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Abstract We study the problem of Salient Object

Subitizing, i.e. predicting the existence and the number

of salient objects in an image using holistic cues. This

task is inspired by the ability of people to quickly

and accurately identify the number of items within

the subitizing range (1-4). To this end, we present a

salient object subitizing image dataset of about 14K

everyday images which are annotated using an online

crowdsourcing marketplace. We show that using an

end-to-end trained Convolutional Neural Network

(CNN) model, we achieve prediction accuracy compa-

rable to human performance in identifying images with

zero or one salient object. For images with multiple

salient objects, our model also provides significantly

better than chance performance without requiring any

localization process. Moreover, we propose a method
to improve the training of the CNN subitizing model

by leveraging synthetic images. In experiments, we

demonstrate the accuracy and generalizability of our

CNN subitizing model and its applications in salient

object detection and image retrieval.
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Fig. 1 How fast can you tell the number of prominent objects
in each of these images? It is easy for people to identify the
number of items in the range of 1-4 by a simple glance. This
“fast counting” ability is known as Subitizing.

1 Introduction

How quickly can you tell the number of salient objects

in each image in Fig. 1?

As early as the 19th century, it was observed that

humans can effortlessly identify the number of items
in the range of 1-4 by a glance (Jevons, 1871). Since

then, this phenomenon, later coined by Kaufman et al.

as Subitizing (Kaufman et al., 1949), has been studied

and tested in various experimental settings (Atkinson

et al., 1976; Mandler and Shebo, 1982). It is shown

that identifying small numbers up to three or four is

highly accurate, quick and confident, while beyond this

subitizing range, this sense is lost. Accumulating evi-

dence also shows that infants and even certain species

of animals can differentiate between small numbers of

items within the subitizing range (Dehaene, 2011; Gross

et al., 2009; Davis and Pérusse, 1988; Pahl et al., 2013).

This suggests that subitizing may be an inborn nu-

meric capacity of humans and animals. It is speculated

that subitizing is a preattentive and parallel process

(Dehaene, 2011; Trick and Pylyshyn, 1994; Vuilleumier

and Rafal, 2000), and that it can help humans and an-

imals make prompt decisions in basic tasks like naviga-

tion, searching and choice making (Piazza and Dehaene,

2004; Gross, 2012).
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Fig. 2 Sample images of the proposed SOS dataset. We collected about 14K everyday images, and use Amazon Mechanical
Turk (AMT) to annotate the number of salient object of each image. The consolidated annotation is shown on the top of each
image group. These images cover a wide range of content and object categories.

Inspired by the subitizing phenomenon, we propose

to study the problem of Salient Object Subitizing

(SOS), i.e. predicting the existence and the number

(1, 2, 3, and 4+) of salient objects in an image

without using any localization process. Solving the

SOS problem can benefit many computer vision tasks

and applications.

Knowing the existence and the number of salient

objects without the expensive detection process can en-

able a machine vision system to select different pro-

cessing pipelines at an early stage, making it more in-

telligent and reducing computational cost. For exam-

ple, SOS can help a machine vision system suppress

the object recognition process, until the existence of

salient objects is detected, and it can also provide cues

for generating a proper number of salient object detec-

tion windows for subsequent processing. Furthermore,

differentiating between scenes with zero, a single and

multiple salient objects can also facilitate applications

like image retrieval, iconic image detection (Berg and
Berg, 2009), image thumbnailing (Choi et al., 2014),

robot vision (Scharfenberger et al., 2013), egocentric

video summarization (Lee et al., 2012), snap point pre-

diction (Xiong and Grauman, 2014), etc.

In our preliminary work (Zhang et al., 2015a), we

presented the first formulation of SOS and an SOS im-

age dataset of about 7K images. The number of salient

objects in each image was annotated by Amazon Me-

chanical Turk (AMT) workers. The resulting annota-

tions from the AMT workers were analyzed in a more

controlled offline setting; this analysis showed a high

inter-subject consistency in subitizing salient objects in

the collected images. In this paper, we follow the same

data collection procedure and expand our SOS dataset

by approximately doubling the dataset size. This al-

lows us to train more generalizable SOS models and

have more robust evaluations. In Fig. 2, we show some

sample images in the SOS dataset with the collected

groundtruth labels.

We formulate the SOS problem as an image classi-

fication task, and aim to develop a method to quickly

and accurately predict the existence and the number

of generic salient objects in everyday images. We pro-

pose to use an end-to-end trained Convolutional Neural

Network (CNN) model for our task, and show that an

implementation of our method achieves very promising

performance. In particular, the CNN-based subitizing

model can approach human performance in identifying

images with no salient object and with a single salient

object. We visualize the learned CNN features and show

that these features are quite generic and discrimina-

tive for the class-agnostic task of subitizing. Moreover,

we empirically validate the generalizability of the CNN

subitizing model to unseen object categories.

To further improve the training of the CNN SOS

model, we experiment with the usage of synthetic im-

ages. We generate a total of 20K synthetic images that

contain different numbers of dominant objects using

segmented objects and background images. We show

that model pre-training using these synthetic images

results in an absolute increase of more than 2% in Av-

erage Precision (AP) in identifying images with 2, 3

and 4+ salient objects respectively. In particular, for

images with 3 salient objects, our CNN model attains

an absolute increase of about 6% in AP.

We demonstrate the application of our SOS method

in salient object detection and image retrieval. For

salient object detection, our SOS model can effectively

suppress false object detections on background images

and estimate a proper number of detections. By lever-

aging the SOS model, we attain an absolute increase

of about 4% in F-measure over the state-of-the-art

performance in unconstrained salient detection (Zhang

et al., 2016). For image retrieval, we show that the

SOS method can be used to handle queries with object

number constraints.

In summary, the key contributions of this work are:
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1. We formulate the Salient Object Subitizing (SOS)

problem, which aims to predict the number of

salient objects in an image without resorting to any

object localization process.

2. We provide a large-scale image dataset for studying

the SOS problem and benchmarking SOS models.

3. We present a CNN-based method for SOS, and pro-

pose to use synthetic images to improve the learned

CNN model.

4. We demonstrate applications of the SOS method in

salient object detection and image retrieval.

Compared with our preliminary work on SOS

(Zhang et al., 2015a), we make several major im-

provements in this paper: 1) we expand the SOS

dataset by doubling the number of images; 2) we

attains significantly better performance by leveraging

a more advanced CNN architecture, additional real

training data and a large number of synthetic training

data; 3) we conduct extensive experimental analyses

to compare CNN model architectures, visualize the

learned CNN features, and validate the generalizability

of the SOS model for unseen object categories; 4) in

addition to salient object detection, we demonstrate

the application of SOS in image retrieval.

2 Related Work

Salient object detection. Salient object detection

aims at detecting dominant objects in a scene. Given a

test image, some methods (Achanta et al., 2009; Cheng

et al., 2011; Shen and Wu, 2012; Zhang et al., 2015b)

generate a saliency map that highlights the overall re-

gion of salient objects; other methods (Liu et al., 2011;

Gopalakrishnan et al., 2009; Feng et al., 2011; Siva

et al., 2013) produce bounding boxes for localization.

