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Abstract Object tracking is challenging as target objects
often undergo drastic appearance changes over time. Re-
cently, adaptive correlation filters have been successfully ap-
plied to object tracking. However, tracking algorithms rely-
ing on highly adaptive correlation filters are prone to drift
due to noisy updates. Moreover, as these algorithms do not
maintain long-term memory of target appearance, they can-
not recover from tracking failures caused by heavy occlu-
sion or target disappearance in the camera view. In this pa-
per, we propose to learn multiple adaptive correlation fil-
ters with both long-term and short-term memory of target
appearance for robust object tracking. First, we learn a ker-
nelized correlation filter with an aggressive learning rate for
locating target objects precisely. We take into account the
appropriate size of surrounding context and the feature rep-
resentations. Second, we learn a correlation filter over a fea-
ture pyramid centered at the estimated target position for
predicting scale changes. Third, we learn a complementary
correlation filter with a conservative learning rate to main-
tain long-term memory of target appearance. We use the out-
put responses of this long-term filter to determine if tracking
failure occurs. In the case of tracking failures, we apply an
incrementally learned detector to recover the target position
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in a sliding window fashion. Extensive experimental results
on large-scale benchmark datasets demonstrate that the pro-
posed algorithm performs favorably against the state-of-the-
art methods in terms of efficiency, accuracy, and robustness.
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1 Introduction

Object tracking is one of the fundamental problems in com-
puter vision with numerous applications including surveil-
lance, human-computer interaction, and autonomous vehicle
navigation [52,32,48]. Given a generic target object speci-
fied by a bounding box in the first frame, the goal of ob-
ject tracking is to estimate the unknown target states, e.g.,
position and scale, in the subsequent frames. Despite sig-
nificant progress in the last decade, object tracking remains
challenging due to the large appearance variation caused
by deformation, sudden motion, illumination change, heavy
occlusion, and target disappearance in the camera view, to
name a few. To cope with this appearance variation over
time, adaptive correlation filters have been applied for ob-
ject tracking. However, existing tracking algorithms relying
on such highly adaptive models do not maintain long-term
memory of target appearance and thus are prone to drift in
the case of noisy updates. In this paper, we propose to em-
ploy multiple adaptive correlation filters with both long-term
and short-term memory for robust object tracking.

Correlation filters have attracted considerable attention
in the object tracking community [8,23,11,55,33,26,34,41,
24,40,12,6] in recent years. We attribute the effectiveness of
correlation filters for object tracking to the following three
important characteristics. First, correlation filter based track-
ing algorithms can achieve high tracking speed by comput-
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Fig. 1 Effectiveness of long-term memory of target appearance for tracking. Sample tracking results on the lemming sequence [50] by our
approach, MUSTer [26], KCF [24], STC [55], DSST [11] and TLD [28] (×: no tracking output from TLD [28]). Our tracker learns adaptive
correlation filters with short-term memory for translation and scale estimation. Compared to the TLD [28] tracker, the proposed tracking algorithm
is more robust to abrupt motion and significant deformation in the 230th frame. Our trackers explicitly capture long-term memory of target
appearance. As a result, our methods can recover the lost target after persistent occlusion in the 386th frame. The other state-of-the-art correlation
trackers (MUSTer [26], KCF [24], DSST [11] and STC [55]) fail to handle such tracking failures.

ing the spatial correlation efficiently in the Fourier domain.
The use of kernel tricks [24,13,33] further improves the
tracking accuracy without significantly increasing the com-
putational complexity. Second, correlation filters naturally
take the surrounding visual context into account and pro-
vide more discriminative information than the appearance
models [28,49] constructed based on target objects only.
For example, even if a target object undergoes heavy oc-
clusion, contextual cues can still help infer the target posi-
tion [55]. Third, learning correlation filters is equivalent to
a regression problem [24,23], where the circularly shifted
versions of input image patches are regressed to soft labels,
e.g., generated by a Gaussian function with a narrow band-
width ranging from zero to one. This differs from exist-
ing tracking-by-detection approaches [3,4,21] where binary
(hard-thresholded) sample patches are densely or randomly
drawn around the estimated target positions to incremen-
tally train discriminative classifiers. Hence, correlation filter
based trackers can alleviate the inevitable ambiguity of as-
signing positive and negative labels to those highly spatially
correlated samples.

However, existing correlation filter based trackers [8,23,
11,55,33] have several limitations. These methods adopt mov-
ing average schemes with high learning rates to update the
learned filters for handling appearance variations over time.
Since such highly adaptive update schemes can only main-
tain a short-term memory of target appearance, these meth-
ods are thus prone to drift due to the noisy updates [42], and
cannot recover from tracking failures as long-term memory
of target appearance is not maintained. Figure 1 shows an
example highlighting these issues. The state-of-the-art cor-
relation filter trackers (KCF [24], STC [55], and DSST [11])
tend to drift caused by noisy updates in the 350th frame and
fail to recover in the 386th frame after a long-duration oc-
clusion.

In this paper, we address the stability-adaptivity dilemma
[20,45] by strategically leveraging both the short-term and
long-term memory of target appearance. Specifically, we ex-

ploit three types of correlation filters: (1) translation filter,
(2) scale filter, and (3) long-term filter. First, we learn a
correlation filter for estimating the target translation. To im-
prove location accuracy, we introduce histogram of local in-
tensities (HOI) as complementary features to the commonly
used histogram of oriented gradients (HOG). We show that
the combined features increase the discriminative strength
between the target and its surrounding background. Second,
we learn a scale correlation filter by regressing the feature
pyramid of the target object to a one-dimensional scale space
for estimating the scale variation. Third, we learn and update
a long-term filter using confidently tracked sample patches.
For each tracked result, we compute the confidence score
using the long-term filter to determine whether tracking fail-
ures occur. When the confidence score is below a certain
threshold, we activate an online trained detector to recover
the target object.

The main contribution of this work is an effective ap-
proach that best exploits three types of correlation filters for
robust object tracking. Specifically, we make the following
three contributions:

– We show that adaptive correlation filters are competent
in estimating translation and scale changes, as well as
determining whether tracking failures occur. Compared
to our previous work in [41], we employ a different de-
tection module with incremental updates using an effi-
cient passive-aggressive scheme [9].

– We systematically analyze the effect of different fea-
ture types and the size of surrounding context area for
designing effective correlation filters. We also provide
thorough ablation study to investigate the contribution
of the design choices.

– We discuss and compare the proposed algorithm with
the concurrent work [26] in details. We evaluate the pro-
posed algorithm and present extensive comparisons with
the state-of-the-art trackers on both the OTB2013 [50]
and OTB2015 [51] datasets as well as on additional 10
challenging sequences from [54].



Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking 3

2 Related Work

Object tracking has been an active research topic in com-
puter vision. In this section, we discuss the most closely re-
lated tracking-by-detection approaches. Comprehensive re-
views on object tracking can be found in [52,32,48].

2.1 Tracking-by-Detection

Tracking-by-detection methods treat object tracking in each
frame as a detection problem within a local search window,
and often by incrementally learning classifiers to separate
the target from its surrounding background. To adapt to the
appearance variations of the target, existing approaches typ-
ically draw positive and negative training sample patches
around the estimated target location for updating the clas-
sifiers. Two issues ensue with such approaches. The first is-
sue is the sampling ambiguity, i.e., a slight inaccuracy in the
labeled samples may be accumulated over time and cause
trackers to drift. Numerous methods have been proposed to
alleviate the sampling ambiguity. The main objective is to
robustly update a discriminative classifier with noisy train-
ing samples. Examples include ensemble learning [3,5], semi-
supervised learning [19], multiple instance learning (MIL)
[4], structure learning [21], and transfer learning [17]. The
second issue is the dilemma between stability and adaptivity
when updating appearance models. To strike a balance be-
tween the model stability and adaptivity, Kalal et al. [28] de-
compose the tracking task into tracking, learning and detec-
tion (TLD) modules where the tracking and detection mod-
ules facilitate each other, i.e., the results from the aggres-
sively updated tracker provide additional training samples
to conservatively update the detector. The online learned de-
tector can be used to reinitialize the tracker when tracking
failure occurs. Similar mechanisms have also been exploited
in [44,49,27] to recover target objects from tracking fail-
ures. Zhang et al. [54] use multiple classifiers with different
learning rates and design an entropy measure to fuse multi-
ple tracking outputs. We also use an online trained detector
for reinitializing the tracker as in [28,54]. However, we only
activate the detector if the response from the long-term fil-
ter is lower than a certain threshold. This approach helps
improve efficiency because we do not active the detector in
every frame as in [28,54].

