c) Define an initial vector x0.

3. Outer Loop: (k = 1, . . . ,M)

(a) xk, 0 := xk−1.

(b) Perform one cycle (i = 0,...,n−1) with the above ordering:

xk, i+1 = xk, i + ω̃i D
−1
(
c − Bxk, i

)
.

(c) xk := xk, n.

Figure 4: Fast-Jacobi method.

method:
xi+1 = xi + ωi

(
c − Bxi

)
. (4.6)

Compared to Fast-Jacobi, there is no multiplication with a diagonal matrix.
For a symmetric, positive definite matrixB with smallest eigenvalue λmin and
largest eigenvalue λmax, Young [10] has proposed the relaxation parameters

ωi =
2

λmax+λmin − (λmax−λmin) · cos
(

π · 2(n−i)−1
2n

) (i = 0, . . . , n−1).

(4.7)
The method remains stable, if one replaces λmin by 0. In this case, the factor

2
λmax

can be interpreted as the maximum relaxation parameter ωmax for the

cyclic Richardson method (4.6). With the help of 2 cos2 x = 1− cos(π−2x)
the resulting relaxation parameter cycles can be simplified to

ωi =
2

λmax

· 1

2 cos2
(
π · 2i+1

4n

) (i = 0, . . . , n−1). (4.8)

This can be seen as the elliptic variant of the time step sizes that originate
from a factorised MV kernel (cf. Table 1). Thus, the cyclic Richardson

17

Figure 5: Test setting for nonlinear isotropic diffusion filtering. (a) Left:
Mammogram (128 × 128 pixels). (b) Right: Filtered with the explicit
scheme using λ = 7.5, σ = 1, τ = 10−2 , and T = 128.

method is the elliptic analogue to the Super Time Stepping approach from
Section 3.3. We can expect that it also suffers from an insufficient attenuation
of high frequencies.

Since there can be very large relaxation parameters, both cyclic Richardson
and Fast-Jacobi also require a rearrangement of the parameter sequence to
improve the robustness against numerical rounding errors [11]. To this end,
one can apply the strategies in Section 3.4 again.

5 Applications

Now we show that our proposed methods are well-suited to efficiently solve
different parabolic or elliptic problems. We assume a uniform 2-D grid with
the mesh sizes hx = hy = 1. All methods have been implemented in C and
are executed on a standard desktop PC with a 3.2 GHz Intel Xeon processor.
Our error measure is the relative mean absolute error (RMAE),

∑

i
|ui−ri|
‖r‖

1

with ‖r‖1 :=
∑

i |ri|. The numerical result is denoted by u, and r is the
corresponding reference solution.

5.1 FED for Isotropic Parabolic Problems

In our first experiment, we evaluate FED as a solver for isotropic parabolic
problems. As a prototypical application we consider the nonlinear diffusion
filter of Catté et al. [31]. It follows the evolution equation

∂tu = div
(
g
(
|∇uσ|2

)
∇u
)
, (5.1)

where uσ denotes the function u convolved with a Gaussian of standard
deviation σ > 0. The scalar-valued diffusivity function g is given by the

18

Table 3: Comparison of FED and AOS
for nonlinear isotropic diffusion filter-
ing with stopping time T = 128.

(super) time RMAE

step size AOS FED

32 0.0401 0.0069

16 0.0171 0.0034

8 0.0075 0.0021

4 0.0038 0.0013

2 0.0020 0.0006

1 0.0011 0.0003

 0.001

 0.01

 0.1

 0 100 200 300

R
M

A
E

Computing time [ms]

FED

AOS

Figure 6: Computing time (mil-
lisec.) vs. RMAE (log-scaled) for
the AOS and FED scheme.

diffusivity [32]

g(s2) =

{
1 (s2 = 0)

1− exp
(

− 3.315
(s2/λ2)4

)

(s2 > 0).
(5.2)

For problems of this type, AOS schemes [3, 4] are regarded as efficient solvers.
Hence, we compare our FED scheme to the AOS approach. It is easy to check
that the explicit scheme on which FED is based has to satisfy the constant
time step size limit τmax = 0.25. Fig. 5 shows our test setting from [32] where
we denoise a mammogram to improve the visibility of micro calcifications.
For the stopping time T = 128 we compute a reference solution using the
usual explicit scheme with a very small time step size τ = 10−2.

Table 3 compares the accuracy of FED and AOS for different time step sizes.
In this context, we regard a full FED cycle as a super time step. We observe
that both schemes are of first order in time: Reducing the time step size by
a factor 2 decreases the error by a factor 2. However, for the same time step
size, the FED error is about 4 times smaller than the AOS error, since FED
does not suffer from splitting artifacts.

In practice one is of course interested in optimising the error w.r.t. the com-
puting time. This relation is analysed in Fig. 6. We see that the FED scheme
requires less computational effort than AOS to reach the same error. Thus, it
is more efficient. If we consider for instance an error of 10−3, FED is almost
four times faster than AOS.

In conclusion, our experiment shows that for isotropic parabolic problems,
FED is more accurate and more efficient than AOS.

19

5.2 FED for Anisotropic Parabolic Problems

A numerically more challenging scenario is given by anisotropic parabolic
problems. This shall be illustrated by means of a coherence-enhancing aniso-
tropic diffusion filter [33]. It is based on the PDE

∂tu = div (D (Jρ (∇uσ))∇u) , (5.3)

with a symmetric, positive definite diffusion tensor D ∈ R2×2. This diffusion
tensor is a function of the structure tensor [34]

Jρ (∇uσ) := Gρ ∗
(
∇uσ∇u⊤

σ

)
, (5.4)

where Gρ is a 2-D Gaussian with standard deviation ρ. For more details we
refer to [33].

The anisotropy of the diffusion tensor creates mixed derivative terms that can
not be handled with typical AOS schemes anymore. Semi-implicit schemes
that require the solution of linear systems are good alternatives. They are
more efficient than explicit schemes with a constant time step size that is
typically limited by τmax = 0.25. Thus, we want to compare FED with such
semi-implicit schemes. As space discretisation, we use the one from [35], since
it hardly suffers from numerical diffusion artifacts. In the semi-implicit case,
we solve the occurring linear systems of equations either with a successive
over-relaxation (SOR) or a conjugate gradient (CG) algorithm [36]. Both
solvers are stopped, if the residual of the current iteration xk satisfies

∥
∥Bxk − c

∥
∥
2
< 10−3 · ‖c‖2 , (5.5)

where B denotes the system matrix and c the right hand side. The error
tolerance ε = 10−3 provides a good trade-off between the accurate solution
of the linear system and the efficiency. While the CG method implicitly
computes the residual for each iteration, the SOR solver needs an explicit
evaluation that is done every 10 iterations. For SOR we optimise the relax-
ation parameter manually in order to obtain fast convergence (ω = 1.2).

