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Abstract A key topic in classification is the accuracy loss
produced when the data distribution in the training (source)
domain differs from that in the testing (farget) domain. This
is being recognized as a very relevant problem for many
computer vision tasks such as image classification, object
detection, and object category recognition. In this paper, we
present a novel domain adaptation method that leverages
multiple target domains (or sub-domains) in a hierarchical
adaptation tree. The core idea is to exploit the commonali-
ties and differences of the jointly considered target domains.

Given the relevance of structural SVM (SSVM) classi-
fiers, we apply our idea to the adaptive SSVM (A-SSVM),
which only requires the target domain samples together with
the existing source-domain classifier for performing the de-
sired adaptation. Altogether, we term our proposal as hierar-
chical A-SSVM (HA-SSVM).

As proof of concept we use HA-SSVM for pedestrian
detection and object category recognition. In the former we
apply HA-SSVM to the deformable part-based model (DPM)
while in the latter HA-SSVM is applied to multi-category
classifiers. In both cases, we show how HA-SSVM is ef-
fective in increasing the detection/recognition accuracy with
respect to adaptation strategies that ignore the structure of
the target data. Since, the sub-domains of the target data are
not always known a priori, we shown how HA-SSVM can
incorporate sub-domain structure discovery for object cate-
gory recognition.
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1 Introduction

Besides the data representations and learning algorithms used
in classification tasks, other relevant fact that has been in-
creasingly considered within this context is the so denomi-
nated dataset bias. This is a very common problem in real-
world classification applications that makes the classifiers
suffer from loss in accuracy when the data distribution in
the training (source) domain differs from that in the test-
ing (target) domain. In order to face this domain adaptation
challenge a variety of methods have been increasingly ex-
plored within the machine learning field (Daumé III, 2007
Yang et al., [2007; [Mansour et al., 2008; Ben-David et al.,
2009; |[Duan et al., 2009} [Pan and Yang} [2009) and most re-
cently within the computer vision one (Bergamo and Torre-
sani, 2010; Saenko et al., [2010; |Gopalan et al.| [2011; |Duan!
et al.l [2012; |Vazquez et al., 2012, 2014} Hoffman et al.,
2012} 2013} |[Kan et al.| [2014) since image classification,
visual object detection and object category recognition are
tasks where dataset bias is usually relevant.

Many domain adaptation methods assume a single do-
main shift between the data, i.e., they perform the adapta-
tion from a single source domain to a single target domain
(Daumé 111, 2007; Bergamo and Torresani, 2010; [Saenko
et al., 2010; Duan et al.| 2012} Vazquez et al, |2012] [2014;
Hoffman et al.| 2013 |[Kan et al.| 2014). Some others con-
sider multiple source domains (Yang et al.| [2007; Mansour
et al., 2008; |Duan et al.l |2009; |Gopalan et al., 2011; [Hoff-
man et al.,[2012) and propose to leverage labeled data from
them to perform the domain adaptation, i.e., the underlying
idea is to cover as much variability as possible at the source
level for making more accurate predictions given a partially
new domain (the target). In this paper we focus on the com-
plementary case to these works. In other words, the main
novelty is the study of the effectiveness of domain adapta-
tion when we can structure the target domain as a hierarchy
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Fig. 1 Domain adaptation methods: without losing generality we assume a single source domain and three correlated target domains (three
different datasets depicting the same object categories). (a) Single layer domain adaptation: adapting to each target domain w’/ independently. (b)
Single layer domain adaptation: pooling multiple target domains. (c) Proposed hierarchical multi-layer domain adaptation. The target domains are
organized in an adaptation tree. Adaptation to intermediate nodes allows to exploit commonalities between children sub-domains, while adaptation
to final sub-domains allows to consider their differences. Each path from the root to a leaf of the hierarchy can be thought as a progressive

adaptation, but all models (intermediate and final) are learned jointly.

(e.g., leveraging multiple correlated target domains or using
some criteria to build sub-domain partitions). Moreover, due
to its practical implications, we focus on methods that do not
require to revisit the source data for the adaptation.

The main idea of our approach is illustrated in Fig. [I}
Without losing generality assume that we have a prior source
model w¥ (e.g. a SVM hyperplane) and we would like to
adapt it to multiple target domains (77, 7>,73) from which
we have labeled data. Traditionally, w’ is adapted to each
target domain separately, as illustrated in (a). Other option is
to pool multiple target domains into a single one and adapt
w® to a mixed target domain as in (b). We refer to these
strategies as single-layer domain adaptation.

Instead of performing isolated single-layer adaptations,
we propose to make use of the relatedness of the target do-
mains while exploiting their differences. Concretely, as it is
presented in (c), we organize multiple target domains into a
hierarchical structure (tree) and adapt the source model to
them jointly. The adaptation to intermediate nodes allows to
exploit commonalities between children sub-domains (e.g.,
approach (b) is considered thanks to the root node of the
hierarchy), while the adaptation to the final sub-domains al-
lows to consider their differences.

Each path from the root to a leaf of the hierarchy can
be thought as a progressive adaptation. However, as we will
see, the adaptation of the whole hierarchy is done at once un-
der the same objective function. This implies that our adap-

tation strategy is also useful in cases where the labeled data
from the target domain is scarce but at the same time presents
certain variability (sub-domains) worth to consider. Note that
by using the approach in (a) such a reduced target domain
dataset would be divided into even smaller target sub-domain
datasets, which in general would end up in a poorer adapta-
tion. On the other hand, following (b) the potential target
sub-domains would be just ignored.

Given the widely use of SVM classifiers, we focus on the
model-transform-based domain adaptation method known
as adaptive SVM (A-SVM) (Yang et al.,[2007). A-SVM does
not require source domain samples, only target domain ones,
which can significantly reduce the training (adaptation) time.
In fact, since we will address problems requiring structural
SVM (SSVM), we will use the A-SVM variation for SSVM
that we introduced in 2014a)), namely the adap-
tive SSVM (A-SSVM). Altogether we term our approach as
hierarchical A-SSVM (HA-SSVM).

As proof of concept we apply our method in two prob-
lems of paramount importance within the computer vision
field, namely pedestrian detection and object category recog-
nition, the former implies to use HA-SSVM with the wide-
spread deformable part-based model (DPM) while the latter
implies to use HA-SSVM with multi-category classifiers. In
both cases, we will show how HA-SSVM is effective in in-
creasing the detection/recognition accuracy with respect to
state-of-the-art strategies that ignore the structure of the tar-
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get data. Moreover, focusing on the object category recogni-
tion application, we will also evaluate HA-SSVM in an sce-
nario were the target sub-domains are not available a priori
and must be discovered.

