
HAL Id: hal-02509358
https://hal.science/hal-02509358

Submitted on 17 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Latent Representations of 3D Human Pose
with Deep Neural Networks

Isinsu Katircioglu, Bugra Tekin, Mathieu Salzmann, Vincent Lepetit, Pascal
Fua

To cite this version:
Isinsu Katircioglu, Bugra Tekin, Mathieu Salzmann, Vincent Lepetit, Pascal Fua. Learning Latent
Representations of 3D Human Pose with Deep Neural Networks. International Journal of Computer
Vision, 2018, 126 (12), pp.1326-1341. �10.1007/s11263-018-1066-6�. �hal-02509358�

https://hal.science/hal-02509358
https://hal.archives-ouvertes.fr


IJCV manuscript No.

(will be inserted by the editor)

Learning Latent Representations of 3D Human Pose with Deep Neural

Networks

Isinsu Katircioglu
⇤
, Bugra Tekin

⇤
, Mathieu Salzmann, Vincent Lepetit, Pascal Fua

Received: February 1, 2017

Abstract Most recent approaches to monocular 3D pose es-
timation rely on Deep Learning. They either train a Convo-
lutional Neural Network to directly regress from an image
to a 3D pose, which ignores the dependencies between hu-
man joints, or model these dependencies via a max-margin
structured learning framework, which involves a high com-
putational cost at inference time.

In this paper, we introduce a Deep Learning regression
architecture for structured prediction of 3D human pose from
monocular images or 2D joint location heatmaps that relies
on an overcomplete autoencoder to learn a high-dimensional
latent pose representation and accounts for joint dependen-
cies. We further propose an efficient Long Short-Term Mem-
ory (LSTM) network to enforce temporal consistency on 3D
pose predictions. We demonstrate that our approach achieves
state-of-the-art performance both in terms of structure preser-
vation and prediction accuracy on standard 3D human pose
estimation benchmarks.

Keywords 3D Human Pose Estimation · Structured
Prediction · Deep Learning

(*) I. Katircioglu and B. Tekin contributed equally as co-first authors.

· I. Katircioglu · B. Tekin · M. Salzmann · P. Fua
Computer Vision Laboratory (CVLab)
École Polytechnique Fédérale de Lausanne (EPFL)
1015, Lausanne, Switzerland
e-mail: firstname.lastname@epfl.ch

V. Lepetit
LaBRI
University of Bordeaux
33405 Talence, France
e-mail: vincent.lepetit@u-bordeaux.fr

1 Introduction

In spite of much recent progress, estimating 3D human pose
from a single ordinary image remains challenging because
of the many ambiguities inherent to monocular 3D recon-
struction. They include occlusions, complex backgrounds,
and, more generally, the loss of depth information resulting
from the projection from 3D to 2D.

Recent regression-based methods can directly and effi-
ciently predict the 3D pose given the input image [32] or
images [55] but often ignore the underlying body structure
and resulting joint dependencies, which makes them vul-
nerable to ambiguities. Several methods have recently been
proposed to account for these dependencies [49,23,33]. In
particular, by leveraging the power of Deep Learning, the
method of [33] achieves high accuracy. However, it involves
a computationally expensive search procedure to estimate
the 3D pose.

Since pose estimation is much better-posed in 2D than
in 3D, an alternative way to handle ambiguities is to use
discriminative 2D pose regressors [6,8,11,15,24,38,42,44,
58,61,63] to extract the 2D pose and then infer a 3D one
from it [4,13,64,66]. This however also involves fitting a
3D model in a separate optimization step, and is thus more
expensive than direct regression.

In this paper, we demonstrate that we can account for
the human pose structure within a deep learning regression
framework. To this end, we propose to first train an over-
complete autoencoder that projects body joint positions to a
high dimensional space represented by its middle layer, as
depicted by Fig. 1(a). We then learn a CNN-based mapping
from the image to this high-dimensional pose representa-
tion as shown in Fig. 1(b). Finally, as illustrated in Fig. 1(c),
we connect the decoding layers of the autoencoder to the
CNN, and fine-tune the whole model for pose estimation.
This procedure is inspired by Kernel Dependency Estima-



2 Isinsu Katircioglu⇤, Bugra Tekin⇤, Mathieu Salzmann, Vincent Lepetit, Pascal Fua

tion (KDE) in that it can be understood as replacing the
high-dimensional feature maps in kernel space by autoen-
coder layers that represent the pose in a high-dimensional
space encoding complex dependencies between the differ-
ent body parts. However, our approach has the advantage
over KDE of directly providing us with a mapping back to
the pose space, thus avoiding the need for a computation-
ally expensive optimization at test time. Altogether, and as
will be demonstrated by our experiments, our framework en-
forces implicit constraints on the human pose, preserves the
human body statistics, and improves prediction accuracy.

With the growing availability of large training datasets,
2D pose estimation algorithms have achieved tremendous
success [38,44,61] by relying on Deep Learning. They ex-
ploit the fact that finding 2D joint locations in a color image
is easier than direct 3D pose prediction, which is fraught
with depth ambiguities. To leverage the well-posedness of
the 2D localization problem, we therefore use the reliable
2D joint location heatmaps produced by [38] as input to our
autoencoder-based regression architecture. We show that this
improves 3D pose accuracy upon direct regression from an
RGB image. We further show that our autoencoder-based
regression approach scales to very deep architectures and
achieves state-of-the-art performance when used with ResNet
architecture [18].

Because we can perform 3D pose-estimation using a sin-
gle CNN, our approach can easily be extended to handling
sequences of images instead of single ones. To this end, we
introduce two LSTM-based architectures: one that acts on
the pose predictions in consecutive images, and one that
models temporal information directly at the feature level.
Our experiments evidence the additional benefits of mod-
eling this temporal information over our single-frame ap-
proach.

In short, our contribution is to show that combining tra-
ditional CNNs for supervised learning with autoencoders for
structured learning preserves the power of CNNs while also
accounting for dependencies, resulting in increased perfor-
mance. In the remainder of the paper, we first briefly discuss
earlier approaches. We then present our structured predic-
tion framework in more detail, introduce our LSTM-based
architectures and finally demonstrate that our approach achieves
competitive performance with the state-of-the-art methods
on standard 3D human pose estimation benchmarks.

2 Related Work

Following recent trends in Computer Vision, human pose
estimation is now usually formulated within a Deep Learn-
ing framework. The switch away from earlier representa-
tions started with 2D pose estimation by learning a regressor
from an input image either directly to pose vectors [58] or to
heatmaps encoding 2D joint locations [24,42,57]. This has

been exploited very effectively to infer 3D poses by fitting a
3D model to the 2D predictions [4,13,64,66]. This approach
currently yields some of the best results, but involves a sep-
arate, typically expensive model-fitting stage, outside of the
Deep Learning framework.

In parallel, there has been a trend towards performing
direct 3D pose estimation [23,32], formulated as a regres-
sion problem. In other words, the algorithms output contin-
uous 3D joint locations, because discretizing the 3D space
is more challenging than the 2D one.

Our work fits in that line research, which involves deal-
ing with the ambiguities inherent to inferring a 3D pose
from a 2D input. To resolve them, recent algorithms have
sought to encode the dependencies between the different
joints within Deep Learning approaches, thus effectively achiev-
ing structured prediction. In particular, [21] uses autoen-
coders to learn a shared representation for 2D silhouettes
and 3D poses. This approach, however, relies on accurate
foreground masks and exploits handcrafted features, which
mitigates the benefits of Deep Learning. In the context of
hand pose estimation, [39] introduces a bottleneck, low di-
mensional layer that aims at accounting for joint dependen-
cies. This layer, however, is obtained directly via PCA, which
limits the range of dependencies it can model.

The work of [33] constitutes an effective approach to en-
coding dependencies within a Deep Learning framework for
3D human pose estimation. This approach extends the struc-
tured SVM model to the Deep Learning setting by learning
a similarity score between feature embeddings of the input
image and the 3D pose. This process, however, comes at a
high computational cost at test time, since, given an input
image, the algorithm needs to search for the highest-scoring
pose. Furthermore, the final results are obtained by averag-
ing over multiple high-scoring ground-truth training poses,
which might not generalize well to unseen data since the
prediction can thus only be in the convex hull of the ground-
truth training poses.