As a test scenario, we enhance a fingerprint image with this anisotropic
diffusion process. First we compute a reference solution by applying a semi-
implicit scheme with the small time step size τ = 10−2. The original image
and the filtered result with stopping time T = 256 can be seen in Fig. 7.

Table 4 shows that FED and the semi-implicit method are both first order in
time and yield comparable errors. With respect to computational efficiency
illustrated in Fig. 8, however, FED outperforms the semi-implicit schemes,

20

Figure 7: Test setting for nonlinear anisotropic coherence-enhancing diffusion
filtering. (a) Left: Original fingerprint image (300×300 pixels). (b) Right:
Filtered reference (T = 256, σ = 0.5, ρ = 4, τ = 10−2), rescaled to [0, 255].

Table 4: Comparison of FED and the
semi-implicit method for anisotropic
diffusion.

(super) time RMAE

step size semi-impl. FED

64 0.0102 0.0112

32 0.0069 0.0075

16 0.0045 0.0049

8 0.0028 0.0028

4 0.0016 0.0015

2 0.0009 0.0008

1 0.0005 0.0004

 0.0005

 0.001

 0.01

 0.03

 0 1 2 3 4 5 6

R
M

A
E

Computing time [s]

FED

SOR

CG

Figure 8: Computing time (sec.)
vs. RMAE (log-scaled). The semi-
implicit scheme uses SOR or CG
solvers.

regardless whether they use SOR or CG as linear system solvers. Last but not
least, it should be noted that FED is much simpler to implement than semi-
implicit approaches and does not require to optimise additional parameters
such as the error tolerance and the relaxation parameter.

5.3 CFED for Elliptic Problems with Constant
Coefficients

So far, we have only performed experiments with parabolic PDEs. They
describe evolution processes. Let us now analyse an elliptic problem that
can be regarded as a steady state of a parabolic evolution.

As a prototype we consider an inpainting application that is inspired from
PDE-based image compression (see e.g. [37]). It keeps a number of selected

21

Figure 9: Biharmonic inpainting. (a) Left: Original trui image (256× 256).
(b) Middle: Inpainting mask. (c) Right: Reconstruction with biharmonic
inpainting in the unspecified regions (stopping time T = 106).

pixels (given by the so-called inpainting mask), and interpolates the missing
data by inpainting with the biharmonic equation

∆2u = 0. (5.6)

Note that here we are dealing with a linear fourth order PDE with constant
coefficients. To solve it numerically, we evolve its parabolic counterpart

∂tu = −∆2u (5.7)

for t → ∞ with two cyclic schemes for parabolic problems: FED and Super
Time Stepping.

In order to apply cyclic schemes, we need an estimate of the stability limit
τmax = 2

µmax(P)
of the explicit scheme, where P is a discretisation of the

biharmonic operator. By Gershgorin’s theorem [21], one easily sees that for a
discrete 4-point approximation A of the 2-D Laplacian, one has µmax(A) = 8.
Thus, µmax(P) = 82 = 64, and we obtain τmax =

1
32
. This very small step size

limit makes an explicit scheme with constant time step size very inefficient.
Thus, it is highly desirable to use cyclic schemes that allow steps beyond this
restrictive limit. Moreover, since we are interested in the steady state, we
use a cascadic embedding to speed up the evolution.

Our test setting is depicted in Fig. 9. We have computed a reference recon-
struction for the stopping time T = 106 with the help of an explicit scheme
(τ = 0.025) on the original level, without any coarse-to-fine strategies.

For our experiments we compare CFED and a cascadic Super Time Step-
ping approach, where the coarse-to-fine strategy uses three levels: 256×256,
128×128, and 64×64 pixels. In Section 3.5 we have mentioned that already
three cycles can provide good results for linear problems. Table 5 shows, in

22

Table 5: Comparison of CFED and cas-
cadic SuperTimeStepping (CSTS) with
three cycles per level for biharmonic in-
painting.

stopping time RMAE

per level CSTS CFED

50 0.06304 0.00225

100 0.06197 0.00134

200 0.06687 0.00068

400 0.06348 0.00032

800 0.07420 0.00015

1600 0.07725 0.00006

 0.0001

 0.001

 0.01

 0.1

 0 100 200 300 400

R
M

A
E

Computing time [ms]

CFED

CSTS

Figure 10: Computing time (mil-
lisec.) vs. RMAE (log-scaled) for
CFED and CSTS.

fact, that CFED with three cycles per level yields very small errors which de-
crease when the stopping time grows. However, the errors of cascadic Super
Time Stepping are up to about 1300 times larger. Interestingly, increasing
the stopping time can not improve these errors, since cascadic Super Time
Stepping suffers from bad attenuation properties of high frequencies. There-
fore, CFED turns out to be much more efficient. This is shown in Fig. 10.
Here, we have used stopping times from 50 to 1600 in order to illustrate the
dependency between the errors and the computing times.

Overall, this example shows that CFED is well-suited for elliptic problems
with constant coefficients, and that already three cycles can be sufficient for
such linear problems.

5.4 Fast-Jacobi for Elliptic Problems with Strongly
Varying Coefficients

The previous elliptic problem had constant coefficients, and it turned out that
CFED is an appropriate solver for this purpose. In our next experiment, we
consider an elliptic problem with strongly varying coefficients and show that
in this case Fast-Jacobi is more efficient than FED.