2.2 Correlation Filter based Tracking

Correlation filters have been widely applied to various com-
puter vision problems such as object detection and recog-
nition [31]. Recently, correlation filters have drawn signif-
icant attention in the object tracking community, owing to

the computational efficiency and the effectiveness in alle-
viating the sampling ambiguity, i.e., learning correlation fil-
ters does not require hard-thresholded binary samples. In [8]
Bolme et al. learn a minimum output sum of squared error
(MOSSE) filter on the luminance channel for fast tracking.
Considerable efforts have since been made to improve the
tracking performance using correlation filters. Extensions
include kernelized correlation filters [23], multi-channel fil-
ters [24,13,40,16], context learning [55], scale estimation
[11,33], and spatial regularization [12]. However, most of
these approaches emphasize the adaptivity of the model and
do not maintain a long-term memory of target appearance.
As a result, these models are prone to drift in the presence
of occlusion and target disappearance in the camera view
and are unable to recover targets from tracking failures ei-
ther. Our work builds upon correlation filter based trackers.
Unlike existing work that relies on only one correlation fil-
ter for translation estimation, we learn three complementary
correlation filters for estimating target translation, predict-
ing scale change, and determining whether tracking failure
occurs. The most closely related work is that by Hong et al.
[26] (MUSTer) which also exploits the long-term and short-
term memory for correlation filter based tracking. The main
difference lies in the model used for capturing the long-term
memory of target appearance. The MUSTer tracker repre-
sents the target appearance using a pool of local features.
In contrast, our long-term correlation filter represents a tar-
get object with a holistic template. We observe that it is of-
ten challenging to match two sets of local points of inter-
est between two frames due to outliers. Figure 1 shows one
example where the MUSTer tracker fails to recover the tar-
get in the 386th frame, as few interest points are correctly
matched.

3 Overview

We aim to exploit multiple correlation filters to handle the
following three major challenges in object tracking: (1) sig-
nificant appearance changes over time, (2) scale variation,
and (3) target recovery from tracking failures. First, exist-
ing trackers using one single correlation filter are unable
to achieve these goals as it is difficult to strike a balance
between the stability and adaptivity with only one module.
Second, while considerable efforts have been made to ad-
dress the problem of scale prediction [11,33,55], it remains
an unsolved problem as slight inaccuracy in scale estima-
tion causes significant performance loss of an appearance
model. Third, determining when tracking failures occur and
re-detecting the target object from failures remain challeng-
ing. In this work, we exploit three types of correlation fil-
ters with different levels of adaptiveness to address these
issues. Figure 2 illustrates the construction of three correla-
tion filters for object tracking. We use two correlation filters
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Fig. 2 Overview of three types of correlation filters: translation filter, scale filter, and long-term memory filter. The translation filter AT

with short-term memory adapts to appearance changes of the target and its surrounding context. The scale filterAS predicts scale variation of the
target. The long-term filterAL conservatively learns and maintains long-term memory of target appearance. Also, we use the long-term filterAL

to detect tracking failures by checking if the filter response is below a certain threshold. Note that the filter responses for the scale filter AS are
one-dimensional while the filter responses of the other two filters are two-dimensional. We train the translation filter AT using the histogram of
local intensities as features in addition to the commonly used HOG features. Furthermore, we apply a layer of spatial weights to the feature space
to cope with the discontinuity introduced by circular shifts. The operator F indicates the Fourier transformation, and � is the Hadamard product.
The dashed arrow in orange denotes a conservative update scheme for filter learning.

with short-term memory, i.e., the translation filter AT and
the scale filter AS, for translation and scale estimation. We
learn a long-term filter AL to maintain long-term memory
of target appearance for estimating the confidence of each
tracked result.

Figure 3 illustrates the main steps of the proposed algo-
rithm with the three correlation filters for object tracking.
Given an input frame, we first apply the translation filter
AT for locating the target object in a search window cen-
tered at the position in the previous frame. Once we obtain
the estimated target position, we apply the scale filter AS

to predict the scale changes. For each tracked result, we use
the long-term filterAL to determine whether tracking failure
occurs (i.e., whether the confidence score is below a certain
threshold). In the cases where the tracker loses the target, we
activate an online detector for recovering the lost or drifted
target, and reinitialize our tracker. While the proposed long-
term filter itself can also be used as a detector, the com-
putational load is high due to the use of high-dimensional
features. For computational efficiency, we build on an addi-
tional detection module using an online support vector ma-
chine (SVM). We update both the detection module and the
long-term filter with a conservative learning rate to capture
the target appearance over a long temporal span.

4 Tracking Components

In this section, we describe the main components of the
proposed tracking algorithm. We first describe the kernel-
ized correlation filters [23], and then present the schemes
of learning these filters over multi-channel features [24] for
translation estimation and scale prediction. We then discuss

how to learn correlation filters to capture the short-term and
long-term memory of target appearance using different learn-
ing rates, as well as how these filters collaborate with each
other for object tracking. Finally, we present an online de-
tection module to recover the target when tracking failure
occurs.

4.1 Kernelized Correlation Filters

Correlation filter based trackers [13,11] achieve the state-
of-the-art performance in the recent benchmark evaluations
[50,38]. The core idea of these methods is to regress the
circularly shifted versions of the input image patch to soft
target scores (e.g., generated by a Gaussian function and de-
caying from 1 to 0 when the input images gradually shift
away from the target center). The underlying assumption is
that the circularly shifted versions of input images approxi-
mate the dense samples of target appearance [24]. As learn-
ing correlation filters do not require binary (hard-threshold)
samples, correlation filter based trackers effectively alleviate
the sampling ambiguity that adversely affects most tracking-
by-detection approaches. By exploiting the redundancies in
the set of shifted samples, correlation filters can be trained
with a substantially large number of training samples effi-
ciently using fast Fourier transform (FFT). This data aug-
mentation helps discriminate the target from its surrounding
background.

Given one-dimensional data x = {x1, x2, . . . , xn}>,
we denote its circularly shifted version with one entry by
x1 = {xn, x1, x2, . . . , xn−1}>. All the circularly shifted
versions of x are concatenated to form the circulant matrix
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Fig. 3 Overview of the proposed algorithm. We decompose the tracking task into translation and scale estimation. We first infer the target
position pt from correlation response map of the translation filterAT, and then predict the scale change using the scale filterAS. The correlation
tracking module collaborates with the re-detection module built on SVM classifier via the long-term filterAL. We activate the re-detection module
when the correlation response of AL is below a given Tr . Note that we conservatively adopt the detection result only when it is highly confident,
i.e., the correlation response ofAL is above a given threshold Ta.

X = [x1,x2, . . . ,xn]. Using the Discrete Fourier Transform
(DFT), we can diagonalize the circulant matrix X as:

X = FHdiag
(
F (x)

)
F, (1)

where F denotes the constant DFT matrix that transforms
the data from the spatial domain into the Fourier domain.
We denote F (x) as the Fourier transform of x, i.e., F (x) =

Fx and FH as the Hermitian transpose of F.
A linear correlation filter f trained on an image patch x

of size M × N is equivalent to a ridge regression model,
which considers all the circularly shifted versions of x (in
both horizontal and vertical directions) as training data. Each
example xi, i ∈ {1, 2, . . . ,M}×{1, 2, . . . , N} corresponds
to a target score yi = exp

(
− (m−M/2)2+(n−N/2)2

2σ2
0

)
, where

(m,n) indicates the shifted positions along horizontal and
vertical directions. The target center has a maximum score
yi = 1. The score yi decays rapidly from 1 to 0 when the
position (m,n) is away from the desired target center. The
kernel width σ0 is a predefined parameter controlling the
sensitivity of the score function. The objective function of
the linear ridge regression for learning the correlation filter
is of the form:

min
w

M×N∑
i=1

(
f(xi)− yi

)2
+ λ‖w‖2, (2)

where λ > 0 is a regularization parameter. The solution to
(2) is a linear estimator: f(x) = w>x. As a result, the ridge
regression problem has the close-form solution with respect
to the circulant matrix X as follows:

w = (X>X+ λI)−1X>y, (3)

where I is the identity matrix with the size of MN ×MN .
Substituting the DFT form of x for the circulant matrix X

using (1), we have the solution in the Fourier domain as:

W =
X � Y
X � X + λ

, (4)

whereW , X , Y are the corresponding signals in the Fourier
domain, and X is the complex conjugate of X .