To achieve a similar result effectively, we drew our inspi-
ration from earlier KDE-based approaches [22,23], which
map both image and 3D pose to high-dimensional Hilbert
spaces and learn a mapping between these spaces. In this
paper, we show how to do this in a Deep Learning context
by combining CNNs and autoencoders. Not only does this
allow us to leverage the power of learned features, which
have proven more effective than hand-designed ones such
as HOG [1] and 3D-HOG [62], but it yields a direct and ef-
ficient regression between the two spaces. Furthermore, it
also allows us to learn the mapping from high-dimensional
space to pose space, thus avoiding the need of KDE-based
methods to solve an optimization problem at test time.

Using autoencoders for unsupervised feature learning has
proven effective in several recognition tasks [31,28,60]. In
particular, denoising autoencoders [59] that aim at recon-



Learning Latent Representations of 3D Human Pose with Deep Neural Networks 3

(a) (b) (c)

Fig. 1 Our architecture for the structured prediction of the 3D human pose. (a) An autoencoder whose hidden layers have a larger dimension than
both its input and output layers is pretrained. In practice we use either this one or more sophisticated versions that are described in more detail in
Section 3.1 (b) A CNN maps either a monocular image or a 2D joint location heatmap to the latent representation learned by the autoencoder. (c)

The latent representation is mapped back to the original pose space using the decoder.

structing the perfect data from a corrupted version of it have
demonstrated good generalization ability. Similarly, contrac-
tive autoencoders have been shown to produce intermediate
representations that are robust to small variations of the in-
put data [47]. All these methods, however, rely on autoen-
coders to learn features for recognition tasks. By contrast,
here, we exploit them to model the output structure for re-
gression purposes.

In this paper, we further investigate the use of Recur-
rent Neural Networks (RNNs), and in particular LSTMs, to
model temporal information. RNNs have recently been used
in many Natural Language Processing [30,53] and Com-
puter Vision [35,43] tasks, and, at the intersection of these
fields, for image captioning and video description [10,26].
More closely related to our work, in [14,25], RNNs have
been employed to model human dynamics. Nevertheless,
these methods do not tackle human pose estimation, but mo-
tion capture generation, video pose labeling and forecasting
for [14], and human-object interaction prediction for [25].
To the best of our knowledge [34] is the only method that
exploits RNNs for 3D human pose estimation from images.
However, this approach operates on single images and makes
use of RNNs to iteratively refine the pose predictions of [33].
By contrast we leverage the power of RNNs at modeling
long term temporal dependencies across image sequences.

3 Method

In this work, we aim at directly regressing from an input
image or heatmap x to a 3D human pose. As in [3,23,32],
we represent the human pose in terms of the 3D locations
y 2 R3J of J body joints relative to a root joint. An alter-
native would have been to predict the joint angles and limb
lengths. However, this is a less homogeneous representation
and is therefore rarely used for regression purposes.

As discussed above, a straightforward approach to cre-
ating a regressor is to train a conventional CNN such as the

one used in [32]. However, this fails to encode dependencies
between joint locations. In [33], this limitation was over-
come by introducing a substantially more complex, deep ar-
chitecture for maximum-margin structured learning. Here,
we encode dependencies in a simpler, more efficient, and, as
evidenced by our experiments, more accurate way by learn-
ing a mapping between the output of a CNN and a latent
representation obtained using an overcomplete autoencoder,
as illustrated in Fig. 2. The autoencoder is pre-trained on hu-
man poses and comprises a hidden layer of higher dimension
than its input and output. In effect, this hidden layer and the
CNN-based representation of the image play the same role
as the kernel embeddings in KDE-based approaches [9,22,
23], thus allowing us to account for structure within a direct
regression framework. Once the mapping between these two
high-dimensional embeddings is learned, we further fine-
tune the whole network for the final pose estimation task,
as depicted at the bottom of Fig. 2.

In the remainder of this section, we describe the different
stages of our single-frame approach. We then extend this
framework to modeling temporal consistency in Section 4.

3.1 Structured Latent Representations via Autoencoders

We encode the dependencies between human joints by learn-
ing a mapping of 3D human pose to a high-dimensional la-
tent space. To this end, we use a denoising autoencoder that
can have one or more hidden layers.

Following standard practice [60], given a training set of
pose vectors {yi}, we add isotropic Gaussian noise to create
noisy versions {ỹi} of these vectors. We then train our au-
toencoder to take as input a noisy ỹi and return a denoised
yi. The behavior of the autoencoder is controlled by the set
✓ae = (Wenc,j , benc,j ,Wdec,j , bdec,j)Lj=1 of weights and bi-
ases for L encoding and decoding layers.

We take the middle layer to be our latent pose represen-
tation and denote it by hL = g(ỹ, ✓ae), where g(·) represents



4 Isinsu Katircioglu⇤, Bugra Tekin⇤, Mathieu Salzmann, Vincent Lepetit, Pascal Fua

(a) Autoencoder training

(b) Regression in latent space

(c) Fine-tuning

Fig. 2 Our approach. (a) We train a stacked denoising autoencoder that learns the structural information and enforces implicit constraints about
human body in its latent middle layer hL. (b) Our CNN architecture maps the raw image or the 2D joint location heatmap predicted from the
input image to the latent representation hL learned by the autoencoder. (c) We stack the decoding layers of the autoencoder on top of the CNN for
reprojection from the latent space to the original pose space and fine-tune the entire network by updating the parameters of all layers.

the encoding function. For example, with a single layer, the
latent representation can be expressed as

hL = g(ỹ,Wenc, benc) = r(Wencỹ + benc) , (1)

where r(·) is the activation function. In practice, we use
ReLU as the activation function of the encoding layers. This
favors a sparse hidden representation [16], which has been
shown to be effective at modeling a wide range of human
poses [2,46]. For the decoding part of the autoencoder, we
use a linear activation function to be able to predict both neg-
ative and positive joint coordinates. To keep the number of
parameters small and reduce overfitting, we use tied weights
for the encoder and the decoder, that is, Wdec,j = WT

enc,j .
To learn the parameters ✓ae, we rely on the square loss

between the reconstruction, ŷ, and the true, noise-free pose,
y, over the N training examples. To increase robustness to
small pose changes, we regularize the cost function by add-
ing the squared Frobenius norm of the Jacobian of the hid-
den mapping g(·), that is, J(ỹ) = @g

@ỹ (ỹ). Training can thus
be expressed as finding

✓⇤ae = argmin
✓ae

NX

i=1

||yi � f(ỹi, ✓ae)||22 + �kJ(ỹi)k2F , (2)

where f(·) represents the complete autoencoder function,
and � is the regularization weight. Unlike when using KDE,

we do not need to solve a complex problem to go from the
latent pose representation to the pose itself. This mapping,
which corresponds to the decoding part of our autoencoder,
is learned directly from data.

3.2 Regression in Latent Space

Once the autoencoder is trained, we aim to learn a mapping
from the input image or heatmap to the latent representation
of the human pose. To this end, and as shown in Fig. 2(b),
we use a CNN to regress the image to a high-dimensional
representation, which is itself mapped to the latent pose rep-
resentation.