Continuous Model Problem. Our prototypical scenario is given by an
isotropic nonlinear image regularisation method. It computes a denoised
version u(x) of the image f(x) by minimising an energy functional with a
quadratic data term and with the subquadratic regulariser of Charbonnier

23

et al. [38]:

E(u) =

∫

Ω

(

(u− f)2 + α · 2λ2
√

1 + |∇u|2/λ2
)

dx , (5.8)

where Ω denotes the image domain, α > 0 the regularisation weight, and
λ > 0 is a contrast parameter. The corresponding Euler-Lagrange equation
is given by

u− f − α div
(
g(|∇u|2)∇u

)
= 0 (5.9)

with the diffusivity function

g(s2) :=
1

√

1 + s2/λ2
. (5.10)

It is also possible to obtain a solution of the Euler-Lagrange equation (5.9)
as the steady state solution of the parabolic gradient descent equation

∂tu = div
(
g(|∇u|2)∇u

)
+

f − u

α
. (5.11)

FED Scheme. An explicit discretisation of Eq. (5.11) with time step size
τ > 0 and implicitly stabilised fidelity term yields

uk+1 − uk

τ
= A(uk)uk +

f − uk+1

α
. (5.12)

It can be rewritten as

uk+1 =
α
(
I + τ A(uk)

)
uk + τf

α + τ
. (5.13)

Note that this equation uses the expression vk+1 := (I + τ A(uk))uk. It can
be seen as an explicit scheme for a diffusion equation without data fidelity
term. Since (5.13) only performs a convex combination of vk+1 and f , it has
the same stability limit as this explicit diffusion scheme, namely τmax = 0.25.
With uk+1, 0 := uk an FED version of the explicit scheme (5.13) is given by

uk+1, i+1 =
α
(
I + τi A(uk)

)
uk, i + τi f

α + τi
(i = 0, . . . , n−1) , (5.14)

where the time step sizes τi are chosen according to Eq. (3.9).

Fast-Jacobi Scheme. Instead of a parabolic evolution, we now want to
solve the Euler-Lagrange equation (5.9) by means of the Fast-Jacobi method.
The discretisation of Eq. (5.9) yields a nonlinear system of equations:

(
I − αA(u)

)
u = f . (5.15)

24

Figure 11: Test setting for Charbonnier regularisation. (a) Left: Original
image (monarch, 256×256 pixels). (b) Middle: Noisy image (additive white
Gaussian noise, σ = 40). (c) Right: Regularisation of the noisy image with
λ = 10−2 and α = 2500.

It can be solved by the fixed point iteration

(
I − αA(uk)

)

︸ ︷︷ ︸

:=M(uk)

uk+1 = f (k ≥ 0). (5.16)

Since the system matrix M(uk) is symmetric and positive definite, we can
apply the Fast-Jacobi method with uk+1, 0 := uk :

uk+1, i+1 = uk+1, i + ωiD
−1
(

f − M(uk)uk+1, i
)

=
(

I + ωi αD−1A(uk)
)

uk+1, i + ωi D
−1
(
f − uk+1, i

)
.

(5.17)

After the complete cycle with length n, we can set uk+1 := uk+1, n and up-
date the nonlinearities A(uk) by A(uk+1). With Gershgorin’s theorem [21],
one can safely estimate ωmax =

2
µmax(D−1M(·)) by 1.

Experimental Evaluation. Our testbed is depicted in Fig. 11. We have
degraded our test image monarch by additive Gaussian noise with standard
deviation σ = 40. To denoise it with Charbonnier regularisation, we use the
smoothness weight α = 2500 and the contrast parameter λ = 10−2. The
corresponding reference solution in Fig. 11(c) has been computed by means
of the Jacobi method with 100000 iterations and nonlinear updates after each
iteration.

The first experiment in Fig. 12(a) deals with the comparison of FED and
Fast-Jacobi. Both approaches use a cycle length of 25. Since τmax = 0.25,
this corresponds to the diffusion time T = 0.25 · 25·26

3
≈ 54.17 per FED

cycle. As one can see in Fig. 12(a), the speed of convergence is significantly

25

 0.01

 0.1

 0.2

 0.3

0 100 200 300 400

R
M

A
E

Computing time [ms]

FED

Fast-Jacobi

 0.001

 0.01

 0.02

 0.03

 0.04

0 100 200 300 400

R
M

A
E

Computing time [ms]

Jacobi

Fast-Jacobi

Cyclic Richardson

Figure 12: Computing time (milliseconds) vs. RMAE for Charbonnier regu-
larisation. (a) Left: Comparison of FED and FJ with cycle length 25. (b)
Right: Comparison of Jacobi, Fast-Jacobi and cyclic Richardson with cycle
length 25.

higher for Fast-Jacobi than for FED. This shows that for elliptic problems
with strongly varying coefficients, Fast-Jacobi should be preferred over FED.

In our second experiment, we compare Fast-Jacobi with its noncyclic JOR
ancestor and the classical cyclic Richardson method. Since ωmax was esti-
mated by 1, the JOR method comes down to the Jacobi method. The cyclic
Richardson method uses relaxation parameters from (4.8) where λmax was
obtained with the Gershgorin estimate 1 + 8α. The results are depicted in
Fig. 12(b), where we again have used a cycle length of 25. We observe that
Fast-Jacobi outperforms the Jacobi method which shows the usefulness of
varying relaxation parameters. Interestingly, cyclic Richardson is inferior to
both the Jacobi and the Fast-Jacobi method. For our problem with vary-
ing coefficients, it suffers from the lack of diagonal scaling that is inherent
in Jacobi-type methods. Moreover, its use of MV relaxation parameters in-
stead of box relaxation parameters gives worse attenuation of the noisy high
frequencies.

In summary, we have demonstrated that Fast-Jacobi performs much better
than a parabolic FED approach for elliptic problems with strongly varying
coefficients. It is also a favourable choice among Jacobi-like solvers, since it
combines fast convergence due to varying relaxation parameters with good
attenuation properties of high frequencies.

It should be noted that Fast-Jacobi methods can cope well with strongly
varying coefficients, but these coefficients must not become singular. This
excludes e.g. total variation denoising [39] as long as no regularisation of the
singularity is applied. To handle variational methods with singularities, spe-

26

Figure 13: Test setting for anisotropic range image integration. (a) Left:
One rendered image of Stanford Bunny. (b) Middle: Noisy range surface.
(c) Right: Reconstruction computed with Fast-Jacobi (ωmax = 0.3, n = 50,
10 cycles).

cific nonsmooth optimisation algorithms based on primal-dual formulations
have been developed; see e.g. [40, 41].

5.5 Higher Dimensional Problems and GPU
Implementations

By means of 2-D optic flow computations, it has already been demonstrated
that FED is very well-suited for parallelisation on GPUs [13]. In this subsec-
tion, we illustrate that this also holds for Fast-Jacobi and in three dimensions.

As an example application we have chosen range image integration, which
aims at acquiring a single 3-D model from multiple range images [42, 43, 44].
Following the ideas in [42], the most important step of anisotropic range
image integration is solving an elliptic PDE that can be written as

p(u) u− α div
(
Ψ′

S(J)∇u
)

= q(u) , (5.18)

where u : R3 → R is the unknown solution. Note that p(u) and q(u) are
suitably chosen, real-valued functions. Furthermore, J ∈ R3×3 is the 3-D
structure tensor, and the matrix valued function Ψ′

S yields the anisotropic
behaviour. The parameter α denotes a positive smoothness weight. More
details can be found in [42].

