Skip to main content
Log in

Schwarps: Locally Projective Image Warps Based on 2D Schwarzian Derivatives

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Image warps -or just warps- capture the geometric deformation existing between two images of a deforming surface. The current approach to enforce a warp’s smoothness is to penalize its second order partial derivatives (Bookstein in IEEE Trans Pattern Anal Mach Intell 11:567–585, 1989; Rueckert et al. in IEEE Trans Med Imaging 18:712–721, 1999). Because this favors locally affine warps, this fails to capture the local projective component of the image deformation. This may have a negative impact on applications such as image registration and deformable 3D reconstruction. We propose a novel penalty designed to smooth the warp while capturing the deformation’s local projective structure. Our penalty is based on equivalents to the Schwarzian derivatives, which are projective differential invariants exactly preserved by homographies. We propose a methodology to derive a set of partial differential equations with only homographies as solutions. We call this system the Schwarzian equations and we explicitly derive them for 2D functions using differential properties of homographies. We name as Schwarp a warp which is estimated by penalizing the residual of Schwarzian equations. Experimental evaluation shows that Schwarps outperform existing warps in modeling and extrapolation power, and lead to better results in three deformable reconstruction methods, namely, shape reconstruction in shape-from-template, camera calibration in Shape-from-Template and Non-Rigid Structure-from-Motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In SfT, the 3D shape of a deformable surface is computed from the warp between a template and an input image. The shape of the template is known a priori.

References

  • Bartoli, A., & Collins, T. (2013a). Template-based isometric deformable 3D reconstruction with sampling-based focal length self-calibration. In Computer Vision and Pattern Recognition.

  • Bartoli, A., & Collins, T. (2013b). Template-based isometric deformable 3D reconstruction with sampling-based focal length self-calibration. In Computer Vision and Pattern Recognition.

  • Bartoli, A., Perriollat, M., & Chambon, S. (2010). Generalized thin-plate spline warps. International Journal of Computer Vision, 88(1), 85–110.

    Article  Google Scholar 

  • Bartoli, A., Gérard, Y., Chadebecq, F., & Collins, T. (2012). On template-based reconstruction from a single view: Analytical solutions and proofs of well-posedness for developable, isometric and conformal surfaces. In Computer Vision and Pattern Recognition.

  • Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transaction on Pattern Analysis Machine Intelligence, 11(6), 567–585.

    Article  MATH  Google Scholar 

  • Bregler, C., Hertzmann, A., & Biermann, H. (2000). Recovering non-rigid 3D shape from image streams. In Computer Vision and Pattern Recognition.

  • Bruckstein, A. M., & Netravali, A. N. (1995). On differential invariants of planar curves and recognizing partially occluded planar shapes. Annals of Mathematics and Artificial Intelligence, 13(3–4), 227–250.

    Article  MathSciNet  MATH  Google Scholar 

  • Brunet, F., Bartoli, A., Navab, N., & Malgouyres, R. (2009). NURBS warps. In British Machine Vision Conference.

  • Calabi, E., Olver, P. J., Shakiban, C., Tannenbaum, A., & Haker, S. (1998). Differential and numerically invariant signature curves applied to object recognition. International Journal of Computer Vision, 26(2), 107–135.

    Article  Google Scholar 

  • Carlsson, S. (1996). Projectively invariant decomposition and recognition of planar shapes. International Journal of Computer Vision, 17(2), 193–209.

    Article  Google Scholar 

  • Carlsson, S., Mohr, R., Moons, T., Morin, L., Rothwell, C., Van Diest, M., et al. (1996). Semi-local projective invariants for the recognition of smooth plane curves. International Journal of Computer Vision, 19(3), 211–236.

    Article  Google Scholar 

  • Cayley, A. (1880). On the Schwarzian derivatives and the polyhedral functions. In Transaction of Cambridge Philosophical Society (vol. 13).

  • Coddington, E. A. (2012). An introduction to ordinary differential equations. New York: Courier Dover Publications.

    MATH  Google Scholar 

  • Faugeras, O. D., Luong, Q.-T., & Papadopoulo, T. (2001). The geometry of multiple images: The laws that govern the formation of multiple images of a scene and some of their applications. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Hartley, R. I., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge University Press, ISBN: 0521623049.

  • Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203.

    Article  Google Scholar 

  • Khan, R., Pizarro, D., & Bartoli, A. (2014). Schwarps: Locally projective image warps based on 2d schwarzian derivatives. In ECCV.

  • Kummer, E. E. (1836). Über die hypergeometrische reihe. Journal Fur Die Reine Und Angewandte Mathematik, 1836(15), 39–83.

    Article  MathSciNet  Google Scholar 

  • Lazebnik, S., & Ponce, J. (2005). The local projective shape of smooth surfaces and their outlines. International Journal of Computer Vision, 63, 65–83.

    Article  Google Scholar 

  • Lei, G. (1990). Recognition of planar objects in 3D space from single perspective views using cross ratio. IEEE Transactions on Robotics and Automation, 6(4), 432–437.