The rest of the paper is organized as follows. Section [2]
overviews the related work. In section [3] we detail the gen-
eral formulation of the proposed approach and its optimiza-
tion method, as well as how to incorporate domain reshaping
for discovering latent domains. Sections ] and [3] present the
experimental results of HA-SSVM for pedestrian detection
and object recognition, respectively. Finally, section|6|draws
the conclusions and future research lines.

2 Related Work

Despite the variety of domain adaptation methods proposed
in the last decades—see (Jiang) 2008)) for a comprehensive
overview—, in computer vision, current methods can be broad-
ly categorized in two main groups, namely feature-transform-
based methods and model-transform-based methods.

Feature-transformation-based methods attempt to learn
a transformation matrix/kernel over the feature space of dif-
ferent domains, and then apply a classifier (Saenko et al.|
2010; Kulis et al.,|2011;/Gopalan et al.| 201 1;[Hoffman et al.|
2014; |Gong et al.l 2014). For instance, the max-margin do-
main transforms method (Hoffman et al.,|2013) jointly learns
a feature transformation and a discriminative classifier via
multi-task learning. On the other hand, model-transform-
based approaches concentrate on adapting the parameters of
the classifiers, often SVM, including: weighted combination
of source and target SVMs, transductive SVM (Bergamo
and Torresanil [2010; Vazquez et al) [2012), feature replica-
tion (Daumé III, [2007; Vazquez et al., 2014)), and regulari-
zation-based methods as A-SVM (Yang et al.,[2007), its suc-
cessor the projective model transfer SVM (PMT-SVM) (Ay-
tar and Zisserman, |2011)) and its variant A-SSVM (Xu et al.}
20144).

Among these methods, the SVM regularization-based
ones have a significant advantage as they do not require re-
visiting source domain data for the adaptation. This would
be favorable for many domain adaptation tasks in computer
vision, since the source datasets are typically large and com-
puting the features is expensive. Besides, it can even han-
dle the case where the source data is missing at the moment
of the adaptation. Basically, these methods learn the target
classifier 7 (x) by adding a perturbation function A f(x) to
the source classifier £5(x) so that f7(x) = f5(x) + Af(x).
Our approach can be regarded as a higher level model of
A-SSVM, as it considers the structural relation between dif-
ferent domains and integrates multiple A-SSVM adaptations
in a hierarchical model.

In the context of domain adaptation between multiple
domains, several methods close to our work have been pro-

posed in the natural language processing (NLP) community
(Finkel and Christopher} 2009; Daumé 111, 2009), which are
Bayesian-based approaches. While for multi-domain adap-
tation most of the focus is on multiple sources, little atten-
tion is paid on the relation of multiple target domains. Our
domain adaptation method aims to leverage multiple target
domains by considering their hierarchical structural relation.
Most of the domain adaptation algorithms are validated
assuming that the underlying domains are well-defined. How-
ever, multiple unknown domains may exist (Hoffman et al.,
2012). In fact, in some cases image data is difficult to man-
ually divide into discrete domains required by adaptation
algorithms (Gong et al., |2013). In (Hoffman et al.| 2012),
a sub-domain discovery algorithms is proposed, it focuses
on discovering multiple hidden source domains. The most
recent work of (Gong et al) |2013) can discover domains
among both training and testing data, which benefits existing
multi-domain adaptation algorithms. In this paper, we also
include experiments where HA-SSVM is applied to discov-
ered target sub-domains for object category recognition.
The vision tasks where our method can be applied are
several, however, in this paper our experiments focus on
cross-domain multi-category object recognition and pedes-
trian detection based on the deformable part-based model
(DPM). The former has been a benchmark for the proof
of most domain adaptation methods developed for vision
tasks (Saenko et al., [2010; Kulis et al.l 2011; |Gong et al.,
2012). Despite its relevance, the latter has been just rarely
addressed in the literature (Vazquez et al., 2012, 2014} | Xu
et al.,[2014a) from the viewpoint of domain adaptation. How-
ever, it introduces the interesting challenges of dealing with
rather unbalanced classes (i.e., pedestrians vs background).

3 Proposed Method
3.1 General Model

Our proposal is illustrated in Fig.|1] Assume we have a prior
model w® from the source domain 2° and multiple target
domains 27/, j € [1,D]. Traditionally, w® is adapted to each
target domain independently, as illustrated in (a), or to the
pooled target domain as in (b), which we call single-layer
domain adaptation in this paper. In contrast, we propose
to make use of the relatedness of multiple target domains
by combining them into a hierarchical adaptation tree, and
adapt the prior model to them hierarchically, as in (c).

The proposed hierarchical model can be applied to any
supervised learning algorithm which can incorporate prior
information. In this work, we focus on the widely used SVM.
This learning method considers a loss term .£(w; Z) that
captures the error with respect to the training data & and
a regularization term Z(w) that penalizes model complex-
ity. In fact, we will focus on domain adaptation with struc-
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tural SVM (SSVM), giving rise to our hierarchical A-SSVM
(HA-SSVM) in Sect[3.2]

3.2 Domain Adaptation Methods

For the sake of a better understanding, in this subsection,
we introduce the involved concepts by progressive order of
complexity. In Sect. [3.2.1] we focus on single-layer domain
adaptation based on adaptive SVM (A-SVM). Then, in Sect.

[3.2.2|we develop our hierarchical A-SVM (HA-SVM) model.

We show how to learn its parameters by using a multiple task
learning (MTL) paradigm. Finally, in Sect. [3.2.3] we con-
sider SSVM and, therefore, introduce HA-SSVM.

3.2.1 Adaptive SVM (A-SVM)

A-SVM is a model-transform-based method, which adapts
the model parameters from the source @ls to the target do-
main QZT (I indicates that the samples are labeled). Given
the source domain model w5, the target domain model w! is
learned by minimizing the following objective function:

1
min - |w" — w5 +CL(w": 9]), (1)
wl 2

where the regularization term ||Aw|> = ||w’ —w%||? con-
strains the target model w’ to be close to the source one w*.
Eq. is also called one-to-one domain adaptation. At the
testing time, we apply the following decision function to the

target domain:
1) =wb(x) = f5(x) + AW (%), 2)

where @(x) is the feature vector for target domain sample x
and f5(x) is the output score from the source domain clas-
sifier. Thus, A-SVM is essentially learning a perturbation
function A f(x) = Aw'®(x) based on the source classifier.