After the discretisation this corresponds to a nonlinear system with N equa-
tions

(P (u)− αA(u))u = q(u) , (5.19)

where N is the number of voxels. The vectors u, q(u) ∈ RN are obtained by
a spatial discretisation of the functions u and q(u), respectively. The matrix

27

Table 6: Computing times (sec.) for the sequential CPU and the paral-
lel GPU implementation of the Fast-Jacobi algorithm for anisotropic range
image integration.

data size CPU [s] GPU [s] speed up factor

643 30.03 0.31 96.9

1283 239.70 1.70 141.0

2563 2006.05 12.93 155.1

A(u) ∈ RN×N is the 3-D discrete divergence operator with a diffusion tensor
Ψ′

S(J). Moreover, P (u) := diag(p(u)) ∈ RN×N with the discrete version
p(u) ∈ RN of p(u). This nonlinear system can be solved in a way that is
analogous to Eq. (5.15).

In our experiment, we compare the running times of a sequential CPU and
a parallel GPU implementation of the Fast-Jacobi applied to Eq. (5.19).
This comparison is shown in Table 6, where we use the 3.2 GHz Intel Xeon
processor and a single GPU of the NVIDIA GeForce GTX 690, respectively.
The number of unknowns is identical to the voxel number. In our example
with the Stanford bunny1 shown in Fig. 13, we have tested reconstructions
with up to 2563 ≈ 16·106 unknowns. Our numerical experiments have shown
that ωmax = 0.3 provides stable results, and convergence was achieved with
10 cycles of length 50. As we see in Table 6, the parallel implementation
is up to 155 times faster than its sequential counterpart. In conclusion, our
experiment illustrates that 3-D implementations of cyclic methods do not
create additional challenges, and their parallelisation is straightforward and
highly beneficial.

More generally, it should be mentioned that cyclic methods share the advan-
tages of many iterative methods for solving linear and nonlinear systems of
equations: Often a few iterations are sufficient to produce an approximation
to the desired solutions with acceptable accuracy, while a user who can afford
longer runtimes is rewarded by higher accuracy. In contrast to direct algo-
rithms, cyclic methods perform only simple matrix-vector multiplications as
well as additions, subtractions and scaling of vectors. Thus, they may fully
exploit the sparsity of the matrices and do not require a huge memory over-
head. This makes cyclic methods ideal algorithms for problems that require
efficient parallel processing of huge datasets with increasing accuracy in time.

1taken from the Stanford 3-D scanning repository

28

6 Conclusions

We have shown that two of the simplest methods from numerical analysis
of PDEs can lead to remarkably efficient algorithms when they are only
slightly modified: This has led us to cyclic variants of the explicit scheme
and the Jacobi method. By means of five prototypical scenarios, we have
demonstrated that these cyclic schemes are widely applicable to all kinds
of elliptic and parabolic problems in PDE-based image analysis that lead to
symmetric matrices. We conjecture that they may also be applicable to some
nonsymmetric problems; see e.g. [45, 46] for some related results. Since this
requires a more complicated stability analysis, this is left for future research.

Although cyclic algorithms are around in the numerical analysis community
for a long time, their use in image analysis is novel. However, this transfer of
knowledge is not a one-way road: By considering a factorisation of general
smoothing filters, we have also introduced novel, signal processing based ways
of deriving cycle parameters to the numerical analysis community. They have
led to hitherto unexplored methods with alternative parameter cycles. These
methods have better smoothing properties than classical numerical concepts
such as Super Time Stepping and the cyclic Richardson algorithm.

In the past, cyclic approaches have never been the most popular methods
for the numerical solution of PDEs. With the widespread availability of
low cost parallel computing hardware and the growing demand for simple
algorithms that work for a broad class of problems, the situation has changed
substantially. It seems that more than 100 years after Richardson’s seminal
work [9], cyclic methods are finally getting the merits they deserve.

Public Domain Code. Since we are convinced that the best way to expe-
rience the advantages of cyclic methods is to test them on own problems, we
have developed a library that offers FED functionality for arbitrary diffusion
processes. It is easy to embed into C and C++ programmes. This library is
freely available from our website

http://www.mia.uni-saarland.de/Research/SC FED.shtml.

Acknowledgements. We gratefully acknowledge funding by the German
Research Foundation (DFG) through project We2602/7-1 and the Gottfried
Wilhelm Leibniz Prize We2602/9-1.

29

References

[1] P. Perona and J. Malik. Scale space and edge detection using anisotropic
diffusion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12:629–639, 1990.

[2] J. Weickert. Anisotropic Diffusion in Image Processing. Teubner,
Stuttgart, 1998.

[3] T. Lu, P. Neittaanmäki, and X.-C. Tai. A parallel splitting up method
and its application to Navier-Stokes equations. Applied Mathematics
Letters, 4(2):25–29, 1991.

[4] J. Weickert, B. M. ter Haar Romeny, and M. A. Viergever. Efficient and
reliable schemes for nonlinear diffusion filtering. IEEE Transactions on
Image Processing, 7(3):398–410, March 1998.

[5] Yuan’Chzhao-Din. Some difference schemes for the solution of the
first boundary value problem for linear differential equations with partial
derivatives. PhD thesis, Moscow State University, 1958. (in Russian).

[6] V. K. Saul’yev. Integration of Equations of Parabolic Type by the Method
of Nets. Pergamon, Oxford, 1964.

[7] W. Gentzsch and A. Schlüter. Über ein Einschrittverfahren mit
zyklischer Schrittweitenänderung zur Lösung parabolischer Differen-
tialgleichungen. ZAMM, Zeitschrift für Angewandte Mathematik und
Mechanik, 58:T415–T416, 1978. (in German).

[8] W. Gentzsch. Numerical solution of linear and non-linear parabolic
differential equations by a time discretisation of third order accuracy. In
E. H. Hirschel, editor, Proceedings of the Third GAMM-Conference on
Numerical Methods in Fluid Mechanics, pages 109–117. Friedr. Vieweg
& Sohn, 1979.

[9] L. F. Richardson. The approximate arithmetical solution by finite dif-
ferences of physical problems involving differential equation, with an
application to the stresses in a masonry dam. Transactions of the Royal
Society of London, Ser. A(210):307–357, 1910.

[10] D. Young. On Richardson’s method for solving linear systems with
positive definite matrices. Journal of Mathematics and Physics, 32:243–
255, 1954.