Ideally, if a salient object detection method can well

localize each salient object, then the number of objects

can be simply inferred by counting the detection win-

dows. However, many existing salient object detection

methods assume the existence of salient objects, and

they are mainly tested and optimized for images that

contain a single dominant object (Li et al., 2014; Borji

et al., 2012). Therefore, salient object detection meth-

ods often generate undesirable results on background

images, and are prone to fail on images with multi-

ple objects and complex background. Recently, Zhang

et al. (2016) proposed a salient object detection method

for unconstrained images. Although this method can

handle complex images to some extent, we will show

that the counting-by-detection approach is less effective

than our subitizing method in predicting the number of

salient objects.

Detecting the existence of salient objects.

Only a few works address the problem of detecting the

existence of salient objects in an image. Wang et al.

(2012) use a global feature based on several saliency

maps to determine the existence of salient objects

in thumbnail images. Their method assumes that an

image either contains a single salient object or none.

Scharfenberger et al. (2013) use saliency histogram

features to detect the existence of interesting objects

for robot vision. It is worth noting that the testing

images handled by the methods of Wang et al. (2012)

and Scharfenberger et al. (2013) are substantially

simplified compared to ours, and these methods cannot

predict the number of salient objects.

Automated object counting. There is a large

body of literature about automated object count-

ing based on density estimation (Lempitsky and

Zisserman, 2010; Arteta et al., 2014), object detec-

tion/segmentation (Subburaman et al., 2012; Nath

et al., 2006; Anoraganingrum, 1999) and regression

(Chan et al., 2008; Chan and Vasconcelos, 2009). While

automated object counting methods are often designed

for crowded scenes with many objects to count, the

SOS problem aims to discriminate between images

with 0, 1, 2, 3 and 4+ dominant objects. Moreover,

automated object counting usually focuses on a specific

object category (e.g. people and cells), and assumes

that the target objects have similar appearances and

sizes in the testing scenario. On the contrary, the SOS

problem addresses category-independent inference of

the number of salient objects. The appearance and size

of salient objects can vary dramatically from category

to category, and from image to image, which poses

a very different challenge than the traditional object

counting problem.

Modeling visual numerosity. Some researchers

exploit deep neural network models to analyze the

emergence of visual numerosity in human and animals

(Stoianov and Zorzi, 2012; Zou and McClelland, 2013).

In these works, abstract binary patterns are used

as training data, and the researchers study how the

deep neural network model captures the number sense

during either unsupervised or supervised learning. Our

work looks at a more application-oriented problem,

and targets at inferring the number of salient objects

in natural images.

3 The SOS Dataset

We present the Salient Object Subitizing (SOS)

dataset, which contains about 14K everyday images.

This dataset expands the dataset of about 7K images

reported in our preliminary work (Zhang et al., 2015a).
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Fig. 3 Example labeled images for AMT workers. The num-
ber of salient objects is shown in the red rectangle on each
image. There is a brief explanation below each image.

We first describe the collection of this dataset, and

then provide a human labeling consistency analysis for

the collected images. The dataset is available on our

project website1.

3.1 Image Source

To collect a dataset of images with different numbers

of salient objects, we gathered an initial set of images

from four popular image datasets, COCO (Lin et al.,

2014), ImageNet (Russakovsky et al., 2015), VOC07

(Everingham et al., 2007), and SUN (Xiao et al., 2010).

Among these datasets, COCO, ImageNet and VOC07

are designed for object detection, while SUN is for scene

classification. Images from COCO and VOC07 often

have complex backgrounds, but their content is lim-

ited to common objects and scenes. ImageNet contains

a more diverse set of object categories, but most of its

images have centered dominant objects with relatively

simpler backgrounds. In the SUN dataset, many images

are rather cluttered and do not contain any salient ob-

jects. We believe that combining images from different

datasets can mitigate the potential data bias of each

individual dataset.

This preliminary set is composed of about 30000 im-

ages in total. There are about 5000 images from SUN,

5000 images from VOC07 respectively, 10000 images

are from COCO and 10000 images from ImageNet. For

VOC07, the whole training and validation sets are in-

cluded. We limited the number of images from the SUN

dataset to 5000, because most images in this dataset

do not contain obviously salient objects, and we do not

want the images from this dataset to dominate the cat-

egory for background images. The 5000 images were

randomly sampled from SUN. For the COCO and Ima-

1 http://www.cs.bu.edu/groups/ivc/Subitizing/

Table 1 Distribution of images in the SOS dataset

category COCO VOC07 ImageNet SUN total

0 616 311 371 1963 3261
1 2504 1691 1516 330 6041
2 585 434 935 76 2030
3 244 106 916 43 1309

4+ 371 182 475 38 1066

total 4320 2724 4213 2450 13707

Fig. 4 Sample images with divergent labels. These images
are a bit ambiguous about what should be counted as an
individual salient object. We exclude this type of images from
the final SOS dataset.

geNet datasets2, we used the bounding box annotations

to split the dataset into four categories for 1, 2, 3 and

4+, and then sampled an equal number of images from

each category, in the hope that this can help balance

the distribution of our final dataset.

3.2 Annotation Collection

We used the crowdsourcing platform Amazon Mechan-

ical Turk (AMT) to collect annotations for our prelimi-

nary set of images. We asked the AMT workers to label

each image as containing 0, 1, 2, 3 or 4+ prominent
objects. Several example labeled images (shown in Fig.

3) were provided prior to each task as an instruction.

We purposely did not give more specific instructions re-

garding some ambiguous cases for counting, e.g. count-

ing a man riding a horse as one or two objects. We ex-

pected that ambiguous images would lead to divergent

annotations.

Each task, or HIT (Human Intelligence Task) was

composed of five to ten images with a two-minute time

limit, and the compensation was one to two cents per

task. All the images in one task were displayed at the

same time. The average completion time per image was

about 4s. We collected five annotations per image from

distinct workers. About 800 workers contributed to this

dataset. The overall cost for collecting the annotation

is about 600 US dollars including the fees paid to the

AMT platform.

2 We use the subset of ImageNet images with bounding box
annotations.

http://www.cs.bu.edu/groups/ivc/Subitizing/
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Fig. 5 Averaged confusion matrix of our offline human sub-
itizing test. Each row corresponds to a groundtruth category
labeled by AMT workers. The percentage reported in each
cell is the average proportion of images of the category A
(row number) labeled as category B (column number). For
over 90% images, the labels from the offline subitizing test
are consistent with the labels from AMT workers.

Table 2 Human subitizing accuracy in matching category
labels from Mechanical Turk workers.

sbj.1 sbj.2 sbj.3 Avg.

Accuracy 90% 92% 90% 91%

A few images do not have a clear notion about what

should be counted as an individual salient object, and

labels on those images tend to be divergent. We show

some of these images in Fig. 4. We exclude images with

fewer than four consensus labels, leaving about 14K im-

ages for our final SOS dataset. In Table 1, we show the

joint distribution of images with respect to the labeled

category and the original dataset. As expected, the ma-

jority of the images from the SUN dataset belong to the

“0” category. The ImageNet dataset contains signifi-

cantly more images with two and three salient objects
than the other datasets.