More specifically, let ✓cnn be the parameters of the CNN,
including the mapping to the latent pose representation. Given
an input image or heatmap x, we consider the square loss be-
tween the representation predicted by the CNN, fcnn(x, ✓cnn),
and the one that was previously learned by the autoencoder,
hL. Given our N training samples, learning amounts to find-
ing

✓⇤cnn = argmin
✓cnn

NX

i=1

||fcnn(xi, ✓cnn)� hL,i||22 . (3)

In practice, we either rely on a standard CNN architec-
ture shown in Fig. 2(b), similar to the one of [32,58] or a



Learning Latent Representations of 3D Human Pose with Deep Neural Networks 5

(a) (b)

Fig. 3 (B)LSTMs to enforce temporal consistency. (a) The (B)LSTM-Pose approach involves refining 3D human pose predictions by feeding
those obtained as described in Fig. 2(c) into a (B)LSTM network, which yields the final 3D poses. (b) The (B)LSTM-Feature approach maps
the features obtained from the last fully-connected layer of a CNN trained to directly regress 3D pose from monocular images to the latent
representation hL of Fig. 2(a) via a (B)LSTM network. The final pose is recovered by the decoder part of the autoencoder.

very deep network architecture, e.g. ResNet-50 [18]. In our
implementation, the input volume is a three channel image
of size 128⇥128 or a 16 channel heatmap of size 128⇥128.
The last fully-connected layer of the base network is mapped
linearly to the latent pose embedding. Except for this last lin-
ear layer, each layer uses a ReLU activation function. When
we use images as input, we initialize the convolutional lay-
ers of our CNN from those of a network trained for the de-
tection of body joints in 2D as in [32,37].

In the case of 3D pose prediction from 2D joint loca-
tion heatmaps, we rely on the stacked hourglass network
design [38], which assigns high confidence values to most
likely joint positions in the image. In practice, we have ob-
served a huge performance improvement in overall 3D pose
estimation accuracy when using reliable 2D joint location
heatmaps produced by stacked hourglass networks compared
to directly using RGB images as input to our standard CNN
architecture in Fig. 2(b).

3.3 Fine-Tuning the Whole Network

Finally, as shown in Fig. 2(c), we append the decoding lay-
ers of the autoencoder to the CNN discussed above, which
maps the latent pose estimates to the original pose space. We
then fine-tune the resulting complete network for the task of
human pose estimation. We take the cost function to be the
squared difference between the predicted and ground-truth
3D poses, which yields the optimization problem

✓⇤ft = argmin
✓ft

NX

i

||fft(xi, ✓ft)� yi||22 , (4)

where ✓ft are the model parameters, including ✓cnn and the
decoding weights and biases (Wdec,j , bdec,j)Lj=1, and fft is
the mapping function.

At test time, a new input image or heatmap is then sim-
ply passed forward through this fine-tuned network, which
predicts the 3D pose via the learned latent representation.

4 Modeling Temporal Consistency

We have so far focused on predicting 3D poses from sin-
gle images or heatmaps. However, it is well known that ac-
counting for temporal consistency increases robustness. In
this section, we show that our approach naturally allows us
to use Long Short-Term Memory Units (LSTMs) to this end.
Below, we first briefly review LSTMs and then introduce
two different ways to exploit them to encode temporal infor-
mation in our framework.

4.1 LSTMs

Recurrent Neural Networks (RNNs) have become increas-
ingly popular to model temporal dynamics. In their simplest
form, they map a sequence of inputs to a sequence of hidden
states, each connected to its temporal neighbors, which are
in turn mapped to a sequence of outputs. In theory, simple
memory units and backpropagation through time (BPTT) al-
low RNNs to capture the temporal correlations between dis-
tant data points. However, in practice, longer sequences of-
ten cause the gradients to either vanish or explode, thus mak-
ing optimization impossible. LSTMs [20] were introduced
as a solution to this problem. Although they have four times
as many parameters as traditional RNNs, they can be trained
efficiently thanks to their sharing of parameters across time
slices. An LSTM unit is defined by the recurrence equations

it = �i(Wxixt +Whiht�1 + bi)

ft = �f (Wxfxt +Whfht�1 + bf )

ot = �o(Wxoxt +Whoht�1 + bo)

ct = ft � ct�1 + it � �c(Wxcxt +Whcht�1 + bc)

ht = ot � �h(ct) ,

(5)

where xt, ct and ht are the input, hidden/cell state and out-
put at time t, respectively, and it, ft and ot represent gate
vectors to forget/select information. �·(·) are sigmoids and
� denotes the Hadamard or element-wise product.

In practice, we use either LSTMs or Bidirectional LSTMs
(BLSTMs). A BLSTM comprises two LSTMs with infor-
mation traveling in opposite temporal directions [17]. They
have been shown to boost performance when the quantity



6 Isinsu Katircioglu⇤, Bugra Tekin⇤, Mathieu Salzmann, Vincent Lepetit, Pascal Fua

to be predicted depends on contextual information coming
from both forward and backward in time [17]. This is typi-
cally the case for human pose estimation, where the estimate
at time t is correlated to those at time t� 1 and t+ 1.

4.2 Recurrent Pose Estimation

We tested two different ways to incorporate (B)LSTMs into
our framework.

4.2.1 Constraining the Final Poses

The first is to refine the pose estimates by imposing temporal
consistency on the output of the network introduced in the
previous section, as shown in Fig. 3(a).

More specifically, let St = [ŷt�T
2 +1, . . . , ŷt, . . . , ŷt+T

2
]

be the input sequence of T predicted poses centered at time
t. The network prediction can be expressed as

ȳt = fp(St, ✓p) , (6)

where ✓p includes all the parameters of the network. During
training, these parameters are taken to be

✓⇤p = argmin
✓p

N�T/2X

t=T/2

||fp(St, ✓p)� yt||22 . (7)

We refer to this method as (B)LSTM-Pose.

4.2.2 Constraining the Features

An alternative would be to enforce temporal consistency not
on the poses, but earlier in the network on the features ex-
tracted from a direct CNN regressor. To this end, we made
use of the features of the penultimate layer of our base net-
work. This, for example, corresponds to FC3 features for the
network shown in Fig. 2(b). These features act as input to the
model depicted in Fig. 3(b), which stacks two BLSTM lay-
ers and maps the features to the latent representation learned
by the autoencoder of Section 3.1. This is followed by the
decoder to finally predict 3D poses.

Let Ft = [FCt�T/2+1, . . . ,FCt, . . . ,FCt+T/2] be the
sequence of such features. Then, training this network can
be achieved by solving the problem

✓⇤f = argmin
✓f

N�T/2X

t=T/2

||ff (Ft, ✓f )� yt||22 , (8)

where ff (Ft, ✓f ) represents the complete network mapping,
with parameters ✓f . We refer to this method as (B)LSTM-
Feature.

5 Results

In this section, we first describe the datasets we tested our
approach on. We then give implementation details and de-
scribe the evaluation protocol. Finally, we compare our re-
sults against those of the state-of-the-art methods.

5.1 Datasets

We evaluate our method on the Human3.6m [23], Human-
Eva [51], KTH Multiview Football II [5] and Leeds Sports
Pose (LSP) [27] datasets.

Human3.6m comprises 3.6 million image frames with their
corresponding 2D and 3D poses. The subjects perform com-
plex motion scenarios based on typical human activities such
as discussion, eating, greeting and walking. The videos were
captured from 4 different camera viewpoints. Following the
standard procedure of [32], we collect the input images by
extracting a square region around the subject using the bound-
ing box present in the dataset and the output pose is a vector
of 17 3D joint coordinates.

HumanEva-I comprises synchronized images and motion
capture data and is a standard benchmark for 3D human pose
estimation. The output pose is a vector of 15 3D joint coor-
dinates.

KTH Multiview Football II is a recent benchmark to eval-
uate the performance of pose estimation algorithms in un-
constrained outdoor settings. The camera follows a soccer
player moving around the field. The videos are captured
from 3 different camera viewpoints and the output pose is
a vector of 14 3D joint coordinates.

LSP is a standard benchmark for 2D human pose estima-
tion and does not contain any ground-truth 3D pose data.
The images are captured in unconstrained outdoor settings.
2D pose is represented in terms of a vector of 14 joint coor-
dinates. We report qualitative 3D pose estimation results on
this dataset.