30

[11] R. S. Anderssen and G. H. Golub. Richardson’s non-stationary ma-
trix iterative procedure. Technical Report STAN-CS-72-304, Computer
Science Department, Stanford University, August 1972.

[12] S. Grewenig, J. Weickert, and A. Bruhn. From box filtering to fast
explicit diffusion. In M. Goesele, S. Roth, A. Kuijper, B. Schiele, and
K. Schindler, editors, Pattern Recognition, volume 6376 of Lecture Notes
in Computer Science, pages 543–552, Berlin, 2010. Springer.

[13] P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A
highly efficient GPU implementation for variational optic flow based on
the Euler-Lagrange framework. In K. N. Kutulakos, editor, Trends and
Topics in Computer Vision, volume 6554 of Lecture Notes in Computer
Science, pages 372–383. Springer Berlin Heidelberg, 2012.

[14] A. Luxenburger, H. Zimmer, P. Gwosdek, and J. Weickert. Fast PDE-
based image analysis in your pocket. In A. M. Bruckstein, B. ter
Haar Romeny, A. M. Bronstein, and M. M. Bronstein, editors, Scale
Space and Variational Methods in Computer Vision, volume 6667 of
Lecture Notes in Computer Science, pages 544–555. Springer, Berlin,
Germany, 2011.

[15] A. Mang, A. Toma, T. A. Schütz, S. Becker, and T. M. Buzug.
Eine effiziente Parallel-Implementierung eines stabilen Euler-Cauchy-
Verfahrens für die Modellierung von Tumorwachstum. In T. Tolxdorff,
T. M. Deserno, H. Handels, and H.-P. Meinzer, editors, Bildverarbeitung
für die Medizin 2012, Informatik aktuell, pages 63–68. Springer, Berlin,
Germany, March 2012. (in German).

[16] A. Schmidt-Richberg, J. Ehrhardt, R. Werner, and H. Handels. Fast Ex-
plicit Diffusion for registration with direction-dependent regularization.
In B. M. Dawant, G. E. Christensen, J. M. Fitzpatrick, and D. Rueckert,
editors, Biomedial Image Registration, volume 7359 of Lecture Notes in
Computer Science, pages 220–228, Berlin Heidelberg, 2012. Springer.

[17] R. Ben-Ari and G. Raveh. Variational depth from defocus in real-time.
In Computer Vision Workshops, 2011 IEEE Int. Conf. on Computer
Vision, pages 522–529, 2011.

[18] S. Setzer, G. Steidl, and J. Morgenthaler. On cyclic gradient descent
reprojection. Technical report, Department of Mathematics, Technical
University of Kaiserslautern, 2011.

[19] G. Hellwig. Partial Differential Equations. Teubner, Stuttgart, 1977.

31

[20] W. M. Wells. Efficient synthesis of Gaussian filters by cascaded uniform
filters. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 8:234–239, 1986.

[21] R. S. Varga. Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs,
1962.

[22] V. Alexiades. Overcoming the stability restriction of explicit schemes
via super-time-stepping. In Proceedings of Dynamic Systems and Appli-
cations, volume 2, pages 39–44, Atlanta, Georgia, May 1995.

[23] V. Alexiades, G. Amiez, and P.-A. Gremaud. Super-time-stepping ac-
celeration of explicit schemes for parabolic problems. Communications
in Numerical Methods in Engineering, 12:31–42, 1996.

[24] L. Reichel. Newton interpolation at Leja points. BIT Numerical Math-
ematics, 30(2):332–346, 1990.

[25] D. Calvetti and L. Reichel. On the evaluation of polynomial coefficients.
Numerical Algorithms, 33(1–4):153–161, 2003.

[26] D. Calvetti and L. Reichel. Adaptive Richardson iteration based on Leja
points. Journal of Computational and Applied Mathematics, 71:267–286,
1996.

[27] V. I. Lebedev and S. A. Finogenov. The order of choices of the iteration
parameters in the cyclic Chebyshev iteration method. Zhurnal Vychis-
litel’noy Matematiki i Matematicheskoy Fiziki, 11(2):425–438, 1971. (in
Russian).

[28] F. Bornemann and P. Deuflhard. The cascadic multigrid method for
elliptic problems. Numerische Mathematik, 75:135–152, 1996.

[29] A. Brandt. Multi-level adaptive solutions to boundary-value problems.
Mathematics of Computation, 31(138):333–390, 1977.

[30] W. Hackbusch. Multigrid Methods and Applications. Springer, New
York, 1985.

[31] F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll. Image selective smooth-
ing and edge detection by nonlinear diffusion. SIAM Journal on Nu-
merical Analysis, 32:1895–1909, 1992.

32

[32] J. Weickert. Applications of nonlinear diffusion in image processing
and computer vision. Acta Mathematica Universitatis Comenianae,
70(1):33–50, 2001.

[33] J. Weickert. Coherence-enhancing diffusion filtering. International Jour-
nal of Computer Vision, 31(2/3):111–127, April 1999.

[34] W. Förstner and E. Gülch. A fast operator for detection and precise
location of distinct points, corners and centres of circular features. In
Proc. ISPRS Intercommission Conference on Fast Processing of Pho-
togrammetric Data, pages 281–305, Interlaken, Switzerland, 1987.

[35] M. Welk, G. Steidl, and J. Weickert. Locally analytic schemes: A link
between diffusion filtering and wavelet shrinkage. Applied and Compu-
tational Harmonic Analysis, 24:195–224, 2008.

[36] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadel-
phia, second edition, 2003.

[37] I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and H.-P. Seidel.
Image compression with anisotropic diffusion. Journal of Mathematical
Imaging and Vision, 31(2–3):255–269, July 2008.

[38] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud. Two de-
terministic half-quadratic regularization algorithms for computed imag-
ing. In Proc. 1994 IEEE International Conference on Image Processing,
volume 2, pages 168–172, Austin, TX, November 1994. IEEE Computer
Society Press.

[39] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D, 60:259–268, 1992.

[40] A. Chambolle. An algorithm for total variation minimization and appli-
cations. Journal of Mathematical Imaging and Vision, 20(1–2):89–97,
2004.

[41] A. Chambolle and T. Pock. A first-order primal-dual algorithm for
convex problems with applications to imaging. Journal of Mathematical
Imaging and Vision, 40(1):120–145, 2011.

[42] C. Schroers, H. Zimmer, L. Valgaerts, A. Bruhn, O. Demetz, and J. We-
ickert. Anisotropic range image integration. In A. Prinz, T. Pock,
H. Bischof, and F. Leberl, editors, Pattern Recognition, volume 7476 of
Lecture Notes in Computer Science, pages 73–82, Berlin, 2012. Springer.