3.2.2 Hierarchical Adaptive SVM (HA-SVM)

For the sake of a more understandable explanation but with-
out losing generality, we give the formulation of HA-SVM
for a hierarchy of three layers as the one illustrated in Fig.
(¢). Assume we have a source model wS and three target do-
mains W, je1,3]. Let w= [who' whi' wii' w2’ wh')/,
then the objective function of the three-layers HA-SVM is

written as follows:

1 T
I(w) = 5w —w|P+CYi, LW 77)

1 .
5w — w4 CE, 2 (w9

1 T
+§HWT1 —who|2+c2(wh; ) 3)

1
3 IWE =W P 2w o)

1
W — w2 +CL(Wh )

Eq. is in a multi-task learning paradigm form, where the
optimization of each w’i can be understood as an individual
task. The key issue of the multi-task learning lies in how the
relationships between tasks are incorporated. As we can see
from Eq. (3), each task is related by the regularization term,
e.g., T» and T; are connected by ||w'/ —w™i |2, while T; is
directly connected to Ny, which is adapted from w>.

At testing time, for a testing sample from target domain
J, we can directly extract the learned parameters wJT- and ap-
ply the linear decision function:

flix) =wh'@(x) . 4)

Comparing to the single-layer adaptation ||w’/ — w5||
as in Fig. E] (a), HA-SVM has several advantages. First, HA-
SVM can make use of training samples from multiple re-
lated target domains instead of just one. For example, a single-
layer domain adaptation only uses the training samples from
Tj,j € {1,2,3} in three different optimization runs, while
HA-SVM can integrate the samples from the three target
domains accounting for their hierarchical structure. Second,
the target model w’i is not directly regularized by w¥ but
some shared intermediate models w"i, which allows w7’/ to
be regularized in a more flexible space. As w’/ goes down
apart from w® further in the adaptation tree, less constrain
from w3 is imposed. This can be interpreted as a progressive
adaptation.

For single-layer domain adaptation, another straightfor-
ward strategy is to pool all target domains and train a sin-
gle adaptive SVM with all available target samples, as il-
lustrated in Fig.[T](b). Comparing to this method, HA-SVM
can take the same advantage of using all available labeled
data while allows each target domain model to be more dis-
criminative in its own domain. The pooling-based method
requires the final model to compromise to each domain in
order to minimize the training error, and thus such model
may lose the discriminative power in the individual target
domains. Our experimental results in Sect.[d.T]and Sect.[5.1]
confirm this observation.

To minimize Eq. (), we employ Quasi-Newton LBFGS
method, which requires the objective function and the partial
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derivatives of its parameters. These partial derivatives are:

T

2J(W) A N, S N T, 3 22(wh;97)
S = 3w —wS Wl 1+C2j:1TO’T,
aJ 9.L(wh .2,
av%) — 3wN WMo Wi _ wh2 +CZ§=2 (6le ) ’

2.2 (wh ;@Tl
%‘Q‘EX) — WT] _WNO +C (;VWTI l ) ,

7 TZ;@TZ

T3

a](w) _ wh N 82(w73;@l °)
Tl = WE—w +C -

®)

In our implementation, the LBFGS based optimization
converges to the optimum efficiently for both single-layer A-
SVM and HA-SVM (as well as for the HA-SSVM defined
in next subsection).

3.2.3 Hierarchical Adaptive Structured SVM (HA-SSVM)

The proposed HA-SVM can be extended for SSVM, giving
rise to our HA-SSVM. SSVM allows the training of a clas-
sifier for general structured output labels. SSVM minimizes
the following regularized risk function:

1
miny, = ||w||?
+CZi=1[mawa/¢<Xi7y) +A()’17Y) - ¢(Xiayl')] )

(6)

where y; is the ground truth output (label) of sample x;, and
y runs on the alternative outputs. A (y;,y) is a distance in out-
put space. ®(x,y) is the feature vector from a given sample x
of label y. Accordingly, Eq. (I) can be extended to A-SSVM
as follows:

1
min,,r §||WT —wS|?

/ @)
+Czﬁil[maxwa D(x;,y) +A(yi,y) — P(x;,yi)] -

Correspondingly, the final adapted classifier f7 can be writ-
ten as:

£T(x) = max(w® ®(x,y) + AW D (x,)] , ®)
y N—_———
Af(x)

where Aw = w/ — wS. Therefore, Eq. (7) can be integrated
into the proposed hierarchical adaptation framework descri-
bed in Section In particular, we must proceed in the

same way than going from to (3), but now starting with
([, thus, giving rise to HA-SSVM.

4 Domain Adaptation of DPMs

In this section we apply HA-SSVM in the popular deformable
part-based model (DPM) framework (Felzenszwalb et al.|
2010), focusing on pedestrian detection. The DPM learns a
linear classification parameter w, which parametrizes a set

of parts and deformations, to decide whether a detection
window contains a pedestrian or background. The learning
of a DPM is usually formulated as the latent SVM (LSVM)
framework (Felzenszwalb et al., 2010). However, it is also
possible to use a latent structural SVM (LSSVM) formula-
tion (Zhu et al.| [2010; |Girshickl 2012)), which can be solved
by the Convex-Concave Procedure (CCCP). The LSSVM
form of a DPM objective function can be written as:

1
miny > [w]|? +C LY [maxy (W & (x;,h)
+A ()’7)71)) - W/¢(X[,h*)]7

€))

where h is the latent variable which defines the object hy-
pothesis, e.g., the alignment of parts, &(x,h) concatenates
HOG-based (Dalal and Triggs| 2005} [Felzenszwalb et al.|
2010) appearance features and part spatial alignment fea-
tures, A(y,y;) is the 0-1 loss function that returns O if the
binary label y equals y;, and 1 otherwise. h* plays the role
of ground truth output of example i and it is computed at the
concave stage of CCCP. We refer to (Zhu et al., [2010) (Gir-
shick, |2012) for more details. A-SSVM can be applied to
DPM according to Eq. (7). For example, A-SSVM for DPM
can be written as:

1
min, > [w? —wS||2 +C Y| [maxy(w ®(x;,h)

, (10)
+A(y,yi)) —w! @(x;,h")].