To strengthen the discrimination of the learned filters,
Henriques et al. [23] use a kernel k, k(x,x′) = 〈φ(x), φ(x′)〉
to learn correlation filters in a kernel space while maintain-
ing the computational complexity as its linear counterpart.
Here the notation 〈·, ·〉 denotes inner product. The kernelized
filter can be derived as f(x) = w>φ(x) =

∑
i aik(xi,x

′),
where a = {ai} are the dual variables of w. For shift-
invariant kernels, e.g., an RBF kernel, the dual coefficients
a can be obtained using the circulant matrix in the Fourier
domain [13,24] as:

A =
Y

Kxx′
+ λ

, (5)

where the matrixK denotes the Fourier transform of the ker-
nel correlation matrix k, which is defined as:

kxx′ = exp

(
−‖x‖

2 + ‖x′‖2

σ2
− 2F−1

(
X � X ′

))
. (6)

As the computation involves only element-wise product, the
overall complexity remains in linearithmic time,O(n log n),
where the input size n = MN . Given a new input frame,
we apply a similar scheme in (6) to compute the correlation
response map. Specifically, we first crop an image patch z

centered at the location in the previous frame. We then com-
pute the response map f using the learned target template x̃

in the Fourier domain as:

f(z) = F−1(Kx̃z �A). (7)

We can then locate the target object by searching for the po-
sition with the maximum value in the response map f . Note
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that the maximum correlation response naturally reflects the
similarity between a candidate patch and the learned filter.
As we learn the filer in the scale space, the confidence score
can be used to estimate scale changes (Section 4.3). Simi-
larly, when the filter maintains long-term memory of target
appearance, the confidence score can be used for determin-
ing tracking failures (Section 4.4). Note that here we use
two-dimensional long-term memory filter. In the case where
an input image patch is not well aligned with the learned
filter, the maximum value of the 2D response map can still
effectively indicate the similarity between the image patch
and learned filter.

4.2 Multi-Channel Correlation Filters

Appearance features play a critical role for object tracking.
In general, multi-channel features are more effective in sep-
arating the foreground and background than single channel
features, e.g., intensity. With the use of the kernel trick, we
can efficiently learn correlation filters over multi-channel
features. Let x = [x1,x2, . . . ,xc] denote the multi-channel
features for the target object, where c is the total number of
channels. The kernel correlation matrix kxx′ can be com-
puted by a summation of the element-wise products over
each feature channel in the Fourier domain. Thus, we rewrite
(6) as follows:

kxx′ = exp

(
−‖x‖

2 + ‖x′‖2

σ2
− 2F−1

(∑
c

Xc �X
′
c

))
.

(8)

This formulation renders an efficient solution to incorporate
different types of multi-channel features. In this work, we
use two complementary types of local statistical features for
learning correlation filters: (1) histogram of oriented gradi-
ents (HOG) and (2) histogram of local intensities (HOI).

Histogram of Oriented Gradients (HOG). As one of the
most widely used feature descriptors for object detection
[10], the main idea of the HOG descriptor is to encode the
local object appearance and shape by the distribution of ori-
ented gradients. Each image patch is divided into small re-
gions (cells), in which a histogram of oriented gradients is
computed to form the descriptor. These gradient-based de-
scriptors are robust to illumination variation and local shape
deformation and have been used to help learn discriminative
correlation filters for object tracking [24,11].

Histogram of Local Intensities (HOI). We observe that
correlation filters learned from only HOG features are not
effective in handling cases where the images are heavily
blurred, e.g., caused by abrupt motion, blurring, or illumi-
nation changes. We attribute the performance degradation to

the fact that intensity gradients are no longer discriminative
when representing target objects undergoing abrupt motion.
In such cases, we observe that the intensity values between
the target and its background remain distinctive. However,
learning correlation filters directly over intensities does not
perform well [23,55] (see Section 6.2) as intensity values
are not robust to appearance variation, e.g., caused by defor-
mation. We thus propose to compute the histogram of local
intensities as a complementary of HOG features. The pro-
posed HOI features bear some resemblance to the distribu-
tion field scheme [46,15] where the statistical properties of
pixel intensities are exploited as features. In contrast to com-
puting the statistical properties over the whole image [46,
15], we use the histograms of local patches. These local sta-
tistical features are more robust to appearance changes than
pixel intensities. In this work, we compute the histogram in
a 6×6 local cell and quantize the intensity values into 8 bins.
To enhance the robustness to drastic illumination variation,
we compute the HOI feature descriptors not only on the in-
tensity channel but also on a transformed channel by apply-
ing a non-parametric local rank transformation [53] to the
intensity channel. The intensity-based features (HOI) and
the gradient-based features (HOG) are complementary to
each other as they capture different aspects of target appear-
ance. We compute these two types of features using local
histograms with the same spatial resolution (but with dif-
ferent channels). Thus, the HOG and HOI features can be
easily integrated into the kernelized correlation filters using
(8).

Deep Convolutional Features. Deep features learned from
convolutional neural networks (CNNs) have recently been
applied to numerous vision problems [30,18,35]. In this work,
we exploit deep CNN features to complement the proposed
multi-channel HOG and HOI features for learning correla-
tion filters. Specifically, we use the features from the last
convolutional layer (conv5-4) of the VGGNet-19 [47] as in
[39]. Compared to the handcrafted HOI and HOG features
that capture fine-grained spatial details of a target object,
deep CNN features encode hierarchical and high-level se-
mantic information that is robust to significant appearance
changes over time. Our goal is to fully exploit the merits
of both handcrafted and deep features. Instead of learning
a single correlation filter over the concatenated features, we
learn one correlation filter for each type of features. We infer
target object location by combining the response maps from
the two correlation filters.

Given the correlation response maps fh and fd using
handcrafted and deep features in (7), we denote the prob-
ability of position (i, j) ∈ {1, 2 . . . ,M} × {1, 2, . . . , N}
to be the center of the target by a distribution f lij , where∑
ij f

l
ij = 1 and l ∈ {h, d}. We determine the optimal dis-

tribution q by minimizing the Kullback-Leibler (KL) diver-



Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking 7

#015 #030

#050 #070

CT-HOGCT-HOGHOICT-VGG19CT-HOGHOI-VGG19

Fig. 4 Effectiveness of using both deep and handcrafted features.
Qualitative results on the skiing sequence [50] using different types of
features for learning the translation filter. The CT-HOGHOI-VGG19
method effectively exploits the advantages of both deep and hand-
crafted features, and tracks the target object over the entire sequence.

gence of each response map f l and q as follows:

argmax
q

∑
l∈{h,d}

DKL(f
l‖q), (9)

s.t.
∑
i,j

qij = 1,

where fij and qij are the elements of f and q at position
(i, j). The KL divergence is defined as:

DKL(f
l‖q) =

∑
f lij log

f lij
qij
. (10)

Using the Lagrange multiplier method, the solution of q in
(9) is:

q =
fh ⊕ fd

2
, (11)

where ⊕ means element-wise addition. An intuitive expla-
nation is that the final probability distribution of object lo-
cation q is the average of the response maps fh and fd. We
locate the target object based on the maximum value of q.

To demonstrate the effectiveness of exploiting both the
deep (conv5-4 in VGGNet-19) and handcrafted (HOG-HOI)
features, we show quantitative comparisons of the tracking
results using four different types of features on the skiing se-
quence in Figure 4. Figure 5 shows the center location error
plot over the entire sequence. Note that the CT-HOGHOI-
VGG19 approach exploits the merits of both deep and hand-
crafted features effectively, and thus successfully track the
target skier over the entire sequence. On the other hand,
other alternative approaches (using either deep or handcrafted
features) do not achieve satisfactory results as shown by the
large center location error in Figure 5.

10 20 30 40 50 60 70 80

Frame number

0

50

100

150

200

250

300

350

400

450

C
e
n
te

r 
lo

c
a
ti
o
n
 e

rr
o
r 

(p
ix

e
ls

)

Center location error plot - skiing

CT-HOG

CT-HOGHOI

CT-VGG19

CT-HOGHOI-VGG19

Fig. 5 Comparison of different features for precise localization.
We plot center location error on the skiing sequence [50]. Compared
with other variants, the CT-HOGHOI-VGG19 method exploits both
deep and handcrafted features, and achieves smallest center location
error.

4.3 Scale Regression Model via Correlation Filters

We construct the feature pyramid of target appearance cen-
tered at the estimated location to train a scale regression
model using correlation filters. Danelljan et al. [11] also
learn a discriminative correlation filter for scale estimation.
Our method differs from [11] in that we do not use the pre-
dicted scale changes to update the translation filter. LetW ×
H be the target size and N indicate the number of scales
S = {αn|n = b−N−12 c, b−

N−3
2 c, . . . , b

N−1
2 c}, where α is

a scaling factor, e.g., α = 1.03. For each scale s ∈ S, we
crop an image patch of size sW × sH centered at the es-
timated location. We resize all these cropped patches to an
uniform size ofW×H , and then extract HOG features from
each sampled patch to form a feature pyramid containing the
multi-scale representation of the target.