3.3 Annotation Consistency Analysis

During the annotation collection process, we simplified

the task for the AMT workers by giving them 2 min-

utes to label five images at a time. This simplification

allowed us to gather a large number of annotations with

reduced time and cost. However, the flexible viewing

time allowed the AMT workers to look closely at these

images, which may have had an influence over their

attention and their answers to the number of salient

objects. This leaves us with a couple important ques-

tions. Given a shorter viewing time, will labeling con-

sistency among different subjects decrease? Moreover,

will shortening the viewing time change the common

answers to the number of salient objects? Answering

these question is critical in understanding our problem

and dataset.

0 vs 1

4+ vs 2

2 vs 1

4+ vs 0

4+ vs 1

4+ vs 0

Fig. 6 Sample images that are consistently labeled by all
three subjects in our offline subitizing test as a different cat-
egory from what is labeled by the Mechanical Turk workers.
Above each image, there is the AMT workers’ label (left) vs
the offline-subitizing label (right).

To answer these questions, we conducted a more

controlled offline experiment based on common exper-

imental settings in the subitizing literature (Atkinson

et al., 1976; Mandler and Shebo, 1982). In this experi-

ment, only one image was shown to a subject at a time,

and this image was exposed to the subject for only 500

ms. After that, the subject was asked to tell the num-

ber of salient objects by choosing an answer from 0, 1,

2, 3, and 4+.

We randomly selected 200 images from each cate-

gory according to the labels collected from AMT. Three

subjects were recruited for this experiment, and each

of them was asked to complete the labeling of all 1000

images. We divided that task into 40 sessions, each of

which was composed of 25 images. The subjects re-

ceived the same instructions as the AMT workers, ex-

cept they were exposed to one image at a time for 500

ms. Again, we intentionally omitted specific instruc-

tions for ambiguous cases for counting.

Over 98% test images receive at least two out of

three consensus labels in our experiment, and all three

subjects agree on 84% of the test images. Table 2 shows

the proportion of category labels from each subject that

match the labels from AMT workers. All subjects agree

with AMT workers on over 90% of sampled images. To

see details of the labeling consistency, we show in Fig. 5

the averaged confusion matrix of the three subjects.

Each row corresponds to a category label from the AMT

workers, and in each cell, we show the average number

(in the brackets) and percentage of images of category

A (row number) classified as category B (column num-

ber). For categories 1, 2 and 3, the per-class accuracy

scores are above 95%, showing that limiting the viewing

time has little effect on the answers in these categories.
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For category 0, there is a 90% agreement between the

labels from AMT workers and from the offline subitiz-

ing test, indicating that changing the viewing time may

slightly affect the apprehension of salient objects. For

category 4+, there is 78% agreement, and about 13%

of images in this category are classified as category 0.

In Fig. 6, we show sample images that are consis-

tently labeled by all three subjects in our offline subi-

tizing test as a different category than labeled by AMT

workers. We find some labeling discrepancy may be at-

tributed to the fact that objects at the image center

tend to be thought of as more salient than other ones

given a short viewing time (see images in the top row of

Fig. 6). In addition, some images with many foreground

objects (far above the subitizing limit of 4 ) are labeled

as 4+ by AMT workers, but they tend to be labeled as

category 0 in our offline subitizing test (see the middle

and right images at the bottom row in Fig. 6).

Despite the labeling discrepancy on a small propor-

tion of the sampled images, limiting the viewing time

to a fraction of a second does not significantly decrease

the inter-subject consistency or change the answers to

the number of salient objects on most test images. We

thereby believe the proposed SOS dataset is valid. The

per-class accuracy shown in Fig. 5 (percentage numbers

in diagonal cells) can be interpreted as an estimate of

the human performance baseline on our dataset.

4 Salient Object Subitizing by Convolutional

Neural Network

Subitizing is believed to be a holistic sense of the num-

ber of objects in a visual scene. This visual sense can

discriminate between the visual patterns possessed by

different numbers of objects in an image (Jansen et al.,

2014; Mandler and Shebo, 1982; Clements, 1999; Boy-

sen and Capaldi, 2014). This inspires us to propose a

learning-based discriminative approach to address the

SOS problem, without resorting to any object local-

ization or counting process. In other words, we aim to

train image classifiers to predict the number of salient

objects in a image.

Encouraged by the remarkable progress made by

the CNN models in computer vision (Girshick et al.,

2014; Krizhevsky et al., 2012; Razavian et al., 2014; Ser-

manet et al., 2014), we use the CNN-based method for

our problem. Girshick et al. (2014) suggest that given

limited annotated data, fine-tuning a pre-trained CNN

model can be an effective and highly practical approach

for many problems. Thus, we adopt fine-tuning to train

the CNN SOS model.

We use the GoogleNet architecture (Szegedy et al.,

2015), which has significantly fewer parameters than

the AlexNet model in our previous SOS paper (Zhang

et al., 2015a). However, GoogleNet is shown to sub-

stantially outperform AlexNet in image classification

tasks and it also compares favorably with the widely

used the VGG16 (Simonyan and Zisserman, 2015) ar-

chitecture in terms of speed and classification accuracy.

We fine-tune the GoogleNet model pre-trained on Ima-

geNet (Russakovsky et al., 2015) using Caffe (Jia et al.,

2014). The output layer of the pre-trained GoogleNet

model is replaced by a fully connected layer which out-

puts a 5-D score vector for the five categories: 0, 1, 2,

3 and 4+. We use the Softmax loss and the SGD solver

of Caffe to fine-tune all the parameters in the model.

More training details are provided in Sec. 5.

4.1 Leveraging Synthetic Images for CNN Training

Collecting and annotating real image data is a rather

expensive process. Moreover, the collected data may not

have a balanced distribution over all the categories. In

our SOS dataset, over 2/3 images belong to the “0” or

“1” category. For categories with insufficient data, the

CNN model training may suffer from overfitting and

lead to degraded generalizability of the CNN model.

Leveraging synthetic data can be a economical way

to alleviate the burden of image collection and annota-

tion (Stark et al., 2010; Sun and Saenko, 2014; Jader-

berg et al., 2014). In particular, some recent works

(Jaderberg et al., 2014; Peng et al., 2015) successfully

exploit synthetic images to train modern CNN models

for image recognition tasks. While previous works focus

on generating realistic synthetic images (e.g. using 3D

rendering techniques (Peng et al., 2015)) to train CNN

models with zero or few real images data, our goal is to

use synthetic images as an auxiliary source to improve

the generalizability of the learned CNN model.

We adopt a convenient cut-and-past approach to

generate synthetic SOS image data. Given a number

N in the range of 1-4, a synthetic image is generated

by pasting N cutout objects on a background scene

image. Cutout objects can be easily obtained from

existing image datasets with segmentation annotations

or image sources with isolated object photos (e.g.

stock image databases). In this work, we use the public

available salient object dataset THUS10000 (Cheng

et al., 2015) for generating cutout objects and the SUN

dataset (Xiao et al., 2010) as the source for background

images. The THUS10000 dataset covers a wide range

of object categories so that we can obtain sufficient

variations in the shape and appearance of foreground

objects.