Thus, by applying Eq. (3), we can build HA-SSVM for DPM.
We implemented it in the DPM 5.0 framework (Girshick
et al.,|2012), which is the latest at the moment of doing this
research. When applying an adapted DPM in a particular
target domain (i.e., in testing time), we do not use the full
vector of parameters jointly learned for all the hierarchy of
target domains, instead we only use the sub-vector of pa-
rameters corresponding to such particular target domain. In
other words, we follow Eq. (@).

4.1 Experiments on Pedestrian Detection

Fig.Pillustrates two different cases of DPM domain adapta-
tion using HA-SSVM that we evaluate here. In (a) the source
classifier is adapted to three different target domains (differ-
ent datasets in this case). In (b) we adapt the source classifier
to detect pedestrians from image windows of two different
resolution categories. The main idea is to divide the target
domain into sub-domains according to the resolution of the
pedestrian samples, i.e., different resolutions are regarded as
different domains. Here we consider only two resolutions,
low and high. Note that low resolution pedestrians tend to
be blur and their poses are less discriminative than for high
resolution ones.
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Fig. 2 HA-SSVM applied to DPM: (a) adaptation to three related
datasets (domains), namely ETHO, ETH1 and ETH2, which were ac-
quired with the same camera but different environments; (b) adaptation
of a single resolution detector for applying different detectors when
processing small and large image windows, which would correspond
to pedestrians imaged with low (LRes) and high (HRes) resolution re-
spectively.
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Fig. 3 (a) Original feature pyramid in DPM. (b) The extended feature
pyramid for multi-resolution adaptive DPM.

4.1.1 Datasets

As source-domain virtual-world dataseﬂ (Fig. EI) we use the
same as in (Vadzquez et al 2014} [Xu et al., 2014alb). The
target-domain real-world datasets that we use are ETH
2007), Caltech (Dolldr et al.,2012) and KITTI
[2012). The ETH dataset consists of three sub-datasets,
namely ETHO, ETH1 and ETH2, and is used to evaluate the
setting of Fig. 2(a). These sub-datasets are collected from
different environments but with the same camera sensor and
pose, thus, we consider them as related sub-domains. Cal-
tech and KITTT are used in two different experiments, both
for evaluating the setting of Fig. [2[b).

! Tt is publicly available under the name CVC-07 DPM Virtual-
World Pedestrian Dataset athttp://www.cvc.uab.es/adas

Fig. 4 Virtual-world pedestrians and background images.

Classifier trained with only the source (virtual-world)
SRC .
domain samples.
Classifier trained with only a relatively low number of
TAR .
target domain (real-world) samples.
MIX Classifier trained with source samples used for SRC and the
target domain samples used for TAR.
A-SSVM Classifier adapted with A-SSVM using the SRC model and
the target domain samples used for TAR.
A-SSVM- . . .
ALL As before but pooling all the considered target domains.

Table 1 Different types of learned DPM classifiers.
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Fig. 5 Cumulative histogram of the pedestrians’ height in Caltech,
KITTI and virtual-world training dataset. The virtual-world dataset
contains less low-resolution pedestrians than the real-world ones.

4.1.2 Setup

In supervised domain adaptation it is assumed that there
are available just a few labeled data from the different tar-
get domains. In order to emulate this setting, we selected
only 100 pedestrians for the experiments with ETHO, ETHI1,
ETH2 and Caltech, which roughly correspond to the 6%,
1.5%,3%,5%, respectively, of the available pedestrians for
training. We use all the training pedestrian-free images of
these datasets, i.e., 999,451,354, 1,824 images, respectively.
We follow the Caltech evaluation criterion (Dollar et al.
and plot the average miss rate vs false positive per im-
age (FPPI) curve. We use the suggested reasonable setting
and therefore test on the pedestrians taller than 50 pixels.
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Fig. 6 ETHO, ETHI and ETH2 show the adaptation results from virtual-world to ETH three sub-datasets. Caltech shows results of adapting
virtual-world DPM detector to a multi-resolution detector in Caltech pedestrian dataset. A-SSVM is trained with mixed high and low resolution
samples. HA-SSVM-NO corresponds to W™ in the multi-resolution adaptation tree and HA-SSVM-MRES is the adapted multi-resolution detector.

Each train-test experiment is repeated five times and we re-
port the mean and standard deviation of the repetitions. To
ensure fair comparisons, we use the same random samples
for different training methods. To evaluate the performance
of HA-SSVM, we compare it to the baselines described in
Table[Tl

In fact, as touchstone of HA-SSVM for pedestrian de-
tection, our first test was the participation in the Pedestrian
Detection Challenge of the KITTI benchmarkﬂ as part of
the Reconstruction Meets Recognition Challenge (RMRC)
held in conjunction with the ICCV’2013 celebrated in Syd-
ney. At that time we did not have written neither a report
nor this paper, so we participated with the multi-resolution
HA-SSVM DPM described here, but with the generic name
of DA-DPM (domain adaptive DPM). In this case, we used
200 pedestrians of the KITTI training set, roughly the 11%
of the available ones, as well as 2,000 pedestrian-free im-
ages of the 7,518 available for training. We note that under
the KITTI benchmark, the object detection evaluation crite-
rion is different from the Caltech one. Accuracy is measured

2 http://www.cvlibs.net/datasets/kitti/

as precision vs recall instead of miss rate vs FPPI. Note also
that, in order to avoid parameter tuning, the ground truth of
the KITTI testing data is not available.

For all the experiments, the SRC classifier (see Table |I|)
is the same DPM, trained with the virtual-world dataset. It
is worth to mention that we use a DPM root filter of 12 x 6
HOG cells (each cell is of 8 x 8 pixels), i.e., the minimum
size of the detectable pedestrians is 96 x 48 pixels. Then, for
the multi-resolution adaptation (to Caltech and KITTI), we
build the two-layer hierarchical model of Fig. 2(b). When
computing features, we add an extra octave at the bottom
of the feature pyramid and then divide the pyramid into two
pyramids: high resolution pyramid which contains pedestri-
ans taller than 96 pixels, and low resolution pyramid which
contains pedestrians lower than 96 pixels. The extended fea-
ture pyramid is illustrated in Fig.[3(b). During training time,
we assign the training pedestrians to the high and low res-
olution domains according to the height of their bounding
boxes, while the background samples are shared by both
domains. In figure Fig. 5] we show the pedestrian height
distribution of the virtual- and real-world training datasets.
Note that the virtual-world dataset has few low resolution
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Rank Method Moderate Easy Hard
1 DA-DPM 45.51 % 56.36 % | 41.08 %
2 LSVM-MDPM-sv 39.36 % 4774 % | 35.95 %
3 LSVM-MDPM-us 3835 % 45.50 % | 34.78 %
4 mBoW (LP) 3137 % 44.28 % | 30.62 %

Table 2 Evaluation on KITTI pedestrian detection benchmark during
the RMRC’2013. Results are given as average precision (AP). Our
method DA-DPM (which is actually the application of HA-SSVM to
a DPM trained with virtual-world data) outperforms the previous best
method LSVM-MDPM-sv by 5 ~ 8 points in average precision. "LP”
means that the method uses point clouds from a Velodyne laser scanner.

pedestrians compared with the real-world ones, thus making
the pursued adaptation challenging. In testing time, we ap-
ply the two adapted models to the corresponding resolution
pyramid and finally we combine their detections and apply
non-maximum suppression to obtain the final detections.