Let xs denote the target features in the s-th scale. We as-
sign xs with a regression target score ys = exp(− (s−N/2)2

2σ2
0

).
As {ys} is one dimensional, we vectorize xs before applying
(5) to learn correlation filters. With the use of vectorization,
the output response score of (7) is a scalar indicating the
similarity between xs and the learned filter. To mitigate the
ambiguity, we denote this output scalar from (7) as g(xs).
The optimal scale s∗ can then be inferred by:

s∗ = argmax
s
{g(xs) | s ∈ S}. (12)

In Figure 6, we compare four different schemes for esti-
mating the target states in terms of translation and scale. As
shown in Figure 6(d), our approach first estimates the trans-
lation, and then predicts the scale change in a spirit sim-
ilar to the coordinate descent optimization. Our approach
differs from several existing tracking schemes that jointly
infer the translation and scale changes. For example, parti-
cle filter based tracking algorithms such as [1] draw random
samples to approximate the distribution of target states con-
taining translation and scale changes (Figure 6(a)). The gra-
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(a) Particle filter (b) Gradient descent (c) Exhaustive search (d) Ours

Fig. 6 Four main schemes for state estimation in object tracking. The symbols #, × and 4 denote the current, sampled and optimal states,
respectively. (a) The particle filter scheme such as [1] draws random samples (particles) to approximate the joint distribution of target states. (b)
The gradient descent method such as Lucas-Kanade [37] iteratively infers the local optimal translation and scale changes jointly. (c) The exhaustive
search scheme evaluates all possible states in a brutal force manner. (d) Our method first estimates the translation change first and then predicts
scale change in a similar spirit to coordinate descent optimization.

dient descent method (e.g., Lucas-Kanade [37]) iteratively
infers the local optimal translation and scale changes (Fig-
ure 6(b)). Although it is suboptimal to decompose the track-
ing task into two independent sub-tasks (i.e., translation and
scale estimation) as shown in Figure 6(d), our tracker not
only alleviates the burden of densely evaluating the target
states, but also avoids the noisy updates on the translation
filter in case of inaccurate scale estimation. We note that the
DSST [11] also decomposes the tracking task into the trans-
lation and scale estimation sub-tasks. Our approach differs
the DSST in that we update the translation filter using the
ground-truth scale in the first frame rather than the estimated
scale in each frame. We further alleviate the degradation of
translation filter caused by inaccurate scale estimation. Ex-
perimental results (see Figure 11 and Section 6) show that
our tracker significantly outperforms an alternative imple-
mentation (CT-HOGHOI-joint-scale-HOG), where the esti-
mated scale change in each frame is used to update the trans-
lation filter.

4.4 Long-Term and Short-Term Memory

To adapt to appearance changes, we incrementally update
the learned correlation filters over time. Since it is compu-
tationally expensive to update filters by directly minimizing
the output errors over all tracked results [7,16], we use a
moving average scheme for updating a single filter as fol-
lows:

x̃t = (1− η)x̃t−1 + ηxt, (13a)

ãt = (1− η)ãt−1 + ηat, (13b)

where t is the frame index and η ∈ (0, 1) is a learning
rate. This approach updates the filter at each frame and em-
phasizes the importance of model adaptivity with the short-
term memory of target appearance. Due to the effective-
ness of this scheme in handling appearance changes, track-
ing algorithms [24,11] achieve favorable performance in re-
cent benchmark studies [50,38]. However, these trackers are

prone to drift when the training samples are noisy and unable
to recover from tracking failures due to the lack of the long-
term memory of target appearance. In other words, the up-
date scheme in (13) assumes the tracked result in each frame
is accurate. In this work, we propose to learn a long-term fil-
ter AL to address this problem. As the output response map
of the long-term filterAL in (7) is two-dimensional, we take
the maximum value of the response map as the confidence
score. To capture the long-term memory of target appear-
ance for determining if tracking failures occur, we set a sta-
bility threshold Ts to conservatively update the long-term
filter AL for maintaining the model stability. We update the
filter using (13) only if the confidence score, max

(
f(z)

)
, of

the tracked object z exceeds the stability threshold Ts. Com-
pared to the methods [45,59] that use only the first frame
as the long-term memory of target appearance, our long-
term filter can adapt to appearance variation over a long time
span.

An alternative approach to maintain long-term memory
of target appearance is to directly learn a long short-term
memory (LSTM) network [25] from training sequences off-
line. We follow the project [43] (https://github.com/
Guanghan/ROLO) to implement a baseline tracker using the
standard LSTM cell. We interpret the hidden state of the
LSTM as the counterpart of the long-term correlation fil-
ter. We use all the sequences on the VOT datasets [38,29]
as training data (excluding the overlapped sequences on the
OTB2015 dataset [51]). For each input feature vector xt, the
output cell state ct and hidden state ht are:

ĝf , ĝi, ĝo, û = Wxhxt +Whhht−1 + bh (14)

gf = σ(ĝf ) (15)

gi = σ(ĝi) (16)

go = σ(ĝo) (17)

u = tanh(û) (18)

ct = gf � ct−1 + gi � u (19)

ht = go � tanh(ct) (20)

https://github.com/Guanghan/ROLO
https://github.com/Guanghan/ROLO
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Fig. 7 Effect of long-term filters. On the lemming sequence, we use
three different long-term filters to compute the confidence scores of
the tracking results (yellow boxes) using the baseline CT-HOGHOI
method without incorporating a re-detection module. The conserva-
tively updated correlation filter performs well in determining tracking
failures as the confidence scores are generally below the threshold 0.15
after the 360-th frame.

where ĝf , ĝi, ĝo are the forget gates, input gates and out-
put gates, respectively. We denote b as the hidden state bi-
ases, σ(x) as the sigmoid function of x, 1

1+e−x , and � as
the element-wise multiplication. Here, Wxh are the weights
from the input xt to the hidden state, and Whh are the
weights between hidden states and are connected through
time. For simplicity, we set the size of the hidden state ht
to be equal to the size of the input xt. We use the hidden
state ht as the long-term filter to compute the correlation
response map.

Using lemming [50] sequence as an example, we com-
pare three types of long-term filters to compute the track-
ing confidence scores of the baseline CT-HOGHOI method
in Figure 7. The baseline algorithm does not incorporate a
re-detection module and thus fails to track the target after
the 360-th frame. The aggressively updated correlation filter
and the LSTM hidden states gradually degrade due to noisy
updates and cannot predict the tracking failures. In contrast,
the conservatively learned correlation filter accurately pre-
dicts tracking failures (the confidence scores are generally
below 0.15).

4.5 Three Types of Correlation Filters

For translation estimation, we enlarge the input bounding
boxes of target objects to incorporate surrounding context
to provide substantially more shift positions. Compared to
the tracking methods based on online classifiers [14,57,58]
that learn from sparse samples (randomly drawn around the
estimated target position), our approach based on correla-
tion filters learns from dense samples, i.e., all the circularly
shifted versions of input features (see Section 4.1). The in-
crease of training data facilitates discriminating the target

from its background. For learning the scale filter and long-
term filter , we do not incorporate contextual cues as the
surrounding context often changes drastically over time and
may adversely affect both the scale filter and the long-term
filter. Figure 2 shows the three different correlation filters
with the update schemes, context size, and feature type. We
refer the readers to the ablation studies in Section 6.4 for
justification of the design choices of the filters. Here, we
summarize the three different correlation filters as follows:

– The translation filter AT captures a short-term memory
of target appearance. We exploit surrounding context in-
formation for learning the filter AT. To fully exploit the
semantics within deep features and the fine-grained spa-
tial details within hand-crafted features, we learn trans-
lation filters over deep and handcrafted features, respec-
tively. To alleviate the boundary discontinuities caused
by the circular shifts, we use a two-dimensional cosine
window to weight each channel of the input features.

– We learn the scale filterAS using HOG features only. We
empirically find that adding HOI features does not im-
prove the accuracy of scale estimation (See Figure 11).
Unlike the translation filter AT, we extract the features
directly from the target region without incorporating the
surrounding contexts as they do not provide information
about the scale changes of the target.

– We learn the long-term filter AL using a conservative
learning rate to maintain the long-term memory of tar-
get appearance for determining the tracking failures. We
learn the filter AL using both HOG and HOI features.