In THUS10000, an image may contain multiple

salient objects and some of them are covered by a
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Fig. 7 Sample synthetic images with the given numbers of
salient objects on the top. Although the synthetic images look
rather unrealistic, they are quite visually consistent with the
given numbers of salient objects. By pre-training the CNN
SOS model on these synthetic images, we expect that the
CNN model can better learn the intra-class variations in ob-
ject category, background scene type, object position and
inter-object occlusion.

single segmentation mask. To generate consistent

synthetic SOS image data, we automatically filter out

this type of images using the CNN SOS model trained

on real data. To do this, we remove the images whose

confidence scores for containing one salient object are

less than 0.95. Similarly, we filter out the images with

salient objects from the SUN dataset, using a score

threshold of 0.95 for containing no salient object.

When generating a synthetic image, we randomly

choose a background image and resize it to 256×256

regardless of its original aspect ratio. Then, we pick a

cutout object and generate a reference object by re-

sizing it to a randomly generated scale relative to 256

based on the largest dimension of the object. The refer-

ence scale is uniformly sampled in the range [0.4, 0.8].

After that, we apply random horizontal flipping and

mild geometric transforms (scaling and rotation) on the

reference object each time we past a copy of it to a

random position on the background image. Mild scal-
ings are uniformly sampled in the range [0.85, 1.15] and

mild rotations are uniformly sampled in the angular

range [−10, 10] degrees. The synthetic image contains

N (N ∈ [1, 4]) copies of the same cutout object. Pasting

different cutout objects together is empirically found in-

ferior to our method, probably because some cutout ob-

jects may appear more salient than the other ones when

they are put together, resulting in images that visually

inconsistent with the given number. Finally, we reject

this image if any of the pasted objects is occluded by

more 50% of its area.

Example synthetic images are shown in Fig. 7. Our

synthetic images look rather unrealistic, since we do

not consider any contextual constraints between scene

types and object categories. However, for the SOS task,

these images often look quite consistent with the given

numbers of salient objects. We expect that our CNN

model should learn generic features for SOS irrespec-

tive of semantics of the visual scenes. Thus, these syn-

thetic images may provide useful intra-class variations

in object category, background scene type, as well as

object position and inter-object occlusion.

To leverage the synthetic images, we fine-tune the

CNN model on the synthetic data before fine-tuning on

the real data. The two-stage fine-tuning scheme can be

regarded as a domain adaptation process, which trans-

fers the learned features from the synthetic data do-

main to the real data domain. Compared with combin-

ing the real and synthetic images into one training set,

we find that our two-stage fine-tuning scheme works

significantly better (see Sec. 5).

5 Experiments

5.1 Experimental Setting

For training and testing, we randomly split the SOS

dataset into a training set of 10,966 images (80% of the

SOS dataset) and a testing set of 2741 images.

CNN model training details. For fine-tuning the

GoogleNet CNN model, images are resized to 256 ×
256 regardless of their original aspect ratios. Standard

data augmentation methods like horizontal flipping and

cropping are used. We set the batch size to 32 and

fine-tune the model for 8000 iterations. The fine-tuning

starts with a learning rate of 0.001 and we multiply it

by 0.1 every 2000 iterations. At test time, images are

resized to 224× 224 and the output softmax scores are

used for evaluation.

For pre-training using the synthetic images, we gen-

erate 5000 synthetic images for each number in 1-4. Fur-

ther increasing the number of synthetic images does not

increase the performance. We also include the real back-
ground images (category “0”) in the pre-training stage.

The same model training setting is used as described

above. When fine-tuning using the real data, we do not

reset the parameters of the top fully-connected layer,

because we empirically find that it otherwise leads to

slightly worse performance.

Compared methods. We evaluate our method

and several baselines as follows.

– CNN Syn FT: The full model fine-tuned using the

two-stage fine-tuning scheme with the real and syn-

thetic image data.

– CNN Syn Aug: The model fine-tuned on the union

of the synthetic and the real data. This baseline cor-

responds to the data augmentation scheme in con-

trast to the two-stage fine-tuning scheme for lever-

aging the synthetic image data. This baseline is to

validate our two-stage fine-tuning scheme.

– CNN FT: The CNN model fine-tuned on the real

image data only.
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Table 3 Average Precision (%) of compared methods. The best scores are shown in bold. The training and the testing are
repeated for five times for all CNN-based methods, and mean and std of the AP scores are reported.

0 1 2 3 4+ mean

Chance 27.5 46.5 18.6 11.7 9.7 22.8

SalPyr 46.1 65.4 32.6 15.0 10.7 34.0
HOG 68.5 62.2 34.0 22.8 19.7 41.4
GIST 67.4 65.0 32.3 17.5 24.7 41.4

SIFT+IVF 83.0 68.1 35.1 26.6 38.1 50.1

CNN woFT 92.2±0.2 84.4±0.2 40.8±1.9 34.1±2.7 55.2±0.6 61.3±0.2
CNN FT 93.6±0.3 93.8±0.1 75.2±0.2 58.6±0.8 71.6±0.5 78.6±0.2

CNN Syn 79.2±0.5 85.6±0.2 37.4±0.8 34.8±2.6 33.0±1.1 54.0±0.6
CNN Syn Aug 92.1±0.4 92.9±0.1 75.0±0.4 58.9±0.6 69.8±0.8 77.8±0.3
CNN Syn FT 93.5±0.1 93.8±0.2 77.4±0.3 64.3±0.2 73.0±0.5 80.4±0.2

– CNN Syn: The CNN model fine-tuned on the syn-

thetic images only. This baseline reflects how close

the synthetic images are to the real data.

– CNN wo FT: The features of the pre-trained

GoogleNet without fine-tuning. For this baseline,

we fix the parameters of all the hidden layers during

fine-tuning. In other words, only the output layer

is fine-tuned.

Furthermore, we benchmark several commonly used

image feature representations for baseline comparison.

For each feature representation, we train a one-vs-all

multi-class linear SVM classifier on the training set.

The hyper-parameters of the SVM are determined via

five-fold cross-validation.

– GIST. The GIST descriptor (Torralba et al., 2003) is

computed based on 32 Gabor-like filters with vary-

ing scales and orientations. We use the implemen-

tation by Torralba et al. (2003) to extract a 512-D
GIST feature, which is a concatenation of averaged

filter responses over a 4× 4 grid.

– HOG. We use the implementation by Felzenszwalb

et al. (2010) to compute HOG features. Images are

first resized to 128× 128, and HOG descriptors are

computed on a 16× 16 grid, with the cell size being

8 × 8. The HOG features of image cells are con-

catenated into a 7936-D feature. We have also tried

combining HOG features computed on multi-scale

versions of the input image, but this gives little im-

provement.

– SIFT with the Improved Fisher Vector Encoding

(SIFT+IVF). We use the implementation by Chat-

field et al. (2011). The codebook size is 256, and

the dimensionality of SIFT descriptors is reduced to

80 by PCA. Hellinger’s kernel and L2-normalization

are applied for the encoding. Weak geometry infor-

mation is captured by spatial binning using 1 × 1,

3 × 1 and 2 × 2 grids. To extract dense SIFT, we

use the VLFeat Vedaldi and Fulkerson (2008) im-

plementation. Images are resized to 256× 256, and

a 8×8 grid is used to compute a 8192-D dense SIFT

feature, with a step size of 32 pixels and a bin size of

8 pixels. Similar to HOG, combining SIFT features

of different scales does not improve the performance.