4.1.3 Results

In Fig.[§l we can see the results for the setting of Fig. [2[a). It
can be appreciated that pooling-all-target-domains strategy
(A-SSVM-ALL) can have better adaptation accuracy than
using single target domain data (A-SSVM). However, HA-
SSVM achieves even better accuracy when trained with the
same samples as A-SSVM-ALL, which demonstrates the
importance of leveraging multiple target domains in a hi-
erarchy.

In Fig. [6] we can also see the results of applying set-
ting Fig. [JJa) to Caltech. We additionally assessed the ac-
curacy provided by the intermediate model w"°, which is
denoted by HA-SSVM-NO in contrast to HA-SSVM-MRes
which corresponds to the full multi-resolution adaptation.
Note how even HA-SSVM-NO shows better classification
accuracy than A-SSVM. It demonstrates the effectiveness of
the progressive adaptation in HA-SSVM, which can be ex-
plained by the fact that the multi-task training learns general
shared parameters for multiple target domains (i.e. high- and
low-resolution domains), while single-task A-SSVM does
not take into account the differences of multi-resolution sam-
ples. Of course, HA-SSVM-MRes is providing the best ac-
curacy. Quantitative results are shown in Fig.[/| where it can
be seen that HA-SSVM-MRes is capable of detecting lower
resolution pedestrians.

Finally, as can be see in Table 2] we won the pedestrian
detection challenge of the RMRC’2013EI, i.e., we outper-
formed LSVM-MDPM-sv (A.Geiger et al, 2011), LSVM-
MDPM-us (Felzenszwalb et al., 2010) and mBoW (Behley
et al.,|[2013). Our precision-recall curves can be seen in Fig.

3 In the RMRC’2013 program it can be checked that we
did a talk as winners of the pedestrian detection challenge, see
http://ttic.uchicago.edu/~rurtasun/rmrc/program.php.
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Fig. 8 Pedestrian detection results on KITTI benchmark.

We think that this was a quite remarkable result because,
as we mentioned before, in order to adapt our virtual-world
based pedestrian DPM we only used the ~ 11% of the KITTI
training pedestrians and the ~ 27% of the available pedes-
trian-free images. This implies that the adaptation took 20
minutes approximately in our 1 core @ 3.5 Ghz desktop
computer, while training the original DPM (Felzenszwalb
et al.l 2010) with all the full KITTI training set may need
around 10 hours in the same conditions. It is also worth to
point out that, as can be deduced from Fig. [5] the number
of (virtual-world) pedestrians used for building our source
model plus the 200 pedestrians selected from the KITTI
training dataset is still lower than the total number of pedes-
trians in the KITTT dataset. Similarly for the pedestrian-free
images, since we use 2,000 from the virtual world to build
the source model and 2,000 from the KITTI training set to
do the adaptation, while there are around 7,500 available
for training. Moreover, as to the best of our knowledge, this
was the first time that a domain adapted object detector wins
such a challenge.

Of course, after RMRC’2013 we were completing the
work presented in this paper, and other proposals have been
submitted to the pedestrian detection challengeﬂ In partic-
ular, at this moment there are six new submissions. Some
performed worse than ours (three), some performed quite
similarly (two) and another clearly outperformed the rest.
Altogether, our domain adapted detector still ranks fourth.
We plan to improve our detector in terms of used features
and pedestrian model, however, this is out of the scope of
this paper since these improvements are not related to the
domain adaptation process itself.

5 Domain Adaptation of Multi-category Classifiers
In the following, we evaluate HA-SSVM on multi-category

classifiers. We begin with the scenario in which the target
sub-domains are given a priori. After we assess the scenario

4 http://www.cvlibs.net/datasets/kitti/eval object.php
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Fig. 7 Pedestrian detection on Caltech dataset for SRC, A-SSVM and HA-SSVM based models. The results are drawn at FPPI = 0.1.

in which such sub-domains must be discovered. For illustrat-
ing how HA-SSVM operates with multi-category classifiers,
we focus on object category recognition.

Assume we are given an set of N examples, &, each one
labeled as belonging to a category among K possible ones,
ie. 7={(x,y))xi eR"y; € {1,...,K}}¥ . Letwy,...,wg
be the parameters of K linear category classifiers, so that a
new example X is assigned to a category according to the
rule f(x) = argmax;cqy gy WX Let w=[wy,...,wi| in
RX"and a feature map @ (x,y) = [0/,...,x/,...,0']’, where
0 € R" is the zero vector and x is located at the y-th slot in
&(x,y). Now the multi-category classification problem can
be treated as a special case of structure output prediction:
f(x) = 11

argmax W ®(x,y).
ye{l,...K}

In order to apply HA-SSVM, Eq. (7) can be directly used as
a basic adaptation unit by writing the loss term as:

Zé\’:] [maxﬁe{l,.“,K}(wl(p(XayA) +A (y\ayt)) - WI(D(Xi,yi)]v
12)

where A($,y;) is the 0-1 loss function.