4.6 Online Detector

A robust tracking algorithm requires a detection module to
recover the target from potential tracking failures caused by
heavy occlusion or out-of-view movement. For each tracked
target z, we compute its confidence score asCL = max

(
fAL

(z)
)

using the long-term filter AL. Unlike previous trackers [44,
49,27] carrying out the detection at every frame, we acti-
vate the detector only if the confidence score CL is below a
predefined re-detection threshold Tr. The main goal of us-
ing Tr is to reduce the computational load by avoiding the
sliding-window detection in each frame. For efficiency, we
use an online SVM classifier as the detector rather than us-
ing the long-term filterAL. We incrementally train the SVM
classifier by drawing dense training samples around the es-
timated position and scale change and assigning these sam-
ples with binary labels according to their overlap ratios sim-
ilar to [54]. In this work, we only take the translated sam-
ples for training to further reduce the computational burden.
We use quantized color histogram as our feature representa-
tion where each channel in the CIE LAB space is quantized
into four bins as in [54]. To improve robustness to dramatic
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illumination variation, we apply the non-parametric local
rank transformation [53] to the L channel. Given a training
set {(vi, ci)|i = 1, 2, . . . , N} with N samples in a frame,
where vi is the feature vector generated by the i-th sample
and ci ∈ {+1,−1} is the class label. The objective function
of solving the hyperplane h of the SVM detector is

min
h

λ

2
‖h‖2 + 1

N

∑
i

`
(
h; (vi, ci)

)
(21)

where `
(
h; (v, c)

)
= max{0, 1− c〈h,v〉}.

The notation 〈h,v〉 indicates the inner product between h

and v. Unlike existing methods [2,54] that maintain a large
pool of supported vectors for incremental update, we ap-
ply the passive-aggressive algorithm [9] to update the hy-
perplane parameters efficiently.

h← h−
`
(
h; (v, c)

)
‖∇h`

(
h; (v, c)

)
‖2 + 1

2τ

∇h`
(
h; (v, c)

)
, (22)

where ∇h`
(
h; (v, c)

)
is the gradient of the loss function in

terms of h and τ ∈ (0,+∞) is a hyper-parameter that con-
trols the update rate of h. Similar to the long-term filter, we
update the classifier parameters using (22) only when the
confidence score CL is above the threshold Ts.

Algorithm 1: Outline of the proposed tracking algo-
rithm.

Input : Initial bounding box bt−1 = (xt−1, yt−1, st−1),
AT,AS,AL, h

Output: Estimated bounding box bt = (xt, yt, st)

1 repeat
2 Crop out the image patch z centered at (xt−1, yt−1) and

extract HOG and HOI features;
// Translation estimation

3 Compute fAT
(z) and estimate target position (xt, yt);

// Scale estimation
4 Construct scale pyramid z′ around (xt, yt) and compute

fAS
(z′) to infer st;

5 Crop out patch z centered at (xt, yt);
// Re-detection

6 if max(fAL
(z)) < Tr then

7 Activate detection module h and find the candidate
bounding boxes B with positive labels;

8 foreach state b′ in B do computing fAL
(b′);

9 if max (fAL
(b′)) > Ta then bt = b′;

10 end
// Model update

11 UpdateAT andAS;
12 if max(fAL

(z)) > Ts then
13 UpdateAL and h;
14 end
15 until end of image sequence;

5 Implementation Details

Figure 3 presents the main steps of the proposed tracking al-
gorithm. We learn three types of correlation filters (AT,AS,
AL) for translation estimation, scale estimation, and cap-
turing the long-term memory of target appearance, respec-
tively. We also build a re-detection module using SVM for
recovering targets from tracking failures.

Algorithm 1 summarizes the proposed tracker. Our trans-
lation filter AT separates the target object from the back-
ground by incorporating the contextual cues. Existing meth-
ods [24,11] use an enlarged target bounding box by a fixed
ratio r = 2.5 to incorporate the surrounding context. Our
experimental analysis (see Section 6.6) shows that slightly
increasing the context area leads to improved results. We
set the value of r to a larger ratio of 2.8. We also take the
aspect ratio of target bounding box into consideration. We
observe that when the target (e.g., pedestrian) with a small
aspect ratio, a smaller value for r can decrease the unnec-
essary context area in the vertical direction. To this end, we
reduce the ratio r by one-half in the vertical direction when
the target with aspect ratio smaller than 0.5 (see Section 6.6
for more detailed analysis).

For training the SVM detector, we densely draw sam-
ples from a window centered at the estimated location. We
assign these samples with positive labels when their overlap
ratios with the target bounding box are above 0.5, and as-
sign them with negative labels when their overlap ratios are
below 0.1. We set the re-detection threshold Tr = 0.15 for
activating the detection module and the acceptance thresh-
old Ta = 0.38 for adopting the detection results. These
settings suggest that we conservatively adopt each detec-
tion result, as it would relocate the targets and reinitialize
the tracking process. We set the stability threshold Ts to
0.38 to conservatively update the filter AL for maintaining
the long-term memory of target appearance. Note that all
these threshold values compare with the confidence scores
computed by the long-term filter AL. The regularization pa-
rameter of (2) is set to λ = 10−4. The Gaussian kernel
width σ in (8) is set to 0.1, and the other kernel width σ0
for generating the soft labels is proportional to the target
size, i.e., σ0 = 0.1 ×

√
WH . We set the learning rate η in

(13) to 0.01. For scale estimation, we use N = 21 levels
of the feature pyramid and set the scale factor α to 1.03.
The hyper-parameter τ in (22) is set to 1. We empirically
determine all these parameters and fix them throughout all
the experiments. The source code is available at https:

//sites.google.com/site/chaoma99/cf-lstm.

https://sites.google.com/site/chaoma99/cf-lstm
https://sites.google.com/site/chaoma99/cf-lstm
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Table 1 Overall performance on the OTB2013 (I) [50] and OTB2015 (II) [51] datasets with the representative distance precision (DP) rate at a
threshold of 20 pixels, overlap success (OS) rate at a threshold of 0.5 IoU, average center location error (CLE), and tracking speed in frame per
second (FPS). Best: bold; second best: underline.

Ours-deep Ours MUSTer MEEM TGPR KCF DSST STC CSK Struck SCM MIL TLD LSHT CT
[26] [54] [17] [24] [11] [55] [23] [21] [59] [4] [28] [22] [56]

DP rate (%) I 87.8 84.8 86.5 83.0 70.5 74.1 73.9 54.7 54.5 65.6 64.9 47.5 60.8 56.1 40.6
II 82.5 76.2 77.4 78.1 64.3 69.2 69.5 50.7 51.6 63.5 57.2 43.9 59.2 49.7 35.9

OS rate (%) I 79.9 81.3 78.4 69.6 62.8 62.2 59.3 36.5 44.3 55.9 61.6 37.3 52.1 45.7 34.1
II 73.9 70.1 68.3 62.2 53.5 54.8 53.7 31.4 41.3 51.6 51.2 33.1 49.7 38.8 27.8

CLE (pixel) I 15.4 26.9 17.3 20.9 51.3 35.5 40.7 80.5 88.8 50.6 54.1 62.3 48.1 55.7 78.9
II 24.3 37.1 31.5 27.7 55.5 45.0 47.7 86.2 305.9 47.1 61.6 72.1 60.0 68.2 80.1

Speed (FPS) I 14.4 21.6 13.6 20.8 0.66 245 43.0 687 269 10.0 0.37 28.1 21.7 39.6 38.8
II 13.8 20.7 14.2 20.8 0.64 243 40.9 653 248 9.84 0.36 28.0 23.3 39.9 44.4