– Saliency map pyramid (SalPyr). We use a state-of-

the-art CNN-based salient object detection model

(Zhao et al., 2015) to compute a saliency map for

an image. Given a saliency map, we construct a spa-

tial pyramid of a 8 × 8 layer and a 16 × 16 layer.

Each grid cell represents the average saliency value

within it. The cells of the spatial pyramid are then

concatenated into a 320-D vector.

Evaluation metric. We use average precision

(AP) as the evaluation metric. We use the implemen-

tation provided in the VOC07 challenge Everingham

et al. (2007) to calculate AP. For each the CNN-based

method, we repeat the training for five times and

report both the mean and the standard deviation (std)

of the AP scores. This will give a sense of statistical

significance when interpreting the difference between

CNN baselines.

5.2 Results

The AP scores of different features and CNN baselines

are reported in Table 3. The baseline Chance in Table 3

refers to the performance of random guess. To evaluate

the random guess baseline, we generate random confi-

dence scores for each category, and report the average

AP scores over 100 random trials.

All methods perform significantly better than

random guess in all categories. Among manually

crafted features, SalPyr gives the worst mean AP

(mAP) score, while SIFT+IFV performs the best,

outperforming SalPyr by 16 absolute percentage points

in mAP. SIFT+IFV is especially more accurate than
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(a) SOS (b) Counting

Fig. 8 Subitizing vs. counting. (a) Confusion matrix of our
CNN SOS method CNN Syn FT. Each row corresponds to a
groundtruth category. The percentage reported in each cell
is the proportion of images of the category A (row number)
labeled as category B (column number). (b) Confusion ma-
trix of counting using the salient object detection method by
Zhang et al. (2016).

other non-CNN features in identifying images with 0

and 4+ salient objects.

The CNN feature without fine-tuning (CNN -

wo FT) outperforms SIFT+IFV by over 10 absolute

percentage points in mAP. Fine-tuning (CNN FT) fur-

ther improves the mAP score by 17 absolute percentage

points, leading to a mAP score of 78.6%. CNN wo FT

attains comparable performance to CNN FT in identi-

fying background images, while it is significantly worse

than CNN FT in the other categories. This suggests

that the CNN feature trained on ImageNet is good

for inferring the presence of salient objects, but not

very effective at discriminating images with different

numbers of salient objects.

Pre-fine-tuning using the synthetic images (CNN -
Syn FT) further boosts the performance of CNN FT by

about 2 absolute percentage points in mAP. The per-

formance is improved in category “2”, “3” and “4+”,

where training images are substantially fewer than cat-

egories “0” and “1”. In particular, for category “3” the

AP score is increased by about 6 absolute percentage

points. The usefulness of the synthetic images may be

attributed to the fact they can provide more intra-class

variations in object category, scene type and the spatial

relationship between objects. This is especially helpful

when there is not enough real training data to cover the

variations.

Using synthetic images alone (CNN Syn) gives rea-

sonable performance, a mAP score of 54.0%. It outper-

forms SIFT+IVF, the best non-CNN baseline trained

on the real data. However, it is still much worse than

the CNN model trained on the real data. This gives a

sense of the domain shift between the real and the syn-

thetic data. Directly augmenting the training data with

the synthetic images does not improve and even slightly

worsens the performance (compare CNN Syn Aug and

CNN FT in Table 3). We believe that this is due to the

domain shift and our two-stage fine-tuning scheme can

better deal with this issue.

Fig. 8 (a) shows the confusion matrix for our best

method CNN Syn FT. The percentage reported in each

cell represents the proportion of images of category A

(row number) classified as category B (column num-

ber). The accuracy (recall) of category “0” and “1” is

both about 93%, which is close to the human accuracy

for these categories in our human subitizing test (see

Fig. 5). For the remaining categories, there is still a

considerable gap between human and machine perfor-

mance. According to Fig. 8 (a), our SOS model tends to

make mistaks by misclassifying an image into a nearby

category. Sample results are displayed in Fig. 9. Despite

the diverse object appearance and image background,

our SOS model gives reasonable performance.

5.3 Analysis

To gain a better understanding of our SOS method, we

further investigate the following questions.

How does subitizing compare to counting?

Counting is a straightforward way of getting the

number of items. To compare our SOS method with

a counting-by-detection baseline, we use a state-of-

the-art salient object detection method designed for

unconstrained images (Zhang et al., 2016). This un-

constrained salient object detection method, denoted

as USOD, leverages a CNN-based model for bounding

proposal generation, followed by a subset optimization

method to extract a highly reduced set of detection

windows. A parameter of USOD is provided to control

the operating point for the precision-recall tradeoff. We

pick an operating point that gives the best F-score3 on

the Multi-Salient-Object (MSO) dataset (Zhang et al.,

2015a) in this experiment.

The confusion matrix of the counting baseline is

shown in Fig. 8 (b). Compared with the SOS method

(see Fig. 8 (a)), the counting baseline performs signif-

icantly worse in all categories except “2”. In particu-

lar, for “0” and “4+”, the counting baseline is worse

than the SOS method by about 30 absolute percentage

points. This indicates that for the purpose of number

prediction, the counting-by-detection approach can be a

suboptimal option. We conclude that there are at least

two reasons for this outcome. First, it is difficult to pick

a fixed score threshold (or other equivalent parameters)

of an object detection system that works best for all

3 The F-score is computed as 2RP
(R+P )

, where R and P de-

note recall and precision respectively.
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Fig. 9 Sample results among the top 100 predictions for each category by our CNN SOS method CNN Syn FT. The images
are listed in descending order of confidence. False alarms are shown with red borders and groundtruth labels at the top.

Table 4 Mean average precision (%) scores for different CNN
architectures. Training and test are run for five times and the
mean and the std of mAP scores are reported.

AlexNet VGG16 GoogleNet

w/o Syn. Data 70.1±0.2 77.5±0.3 78.6±0.2
with Syn. Data 71.6±0.5 80.2±0.3 80.4±0.3

images. Even when an object detector gives a perfect

ranking of window proposals for each image, the scores

may not be well calibrated across different images. Sec-

ond, the post-processing step for extracting detection

results (e.g. non-maximum suppression) is based on the

idea of suppressing severely overlapping windows. How-

ever, this spatial prior about detection windows can be

problematic when significant inter-object occlusion oc-

curs. In contrast, our SOS method bypass the detection

process and discriminates between different numbers of

salient objects based on holistic cues.