5.1 Known Target Sub-Domains

5.1.1 Datasets

We evaluate HA-SSVM for object category recognition us-

ing the benchmark domain adaptation dataset known as Office-

Caltech (Gong et al.}[2012;[Hoffman et al.,[2013). This dataset
combines the Office (Saenko et all, 2010) and Caltech256
(Griffin et al.l 2007) datasets. In particular, Office-Caltech

Adaptive SVM (Yang et al.}|2007). It does not require the
ASVM source domain data, only the learned source classifier. In
contrast to A-SSVM, ASVM does not consider structural
information.
Projective model transfer SVM (Aytar and Zissermanl
PMT-SVM [20TT), which is a variant of ASVM.
The geodesic flow kernel method (Gong et a1.|, 2012),
GFK which requires both source and target domain data
(including testing data).
Max-margin domain transfer method of (Hoffman et al.|
MMDT [2073), which learns a mapping from target domain to
source domain as well as a discriminative classifier using
the mapped target and source domain features.
A-SSVM Analogous to Table|1
IKLSLS VM- Analogous to Table

Table 3 Different types of learned multi-category classifiers.

consists of the 10 overlapping object categories between Of-
fice and Caltech256, which are backpack, calculator,
coffee-mug, computer-keyboard, computer-monitor,
computer-mouse, head-phones, laptop-101, touring-
-bike and video-projector in the terminology of Cal-
tech256.

From the viewpoint of domain adaptation, Office-Caltech
consists of four domains. One domain, called caltech (C),
corresponds to the images of Caltech256, which were col-
lected from the internet using Google. The other three do-
mains come from Office, namely the amazon (A), webcam
(W) and dslr (D) domains. The amazon domain is a col-
lection of product images from amazon.com. The webcam
and dslr domains contain images taken by a (low resolu-
tion) webcam and a (high resolution) digital single-lens re-
flex camera, respectively. Cross-domain variations are not
the only ones, but for a particular domain and category, the
objects are imaged under different poses and illumination
conditions.
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[ [ AW [ A-D | A-C [ WA | WD | W—C |
ASVM | 650+1.0 | 516 1.1 309+0.6 | 486+ 1.1 544+15 | 298+ 1.0
PMT-SVM | 659+1.0 | 526+ 1.1 323+£0.6 | 490+ 1.1 579+ 1.6 | 304409
GFK | 56.54+0.8 | 453+09 | 38.6+04 | 4584+06 | 73.8£0.7 | 32.6 0.6
MMDT | 65.14+1.2 | 545+1.0 | 39.7+0.5 | 506 £0.8 | 625+ 1.0 | 34.8+0.8
A-SSVM | 60.0+09 | 4974+08 | 426 =05 | 4954+0.5 | 674+0.7 | 37.3+0.5
A-SSVM-ALL | 645+0.7 | 551 +08 | 426 +03 | 498+05 | 67.8+0.8 | 39.0+0.3
HA-SSVM | 698 0.7 | 59.7+0.9 | 42.14+04 | 544 +0.6 | 66.1 1.1 394 +0.3

[ | DA [ D>W [ D»C [ CoA | C=W | CoD |
ASVM | 48.0+£1.1 635+ 1.1 299+08 | 4954+10 | 63.2+£1.2 | 52.7+1.3
PMT-SVM | 48.6 + 1.1 66.5+12 | 309+08 | 500£1.0 | 64312 | 522413
GFK | 458+04 | 80.3+0.7 | 3334+05 | 4644+0.7 | 61.0+14 | 52.7+1.2
MMDT | 504 4+0.7 | 7424+0.7 | 35.74+0.7 | 51.1£0.7 | 629 £ 1.1 53.0+ 1.0
A-SSVM | 486+05 | 74.6+06 | 355405 | 53.44+0.7 | 63.6+1.2 | 52.7+1.0
A-SSVM-ALL | 49.0+0.5 | 7324+0.7 | 378404 | 506 0.6 | 66.2+0.6 | 57.5+0.9
HA-SSVM | 52.6 =05 | 73.0+0.5 | 39.2+0.6 | 53.4+0.8 | 69.6 0.7 | 61.2+09

Table 4 Multi-category recognition accuracy on target domains. Bold indicates the best result for each domain split. Underline indicates the
second best result. The domains are: A: amazon, W: webcam, D: dsir, C: Caltech256. We use the nomenclature Source— Target.

[ ASVM [ PMT-SVM | GFK ]

MMDT

| A-SSVM [ A-SSVM-ALL [ HA-SSVM |

(48911 [ 489£ 1.1 | 51.0+£07 [ 529+£09 | 52907 |

544+06 [ 567+£07 |

Table 5 Multi-category recognition accuracy averaged across all domain splits, with the corresponding standard deviation.

5.1.2 Setup

We follow the experimental setup of (Saenko et al.| [2010;
Gong et al.,|2012; |Hoffman et al., 2013), which we summa-
rize in the following. We have four domains (A, W, D, C)
and the same 10 object categories per domain. For each ex-
periment, one domain is selected as source domain and the
other three as target domains. The number of examples per
category varies from domain to domain and from category to
category. When A is the source, 20 examples are randomly
selected per category for training, while when the sources
are either W, D or C, only 8 examples are selected per cat-
egory. When a domain plays the role of target, only 3 ex-
amples are selected per category for performing the domain
adaptation (training). All the examples of the target domains
not used for training are used for testing. The accuracy of the
classification is measured as the number of correctly clas-
sified test examples divided by the total number of them
(i.e., without distinguishing object categories). In fact, since
the splitting of the available examples into training (source
and target) and testing (target) is based on random selection,
each experiment is repeated 20 times. Therefore, the aver-
age of the 20 obtained accuracy values is actually used as
final accuracy measure together with its associated standard
deviation.

In order to make easier across-paper comparisons, we
use the same 20 random train/test splits available from (Hoff-
man et al., 2013)). Moreover, rather than using our own fea-

ture computation software, we use the pre-computed SURF-
based bag of (visual) words (BoW) available for the im-
ages of Office-Caltech. Then, following (Gong et al.l 2012),
we apply PCA to such original SURF-BoW to obtain his-
tograms of 20 visual words (bins).

5.1.3 Baselines

We compare our algorithm to the baselines summarized in
Table[3] A-SVM, PMT-SVM, A-SSVM and A-SSVM-ALL
are adapted with the target domain examples and the source
classifiers, the rest of methods require the target domain ex-
amples and the original source domain ones for retraining.
For the A-SVM and PMT-SVM methods we use the imple-
mentation provided by (Aytar and Zisserman, 201 1), includ-
ing MOSEK optimization (Mosekl [2013). We run GFK and
MMDT using the code of (Hoffman et al., 2013). Note that
in (Hoffman et al., [2013), GFK and MMDT are the best
performing methods among others, including ARCT (Kulis
et al.,)2011)) and HFA (Duan et al.,[2012) methods. All these
methods, except A-SSVM-ALL, follow the one-to-one do-
main adaptation style (Fig. [I(a)), i.e., an independent do-
main adapation is performed for each target domain.