0 10 20 30 40 50

Location error threshold (pixels)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

 r
a

te

Precision plots of OPE

[0.878] Ours-deep

[0.865] MUSTer

[0.848] Ours

[0.830] MEEM

[0.741] KCF

[0.739] DSST

[0.705] TGPR

[0.656] Struck

[0.649] SCM

[0.608] TLD

[0.561] LSHT

[0.547] STC

[0.545] CSK

[0.475] MIL

[0.406] CT

0 10 20 30 40 50

Location error threshold (pixels)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

 r
a

te

Precision plots of TRE

[0.868] Ours-deep

[0.832] MEEM

[0.822] MUSTer

[0.802] Ours

[0.774] KCF

[0.758] TGPR

[0.752] DSST

[0.707] Struck

[0.653] SCM

[0.624] TLD

[0.618] CSK

[0.600] LSHT

[0.575] STC

[0.545] MIL

[0.477] CT

0 10 20 30 40 50

Location error threshold (pixels)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

 r
a

te

Precision plots of SRE

[0.837] Ours-deep

[0.821] MUSTer

[0.770] MEEM

[0.765] Ours

[0.702] DSST

[0.693] TGPR

[0.683] KCF

[0.634] Struck

[0.575] SCM

[0.573] TLD

[0.537] LSHT

[0.524] CSK

[0.453] MIL

[0.364] STC

[0.339] CT

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

[0.641] MUSTer

[0.629] Ours-deep

[0.628] Ours

[0.566] MEEM

[0.513] KCF

[0.505] DSST

[0.503] TGPR

[0.499] SCM

[0.474] Struck

[0.437] TLD

[0.406] LSHT

[0.398] CSK

[0.359] MIL

[0.347] STC

[0.306] CT

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE

[0.639] Ours-deep

[0.617] MUSTer

[0.607] Ours

[0.586] MEEM

[0.557] KCF

[0.550] TGPR

[0.539] DSST

[0.514] Struck

[0.514] SCM

[0.454] CSK

[0.448] TLD

[0.432] LSHT

[0.406] MIL

[0.379] STC

[0.359] CT

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots of SRE

[0.584] MUSTer

[0.582] Ours-deep

[0.551] Ours

[0.532] MEEM

[0.487] TGPR

[0.474] KCF

[0.468] DSST

[0.449] Struck

[0.434] SCM

[0.410] TLD

[0.378] LSHT

[0.376] CSK

[0.341] MIL

[0.255] CT

[0.252] STC

Fig. 8 Quantitative evaluation on the OTB2013 dataset. Overlap success and distance precision plots using one-pass evaluation (OPE), tem-
poral robustness evaluation (TRE) and spatial robustness evaluation (SRE). The legend of precision plots shows the distance precision scores at 20
pixels, and the legend of success plots contains the overlap success scores with the area under the curve (AUC).

6 Experimental Results

6.1 Experimental Settings

Datasets. We evaluate the proposed algorithm on a large
benchmark dataset [51] that contains 100 videos. To vali-
date the effectiveness of the proposed re-detection module,
we use additional ten sequences provided by [54].

Evaluation Metrics. We evaluate the performance using two
widely used metrics:
– Overlap success rate: the percentage of frames where the

overlap ratio between predicted bounding box (b1) and

ground truth bounding box (b0) is larger than a given
threshold, i.e., b1∩b0

b1∪b0
> 0.5.

– Distance precision rate: the percentage of frames where
the estimated center location error is smaller than a given
distance threshold, e.g., 20 pixels.

Baseline Trackers. We compare the proposed algorithm (1)
using only handcrafted features (Ours) and (2) using both
handcrafted and deep features (Ours-deep) with 13 state-
of-the-art trackers. The compared trackers can be roughly
grouped into three categories:



12 Chao Ma et al.

0 10 20 30 40 50

Location error threshold (pixels)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

 r
a

te

Precision plots of OPE

[0.825] Ours-deep

[0.781] MEEM

[0.774] MUSTer

[0.762] Ours

[0.695] DSST

[0.692] KCF

[0.643] TGPR

[0.635] Struck

[0.592] TLD

[0.572] SCM

[0.516] CSK

[0.507] STC

[0.497] LSHT

[0.439] MIL

[0.359] CT

0 10 20 30 40 50

Location error threshold (pixels)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

 r
a

te

Precision plots of TRE

[0.821] Ours-deep

[0.794] MEEM

[0.767] MUSTer

[0.745] Ours

[0.722] DSST

[0.720] KCF

[0.701] TGPR

[0.695] Struck

[0.600] TLD

[0.589] CSK

[0.583] SCM

[0.536] STC

[0.517] LSHT

[0.516] MIL

[0.420] CT

0 10 20 30 40 50

Location error threshold (pixels)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

 r
a

te

Precision plots of SRE

[0.782] Ours-deep

[0.741] MUSTer

[0.730] MEEM

[0.700] Ours

[0.662] DSST

[0.640] KCF

[0.626] TGPR

[0.614] Struck

[0.556] TLD

[0.520] SCM

[0.490] CSK

[0.461] LSHT

[0.439] MIL

[0.396] STC

[0.328] CT

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

[0.592] Ours-deep

[0.577] MUSTer

[0.562] Ours

[0.530] MEEM

[0.475] DSST

[0.475] KCF

[0.459] Struck

[0.458] TGPR

[0.445] SCM

[0.424] TLD

[0.383] CSK

[0.362] LSHT

[0.331] MIL

[0.319] STC

[0.281] CT

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE

[0.608] Ours-deep

[0.580] MUSTer

[0.569] Ours

[0.567] MEEM

[0.524] KCF

[0.522] DSST

[0.514] TGPR

[0.514] Struck

[0.468] SCM

[0.442] CSK

[0.440] TLD

[0.391] MIL

[0.385] LSHT

[0.355] STC

[0.325] CT

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots of SRE

[0.548] Ours-deep

[0.532] MUSTer

[0.503] Ours

[0.502] MEEM

[0.443] TGPR

[0.443] DSST

[0.442] KCF

[0.437] Struck

[0.402] TLD

[0.400] SCM

[0.357] CSK

[0.332] LSHT

[0.325] MIL

[0.263] STC

[0.254] CT

Fig. 9 Quantitative evaluation on the OTB2015 dataset. Overlap success and distance precision plots using the one-pass evaluation (OPE),
temporal robustness evaluation (TRE) and spatial robustness evaluation (SRE). The legend of precision plots shows the distance precision scores
at 20 pixels, and the legend of success plots contains the overlap success scores with the area under the curve (AUC).

– Trackers using correlation filters including the MUSTer
[26], KCF [24], DSST [11], STC [55], and CSK [23]
methods.

– Trackers using single online classifier including the Struck
[21], LSHT [22], MIL [4], and CT [56] methods.

– Trackers using multiple online classifiers including the
MEEM [54], TGPR [17], SCM [59], and TLD [28] meth-
ods.

Since the baseline methods are not deep learning trackers,
we report the results of our method using only handcrafted
features throughout all quantitative comparisons. We use the
evaluation protocol from the benchmark study [50]. We im-
plemented the algorithm in MATLAB. We conduct all the
experimental results on a machine with an Intel I7-4770 3.40
GHz CPU and 32 GB RAM. More quantitative and qual-
itative evaluation results are available at https://sites.
google.com/site/chaoma99/cf-lstm.

6.2 Overall Performance

The object tracking benchmark dataset [51] contains two
versions: (1) OTB2013 [50] with 50 sequences and (2) OTB-
2015 [51] with 100 sequences. We show the quantitative
results using the one-pass evaluation (OPE), temporal ro-
bustness evaluation (TRE), and spatial robustness evalua-

tion (SRE) criteria on both datasets in Figure 8 and Fig-
ure 9. Following the protocol, we report distance precision
rate at a threshold of 20 pixels, the overlap success rate at a
threshold of 0.5 Intersection over Union (IoU), the average
center location error, and and the average tracking speed in
frames per second in Table 1. We show in Table 1 that the
proposed algorithm performs favorably against the represen-
tative baseline methods in both overlap success and distance
precision metrics.

In addition, we compare our method with the MEEM
and MUSTer trackers in more detail as both two approaches
explicitly incorporate re-detection modules. The MEEM tracker
employs multiple SVM classifiers with different learning
rates and uses an entropy measure to fuse all the outputs
from multiple classifiers. While the MEEM tracker can re-
cover from tracking failures, it does not handle scale changes
well. Our method explicitly predicts scale variation and thus
achieves higher overlap success rate over MEEM (81.3%
versus 69.6%). The MUSTer tracker is a concurrent work
with our preliminary work [41]. Both the MUSTer tracker
and our approach can cope with scale changes. Unlike the
MUSTer tracker, we update the translation filter AT with-
out considering scale changes. We observe that slight inac-
curacy in scale estimation would cause rapid performance
degradation of the translation filter. Our method achieves
higher overlap success rates than the MUSTer tracker: 81.3%

https://sites.google.com/site/chaoma99/cf-lstm
https://sites.google.com/site/chaoma99/cf-lstm
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Table 2 Distance precision scores (%) at a threshold of 20 pixels in terms of individual attributes on the OTB2013 dataset [50]. Best: bold, second
best: underline.