How does the CNN model architecture

affect the performance? Besides GoogleNet, we

evaluate another two popular architectures, AlexNet

(Krizhevsky et al., 2012) and VGG16 (Simonyan and

Zisserman, 2015). The mAP scores with and without

using synthetic images are summarized in Table 4 for

each architecture. VGG16 and GoogleNet have very

similar performance, while AlexNet performs signifi-

cantly worse. Pre-training using synthetic images has

a positive effect on all these architectures, indicating

that it is generally beneficial to leverage synthetic

images for this task. The baseline of AlexNet without

synthetic image can be regarded as the best model

reported by Zhang et al. (2015a). In this sense, our

Table 5 The effect of using the synthetic images when dif-
ferent numbers of real data are used in CNN training. For
each row, the same set of synthetic images are used. Train-
ing and test are run for five times and the mean and the std
of mAP scores are reported. By using the synthetic images,
competitive performance is attained even when the size of the
real data is significantly reduced.

w/o syn. with syn.

25% real data 71.6±0.2 76.3±0.4
50% real data 75.3±0.3 78.2±0.4

100% real data 78.6±0.2 80.4±0.3

current best method using GoogleNet and synthetic

image outperforms the previous best model by 10

absolute percentage points. Note that the training and

testing image sets used by Zhang et al. (2015a) are

subsets of the training and testing sets of our expanded

SOS dataset. Therefore, the scores reported by Zhang

et al. (2015a) are not comparable to the scores in this

paper4.

Does the usage of synthetic images reduce

the need for real data? To answer this question,

we vary the amount of real data used in the training,

and report the mAP scores in Table 5. We randomly

sample 25% and 50% of the real data for training the

model. This process is repeated for five times. When

fewer real data are used, the performance of our CNN

SOS method declines much slower with the help of the

synthetic images. For example, when only 25% real data

are used, leveraging the synthetic images can provide an

4 When evaluated on the test set used by Zhang et al.
(2015a), our best method GoogleNet Syn FT achieves a mAP
score of 85.0%
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absolute performance gain of about 5% in mAP, leading

to a mAP score of 76%. However, without using the

synthetic images, doubling the size of the training data

(50% real data) only achieves a mAP score of 75%. This

suggests that we can achieve competitive performance

at a much lower cost at data collection by leveraging

the synthetic images.

What is learned by the CNN model? By fine-

tuning the pre-trained CNN model, we expect that the

CNN model will learn discriminative and generalizable

feature representations for subitizing. To visualize the

new feature representations learned from our SOS data,

we first look for features that are substantially distinct

from the ones of the original network trained on Im-

ageNet. For GoogleNet, we consider the output layer

of the last inception unit (inception 5b/output), which

has 1024 feature channels. For each feature channel of

this layer, we use the maximum activation value on an

image to rank the images in the SOS test set. We hy-

pothesize that if two feature channels represent simi-

lar features, then they should result in similar image

rankings. Given the i-th feature channel of this layer in

GoogleNet Syn FT, we compute the maximum Spear-

man’s rank correlation coefficient between its image

ranking Ri and the image ranking R̂j using the j-th

channel of the original GoogleNet:

Si = max
j=1,2···,1024

ρ(Ri, R̂j), (1)

where ρ denotes Spearman’s rank correlation coeffi-

cient, whose range is [−1, 1]. A low value of Si means

that the i-th feature channel of our fine-tuned model

gives a very different image ranking than any feature

channels from the original CNN model. In our case,

none of the values of Si is negative. Fig. 10 (a) shows

the histogram of Si. We choose the feature channels

with Si values less than 0.3 as the most novel features

learned from the SOS data.

After that, we visualize each of the novel feature

channels by showing the top nine image patches in our

SOS test set that correspond to the highest feature ac-

tivations for that channel. The spatial resolution of in-

ception 5b/output is 7×7. For an activation unit on the

7×7 map, we display the image patch corresponding to

the receptive field of the unit. Since the theoretic recep-

tive field of the unit is too large, we restrict the image

patch to be 60% of the size (0.6W×0.6H) of the whole

image.

Fig. 10 (b) shows the visualization results of some of

the novel feature representations learned by our CNN

SOS model. We find that these newly learned feature

representations are not very sensitive to the categories

of the objects, but they capture some general visual

patterns related to the subitizing task. For example,

in Fig. 10 (b), the feature corresponding to the first

block is about a close-up face of either a person or

an animal. Detecting a big face at this scale indicates

that the image is likely to contain only a single dom-

inant object. The feature corresponding to the second

block is about a pair of objects appearing side by side,

which is also a discriminative visual pattern for identi-

fying images with two dominant objects. These visual-

ization results suggest that our CNN model has learned

some category-independent and discriminative features

for SOS.

How does the SOS method generalize to un-

seen object categories? We would like to further

investigate how our CNN SOS model can generalize

to unseen object categories. To get category informa-

tion for the SOS dataset, we ask AMT workers to label

the categories of dominant objects for each image in

our SOS dataset. We consider five categories: “animal”,

“food”, “people”, “vehicle” and “other”. An image may

contain multiple labels (e.g. an image with an animal

and a person). For each image, we collect labels from

three different workers and use the majority rule to de-

cide the final labels.

To test the generalizability of our CNN model to

unseen object categories, we use the Leave-One-Out

(LOO) approach described as follows. Given category

A, we remove all the images with the label A from

the original training set, and use them as the testing

images. The original test images for “0” are also in-

cluded. Two other baselines are provided. The first is a

chance baseline, which refers to the performance of ran-

dom guess. We generate random confidence scores for

each category, and report the average AP scores over

100 random trials. Note that we have class imbalance

in the test images, so the AP scores of random guess

tend to be higher for categories with more images. The

second baseline reflects the performance for category

A when full supervision is available. We use five-fold

cross-validation to evaluate this baseline. In each fold,

1/5 of the images with the label A are used for testing,

and all the remaining images are used for training. The

average AP scores are reported. In this experiment, we

do not use the synthetic images because they do not

have category labels.

The results are reported in Table 6. For each cat-

egory, the CNN model trained without that category

(CNN-LOO) gives significantly better performance

than the Chance baseline. This validates that the CNN

model can learn category-independent features for SOS

and it can generalize to unseen object categories to

some extent. Training with full supervision (CNN-Full)

further improves over CNN-LOO by a substantial

margin, which indicates that it is still important to
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Fig. 10 Feature visualization of the inception 5b/output layer in our GoogleNet Syn FT model. We aim to visualize the new
feature representations learned from our SOS data. (a) shows the histogram of Si, which measures how distinct a feature
channel of our model is from the feature representations of the original ImageNet model (see text for more details). Lower
values of Si indicates higher distinctness, and we choose those feature channels with Si < 0.3 for visualization (b) shows the
visualization of some new feature representations learned by our SOS model. Each block displays the top nine image patches
in our SOS test set that correspond to the highest feature activations for a novel feature channel. These visualization results
suggest that our CNN model has learned some category-independent and discriminative features for SOS. For example, the
first block corresponds to a feature about a close-up face, and the second block shows a feature of a pair of objects appearing
side by side.

Table 6 Cross-category generalisation test. The CNN-LOO refers to the AP scores (%) on the unseen object category. CNN-
Full serves as an upper bound of the performance when the images of that object category are used in the training (see text
for more details). The number following each category name is the number of images with that category label.