5.1.4 Results

We first evaluate the accuracy of HA-SSVM with a two-
layer adaptation tree, i.e., all the target domain datasets are
at the same layer and connected to the source domain dataset
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[ AdaptationTree [ AW | A—D [ A-C [ Avg |
A—[W, D, C] 69.8£0.7 | 59.7+09 | 42.1+04 | 484
A—[W,[D,C]] | 69.8+0.7 | 595+ 1.0 | 40.1 +£04 | 47.7
A—[D,[W,C]] | 69.8+0.6 | 59.1+0.8 | 409+04 | 47.8
A—[C,[D,W]] | 727+£0.7 | 63.4+12 | 4214+04 | 495

[ AdaptationTree | W—A | W=D [ W—oC [ Avg. |
W—I[A, D, C] 544+£06 | 66.1 £1.1 | 394+03 | 473
W—I[A,[D,C]] | 543+05 | 63313 | 387£0.5 | 469
W—[D,[A,C]] | 557+0.6 | 658+1.0 | 395+04 | 48.1
W—[C,[A,D]] | 542+0.6 | 63.5+1.0 | 395+04 | 473

[ Adaptation Tree [ D—A [ D—-W [ D—C [ Avg. ]
D—[A, W, C] 5264+05 | 73.0£05 | 392+£0.6 | 487
D—[A,[W,C]] | 52.6+0.6 | 71.8 0.7 | 39.4+£0.6 | 485
D—[W,[A,C]] | 540£0.6 | 73.0+£0.8 | 39.9+0.6 | 49.6
D—[C,[A,W]] | 53.0£0.6 | 71.0+0.7 | 389+0.6 | 483

[ Adaptation Tree [ C—A [ C—>W [ C—D [ Avg. ]
C—[A, W, D] 534+0.8 | 69.6+£0.7 | 61.2£09 | 57.3
C—[A,[W,D]] | 532+£0.7 | 71.2+0.7 | 63.0+ 1.1 | 57.8
C—[W,[A,D]] | 532+0.6 | 69.5+0.6 | 59.7+1.3 | 57.1
C—[D,[A,W]] | 524+0.6 | 689+1.0 | 61.0x1.1 | 56.5

Table 6 HA-SSVM trained with various adaptation trees. The first col-
umn illustrates the tree structure. A two-layer adaptation tree is repre-
sented by X—[Y,Z,T], where X is the source domain and Y, Z and T are
sibling target domains. These results are just a copy of the HA-SSVM
ones shown in Table E} A three-layer adaptation tree is represented by
X—[Y,[Z,T]], where Z and T are siblings on the third layer and Y is
located on the second layer.

[ [ Amazon | DSLR | Webcam [ Caltech256 ]

Amazon — 8.13 9.03 9.78
DSLR 8.13 — 9.60 8.25
WebCam 9.03 9.60 — 8.96
Caltech256 9.78 8.25 8.96 —

Table 7 Domain similarities in terms of QDS values (Ni et al., [2013).
Lager values indicate higher similarity.

by an intermediate node, similar to Fig. 2(a). The accuracy
for each source/targets split is shown in Table ] Table 3]
shows the accuracy of each algorithm averaged over all do-
main splits. It is worth to note that our results for GFK and
MMDT are totally in agreement with the ones presented in
(Hoffman et al.| 2013) for the same experiments and set-
tings.

From Table [4] and Table [5] it is clear the importance of
using all the available target-domain examples. Note that the
best performing methods, A-SSVM-ALL (Fig. [T{b) style)
and HA-SSVM (Fig. c) style), do so in contrast to the rest
of methods, which follow the one-to-one domain adaptation
style (Fig. a)). For instance, if we focus in the A—[W,D,C]
case, both A-SSVM-ALL and HA-SSVM use 90 target do-
main examples simultaneously, i.e. 3 target domains x 10
object categories per target domain x 3 examples per cate-
gory. 1-to-1 domain adaptation style methods use 30 W ex-
amples for performing the A—W domain adaptation, and

analogously for A—D and A—C. Therefore, potential com-
monalities between W, D, and C domains are not used. More-
over, HA-SSVM outperforms A-SSVM-ALL, in agreement
with our hypothesis that using the underlying hierarchical
structure of the target domains is better than just mixing
them blindly.

Focusing then on HA-SSVM, it is also interesting to see
if other target domain structure (e.g., a three-layer hierarchy)
can improve the domain adaptation accuracy obtained so far.
We test HA-SSVM with various three-layer adaptation trees.
Table [6] shows the results. The three-layer adaptation tree
achieves results as good as the ones of the two-layer tree
and some of them are even better. By further analyzing the
domain relationships of the Office and Caltech256 datasets,
we found that there are strong connections to previous stud-
ies on domain similarity. In particular, to the rank of domain
(ROD) (Gong et al.,|2012) and the quantification of domain
shift (QDS) (N1 et al.l 2013). We show the domain simi-
larities in Table [/] using QDS measurement. We note that
the three-layer hierarchies which yield to best accuracies are
those that best capture the underlying domain relationship.
For instance, in the first group of Table @ A—[C, [D, W]]
achieves better accuracy than other adaptation trees, which
is in agreement with the fact that [D, W] show higher simi-
larity than [D, C] and [C, W] (see Table[7).

5.2 Latent Target Sub-Domains

Now we consider the scenario where the domain labels are
not given a priori for the target data. In particular, we use
again the Office-Caltech dataset with the same settings than
in Sect. [5.1.2] However, we mix the target datasets by re-
moving the domain labels. In these experiments, we first
compare two recent domain discovery algorithms, in par-
ticular, latent domain discovery (Hoffman et al., 2012) (we
call it LatDD), and domain reshaping (Gong et al., 2013)
(we call it Reshape). Finally, we evaluate the adaptation ac-
curacies with the discovered domains, using HA-SSVM.

LatDD and Reshape require category labels to operate.
However, in our domain adaptation setting we assume that
only a few target domain examples have category label, which
may be a handicap for such domain discovery methods. In
this point, as proof-of-concept, we assumed that the target
domain data does not have category labels. Therefore, we
first applied the source domain model to predict the cate-
gory labels in the unlabeled target domain (i.e., the domain
obtained by mixing the three domains not used as source).
We denote by LatDD-Pr and Reshape-Pr the cases where
we use predicted category labels instead of the groundtruth
category labels.