Ours-deep Ours MUSTer MEEM TGPR KCF DSST STC CSK Struck SCM MIL TLD LSHT CT
[26] [54] [17] [24] [11] [55] [23] [21] [59] [4] [28] [22] [56]

Illumination variation (23) 84.4 77.4 77.7 75.0 64.4 70.6 71.8 55.9 47.6 55.2 55.9 31.7 49.8 49.3 32.5
Out-of-plane rotation (37) 87.9 84.3 84.4 83.3 68.2 75.9 76.1 56.0 55.8 61.6 61.8 48.0 57.9 56.6 40.4

Scale variation (28) 87.8 75.8 81.7 78.5 62.0 68.0 74.0 54.5 50.3 63.9 67.2 47.1 60.6 49.8 44.8
Occlusion (27) 85.2 83.6 84.5 78.6 68.0 79.0 76.3 51.8 52.1 58.8 64.2 44.3 53.7 51.4 42.8

Deformation (17) 86.9 86.1 84.5 83.2 70.0 80.4 71.0 51.1 50.8 55.3 58.3 48.5 46.5 56.2 46.2
Motion blur (12) 85.1 66.4 69.5 71.5 53.7 65.0 60.3 33.0 34.2 55.1 33.9 35.7 51.8 33.1 30.6
Fast motion (17) 81.7 66.5 69.5 74.2 49.3 60.2 56.2 29.3 38.1 60.4 33.3 39.6 55.1 33.4 32.3

In-plane rotation (31) 85.9 80.2 79.9 80.0 67.5 72.5 78.0 51.8 54.7 61.7 59.7 45.3 58.4 54.0 35.6
Out of view (6) 70.6 72.8 70.9 72.7 50.5 64.9 53.3 39.5 37.9 53.9 42.9 39.3 57.6 38.4 33.6

Background clutter (21) 87.2 79.6 83.1 79.7 71.7 75.2 69.1 52.9 58.5 58.5 57.8 45.6 42.8 52.9 33.9
Low resolution (4) 95.1 71.7 75.0 88.8 43.8 63.0 73.8 49.1 46.4 55.0 66.1 33.1 56.6 58.5 34.0

Weighted Average 87.8 84.8 86.5 83.0 74.1 73.9 64.9 54.7 65.6 70.5 47.5 60.8 56.1 54.5 40.6

Table 3 Overlap success scores (%) at a threshold of 0.5 IoU in terms of individual attributes on the OTB2013 dataset [50]. Best: bold, second
best: underline.

Ours-deep Ours MUSTer MEEM TGPR KCF DSST STC CSK Struck SCM MIL TLD LSHT CT
[26] [54] [17] [24] [11] [55] [23] [21] [59] [4] [28] [22] [56]

Illumination variation (23) 73.6 73.6 71.6 63.6 58.5 58.2 58.4 36.1 40.2 49.4 53.4 28.8 43.1 43.8 29.0
Out-of-plane rotation (37) 78.3 79.4 73.0 66.7 60.6 62.9 60.1 38.1 45.2 52.1 57.4 36.5 47.6 45.5 32.6

Scale variation (28) 74.2 69.3 70.4 57.0 48.8 47.7 50.5 33.8 35.2 47.1 63.5 33.5 49.4 33.6 34.2
Occlusion (27) 80.6 79.3 74.8 66.1 61.7 64.9 57.7 32.0 41.8 51.2 59.9 37.4 43.6 40.8 36.1

Deformation (17) 81.3 87.1 80.3 65.4 67.0 72.5 60.8 33.2 38.9 50.0 56.1 43.3 40.4 45.6 42.1
Motion blur (12) 75.3 66.5 66.8 66.0 53.9 59.6 53.2 22.9 33.6 51.8 33.9 24.7 48.2 27.3 26.1
Fast motion (17) 74.1 67.6 65.1 68.1 49.0 55.7 51.6 22.6 38.0 56.7 33.5 33.8 47.3 30.9 32.3

In-plane rotation (31) 74.2 77.0 69.1 65.0 59.7 61.4 64.6 38.4 45.7 52.8 56.0 33.1 47.6 43.5 28.9
Out of view (6) 68.8 69.9 69.2 74.8 54.0 64.9 54.7 29.6 41.0 55.0 44.9 41.6 51.6 41.9 40.5

Background clutter (21) 78.8 76.7 75.0 73.7 67.5 67.3 59.1 39.5 49.1 54.5 55.0 41.4 38.8 48.5 32.3
Low resolution (4) 57.5 45.2 43.9 36.9 30.6 25.8 33.1 30.2 27.3 24.0 55.5 16.1 32.7 20.0 14.6

Weighted Average 79.9 81.3 78.4 69.6 62.2 59.3 61.6 36.5 55.9 62.8 37.3 52.1 45.7 44.3 34.1

versus 78.4% on the OTB2013 dataset, and 70.1% versus
68.3% on the OTB2015 dataset, respectively.

Regarding tracking speed, the STC, CSK and KCF track-
ers using only one correlation filter are faster than our ap-
proach. The accuracy of these trackers, however, is inferior
to our approach due to their inability to recover from failures
and to handle scale variation. Our tracker runs 20 frames per
second (close to real-time) as we only activate the detector
when the confidence score is below the re-detection thresh-
old Tr and avoid the computationally expensive search in
sliding window. In terms of the TRE and SRE criteria, the
proposed method does not perform as well as in the OPE
evaluation. This can be explained by the fact that the TRE
and SRE evaluation schemes are designed to evaluate track-
ing methods without re-detection modules. In the TRE eval-
uation criterion, a video sequence is divided into several
fragments, and thus the importance of the re-detection mod-
ule in long-term tracking is not taken into account. In the
SRE evaluation criterion, the trackers are initialized with the
slightly inaccurate target position and scale. As our tracker
relies on learning correlation filters to discriminate the target

from its background, inaccurate initialization in the spatial
domain adversely affects the performance of the learned fil-
ter in locating targets.

We discuss several observations from the experimental
results. First, correlation trackers (e.g., KCF and DSST) con-
sistently outperform the methods that use one single dis-
criminative classifier (e.g., LSHT, CSK, and CT). This can
be attributed to that correlation filters regress all the circu-
larly shifted samples of target appearance into soft regres-
sion targets rather than hard-thresholded binary labels. Cor-
relation filter based trackers effectively alleviate the sam-
pling ambiguity problem. Second, trackers with re-detection
modules (e.g., MUSTer, MEEM and the proposed tracker)
outperform those without re-detection modules. Third, while
TLD uses a re-detection module, we find that the TLD tracker
does not perform well in sequences with drastic appearance
changes. It is because the tracking module in TLD builds
upon the Lucas-Kanade [37] method with an aggressive up-
date rate. Such highly adaptive model often results in drift-
ing.
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6.3 Attribute-Based Evaluation

The video sequences in the benchmark dataset [50] are an-
notated with 11 attributes to describe the various challenges
in object tracking, e.g., occlusion or target disappearance of
the camera view (out-of-view). We use these attributes to
analyze the performance of trackers in various aspects. In
Table 3 and Table 2, we show the attribute-based evalua-
tion results in terms of overlap success and distance pre-
cision on the OTB2013 dataset. In terms of overlap suc-
cess rate, the proposed algorithm performs well against the
baseline methods in most of the attributes. Compared to the
concurrent MUSTer method, our tracker achieves large per-
formance gains in seven attributes: illumination variation
(2.0%), out-of-plan rotation (6.4%), occlusion (4.5%), de-
formation (6.8%), in-plan rotation (7.9%), background clut-
ter (1.7%) and low resolution (1.3%). We attribute the im-
provements mainly to three reasons. First, we separate the
model update for learning the translation filter AT and the
scale filterAS. While this approach appears to be sub-optimal
for inferring target states when compared to the MUSTer
tracker, we find that it effectively avoids the degradation of
the translation filter caused by inaccuracy of scale estima-
tion. Second, the HOI features are based on the local his-
togram of intensities, which strengthen the distinction be-
tween target objects and background in the presence of ro-
tation. This helps the translation filter locate target objects
precisely. Third, we maintain the long-term memory of tar-
get appearance as a holistic template using correlation fil-
ters. The MUSTer tracker instead uses a pool of local key-
point descriptors (i.e., SIFT [36]) for capturing the long-
term memory of target appearance. In the presence of signif-
icant deformation and rotation, there are significantly fewer
key points to discriminate target objects. As a result, our
tracker is more robust to these challenges than the MUSTer
tracker. Table 2 shows that our method achieves the best re-
sults in deformation (86.1%), in-plane rotation (80.2%) and
out-of-view movement (72.8%) based on the distance pre-
cision rate. These results demonstrate the effectiveness of
our method in handling large appearance changes and re-
covering targets from failure cases. With the use of a similar
re-detection module, the MEEM tracker performs favorably
in dealing with motion blur, fast motion, and low resolution.