33

[43] B. Curless and M. Levoy. A volumetric method for building complex
models from range images. In Proceedings of SIGGRAPH 96, volume 3,
pages 303–312, 1996.

[44] C. Zach, T. Pock, and H. Bischof. A globally optimal algorithm for
robust TV-L1 range image integration. In Proc. Ninth International
Conference on Computer Vision, pages 1–8, Rio de Janeiro, Brazil, 2007.
IEEE Computer Society Press.

[45] K. F. Gurski and S. O’Sullivan. An explicit super-time-stepping scheme
for non-symmetric parabolic problems. In AIP Conference Proceedings:
International Conference of Numerical Analysis and Applied Mathemat-
ics, volume 1281, pages 761–764, Rhodes (Greece), 2010.

[46] G. Opfer and G. Schober. Richardson’s iteration for nonsymmetric ma-
trices. Linear Algebra and its Applications, 58:343–361, 1984.

[47] M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables (9th print-
ing), chapter “Orthogonal Polynomials” (Ch. 22), pages 771–802. Dover,
New York, 1972.

34

Appendix

A.1 Proof of Theorem 1 (Diffusion Interpretation of
Smoothing Kernels)

At first, we prove by induction that

∆m
h fi =

1

h2m
·

m∑

k=−m

(−1)m+k

(
2m

m+ k

)

fi+k . (A.1)

For m = 0, Eq. (A.1) obviously holds.

If we assume that Eq. (A.1) is valid for an arbitrary m ≥ 0, this yields for
m+1:

∆m+1
h fi = ∆m

h

(
fi+1 − 2fi + fi−1

h2

)

(A.1)
=

1

h2m
·

m∑

k=−m

(−1)m+k

(
2m

m+ k

)(
fi+1+k − 2fi+k + fi−1+k

h2

)

=
1

h2(m+1)

(

fi+1+m +
m−1∑

k=−m

(−1)m+k

(
2m

m+ k

)

fi+1+k

− 2 ·
m∑

k=−m

(−1)m+k

(
2m

m+ k

)

fi+k

+

m∑

k=−m+1

(−1)m+k

(
2m

m+ k

)

fi−1+k + fi−1−m

)

.

(A.2)

We perform two changes of indices for both the first (k → k−1) and the
third sum (k → k+1). Furthermore, we use that

(
2m

−1

)

=

(
2m

2m+ 1

)

= 0 . (A.3)

35

This yields

1

h2(m+1)

(

fi+1+m +
m∑

k=−m

(−1)m+k−1

(
2m

m+ k − 1

)

fi+k

− 2 ·
m∑

k=−m

(−1)m+k

(
2m

m+ k

)

fi+k

+
m∑

k=−m

(−1)m+k+1

(
2m

m+ k + 1

)

fi+k + fi−1−m

)

=
1

h2(m+1)

(

fi+(m+1) + fi−(m+1) +
m∑

k=−m

(−1)m+k+1 fi+k ·

·
((

2m

m+ k + 1

)

+ 2

(
2m

m+ k

)

+

(
2m

m+ k − 1

)))

.

(A.4)

By using the relation
(

2m

m+ k + 1

)

+ 2

(
2m

m+ k

)

+

(
2m

m+ k − 1

)

=

(
2m+ 2

m+ k + 1

)

, (A.5)

we finally get

1

h2(m+1)

(

fi+(m+1) + fi−(m+1) +
m∑

k=−m

(−1)(m+1)+k

(
2(m+ 1)

(m+ 1) + k

)

fi+k

)

=
1

h2(m+1)





m+1∑

k=−(m+1)

(−1)(m+1)+k

(
2(m+ 1)

(m+ 1) + k

)

fi+k



 . (A.6)

This concludes the proof of Eq. (A.1).

If we replace ∆m
h by the left hand side of Eq. (A.1), then

n∑

m=0

α(n)
m ·∆m

h fi =

n∑

m=0

α
(n)
m

h2m
·

m∑

k=−m

(−1)m+k

(
2m

m+ k

)

fi+k . (A.7)

On the other hand we have the given (symmetric) filter

Lh
2n+1 fi =

n∑

k=−n

w|k| · fi+k (A.8)

36

with the weights w0, . . . , wn ∈ R. Comparing the two equations (A.7) and

(A.8) yields a system of n+1 linear equations with n+1 unknowns α
(n)
m :

n∑

m=k

(−1)m+k · 1

h2m

(
2m

m+ k

)

α(n)
m = wk ∀ k ∈ {0, ..., n} . (A.9)

The corresponding matrix-vector notation of Eq. (A.9) is given by

Bα(n) = w , (A.10)

where B = (bk,m) ∈ R(n+1)×(n+1) with

bk,m = (−1)m+k · 1

h2m

(
2m

m+ k

)

(k,m = 0, . . . , n). (A.11)

Since bk,m = 0 for k > m and bk,k = 1/h2k 6= 0, it follows that B is
a regular upper triangular matrix. Therefore, Eq. (A.10) has the unique

solution α(n) = B−1w. This shows that the coefficients α
(n)
m uniquely depend

on the weights of the filter kernel.

To obtain a closed-form expression for the coefficients, we want to determine
an explicit representation of the matrix B−1. To this end, we show that the
entries of B−1 =

(
b−1
k,m

)
are given by

b−1
k,m = h2k

((
m+ k

2k

)

+ (1− δm+k, 0) ·
(
m+ k − 1

2k

))

(k,m = 0, . . . , n).

(A.12)
This means that we have to verify

n∑

p=0

b−1
k,p · bp,m = δk,m . (A.13)

Since both B and B−1 are upper triangular matrices, the summation is only
necessary for p ∈ {k, ..., m}. Thus, the above equation can be simplified to

m∑

p=k

b−1
k,p · bp,m = δk,m . (A.14)

This equation obviously holds for k > m. If k = m, then it is also valid
because of

b−1
k,k = h2k =

1

bk,k
. (A.15)

37

Let now m > k ≥ 0. Then this yields

m∑

p=k

b−1
k,p · bp,m = h2(k−m) ·

m∑

p=k

((
p + k

2k

)

+ (1 − δp+k, 0)

(
p+ k − 1

2k

))

·

· (−1)m+p

(
2m

m+ p

)

. (A.16)

We first consider the case k > 0, i.e. δp+k,0 = 0. The 2k-degree polynomial

s(p) :=

(
p+ k

2k

)

+

(
p+ k − 1

2k

)

=

2k∏

j=1

p+ (k + 1− j)

j
+

2k∏

j=1

p + (k − j)

j

(A.17)
fulfils s(p) = s(−p) and s(p) = 0 for p ∈ {−k+1, ..., k−1}.
With the help of this, we get

0
(A.19)
=

m∑

p=−m

s(p) · (−1)m+p

(
2m

m+ p

)

=

−k∑

p=−m

s(p) · (−1)m+p

(
2m

m+ p

)

+

m∑

p=k

s(p) · (−1)m+p

(
2m

m+ p

)

= 2 ·
m∑

p=k

s(p) · (−1)m+p

(
2m

m+ p

)

, (A.18)

where we have used that

r∑

j=0

(−1)j P (j)

(
r

j

)

= 0 (A.19)

for any polynomial P (j) with degree less than r > 0.