    Article  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Matsumoto, K., Sasaki, T., & Yoshida, M. (1993). Recent progress of Gauss-Schwartz theory and related geometric structures. Memoirs of the faculty of Science, Kyushu University, 47–2, 283–381.

    Article  MathSciNet  MATH  Google Scholar 

  • Molzon, R., & Mortensen, K. P. (1996). The Schwarzian derivative for maps between manifolds with complex projective connections. Transactions of the American Mathematical Society, 348(8), 3015–3036.

    Article  MathSciNet  MATH  Google Scholar 

  • Moons, T., Pauwels, E. J., Van Gool, L. J., & Oosterlinck, A. (1995). Foundations of semi-differential invariants. International Journal of Computer Vision, 14(1), 25–47.

    Article  MATH  Google Scholar 

  • Mundy, J. L., & Zisserman, A. (1992). Geometric invariance in computer vision. Cambridge: MIT Press.

    Google Scholar 

  • Oda, T. (1974). On schwarzian derivatives in several variables (in Japanese). Kokyuroku Research Institute for Mathematical Sciences, 226, 82–85.

    Google Scholar 

  • Olver, P. J. (2007). Generating differential invariants. Journal of Mathematical Analysis and Applications, 333(1), 450–471.

    Article  MathSciNet  MATH  Google Scholar 

  • Osgood, B., & Stowe, D. (1992). The Schwarzian derivative and conformal mapping of Riemannian manifolds. Duke Mathematical Journal, 67(1), 57–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Ovsienko, V. (1989). Lagrange Schwarzian derivative. Moscow University Mechanics Bulletin, 44(6), 8–13.

    MATH  Google Scholar 

  • Ovsienko, V., & Tabachnikov, S. (2005). Projective differential geometry old and new: From the Schwarzian derivative to the cohomology of diffeomorphism groups. Cambridge: Cambridge University Press.

  • Ovsienko, V., & Tabachnikov, S. (2009). What is the Schwarzian derivative? North American Mathematical Society, 56, 34–36.

    MathSciNet  MATH  Google Scholar 

  • Perriollat, M., Hartley, R., & Bartoli, A. (2011). Monocular template-based reconstruction of inextensible surfaces. International Journal of Computer Vision, 95, 124–137.

  • Pilet, J., Lepetit, V., & Fua, P. (2007). Fast non-rigid surface detection, registration and realistic augmentation. International Journal of Computer Vision, 76(2), 109–122.

    Article  Google Scholar 

  • Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging, 18, 712–721.

    Article  Google Scholar 

  • Salzmann, M., Pilet, J., Ilic, S., & Fua, P. (2007). Surface deformation models for nonrigid 3D shape recovery. Transactions on Pattern Analysis and Machine Intelligence, 29(8), 1481–1487.

    Article  Google Scholar 

  • Sato, J., & Cipolla, R. (1998). Quasi-invariant parameterisations and matching of curves in images. International Journal of Computer Vision, 28(2), 117–136.

    Article  Google Scholar 

  • Singer, D. (1978). Stable orbits and bifurcation of maps of the interval. SIAM Journal of Applied Mathematics, 35(2), 260–267.

    Article  MathSciNet  MATH  Google Scholar 

  • Szeliski, R. (2006). Image alignment and stitching: A tutorial. Foundations and Trends in Computer Graphics and Computer Vision, 2(1), 1–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Tanner, C. (2005). Registration and lesion classiffication of contrast-enhanced magnetic resonance breast images. PhD thesis, University of London.

  • Torr, P. (2000). MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 78, 138–156.

    Article  Google Scholar 

  • Torresani, L., Hertzmann, A., & Bregler, C. (2008). Non-rigid structure-from-motion: Estimating shape and motion with hierarchical priors. IEEE Transactions on Pattern Analysis and Machine Intelligence., 30(5), 878–892.

    Article  Google Scholar 

  • Van Gool, L., Moons, T., Pauwels, E., & Oosterlinck, A. (1995). Vision and lie’s approach to invariance. Image and vision computing, 13(4), 259–277.

    Article  Google Scholar 

  • Varol, A., Salzmann, M., Tola, E., & Fua, P. (2009). Template-free monocular reconstruction of deformable surfaces. In International conference on computer vision.

  • Weiss, I. (1993). Geometric invariants and object recognition. International journal of computer vision, 10(3), 207–231.

    Article  Google Scholar 

Download references

Acknowledgments

This research has received funding from the EUs FP7 ERC research Grant 307483 FLEXABLE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahat Khan.

Additional information

Communicated by S. Soatto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizarro, D., Khan, R. & Bartoli, A. Schwarps: Locally Projective Image Warps Based on 2D Schwarzian Derivatives. Int J Comput Vis 119, 93–109 (2016). https://doi.org/10.1007/s11263-016-0882-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-016-0882-9

Keywords

Navigation