5.2 Implementation Details

We trained our autoencoder using a greedy layer-wise train-
ing scheme followed by fine-tuning as in [19,60]. We set the
regularization weight of Eq. 2 to � = 0.1. We experimented
with single-layer autoencoders, as well as with 2-layer ones.
The size of the layers were set to 2000 and 300-300 for the 1-
layer and 2-layer cases, respectively. We corrupted the input
pose with zero-mean Gaussian noise with standard deviation
of 40 for 1-layer and 40-20 for 2-layer autoencoders. In all



Learning Latent Representations of 3D Human Pose with Deep Neural Networks 7

Method Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting Sitting Down

Ionescu et al. [23] 132.71 183.55 132.37 164.39 162.12 150.61 171.31 151.57 243.03
Li & Chan [32] - 148.79 104.01 127.17 - - - - -
Li et al. [33] - 134.13 97.37 122.33 - - - - -
Li et al. [34] - 133.51 97.60 120.41 - - - - -
Zhou et al. [66] - - - - - - - - -
Rogez & Schmid [48] - - - - - - - - -
Tekin et al. [54] - 129.06 91.43 121.68 - - - - -
Park et al. [40] 100.34 116.19 89.96 116.49 115.34 117.57 106.94 137.21 190.82
Zhou et al. [65] 91.83 102.41 96.95 98.75 113.35 90.04 93.84 132.16 158.97
Tome et al. [56] 64.98 73.47 76.82 86.43 86.28 68.93 74.79 110.19 173.91
Pavlakos et al. [41] 67.38 71.95 66.70 69.07 71.95 65.03 68.30 83.66 96.51

OURS (ShallowNet-Autoencoder) 94.98 129.06 91.43 121.68 133.54 115.13 133.76 140.78 214.52
OURS (ShallowNet-Hm-Autoencoder) 69.64 93.79 69.02 96.47 103.42 83.36 85.22 116.62 147.57
OURS (ResNet-Autoencoder) 57.84 64.62 59.41 62.83 71.52 57.50 60.38 80.22 104.14

Method: Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Avg. (6 Actions) Avg. (All)

Ionescu et al. [23] 162.14 205.94 170.69 96.60 177.13 127.88 159.99 162.14
Li & Chan [32] - 189.08 - 77.60 146.59 - 132.20 -
Li et al. [33] - 166.15 - 68.51 132.51 - 120.17 -
Li et al. [34] - 163.33 - 73.66 135.15 - 121.55 -
Zhou et al. [66] - - - - - - - 120.99
Rogez & Schmid [48] - - - - - - - 121.20
Tekin et al. [54] - 162.17 - 65.75 130.53 - 116.77 -
Park et al. [40] 105.78 149.55 125.12 62.64 131.90 96.18 111.12 117.34
Zhou et al. [65] 106.91 125.22 94.41 79.02 126.04 98.96 104.73 107.26
Tome et al. [56] 84.95 110.67 85.78 71.36 86.26 73.14 84.17 88.39
Pavlakos et al. [41] 71.74 76.97 65.83 59.11 74.89 63.24 69.78 71.90

OURS (ShallowNet-Autoencoder) 121.26 162.17 138.2 65.75 130.53 113.34 116.77 127.07
OURS (ShallowNet-Hm-Autoencoder) 87.17 120.50 95.31 55.87 85.69 64.66 86.89 91.62
OURS (ResNet-Autoencoder) 66.31 80.50 61.20 52.55 69.97 60.08 61.20 67.27

Table 1 Comparison of our approach with state-of-the-art algorithms on Human3.6m. We report 3D joint position errors in mm, computed as the
average Euclidean distance between the ground-truth and predicted joint positions. ‘-’ indicates that the results were not reported for the respective
action class in the original paper. Note that our method achieves the best overall accuracy.

cases, we used the ADAM optimization procedure [29] with
a learning rate of 0.001 and a batch size of 128.

The number and individual sizes of the layers of our base
architecture are given in Fig. 2. The filter sizes for the con-
volutional layers are consecutively 9 ⇥ 9, 5 ⇥ 5 and 5 ⇥ 5.
Each convolutional layer is followed by a 2⇥2 max-pooling
layer. The activation function is the ReLU in all the layers
except for the last one that uses linear activation. As for the
autoencoders, we used ADAM [29] with a learning rate of
0.001 and a batch size of 128. To prevent overfitting, we
applied dropout with a probability of 0.5 after each fully-
connected layer and augmented the data by randomly crop-
ping 112 ⇥ 112 patches from the 128 ⇥ 128 image. When
using 2D heatmaps as input, the 64⇥ 64 outputs of stacked
hourglass network of [38] were upscaled to 128⇥128 before
processing.

To demonstrate that our approach scales to very deep ar-
chitectures, we also use ResNet-50 [18] as baseline CNN ar-
chitecture. More specifically, we use it up to level 5, with the
first three levels initialized on a 2D pose estimation task as
in [37] and then kept constant throughout the 3D pose pre-
diction process. We then use two additional convolutional
layers of size 512 and 128 and a linear layer to regress the
3D pose from the convolutional features of level 4.

To train Ours-LSTM-Feature and Ours-BLSTM-Feature,
we relied on the features extracted from the penultimate layer

of a CNN trained to directly predict 3D pose, referred to later
as CNN-Direct. We did not backpropagate the loss of our
LSTM-based models through this network, but rather kept
its weights fixed. By contrast, Ours-LSTM-Pose and Ours-
BLSTM-Pose take as input the 3D pose predictions obtained
using the network in Fig. 2(c). In all cases, we cascaded two
(B)LSTM layers of size 512 , whose output sequence was
merged into a single fully-connected layer of size 51. The
activation function was tanh for the recurrent layers and
linear for the fully-connected layer at the end. In all archi-
tectures, we used a temporal window of length T = 5 with
a stride of 5 covering 0.5 seconds for 50 fps Human3.6m
videos. The first T/2� 1 and the last T/2 frames were ex-
cluded from the evaluation. We optimized the recurrent net-
works using the ADAM optimization procedure [29] with a
learning rate of 0.001 and a batch size of 128.

5.3 Evaluation Protocol

On Human3.6m, for the comparison to be fair, we used the
same data partition protocol as in earlier work [32,33] to
obtain the training and test splits. The data from 5 subjects
(S1,S5,S6,S7,S8) was used for training and the data from 2
different subjects (S9,S11) was used for testing. We trained
a single model for all actions. We evaluate the accuracy of



8 Isinsu Katircioglu⇤, Bugra Tekin⇤, Mathieu Salzmann, Vincent Lepetit, Pascal Fua

Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

Bogo et al.[4] 62.0 60.2 67.8 76.5 92.1 73.0 75.3 100.3
Sanzari et al.[50] 48.82 56.31 95.98 84.78 96.47 66.30 107.41 116.89
OURS (ResNet-Autoencoder) 43.89 48.54 46.57 49.95 53.94 43.77 43.94 60.20

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

Bogo et al.[4] 137.3 83.4 77.0 77.3 86.8 79.7 81.7 82.3
Sanzari et al.[50] 129.63 97.84 105.58 65.94 92.58 130.46 102.21 93.15
OURS (ResNet-Autoencoder) 73.64 51.15 59.29 46.30 39.81 52.25 47.18 50.69

Table 2 Average Euclidean distance in mm between the ground-truth 3D joint locations and those predicted by competing methods [12,4,50] and
ours after Procrustes transformation.

Fig. 4 3D poses for the Walking, Eating, Taking Photo, Greeting, Discussion and Walking Dog actions of the Human3.6m database. In each case,
the first skeleton depicts the ground-truth pose and the second one the pose we recover. Best viewed in color.

3D human pose estimation in terms of average Euclidean
distance between the predicted and ground-truth 3D joint
positions as in [32,33]. To compare against [4,50], we fur-
ther evaluate the pose estimation accuracy after Procrustes
transformation. The accuracy numbers are reported in milime-
ters for all actions. Training and testing were carried out
monocularly in all camera views for each separate action.

On HumanEva-I, we trained our model on the Walking
sequences of subjects S1, S2 and S3 as in [52,66] and evalu-
ate on the validation sequences of all subjects. We pretrained
our network on the Walking sequences of Human3.6m and
used only the first camera view for further training and vali-
dation.

On KTH Multiview Football II, we trained our model
on the first half of the sequence containing Player 2 and test
on the second half, as in [5]. We report accuracy using the
percentage of correctly estimated parts (PCP) score with a
threshold of 0.5 for a fair comparison. Since the training set
is quite small, we pretrained our CNN model on the syn-
thetic dataset introduced in [7], which contains images of
sports players with their corresponding 3D poses.