In the case of k = 0, we have b−1
0,0 = 1 and b−1

0,p = 2 for p 6= 0. Hence,

m∑

p=0

b−1
0,p · (−1)m+p

(
2m

m+ p

)

= (−1)m
(
2m

m

)

+ 2 ·
m∑

p=1

(−1)m+p

(
2m

m+ p

)

= (−1)m
(
2m

m

)

+

m∑

p=−m
p 6=0

(−1)m+p

(
2m

m+ p

)

=

m∑

p=−m

(−1)m+p

(
2m

m+ p

)
(A.19)
= 0 . (A.20)

38

Considering the equations (A.18) and (A.20), it follows that

m∑

p=k

b−1
k,p · bp,m = 0 (A.21)

for m > k. Thus, we get Eq. (2.6).

Now we assume that the weights wk sum up to 1. According to the funda-
mental theorem of algebra, the polynomial pL(z) has n roots z0, ..., zn−1 ∈ C.
Hence, it can be written as a product of n linear factors:

pL(z) = c ·
n−1∏

m=0

(zm − z) , (A.22)

where c ∈ R is the normalisation factor

c = α
(n)
0 ·

(
n−1∏

m=0

zm

)−1

. (A.23)

Since the weights satisfy wk = w−k and sum up to 1, we have

α
(n)
0 =

n∑

k=0

((
k

0

)

+ (1− δk,0)

(
k − 1

0

))

wk = w0 + 2
n∑

k=1

wk = 1 .

(A.24)

This implies that pL(0) = α
(n)
0 = 1 and the polynomial pL(z) can be rewrit-

ten as

pL(z) =

n−1∏

m=0

(

1 − z

zm

)

. (A.25)

Replacing −z by the operator ∆h and interpreting the corresponding prod-
uct as a composition of operators finally shows that

Lh
2n+1 =

n−1∏

i=0

(
I + z−1

i ∆h

)
, (A.26)

where I denotes the identity operator. Obviously, the right hand side of
Eq. (A.26) is a series of explicit diffusion steps.

Thus, Eq. (A.26) states that Lh
2n+1 can be decomposed into n explicit linear

diffusion steps with the time step sizes τi = z−1
i . Because of

n−1∑

i=0

τi =

n−1∑

i=0

z−1
i = α

(n)
1 , (A.27)

39

the cycle time of the scheme in Eq. (A.26) is equal to the coefficient

α
(n)
1 = h2 ·

n∑

k=1

((
k + 1

2

)

+

(
k

2

))

wk = h2 ·
n∑

k=1

k2 · wk , (A.28)

and the theorem is proven.

A.2 Factorisation of the Binomial Filter Kernel

A binomial kernel Kh
2n+1 of length (2n+ 1)h is defined by the weights

wk =
1

4n

(
2n

n+ k

)

. (A.29)

By construction, the nice property of binomial kernels is that the (discrete)
convolution of two kernels is again a binomial kernel:

(
Kh

2n1+1 ∗ Kh
2n2+1

)
= Kh

2(n1+n2)+1 ∀n1, n2 ∈ N. (A.30)

This means we can represent each binomial kernel by means of a convolution
with kernels of length 3h. More precisely, convolving Kh

3 with itself n−1 times
yields Kh

2n+1. In terms of the polynomial, this corresponds to the n-th power
of the polynomial belonging to the binomial kernel with length 3h. Thus, to
compute a filter factorisation, we simply have to consider a binomial kernel
of length 3h. Using Eq. (2.6) we get the two coefficients

α
(1)
0 = 1 , α

(1)
1 = h2 · w(1)

1 =
h2

4
. (A.31)

Hence, the polynomial of an arbitrary binomial kernel Kh
2n+1 is given by

pK(z) =

(

1 − h2

4
z

)n

=

n∑

m=0

(
n

m

)
h2m

4m
(−z)m . (A.32)

It has only a single root z = 4
h2 with multiplicity n. This implies a constant

time step size τ = h2

4
. Thus, the cycle time of Kh

2n+1 is given by θn = h2

4
· n.

A.3 Factorisation of the Maximum Variance
Filter Kernel

We consider the symmetric kernel Mh
2n+1 that has positive weights only at

the boundaries, i.e. w−n = wn = 1
2
and wk = 0 else. The coefficients α

(n)
m

40

of pM can be computed by means of Eq. (2.6):

α(n)
m =

h2m

2
·
((

n+m

2m

)

+

(
n+m− 1

2m

))

=
h2m

2
·
(
n +m

2m

)(

1 +
n−m

n+m

)

= h2m n

n +m

(
n +m

2m

)

. (A.33)

Thus, the polynomial of Mh
2n+1 is given by

pM(z) =

n∑

m=0

h2m n

n+m

(
n+m

2m

)

(−z)m . (A.34)

The next step is to show that pM(z) is related to a Chebyshev polynomial of
the first kind. They are defined by the recursion







T0(x) = 1

T1(x) = x

Tn+1(x) = 2x · Tn(x)− Tn−1(x) .

(A.35)

and have the following closed-form representation [47]:

Tn(x) =
n

2
·
⌊n/2⌋
∑

m=0

(−1)m

n−m

(
n−m

m

)

(2x)n−2m . (A.36)

Thus, we get

pM(z) = n
n∑

m=0

(−1)m

n +m

(
n+m

2m

)

(h2 · z)m

= n
n∑

m=0

(−1)n−m

2n−m

(
2n−m

2(n−m)

)
(
h2 · z

)n−m

= (−1)n · 2n
2

⌊2n/2⌋
∑

m=0

(−1)m

2n−m

(
2n−m

m

)
(
h ·

√
z
)2n−2m

= (−1)n · T2n

(
h
√
z

2

)

. (A.37)

Note that we have changed the order of summation (m → n − m) in the
second step.