LatDD requires as input the number of sub-domains to
be discovered (originally this method has been developed
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Fig. 9 Visualization of domain discovery results. The vertical axis indicates the indexes of the examples. Each color represents a different domain.
For each sub-figure, the first column shows the original domain (groundtruth). The following columns are domain reshaping with predicted
category labels ("Reshape-Pr’), domain reshaping with groundtruth category labels (’Reshape’), latent domain discovery with predicted category
labels ("LatDD-Pr’) and latent domain discovery with groundtruth category labels ("LatDD’). Within the brackets we show the estimated domain

discovery accuracy running in [0,1].

to discover source domains), while Reshape involves an it-
erative process to search for the optimum number of sub-
domains. We want to compare the HA-SSVM results in terms
of discovered sub-domains vs a priori given ones, but only
from the point of view of how the target data is distributed
among a predefined number of target sub-domains. In other
words, in these experiments we do not want the number of
domains to be discovered. Therefore, we set this value to
3 for fair comparison with the experiments in Sect. [5.1] It
is worth to note that for Reshape/Reshape-Pr we only use
the so-called distinctiveness maximization step (Gong et al.}
2013).

Fig. 0] depicts the domain discovery results. It can be
seen that Reshape and Reshape-Pr are clearly more accurate
than LatDD and LatDD-Pr predicting the domains. Compar-
ing Reshape and Reshape-Pr, we see that the former is more
accurate as should be expected since it relies on groundtruth
data. Comparing LatDD with LatDD-Pr, the accuracy dif-
ferences are smaller than for Reshape and Reshape-Pr.

Now, for applying HA-SSVM, LatDD-Pr and Reshape-
Pr are treated equally and as follows. For each discovered

sub-domain, we assume that 3 examples are category-labeled
for each category. Since our experiments are with 10 cate-
gories, as in Sect. [5.1} 90 target-domain examples must be
available for performing domain adaptation (training) and
the rest are used for testing. Since this train/test split is based
on random selection, we repeat each experiment 20 times
in order to emulate the setting of Sect. Note that for
LatDD-Pr and Reshape-Pr this means that we discard the
predicted category labels, but we require only 90 examples
to be labeled. In fact, LatDD and Reshape are not considered
for HA-SSVM since these methods would require the cate-
gory labels of all the target data (we included them in Fig.[9]
just as reference to compare with their predicted counter-
parts).

Table |8 shows the final domain adaptation accuracies.
As in Sect.[5.| we evaluate two- and three-layer hierarchies,
for the latter we only show the best obtained result among all
possible configurations. We see that these results are compa-
rable to the best obtained in Sect. [5.1] (also included in Ta-
ble [8] as *Given’ for the reader convenience). Although we
work with discovered sub-domains, HA-SSVM still outper-
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Fig. 10 Reshape-Pr + HA-SSVM qualitative results. Three exemplars for two categories are shown for each domain discovered by Reshape-Pr.
The three-layer hierarchy used by HA-SSVM is also indicated for the underlying domains [A,D,C] (top) and [A,W,D] (bottom). In both cases, it
correspond to the most accurate HA-SSVM-based multi-category classifier among the different ones that can be obtained for different three-layer

hierarchy configurations.

Source Domain A w D C
Original Target Domains W, D, C A,D,C AW, C A, W,D

Method Hierarchy | Domain Discovery

A-SSVM-ALL | — — 476+04 | 454+04 | 465+0.5 | 544406
HA-SSVM 2 Layers Given 484 +0.5 | 47.3+£05 | 487+£0.6 | 57.3£0.8
HA-SSVM 3 Layers Given 495+04 | 481+06 | 496 £ 05 | 57.8+0.7
HA-SSVM 2 Layers LatDD-Pr 462+03 | 452+04 | 4594+04 | 53.1+06
HA-SSVM 3 Layers LatDD-Pr 463+04 | 45.1+14 | 458+04 | 53.0+0.7
HA-SSVM 2 Layers Reshape-Pr 49.0+0.6 | 470+0.5 | 48.0+0.5 | 594+ 0.5
HA-SSVM 3 Layers Reshape-Pr 49.1+£0.6 | 47.9+05 | 482+£0.5 | 59.1£0.5

Table 8 The average multi-category recognition accuracy for a single target domain, for a priori *Given’ domains (Sect. , and for discovered
latent domains (LatDD-Pr and Reshape-Pr). For the three-layer hierarchies we only show the best result among all possible three-layer adaptation

trees.

forms the single-layer adaptation pooling-all strategy. Resha-
pe-Pr outperforms LatDD-Pr as expected given the domain
discovery accuracies seen in Fig. 0] However, the differ-
ences in accuracy are much larger for domain discovery than
for the final object category classification, which may be
due to the fact that HA-SSVM trains all the object category
classifiers simultaneously for all domains in the hierarchy;
thus, partially compensating domain assignment errors. Fi-
nally, for illustration purposes, Fig. [I0| shows object exam-
ples within the domains discovered by Reshape-Pr and some
of the three-layer adaptation trees used by HA-SSVM.

6 Conclusions

In this paper, we present a novel domain adaptation method
which leverages multiple target domains (or sub-domains)
in a hierarchical adaptation tree. The key idea of the method
is to exploit the commonalities and differences of the jointly
considered target domains. Given the increasing interest on
structural SVM (SSVM) classifiers, we have applied this
idea to the domain adaptation method known as adaptive
SSVM (A-SSVM), which only requires the target domain
samples together with the existing source-domain classifier
for performing the desired adaptation. Thus, in contrast with
many other methods, the source domain samples are not re-
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quired. Altogether, we term the presented domain adaptation
technique as hierarchical A-SSVM (HA-SSVM).

As proof of concept we have applied HA-SSVM to pedes-
trian detection and object category recognition applications.
The former involved to apply HA-SSVM to the widespread
deformable part-based model (DPM) while the latter im-
plied their application to multi-category classifiers. In both
cases, we showed how HA-SSVM is effective in improving
the detection/recognition accuracy with respect to state-of-
the-art strategies that ignore the structure of the target data.
Moreover, focusing on the object category recognition ap-
plication, we have evaluated HA-SSVM assuming that the
target domains are discovered, obtaining comparable results
to the case in which such domains are known a priori.

As future work we would like to incorporate some re-
cent advances in domain adaptation within the HA-SSVM
framework. In particular, our structure-aware A-SSVM (SA-
SSVM) approach (Xu et al., [2014a), as well as the cross-
domain attribute codes (Mirrashed and Rastegar}, [2013).
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