0 1 2 3 4+ mean

animal (4101)
Chance 16.6 53.6 21.1 12.6 8.8 22.5

CNN-LOO 89.3±0.2 87.2±0.3 42.8±1.0 36.9±2.6 58.3±1.0 62.9±0.5
CNN-Full 95.0±1.7 94.8±0.4 72.8±2.0 57.9±2.8 71.8±4.0 78.5±1.3

food (372)
Chance 67.6 16.9 8.1 13.1 8.2 22.8

CNN-LOO 95.7±0.2 70.8±1.3 50.3±0.8 56.8±1.3 39.7±1.4 62.7±0.5
CNN-Full 97.7±0.4 85.9±7.2 61.1±11.2 67.8±12.4 62.8±8.3 75.1±4.1

people (3786)
Chance 17.5 50.7 21.7 10.9 13.1 22.8

CNN-LOO 86.7±0.3 84.9±0.5 47.6±0.5 31.6±1.3 56.7±1.2 61.5±0.5
CNN-Full 94.4±1.3 94.8±0.7 82.5±1.0 62.8±6.1 83.9±2.8 83.7±1.3

vehicle (1150)
Chance 40.6 56.1 8.3 3.4 4.4 22.6

CNN-LOO 91.0±0.3 92.2±0.3 42.4±2.2 16.3±0.9 47.4±0.9 57.9±0.4
CNN-Full 96.1±0.7 96.1±0.7 62.2±9.2 25.6±14.2 55.4±20.6 67.1±6.4

other (1401)
Chance 36.4 35.4 14.8 18.6 11.2 23.3

CNN-LOO 87.0±0.4 78.0±0.7 56.7±0.4 49.9±0.9 50.2±0.8 64.4±0.4
CNN-Full 93.4±0.4 90.5±2.5 70.8±7.2 63.0±3.2 60.2±8.3 75.6±2.8

use a training set that covers a diverse set of object

categories.

6 Applications

6.1 Salient Object Detection

In this section, we demonstrate the usefulness of SOS

for unconstrained salient object detection (Zhang et al.,

2016). Unconstrained salient object detection aims to

detect salient objects in unconstrained images where

there can be multiple salient objects or no salient ob-

jects. Compared with the constrained setting, where

there exists one and only one salient object, the uncon-

strained setting pose new challenges of handling back-

ground images and determining the number of salient

objects. Therefore, SOS can be used to cue a salient

object detection method to suppress the detection or

output the right number of detection windows for un-

constrained images.

Given a salient object detection method, we leverage

our CNN SOS model by a straightforward approach.

We assume that the salient object detection method

provides a parameter (e.g. the threshold for the confi-

dence score) for trade-off between precision and recall.

We call this parameter as a PR parameter. For an im-

age, we first predict the number of salient objects N

using our CNN SOS model, then we use grid search to

find such a value of the PR parameter that no more

than N detection windows are output.

Dataset. Most existing salient object detection

datasets lack background images or images containing
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Fig. 11 Precision-Recall curve of USOD, and the perfor-
mance of USOD+SOS and USOD+GT.

multiple salient objects. In this experiment, We use

the Multi-Salient-Object (MSO) dataset (Zhang et al.,

2015a). The MSO dataset has 1224 images, all of which

are from the test set of the SOS dataset, and it has

a substantial proportion of images that contain no

salient object or multiple salient objects.

Compared methods. We test our SOS model on

the unconstrained object detection method proposed

(denoted as USOD) by Zhang et al. (2016), which

achieves state-of-the-art performance on the MSO

dataset. The baseline USOD method is composed of a

CNN-based object proposal model and a subset opti-

mization formulation for post-processing the bounding

box proposals. We use an implementation provided by

Zhang et al. (2016), which uses the GoogleNet archi-

tecture for proposal generation. The USOD method

provides a PR parameter to control the number of

detection windows. We use the predicted number by

our SOS model to cue USOD, and denote this method

as USOD+SOS. We also use the groundtruth number

to show the upper-bound of the performance gain using

subitizng, and denote this baseline as USOD+GT.

Evaluation metrics. We report the precision, the

recall and the F-measure. The F-measure is calculated

as 2 PR
P+R , where P and R denote the precision and the

recall respectively. For the baseline USOD method, we

tune its PR parameter so that the its F-measure is max-

imized.

Results. The results are reported in Table 7. Fig. 11

shows the PR curve of USOD compared to the preci-

sion and recall rates of USOD+SOS and USOD+GT.

As we can see, USOD+SOS significantly outperforms

the baseline USOD, obtaining an absolute increase of

about 4% in F-measure. This validates the benefit of

adaptively tuning the PR parameter based on the SOS

model. When the groundtruth number of objects is

used (USOD+GT), another absolute increase of 3% can

be attained, which is the upper bound for the perfor-

mance improvement. Table 7 also reports the perfor-

Table 7 Salient object detection performance on the MSO
dataset. For the baseline USOD, we report its performance
using the PR parameter that gives the optimal F-measure
(%). We also report the performance of each method on a
subset of the MSO dataset, which only contain images with
salient objects (see Obj. Img. below).

Prec. Rec. F-score

Full Dataset
USOD 77.5 74.0 75.7

USOD+SOS 79.6 79.5 79.5
USOD+GT 83.9 81.7 82.8

Obj. Img.
USOD 78.0 81.0 79.4

USOD+SOS 79.5 81.8 80.6
USOD+GT 83.9 81.7 82.8

mance of each method on images with salient objects.

On this subset of images, using SOS improves the base-

line USOD by about 1 absolute percentage point in F-

measure. This suggests that our CNN SOS model is not

only helpful for suppressing detections on background

images, but is also beneficial by determining the num-

ber of detection windows for images with salient object.

Cross-dataset generalization test for identify-

ing background images. Detecting background im-

ages is also useful for tasks like salient region detec-

tion and image thumbnailing (Wang et al., 2012). To

test how well the performance of our SOS model gen-

eralizes to a different dataset for detecting the pres-

ence of salient objects in images, we evaluate it on

the web thumbnail image test set proposed by Wang

et al. (2012). The test set used by Wang et al. (2012)

is composed of 5000 thumbnail images from the Web,

and 3000 images sampled from the MSRA-B Liu et al.

(2011) dataset. 50% of these images contain a single

salient object, and the rest contain no salient object.

Images for MSRA-B are resized to 130 × 130 to simu-

late thumbnail images (Wang et al., 2012).

In Table 8, we report the detection accuracy of

our CNN SOS model, in comparison with the 5-fold

cross-validation accuracy of the best model reported

by Wang et al. (2012). Note that our SOS model is

trained on a different dataset, while the compared

model is trained on a subset of the tested dataset via

cross validation. Our method outperforms the model

of Wang et al. (2012), and it can give fast prediction

without resorting to any salient object detection

methods. In contrast, the model of Wang et al. (2012)

requires computing several saliency maps, which takes

over 4 seconds per image as reported by Wang et al.

(2012).
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Table 8 Recognition accuracy in predicting the presence of
salient objects on the thumbnail image dataset (Wang et al.,
2012). We show the 5-fold cross validation accuracy reported
in (Wang et al., 2012). While our method is trained on the
MSO dataset, it generalizes well to this other dataset.