41

With this relation, the time step sizes are connected to the roots of the
Chebyshev polynomials and can be computed as

τi =
h2

2
· 1

2 cos2
(
π · 2i+1

4n

) (i = 0, ..., n−1). (A.38)

According to Theorem 1, the cycle time is given by

θn = h2

n∑

k=1

k2wk =
h2

2
· n2 . (A.39)

A.4 Factorisation of the Box Filter Kernel

The weights wk of a box filter with length (2n + 1)h, Bh
2n+1, are uniform:

wk =
1

2n+1
. Its polynomial pB is also related to Chebyshev polynomials.

According to Eq. (2.6) we have α
(n)
0 = 1 , and for m > 0 we obtain

α(n)
m =

h2m

2n+ 1

n∑

k=m

((
k +m

2m

)

+

(
k +m− 1

2m

))

=
h2m

2n+ 1

(
n+m∑

k=2m

(
k

2m

)

+

n+m−1∑

k=2m

(
k

2m

))

=
h2m

2n+ 1

((
n +m+ 1

2m+ 1

)

+

(
n+m

2m+ 1

))

=
h2m

2n+ 1

(
n+m+ 1

2m+ 1

(
n+m

2m

)

+
n−m

2m+ 1

(
n+m

2m

))

=
h2m

2n+ 1
· 2n + 1

2m+ 1

(
n +m

2m

)

=
h2m

2m+ 1

(
n+m

2m

)

. (A.40)

Thus, the polynomial pB(z) of the box filter Bh
2n+1 is given by

pB(z) =
n∑

m=0

h2m

2m+ 1

(
n +m

2m

)

(−z)m . (A.41)

Furthermore, we can state that

T2n+1(x) =
2n+ 1

2
·

n∑

m=0

(−1)m

2n+ 1−m

(
2n+ 1−m

2(n−m) + 1

)

(2x)2(n−m)+1

=
2n+ 1

2
·

n∑

m=0

(−1)n−m

n+m+ 1

(
n+m+ 1

2m+ 1

)

(2x)2m+1

= (−1)n(2n+ 1)x ·
n∑

m=0

(−1)m

2m+ 1

(
n+m

2m

)
(
4x2
)m

, (A.42)

42

and hence for z > 0:

pB(z) = (−1)n ·
2 · T2n+1

(
h
√
z

2

)

(2n+ 1)h
√
z

. (A.43)

Note that this representation makes also sense for z → 0, since

lim
z→0

(−1)n ·
2 · T2n+1

(
h
√
z

2

)

(2n+ 1)h
√
z

= 1 = pB(0) . (A.44)

Hence, the roots z0, . . . , zn−1 of pB(z) are related to the n positive roots of
T2n+1. Since these roots are given by

xi = cos

(

π · 2i+ 1

4n + 2

)

(0 ≤ i ≤ n−1), (A.45)

the roots zi of pB fulfil

zi =
4

h2
· x2

i =
4

h2
· cos2

(

π · 2i+ 1

4n+ 2

)

. (A.46)

This yields the following conclusion, which is a special case of Theorem 1:
The 1-D discrete box filtering with Bh

2n+1 is equivalent to a cycle of n explicit
1-D linear diffusion steps with the time step sizes

τi =
h2

2
· 1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, ..., n−1). (A.47)

With Theorem 1, the corresponding cycle time also grows quadratically in
n:

θn = h2
n∑

k=1

k2wk =
h2

2n+ 1

n∑

k=1

k2 =
h2

6
·
(
n2 + n

)
. (A.48)

A.5 Stability Analysis of the FED Scheme

The result uk+1 ∈ RN with k ≥ 0 after a complete cycle of the linear FED
scheme (3.4) can be written as the matrix-vector product

uk+1 =
(n−1∏

i=0

(I + τi A)
)

︸ ︷︷ ︸

=:QA

uk . (A.49)

43

Let us now analyse the eigenvalues λ1, . . . , λN of the matrix QA ∈ RN×N . To
this end, we consider the eigenvectors v1, . . . , vN of A with the corresponding
eigenvalues µ1(A), . . . , µN(A) ∈

[
− 4

h2 , 0
]
. We have

QA vj =
(n−1∏

i=0

(I + τi A)
)

vj =

n−1∏

i=0

(
1 + τi µj(A)

)
vj . (A.50)

This means that the vectors v1, . . . , vN are also eigenvectors of QA with
eigenvalues

λj =
n−1∏

i=0

(
1 + τi µj(A)

)
(j = 1, . . . , N). (A.51)

From the filter factorisation of the box filter, we know that

n−1∏

i=0

(
1 − τi z

)
= pB(z) , (A.52)

which implies λj = pB(−µj(A)) for j = 1, . . . , N . Since the polynomial
pB(z) satisfies |pB(z)| ≤ 1 for z ∈

[
0, 4

h2

]
, we have λj ∈ [−1, 1], i.e. the

linear FED scheme is, as expected, in particular stable w.r.t. the Euclidean
norm.

If we just replace the matrix A by an arbitrary symmetric and negative
semidefinite matrix P ∈ RN×N whose eigenvalues µ1(P), . . . , µN(P) lie in
[−µmax(P) , 0], an analogue computation for the eigenvalues λ′

1, . . . , λ
′
N of

QP yields

λ′
j =

n−1∏

i=0

(
1 + τi µj(P)

)
= pB(−µj(P)) (j = 1, . . . , N). (A.53)

Note that we still use the time step sizes τi of the linear FED scheme. Since it
could happen that µmax(P) > 4

h2 , we can not guarantee that the polynomial
fulfils |pB(−µj(B))| ≤ 1 for all j. However, if we take more general time
step sizes τ ′i as proposed in Eq. (3.9), i.e. replace the above time steps τi by
τ ′i :=

2
µmax(P)

· 2
h2 · τi, then we obtain the eigenvalues

λ′
j =

n−1∏

i=0

(
1 + τ ′i µj(P)

)
= pB

(

− 4

h2
· µj(P)

µmax(P)

)

(j = 1, . . . , N).

(A.54)

Since − µj(P)

µmax(P)
∈ [0, 1], we can now state that

∣
∣
∣
∣
pB

(

− 4

h2
· µj(P)

µmax(P)

)∣
∣
∣
∣
≤ 1 (j = 1, . . . , N) , (A.55)

44

and thus λ′
j ∈ [−1, 1] for all j. This yields stability in the Euclidean norm for

the cyclic scheme with the matrix P and the time step sizes from Eq. (3.9).

45