On LSP, in order to generalize to the unconstrained out-
door settings, we trained our regressor on the recently re-
leased synthetic dataset of [7] and tested on the actual data
from the LSP dataset.

5.4 Results

We first discuss our results on predicting 3D pose from a sin-
gle image, and then turn to the case where we use multiple
consecutive frames as input.

5.4.1 Human Pose from a Single Image

Fig. 4 depicts selected pose estimation results on Human3.6m.
In Table 1, we report our single-image autoencoder-based
results on this dataset along with those of the following state-
of-the-art single image-based methods: KDE regression from
HOG features to 3D poses [23], jointly training a 2D body
part detector and a 3D pose regressor [32,40], the maximum-
margin structured learning framework of [33,34], the deep
structured prediction approach of [54], pose regression with
kinematic constraints [65], pose estimation with mocap guided
data augmentation [48], volumetric pose prediction approach
of [41] and lifting 2D heatmap predictions to 3D human
pose [56]. ShallowNet-Autoencoder refers to our autoencoder-
based regression approach using the base architecture de-
picted in Fig. 2, and ResNet-Autoencoder to the one using
the ResNet-50 architecture. For the shallow network archi-
tecture, we also evaluate the pose estimation accuracy using
the 2D joint location heatmaps of [38] as input. This is re-
ferred to as ShallowNet-Hm-Autoencoder.



Learning Latent Representations of 3D Human Pose with Deep Neural Networks 9

Model Discussion Eating Greeting Taking Photo Walking Walking Dog

CNN-Direct 135.36 105.98 133.35 177.62 77.73 153.02
OURS-Autoencoder, 1 layer no FT 134.02 96.01 127.58 158.73 68.55 146.28
OURS-Autoencoder, 2 layer no FT 129.67 98.57 124.80 162.69 73.47 146.46
OURS-Autoencoder, 1 layer with FT 130.07 94.08 121.96 158.51 65.83 135.35
OURS-Autoencoder, 2 layer with FT 129.06 91.43 121.68 162.17 65.75 130.53

Model Joint error

CNN-Direct 177.62
CNN-ExtraFC[2000] 179.29
CNN-PCA[30] 170.74
CNN-PCA[40] 167.62
CNN-PCA[51] 182.64
OURS-Autoencoder[40] 165.11
OURS-Autoencoder[2000] 158.51

(a) (b)

Table 3 Average Euclidean distance in mm between the ground-truth 3D joint locations and those computed (a) using either no autoencoder at
all (CNN) or 1-layer and 2-layer encoders (OURS-Autoencoder), with or without fine-tuning (FT), (b) by replacing the autoencoder by either
an additional fully-connected layer (CNN-ExtraFC) or a PCA layer (CNN-PCA) on the sequences of Taking Photo action class. The bracketed
numbers denote the various dimensions of the additional layer we tested. Our approach again yields the most accurate predictions.

Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

ResNet 56.77 64.73 60.94 63.49 74.98 57.65 61.08 81.29
ResNet-Autoencoder w/o ExtraMocap 57.84 64.62 59.41 62.83 71.52 57.50 60.38 80.22

ResNet-Autoencoder w/ ExtraMoCap 55.87 63.65 59.08 62.64 72.08 56.15 58.88 80.53

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

ResNet 102.45 66.65 80.96 60.87 53.26 70.27 60.95 68.29
ResNet-Autoencoder w/o ExtraMoCap 104.14 66.31 80.50 61.20 52.55 69.97 60.08 67.27
ResNet-Autoencoder w/ ExtraMoCap 102.30 65.68 78.25 59.05 51.81 68.44 58.19 66.17

Table 4 Average Euclidean distance in mm between the ground-truth and predicted 3D joint locations a direct ResNet regressor, ResNet-
Autoencoder trained with only motion capture data from Human3.6m and ResNet-Autoencoder trained with motion capture data from Human3.6m
and MPI-INF-3DHP.

The shallow network architecture provides satisfactory
pose estimation accuracy with a fast computational runtime
of 6 ms/frame, which corresponds to 166 fps real-time per-
formance, whereas ResNet-Autoencoder comes at the cost
of a three times slower runtime. Our autoen-coder-based re-
gression approach using ResNet-50 as base network outper-
forms all the baselines.

In [4], the reconstruction error was evaluated by first
aligning the estimated skeleton to the ground-truth one by
Procrustes transformation, and we confirmed through per-
sonal communication that the same protocol was used in [50].
To compare our results to those of these state-of-the-art meth-
ods, we therefore also report in Table 2 the joint error af-
ter Procrustes transformation. Altogether, by leveraging the
power of deep neural networks and accounting for the de-
pendencies between body parts, ResNet-Autoencoder signif-
icantly outperforms the state-of-the-art.

We further evaluated our approach on the official test
set of Human3.6m for six different actions 1. We obtained
a pose reconstruction error of 64.38, 63.86, 63.85, 70.45,
86.41 and 93.36 mm for the Directions, Discussion, Eat-
ing, Phoning, Sitting and Sitting Down actions, respectively.
Our method currently outperforms the first ranking method [45]
on the average of these 6 actions in the leaderboard. Note
also that the first ranking method [45] relies on the knowl-
edge of body part segmentations whereas we do not use this
additional piece of ground-truth information.

To validate our design choices, we report in Table 3,
the pose estimation accuracies obtained with various autoen-
coder configurations using the shallow network depicted in

1 We experimented on only 6 actions due to time limitations of the
submission server.

Fig. 2. The results reported in Tables 1 and 2 were obtained
using a two layer autoencoder. However, as discussed in
Section 3.1 our formalism applies to autoencoders of any
depth. Therefore, in Table 3(a), we also report results ob-
tained using a single layer one obtained by turning off the
final fine-tuning of Section 3.3. For completeness, we also
report results obtained by using a CNN similar to the one of
Fig. 2(b) to regress directly to a 51-dimensional 3D pose
vector without using an autoencoder at all. We will refer
to it as CNN-Direct. We found that both kinds of autoen-
coders perform similarly and better than CNN-Direct, es-
pecially for actions such as Taking Photo and Walking Dog
that involve interactions with the environment and are thus
physically more constrained. This confirms that the power
of our method comes from autoencoding. Furthermore, as
expected, fine-tuning consistently improves the results.

During fine-tuning, our complete network has more fully-
connected layers than CNN-Direct. One could therefore ar-
gue that the additional layers are the reason why our ap-
proach outperforms it. To disprove this, we evaluated the
baseline, CNN-ExtraFC, in which we simply add one more
fully-connected layer. We also evaluated another baseline,
CNN-PCA, in which we replace our autoencoder latent rep-
resentation by a PCA-based one. In Table 3(b), we show that
our approach significantly outperforms these two baselines
on the Taking Photo action. This suggests that our over-
complete autoencoder yields a representation that is more
discriminative than other latent ones. Among the different
PCA configurations, the one with 40 dimensions performs
the best. However, training an autoencoder with 40 dimen-
sions outperforms it.



10 Isinsu Katircioglu⇤, Bugra Tekin⇤, Mathieu Salzmann, Vincent Lepetit, Pascal Fua

(a) (b)

(c) (d)

Model Lower Body Upper Body Full Body

KDE [23] 1.02 7.18 16.43
CNN 0.57 6.86 14.97
OURS-Autoencoder no FT 0.62 5.30 11.99
OURS-Autoencoder with FT 0.77 5.43 11.90

(e)

Fig. 5 Matrix of differences between estimated log of limb length
ratios and those computed from ground-truth poses. The rows and
columns correspond to individual limbs. For each cell, the ratios are
computed by dividing the limb length in the horizontal axis by the one
in the vertical axis as in [22] for (a) KDE [23], (b) CNN-Direct as in
Table 3, and (c,d) our method without and with fine-tuning. An ideal
result would be one in which all cells are blue, meaning the limb length
ratios are perfectly preserved. Best viewed in color. (e) Sum of the log
of limb length ratio errors for different parts of the human body. All
methods perform well on the lower body. However, ours outperforms
the others on the upper body and when considering all ratios in the full
body.