Wang et al. (2012) Ours

accuracy (%) 82.8 84.2

6.2 Image Retrieval

In this section, we show an application of SOS in Con-

tent Based Image Retrieval (CBIR). In CBIR, many

search queries refer to object categories. It is useful in

many scenarios that users can specify the number of ob-

ject instances in the retrieved images. For example, a

designer may search for stock images that contain two

animals to illustrate an article about couple relation-

ships, and a parent may want to search his/her photo

library for photos of his/her baby by itself.

We design an experiment to demonstrate how our

SOS model can be used to facilitate the image retrieval

for number-object (e.g. “three animals”) search queries.

For this purpose, we implement a tag prediction system.

Given an image, the system will output a set of tags

with confidence scores. Once all images in a database

are indexed using the predicted tags and scores, re-

trieval can be carried out by sorting the images accord-

ing to the confidence scores of the query tags.

The tag prediction system. Our tag prediction

system uses 6M training images from the Adobe Stock

Image website. Each training image has 30-50 user pro-

vided tags. We pick about 18K most frequent tags for

our dictionary. In practice, we only keep the first 5 tags

for an image as we empirically find that first few tags

are usually more relevant. Noun Tags and their plu-

rals are merged (e.g. “person” and “people” are treated

as the same tag). We use a simple KNN-base voting

scheme to predict image tags. Given a test image and

a Euclidean feature space, we retrieve the 75 nearest

neighbors in our training set using the distance encoded

product quantization scheme of Heo et al. (2014). The

proportion of the nearest neighbors that have a spe-

cific tag is output as the tag’s confidence score. The

Euclidean feature space for the KNN system is learned

by a CNN model. We use the GoogleNet architecture

and use the last 1024D average pooling layer as our fea-

ture space. Details about the CNN feature embedding

training are included in the supplementary material.

Dataset. We use the public available NUS-WIDE

dataset as our test set (Chua et al., 2009), which con-

tains about 270K images. We index all the images of

NUS-WIDE using our tag prediction system for all the

tags of our dictionary. The NUS-WIDE dataset has the

annotation of 81 concepts, among which we pick all the

concepts that correspond to countable object categories

as our base test queries (see Fig. 12 for the 37 chosen

concepts). For a base test query, say “animal”, we ap-

ply different test methods to retrieve images for four

sub-queries, “one animal”, “two animals”, “three ani-

mals” and “many animals”, respectively. Then all the

retrieved images for “animal” by different test meth-

ods are mixed together for annotation. We ask three

subjects to label each retrieved image as one of the

four sub-queries or none of the sub-queries (namely a

five-way classification task). The subjects have no idea

which test method retrieved which image. Finally, the

annotations are consolidated by majority vote to pro-

duce the ground truth for evaluation.

Methods. Given the tag confidence scores of each

image by our tag prediction system, we use different

methods to retrieve images for the number-object

queries.

– Baseline. The baseline method ignores the number

part of a query, and retrieves images using only the

object tag.

– Text-based method. This method treats each sub-

query as the combination of two normal tags. Note

that both the object tags and the number tags are

included in our dictionary. We multiply the confi-

dence scores of the object tag with the confidence

scores of the number tag (“one”, “two”, “three” or

“many”). Then the top images are retrieved accord-

ing to the multiplied scores.

– SOS-based method. This method differs from

the text-based method in that it replaces the
number tag confidence score with the correspond-

ing SOS confidence score. For a number tag

“one/two/three/many”, we use the SOS confidence

score for 1/2/3/4+ salient object(s).

Evaluation Metric. The widely used Average Pre-

cision (AP) requires annotation of the whole dataset

for each number-object pair, which is too expensive.

Therefore, we use the normalized Discounted Cumula-

tive Gain (nDCG) metric, which only looks at the top

retrieved results. The nDCG is used in a recent image

retrieval survey paper by Li et al. (2016) for bench-

marking various image retrieval methods. The nDCG

is formulated as

nDCGh(t) =
DCGh(t)

IDCGh(t)
, (2)

where t is the test query, DCGh(t) =
∑h

i=1
2reli−1
log2(i+1) ,

and reli denotes the tag relevance of the retrieved im-

age at position i. In our case, reli is either 0 or 1. The
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Fig. 12 nDCG scores for compared methods. For each object class, we use different methods to retrieve images of
one/two/three/many object(s) of such class. The last column shows the average nDCG scores across different object classes.

IDCGh(t) is the maximum possible DCG up to posi-

tion h. We retrieve 20 images for each method, so we set

h = 20 and assume that there are at least 20 relevant

images for each query.

Results. The nDCG scores of our SOS-based

method, the text-based method and the baseline

method are reported in Fig. 12. The SOS-based

method gives consistently better average nDCG scores

across queries for different numbers of objects, espe-

cially for the queries for more than one object. The

scores of the SOS-based method for the group “three”

are overall much lower than for the other groups. This

is because the accuracy of our SOS is relatively lower

for three objects. Moreover, there are many object

categories that lack images with three objects, e.g.

“statue”, “rock”, etc.

The baseline method gives pretty good nDCG scores

for a single object, but for the other number groups,

its performance is the worst. This reflects that images

retrieved by a single object tag tend to contain only one

dominant object. Note that it is often favorable that

the retrieved images present a single dominant object

of the searched category when no number is specified.

When using SOS, the performance in retrieving images

of one object is further improved, indicating it can be

beneficial to apply SOS by default for object queries.

The text-based method is significantly worse than

our SOS-based method across all number groups. We

observe that when a query has a number tag like “one”,

“two” and “three”, the retrieved images by the text-

based method tends to contain the given number of

people. We believe that this is because these number

tags often refer to the number of people in our training

images. This kind of data bias obstructs the simple text-

based approach to handling number-object queries. In

contrast, our SOS-based method can successfully re-

trieve images for a variety of number-object queries

thanks to the category agnostic nature of our SOS for-

mulation. Sample results of our SOS-based method are

shown in Fig. 13.



16 Jianming Zhang et al.

O
ne

Tw
o

Th
re

e
M

an
y

animal boat sign

Fig. 13 Sample results of the SOS-based method for number-object image retrieval. The base object tags are shown above
each block. Each row shows the top five images for a number group (one/two/three/many). Irrelevant images are marked by
a red cross.

7 Conclusion

In this work, we formulate the Salient Object Subitiz-

ing (SOS) problem, which aims to predict the existence

and the number of salient objects in an image using

global image features, without resorting to any local-

ization process. We collect an SOS image dataset, and

present a Convolutional Neural Network (CNN) model

for this task. We leverage simple synthetic images to im-

prove the CNN model training. Extensive experiments

are conducted to show the effectiveness and generaliz-

ability of our CNN-based SOS method. We visualize

that the features learned by our CNN model capture

generic visual patterns that are useful for subitizing,

and show how our model can generalize to unseen ob-

ject categories. The usefulness of SOS is demonstrated

in unconstrained salient object detection and content-

based image retrieval. We show that our SOS model

can improve the state-of-the-art salient object detec-

tion method, and it provides an effective solution to

retrieving images by number-object queries.
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Price, and Radomı́r Mĕch. Minimum barrier salient object
detection at 80 fps. In IEEE International Conference on
Computer Vision(ICCV), 2015b.

Jianming Zhang, Stan Sclaroff, Zhe Lin, Xiaohui Shen, Brian
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