To learn a more powerful latent pose space, we exploit
additional motion capture data from the MPI-INF-3DHP dataset [37]
for training the autoencoder. In Table 4, we report results
with and without this additional data. We achieve better pose
estimation accuracy when we train on a wider range of poses.
As Human3.6m already includes a large variety of poses and
the marker placements between the two datasets do not ex-
actly match each other, we only observe a slight improve-
ment. However, our results suggest that training an autoen-
coder on a larger pose space without any dataset bias would
result in an even more representative latent pose space and,
eventually, a higher pose estimation accuracy. We further
compare our autoencoder-based regression approach to a di-
rect regression baseline. The relative contribution of the au-
toencoder on very deep neural networks is smaller than that
on a shallower network. However, we still increase the ac-
curacy by applying our autoencoder training on top of the
ResNet architecture.

Following [22], we show in Fig. 5 the differences be-
tween the ground-truth limb ratios and the limb ratios ob-
tained from predictions based on KDE, CNN-Direct and our
autoencoder-based approach. These results demonstrate that
our predictions better preserve these limb ratios, and thus
better model the dependencies between joints.

Fig. 6 t-SNE embedding [36] for the latent representation of the poses
from the Sitting Down category in Human3.6m.

(a) Image (b) Prediction (c) GT (d) Image (e) Prediction (f) GT

Fig. 7 Pose estimation results on HumanEva-I. (a,d) Input images.
(b,e) Recovered pose. (c,f) Ground truth. Best viewed in color.

In Fig. 6, we visualize the latent space learned by the
autoencoder after embedding it in 2D using the t-SNE algo-
rithm [36]. It can be seen that the upper left corner spans the
downward-facing body poses, the diagonal includes mostly
the upright body poses and the lower right corner clusters the
forward-facing body poses sitting on the ground. Note that
our latent representation covers the entire low-dimensional
space, thus making it well-suited to discriminate between
poses with small variations.

We further report single-image 3D pose estimation accu-
racy on the HumanEva-I dataset in Table 5 and show qual-
itative pose estimation results in Fig. 7. We follow the pro-
tocol adopted in the state-of-the-art approaches to 3D infer-
ence from 2D body part detections [52] and to 3D model-
fitting [4,66]. Following these methods, we measure 3D pose
error after aligning the prediction to the ground-truth by a
rigid transformation. Note that [66] uses video instead of
a single frame for prediction. Our method outperforms the
state-of-the-art on this standard benchmark.



Learning Latent Representations of 3D Human Pose with Deep Neural Networks 11

Method S1 S2 S3 Average

Simo-Serra et al. [52] 65.1 48.6 73.5 62.4
Bogo et al. [4] 73.3 59.0 99.4 77.2
Zhou et al. [66] 34.2 30.9 49.1 38.07
OURS-Autoencoder 29.32 17.94 59.51 35.59

Table 5 Quantitative results of our approach on Walking sequences
of the HumanEva-I dataset [51]. S1, S2 and S3 correspond to Subject
1, 2, and 3, respectively. The accuracy is reported in terms of average
Euclidean distance (in mm) between the predicted and ground-truth 3D
joint positions.

Method: Pelvis Torso Upper Arms Lower arms Upper Legs Lower Legs All parts

[5] 97 87 14 6 63 41 43
OURS-Autoencoder 66 100 66.5 16.5 83 66.5 63.1

Table 6 On KTH Multiview Football II we compare our method that
uses a single image to that of [5]. We rely on the percentage of correctly
estimated parts (PCP) score to evaluate performance as in [5]. Higher
PCP score corresponds to better 3D pose estimation accuracy.

(a) Image (b) Prediction (c) GT (d) Image (e) Prediction (f) GT

Fig. 8 Pose estimation results on KTH Multiview Football II. (a, d)

Input images. (b, e) Recovered pose. (c, f) Ground truth. Best viewed
in color.

On the KTH Multiview Football II dataset, we compare
our autoencoder-based approach against [5], which is the
only monocular single-image 3D pose estimation method
publishing results on this dataset so far. As can be seen in
Table 6, we outperform the PCP accuracy of this baseline
significantly on all body parts except for the pelvis. Fig. 8
depicts example pose estimation results on this dataset.

In Fig. 9, we provide additional qualitative results on the
LSP dataset, which features challenging poses. Our autoen-
coder-based regression approach nevertheless delivers accu-
rate 3D predictions.

5.4.2 Human Pose from Video

In Table 7, we demonstrate the effectiveness of imposing
temporal consistency using LSTMs on Human3.6m, as de-
scribed in Section 4. We compare our results with and with-
out LSTMs against those of [12,55,66], which also rely on
video sequences. On average, our LSTM-based approaches
applied to the 3D pose predictions of ResNet-Autoencoder
bring an improvement over single-image results, with the
one of Section 4.2.2 that enforces temporal consistency at
pose level being significantly better than the other. Using

(a) Image (b) Prediction (c) Image (d) Prediction

Fig. 9 Pose estimation results on LSP. (a,c) Input images. (b,d) Recov-
ered pose. We trained our network on the recently released synthetic
dataset of [7] and tested it on the LSP dataset. The quality of the 3D
pose predictions demonstrates the generalization of our method. In the
last row, we show failure cases in the 3D pose prediction of lower legs
due to foreshortening (left) and orientation ambiguities (right)

.

standard LSTMs instead of BLSTMs degrades the accuracy
but eliminates the latency involved in working on image-
batches, which can be a worthwhile trade-off if real-time
performance is required.

As shown in Table 8, our LSTM units improves the pose
estimation accuracy on average by approximately 3% and
our ResNet-based results are significantly more accurate than
the other methods, with an average pose estimation accuracy
of 65.37 mm vs 124.97 mm for [55], 113.01 mm for [66]
and 126.47 mm for [12]. Fig. 10 depicts example pose es-
timation results of our BLSTM approach compared to our
autoencoder-based approach based on a single image.

(a) t� k (b) t (c) t+ k (d) t� k (e) t (f) t+ k

Fig. 10 Pose estimation results with LSTMs on Human3.6m. (a,d) t�
kth frame. (b,e) tth frame. (c,g) t + kth frame. k denotes the stride
between consecutive frames. Top row: Input image, Second row: Our
pose estimate from the single image, Third row: Our BLSTM pose
estimate, Last row: Ground truth. Our BLSTM network can correct
for the errors made by the autoencoder by accounting for the temporal
consistency. Best viewed in color.



12 Isinsu Katircioglu⇤, Bugra Tekin⇤, Mathieu Salzmann, Vincent Lepetit, Pascal Fua

Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting
OURS (ResNet-Autoencoder) 57.84 64.62 59.41 62.83 71.52 57.50 60.38 80.22
OURS-LSTM-Pose 55.63 64.55 57.56 62.20 70.71 56.52 57.37 78.93
OURS-BLSTM-Pose 54.93 63.26 57.26 62.30 70.28 56.66 57.08 78.98
OURS-LSTM-Feature 71.34 68.88 67.12 75.87 79.36 66.19 61.49 83.28
OURS-BLSTM-Feature 70.01 68.74 64.64 75.90 78.99 64.21 60.50 83.10

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

OURS (ResNet-Autoencoder) 104.14 66.31 80.50 61.20 52.55 69.97 60.08 67.27
OURS-LSTM-Pose 98.47 64.43 77.18 62.32 50.12 67.50 66.77 66.02
OURS-BLSTM-Pose 97.13 64.29 77.40 61.94 49.76 67.11 62.26 65.37
OURS-LSTM-Feature 97.66 71.51 83.93 78.67 63.69 73.23 69.03 74.08
OURS-BLSTM-Feature 96.44 70.29 83.51 77.83 62.02 71.11 69.55 73.52

Table 7 Average Euclidean distance in mm between the ground-truth 3D joint locations and the predictions obtained by our ResNet-Autoencoder
approach evaluated using different LSTM architectures on video data.

Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

Du et al. [12] 85.07 112.68 104.90 122.05 139.08 105.93 166.16 117.49
Tekin et al. [55] 102.41 147.72 88.83 125.28 118.02 112.3 129.17 138.89
Zhou et al. [66] 87.36 109.31 87.05 103.16 116.18 106.88 99.78 124.52
OURS (ResNet-Autoencoder) 57.84 64.62 59.41 62.83 71.52 57.50 60.38 80.22
OURS-BLSTM-Pose 54.93 63.26 57.26 62.30 70.28 56.66 57.08 78.98

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

Du et al. [12] 226.04 120.02 135.91 117.65 99.26 137.36 106.54 126.47
Tekin et al. [55] 224.90 118.42 182.73 138.75 55.07 126.29 65.76 124.97
Zhou et al. [66] 199.23 107.42 143.32 118.09 79.39 114.23 97.70 113.01
OURS (ResNet-Autoencoder) 104.14 66.31 80.50 61.20 52.55 69.97 60.08 67.27
OURS-BLSTM-Pose 97.13 64.29 77.40 61.94 49.76 67.11 62.26 65.37

Table 8 Average Euclidean distance in mm between the ground-truth 3D joint locations and the predictions obtained by our ResNet-Autoencoder
approach with and without BLSTM regularization on output poses, compared to [12,55,66] .

Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

HOG + KDE [23] 132.71 183.55 132.37 164.39 162.12 150.61 171.31 151.57
Conv3 Feat. + KDE 99.13 160.84 112.10 137.32 137.97 118.16 137.13 153.79
FC3 Feat. + KDE 99.06 160.39 104.53 132.01 132.35 118.13 144.36 149.80
CNN-Direct 106.23 161.54 108.42 136.15 136.21 123.37 148.68 157.15
OURS-Autoencoder 94.98 129.06 91.43 121.68 133.54 115.13 133.76 140.78

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

HOG + KDE [23] 243.03 162.14 205.94 170.69 96.60 177.13 127.88 162.14
Conv3 Feat. + KDE 190.48 137.06 181.77 151.15 93.97 149.81 120.46 138.74
FC3 Feat. + KDE 206.35 133.91 169.31 150.76 86.44 144.83 113.20 136.36
CNN-Direct 217.88 136.59 169.42 157.71 88.75 149.58 115.02 140.85
OURS-Autoencoder 214.52 121.26 162.17 138.2 65.75 130.53 113.34 127.07

Table 9 Average Euclidean distance in mm between the ground-truth 3D joint locations and those predicted by competing methods [23] and ours.

Layer Configuration Greeting

[40] 129.49
[500] 123.95
[1000] 121.96
[2000] 121.96

[3000] 123.49
[250-250] 125.61
[300-300] 121.68

[250-500] 128.98
[500-1000] 126.52
[200-200-200] 126.78
[500-500-500] 127.73

Table 10 Average Euclidean distance in mm between the ground-truth
3D joint locations and the ones predicted by our approach trained us-
ing autoencoders in various configurations, with different number of
layers and number of channels per layer as indicated by the bracketed
numbers. This validation was performed on the Greeting action and the
optimal values used for all other actions.

We further compare our OURS-BLSTM-Pose model with
a network where the BLSTM was replaced by two fully-
connected layers, thus giving it a similar capacity as the
BLSTM one, but not explicitly modeling temporal consis-
tency. This model gives an average pose estimation accu-

racy on all Human3.6m actions of 77.96 mm, whereas our
BLSTM-based model achieves 65.37 mm. Our method sig-
nificantly outperforms this baseline, thus showing that the
better performance of our LSTM-based networks does not
just come from their larger number of parameters, but truly
from their ability to model temporal information.

5.5 Comparison Between KDE and Autoencoders

In Table 9, we compare two structured 3D human pose es-
timation methods: Our autoencoder-based deep network ap-
proach and kernel dependency estimation (KDE) [22,23]. In
the earlier works of [22] and [23], KDE is applied to hand-
crafted HOG features, whereas in our approach we rely on
deep features. In order to compare the structured regression
performance of KDE to our autoencoder-based approach,
we also applied KDE to the deep features extracted from
a CNN. We extract either the features from the last convolu-
tional layer (Conv3) or the last fully-connected layer (FC3)
of the network depicted in Fig. 2(b). As can be seen in Ta-



Learning Latent Representations of 3D Human Pose with Deep Neural Networks 13

ble 9, we consistently outperform all the baselines, which
demonstrates the power of autoencoding.

5.6 Parameter Choices

In Table 10, we compare the results of different autoencoder
configurations in terms of number of layers and channels per
layer on the Greeting action. Similarly to what we did in Ta-
ble 3(b), the bracketed numbers denote the dimension of the
autoencoder’s hidden layers. We obtained the best result for
1 layer with 2000 channels or 2 layers with 300-300 chan-
nels. These values are those we used for all the experiments
described above. They were chosen for a single action and
used unchanged for all others, thus demonstrating the versa-
tility of our approach.

6 Conclusion

We have introduced a novel Deep Learning regression ar-
chitecture for structured prediction of 3D human pose from
a monocular image or a 2D joint location heatmap. We have
shown that our approach to combining autoencoders with
CNNs accounts for the dependencies between the human
body parts efficiently and significantly improves accuracy.
We have also shown that accounting for the temporal infor-
mation with LSTMs further increases the accuracy of our
pose estimates. Since our framework is generic, in future
work, we intend to apply it to other structured prediction
problems, such as deformable surface reconstruction.

References

1. A. Agarwal and B. Triggs. 3D Human Pose from Silhouettes by
Relevance Vector Regression. In CVPR, 2004.

2. I. Akhter and M. J. Black. Pose-Conditioned Joint Angle Limits
for 3D Human Pose Reconstruction. In CVPR, 2015.

3. L. Bo and C. Sminchisescu. Twin Gaussian Processes for Struc-
tured Prediction. IJCV, 2010.

4. F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. J.
Black. Keep It SMPL: Automatic Estimation of 3D Human Pose
and Shape from a Single Image. In ECCV, 2016.

5. M. Burenius, J. Sullivan, and S. Carlsson. 3D Pictorial Structures
for Multiple View Articulated Pose Estimation. In CVPR, 2013.

6. J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Human Pose
Estimation with Iterative Error Feedback. In CVPR, 2016.

7. W. Chen, H. Wang, Y. Li, H. Su, Z. Wang, C. Tu, D. Lischin-
ski, D. Cohen-or, and B. Chen. Synthesizing Training Images for
Boosting Human 3D Pose Estimation. In 3DV, 2016.

8. X. Chen and A. L. Yuille. Articulated Pose Estimation by a Graph-
ical Model with Image Dependent Pairwise Relations. In NIPS,
2014.

9. C. Cortes, M. Mohri, and J. Weston. A General Regression Tech-
nique for Learning Transductions. In ICML, 2005.

10. J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell. Long-Term Recurrent
Convolutional Networks for Visual Recognition and Description.
In CVPR, 2015.

11. M. Du and R. Chellappa. Face Association Across Unconstrained
Video Frames Using Conditional Random Fields. In ECCV, 2012.

12. Y. Du, Y. Wong, Y. Liu, F. Han, Y. Gui, Z. Wang, M. Kankan-
halli, and W. Geng. Marker-Less 3D Human Motion Capture with
Monocular Image Sequence and Height-Maps. In ECCV, 2016.

13. A. Elhayek, E. Aguiar, A. Jain, J. Tompson, L. Pishchulin, M. An-
driluka, C. Bregler, B. Schiele, and C. Theobalt. Efficient
Convnet-Based Marker-Less Motion Capture in General Scenes
with a Low Number of Cameras. In CVPR, 2015.

14. K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik. Recurrent Net-
work Models for Human Dynamics. In ICCV, 2015.

15. G. Gkioxari, A. Toshev, and N. Jaitly. Chained Predictions Using
Convolutional Neural Networks. In ECCV, 2016.

16. X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier Neural
Networks. In AISTATS, 2011.

17. A. Graves, S. Fernandez, and J. Schmidhuber. Bidirectional
LSTM networks for improved phoneme classification and recog-
nition. In ICANN, 2005.

18. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In CVPR, pages 770–778, 2016.

19. G. Hinton and R. Salakutdinov. Reducing the Dimensionality of
Data with Neural Networks. Science, 2006.

20. S. Hochreiter and J. Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735–1780, 1997.

21. C. Hong, J. Yu, J. Wan, D. Tao, and M. Wang. Multimodal Deep
Autoencoder for Human Pose Recovery. TIP, 2014.

22. C. Ionescu, F. Li, and C. Sminchisescu. Latent Structured Models
for Human Pose Estimation. In ICCV, 2011.

23. C. Ionescu, I. Papava, V. Olaru, and C. Sminchisescu. Hu-
man3.6M: Large Scale Datasets and Predictive Methods for 3D
Human Sensing in Natural Environments. PAMI, 2014.

24. A. Jain, J. Tompson, M. Andriluka, G. W. Taylor, and C. Bre-
gler. Learning Human Pose Estimation Features with Convolu-
tional Networks. In ICLR, 2014.

25. A. Jain, A. Zamir, S. Savarese, and A. Saxena. Structural-Rnn:
Deep Learning on Spatio-Temporal Graphs. In CVPR, 2016.

26. J. Johnson, A. Karpathy, and L. Fei-fei. Densecap: Fully Convo-
lutional Localization Networks for Dense Captioning. In CVPR,
2016.

27. S. Johnson and M. Everingham. Clustered Pose and Nonlinear
Appearance Models for Human Pose Estimation. In BMVC, 2010.

28. D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes.
In ICLR, 2014.

29. D.P. Kingma and J. Ba. Adam: A Method for Stochastic Optimi-
sation. In ICLR, 2015.

30. S. Kombrink, T. Mikolov, M. Karafiat, and L. Burget. Recurrent
Neural Network Based Language Modeling in Meeting Recogni-
tion. In INTERSPEECH, 2011.

31. K. Konda, R. Memisevic, and D. Krueger. Zero-Bias Autoen-
coders and the Benefits of Co-Adapting Features. In ICLR, 2015.

32. S. Li and A.B. Chan. 3D Human Pose Estimation from Monocu-
lar Images with Deep Convolutional Neural Network. In ACCV,
2014.

33. S. Li, W. Zhang, and A. B. Chan. Maximum-Margin Structured
Learning with Deep Networks for 3D Human Pose Estimation. In
ICCV, 2015.

34. S. Li, W. Zhang, and A. B. Chan. Maximum-Margin Structured
Learning with Deep Networks for 3D Human Pose Estimation. In
IJCV, 2016.

35. M. Liang and X. Hu. Recurrent Convolutional Neural Network
for Object Recognition. In CVPR, 2015.

36. L.J.P.v.d. Maaten and G.E. Hinton. Visualizing High Dimensional
Data Using t-SNE. JMLR, 2008.

37. D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu,
and C. Theobalt. Monocular 3D Human Pose Estimation In The
Wild Using Improved CNN Supervision. In International Confer-
ence on 3D Vision, 2017.

38. A. Newell, K. Yang, and J. Deng. Stacked Hourglass Networks
for Human Pose Estimation. In ECCV, 2016.



14 Isinsu Katircioglu⇤, Bugra Tekin⇤, Mathieu Salzmann, Vincent Lepetit, Pascal Fua

39. M. Oberweger, P. Wohlhart, and V. Lepetit. Hands Deep in
Deep Learning for Hand Pose Estimation. arXiv Preprint,
abs/1502.06807, 2015.

40. S. Park, J. Hwang, and N. Kwak. 3D Human Pose Estimation
Using Convolutional Neural Networks with 2D Pose Information.
In ECCV Workshops, 2016.

41. Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpanis, and
Kostas Daniilidis. Coarse-to-fine volumetric prediction for single-
image 3d human pose. In CVPR, 2017.

42. T. Pfister, J. Charles, and A. Zisserman. Flowing Convnets for
Human Pose Estimation in Videos. In ICCV, 2015.

43. P.O. Pinheiro and R. Collobert. Recurrent Neural Networks for
Scenel Labelling. In ICML, 2014.

44. L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka,
P. Gehler, and B. Schiele. Deepcut: Joint Subset Partition and
Labeling for Multi Person Pose Estimation. In CVPR, 2016.

45. Alin-Ionut Popa, Mihai Zanfir, and Cristian Sminchisescu. Deep
multitask architecture for integrated 2d and 3d human sensing. In
CVPR, 2017.

46. V. Ramakrishna, T. Kanade, and Y. Sheikh. Reconstructing 3D
Human Pose from 2D Image Landmarks. In ECCV, 2012.

47. S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contrac-
tive Auto-Encoders: Explicit Invariance During Feature Extrac-
tion. In ICML, 2011.

48. G. Rogez and C. Schmid. Mocap Guided Data Augmentation for
3D Pose Estimation in the Wild. In NIPS, 2016.

49. M. Salzmann and R. Urtasun. Implicitly Constrained Gaussian
Process Regression for Monocular Non-Rigid Pose Estimation. In
NIPS, December 2010.

50. M. Sanzari, V. Ntouskos, and F. Pirri. Bayesian Image Based 3D
Pose Estimation. In ECCV, 2016.

51. L. Sigal and M.J. Black. Humaneva: Synchronized Video and Mo-
tion Capture Dataset for Evaluation of Articulated Human Motion.
Technical report, Department of Computer Science, Brown Uni-
versity, 2006.

52. E. Simo-Serra, A. Quattoni, C. Torras, and F. Moreno-Noguer. A
Joint Model for 2D and 3D Pose Estimation from a Single Image.
In CVPR, 2013.

53. I. Sutskever, G. E. Hinton, and G. W. Taylor. Generating Text with
Recurrent Neural Networks. In ICML, 2011.

54. B. Tekin, I. Katircioglu, M. Salzmann, V. Lepetit, and P. Fua.
Structured Prediction of 3D Human Pose with Deep Neural Net-
works. In BMVC, 2016.

55. B. Tekin, A. Rozantsev, V. Lepetit, and P. Fua. Direct Prediction of
3D Body Poses from Motion Compensated Sequences. In CVPR,
pages 991–1000, 2016.

56. D. Tome, C. Russell, and L. Agapito. Lifting From the Deep:
Convolutional 3D Pose Estimation From a Single Image. In arXiv
preprint, arXiv:1701.00295, 2017.

57. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint Training of
a Convolutional Network and a Graphical Model for Human Pose
Estimation. In NIPS, 2014.

58. A. Toshev and C. Szegedy. Deeppose: Human Pose Estimation
via Deep Neural Networks. In CVPR, 2014.

59. P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Ex-
tracting and Composing Robust Features with Denoising Autoen-
coders. In ICML, 2008.

60. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Man-
zagol. Stacked Denoising Autoencoders: Learning Useful Repre-
sentations in a Deep Network with a Local Denoising Criterion.
JMLR, 2010.

61. S. E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolu-
tional Pose Machines. In CVPR, 2016.

62. D. Weinland, M. Ozuysal, and P. Fua. Making Action Recognition
Robust to Occlusions and Viewpoint Changes. In ECCV, pages
635–648, 2010.

63. Y. Yang and D. Ramanan. Articulated Pose Estimation with Flex-
ible Mixtures-Of-Parts. In CVPR, 2011.

64. H. Yasin, U. Iqbal, B. Kruger, A. Weber, and J. Gall. A Dual-
Source Approach for 3D Pose Estimation from a Single Image. In
CVPR, 2016.

65. X. Zhou, X. Sun, W. Zhang, S. Liang, and Y. Wei. Deep Kinematic
Pose Regression. In ECCV Workshops, 2016.

66. X. Zhou, M. Zhu, S. Leonardos, K. Derpanis, and K. Daniilidis.
Sparseness Meets Deepness: 3D Human Pose Estimation from
Monocular Video. In CVPR, 2016.