6.4 Ablation Studies

To better understand the contributions of each component
of the proposed tracker, we carry out three group of abla-
tion studies by comparing with other alternative design op-
tions. Figure 10-12 show the overall tracking performance
and comparisons with alternative approaches for developing
the translation filter, scale filter, and the re-detection mod-
ule on the OTB2013 dataset [50] using the one pass evalu-
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Fig. 10 Feature analysis for learning translation filters on the
OTB2013 dataset. The baseline trackers (CT-*) do not incorporate
re-detection modules. Using both deep and handcrafted features, the
CT-HOGHOI-VGGNet19 method outperforms other alternatives.
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Fig. 11 Analysis of scale estimation schemes on the OTB2013
dataset. We first analyze features for learning scale filters. Adding the
HOI features for scale estimation (CT-HOGHOI-scale-HOGHOI) does
not improve tracking accuracy when compared to the CT-HOGHOI-
scale-HOG method. The CT-HOGHOI-joint-scale-HOG method up-
dates the translation filterAT using the estimated scale change in each
frame. In contrast, we use the ground-truth scale in the first frame to
update the translation filterAT).

ation (OPE) protocol. The legend of precision plots shows
scores at a threshold of 20 pixels. The legend of success
plots contains the values of the area under the curve (AUC).
For clarity, we add the proposed methods that incorporate all
components using deep features (ours-deep) or handcrafted
features (ours) in Figure 10-12.

Feature Analysis on Translation Filter. We first demon-
strate the effectiveness of using different types of features
for learning the translation filter. Note that all the baseline
methods (except ours and ours-deep) in Figure 10 do not in-
corporate the scale filter and the re-detection module. From
Figure 10, we have the following observations: (1) Deeper
CNN features facilitate correlation filter based trackers in lo-
cating target object (the CT-VGGNet19 method outperforms
both the CT-AlexNet and CT-HOGHOI methods) as the en-
coded semantic information within deep features are robust
to significant appearance changes. (2) Handcrafted features
(HOG-HOI) with fine-grained spatial details are helpful for
estimating scale changes. The CT-HOGHOI method outper-
forms the CT-VGGNet19 method in terms of overlap suc-
cess. The CT-HOGHOI method performs better than the CT-
AlexNet method using the AlexNet [30]. Note that the CT-
HOGHOI method significantly outperforms the CT-HOG fea-



Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking 15

0 10 20 30 40 50

Location error threshold (pixels)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n
 r

a
te

Distance precision rate

[0.878] Ours-deep

[0.848] Ours

[0.848] CT-HOGHOI-CF-SVM

[0.837] CT-HOGHOI-CF-SVMsv

[0.824] CT-HOGHOI-CF-CF

[0.821] CT-HOGHOI-LSTM-SVM

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Overlap success rate

[0.629] Ours-deep

[0.628] Ours

[0.593] CT-HOGHOI-CF-SVM

[0.585] CT-HOGHOI-CF-SVMsv

[0.576] CT-HOGHOI-CF-CF

[0.573] CT-HOGHOI-LSTM-SVM

Fig. 12 Analysis of re-detection modules on the OTB2013 dataset.
Using the CT-HOGHOI method, we evaluate the results of using four
re-detection schemes. With the correlation filter based long-term fil-
ter, we use two different schemes to update SVM using (1) the pro-
posed passive-aggressive scheme (CT-HOGHOI-CF-SVM) and (2) the
support vector update scheme (CT-HOGHOI-CF-SVMsv) described in
[54]. (3) The CT-HOGHOI-CF-CF method uses the long-term filter it-
self as a detector. (4) The CT-HOGHOI-LSTM-SVM method using the
hidden states of an LSTM network as the long-term filter. The proposed
CT-HOGHOI-CF-SVM scheme performs well against other alternative
approaches.

tures. The results show the effectiveness of the proposed
HOI features. (3) The CT-HOGHOI-VGGNet19 method ex-
ploits both merits of deep and handcrafted features and out-
performs other alternative approaches in both distance pre-
cision and overlap success.

Feature Analysis on Scale Filter. We evaluate different types
of features for learning the scale filter based on the CT-
HOGHOI implementation. Figure 11 shows that the scale
filter using HOG features do not outperform that using both
HOG and HOI features. Consequently, we learn the scale
filter using only HOG features for efficiency. In addition,
we implement the CT-HOGHOI-joint-scale-HOG approach,
which updates the translation filter AT using the estimated
scale in each frame as in the DSST [11] and MUSTer [26]
methods. We observe the CT-HOGHOI-joint-scale-HOG ap-
proach performs worst among the compared methods as slight
inaccuracy in scale estimation always causes a rapid degra-
dation of the translation filter. As a result, we use the ground-
truth scale in the first frame to update the translation filter.

Re-Detection Module. We evaluate four re-detection schemes
with the baseline CT-HOGHOI method. Using the long-term
filter based on correlation filter (CT), we compare two dif-
ferent schemes to update the SVM detector. We implement
the CT-HOGHOI-CF-SVM method using the proposed passive-
aggressive update scheme (see Section 4.6), while the CT-
HOGHOI-CF-SVMsv using the support vector update scheme
[54]. Figure 12 shows that the proposed passive-aggressive
scheme performs slightly better. The reason is that, by di-
rectly updating the hyperplane h in (22), the passive-aggressive
scheme makes use of all the training data. In contrast, the
support vector scheme uses a small subset of training data
(support vectors) to update model. As the long-term filter
can be used as a detector as well, we implement the CT-
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Fig. 13 Sensitivity analysis on the OTB2013 dataset [50] under one
pass evaluation (OPE). The legend of precision plots shows the dis-
tance precision scores at 20 pixels. The legend of success plots contains
the overlap success scores with the area under the curve (AUC).

HOGHOI-CF-CF method by replacing the SVM detector
with the long-term filter. However, the CT-HOGHOI-CF-CF
methd does not perform as well as the CT-HOGHOI-CF-
SVM. For the CT-HOGHOI-LSTM-SVM method, we use
the hidden states of an LSTM network as the long-term fil-
ter. Due to limited training data, the CT-HOGHOI-LSTM-
SVM method does not perform as well as the CT-HOGHOI-
CF-SVM, which uses the correlation filter based long-term
filter.

6.5 Sensitivity Analysis

We discuss how we set three important thresholds: (1) re-
detection threshold Tr for activating the detection module;
(2) acceptance threshold Ta for adopting detection results;
and (3) stability threshold Ts for conservatively updating the
long-term filter. We use the tracking results on the lemming
sequence for illustration. As shown in Figure 7, we imple-
ment a baseline CT-HOGHOI method, which does not in-
corporate a re-detection module and fails to track the target
after the 360-th frame. The tracked results cover a variety
of tracking successes and failures. We apply the long-term
filter to compute the confidence scores of the tracked re-
sults. We fine-tune the stability threshold values for conser-
vatively updating the long-term filter and examine the corre-
lation between the confidence scores and the overlap success
rates. We empirically find that when targets undergo occlu-
sion, the confidence scores are generally smaller than 0.15.
As such, we set the re-detection threshold Tr to 0.15. For
setting the acceptance threshold Ta, we use a larger value
to accept the detection results conservatively. We initialize
the acceptance threshold Ta two times of the re-detection
threshold Tr. We use the grid search and empirically set the
acceptance threshold Ta to 0.38 for better results. Figure 13
shows that the performance is not sensitive to Ta between
0.3 and 0.45. For setting the stability threshold Ts, we show
in Figure 14 the confidence scores using different threshold
values to update the long-term filter. Figure 14 shows that
the performance is not sensitive to a reasonable selection of
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Fig. 14 Sensitivity of the threshold selection. The tracking confi-
dence scores of the proposed method on the lemming sequence [50] are
computed with different stability threshold values to update the long-
term filter. The confidence scores are not sensitive with the threshold
values between 0.2 to 0.5.

stability threshold Ts (0.2 - 0.5). We thus set Ts equal to Ta
as 0.38.

6.6 Exploiting Contextual Cues

We explore two approaches for incorporating surrounding
context for learning the translation filter AT: (1) scaling:
enlarging the target bounding box by scaling the bounding
box with a given factor, and (2) padding: evenly padding the
width and height of the bounding box with a certain size. We
plot the tracking results in terms of distance precision on 50
benchmark sequences [50] in Figure 15. The results show
that the performance of the translation filter is sensitive to
the padding size of surrounding context on target objects.
For the target objects with smaller aspect ratios, e.g., jogging
and walking, it performs better with evenly-padded context
areas in precise localization. This motivates us to exploit the
merits of these two approaches simultaneously. From Fig-
ure 15(a), we find that a scaling factor of 2.8 leads to good
results. For the target object with a small aspect ratio (e.g.,
a pedestrian), we find that padding the bounding box with
1.4 times of height in the vertical directions yields improved
results as shown in Figure 15(b). This heuristic, despite its
simplicity, provides a moderate improvement in locating tar-
get objects. For example, the overall distance precision rate
on the OTB2013 dataset increases from 81.6% to 84.8%.

6.7 Qualitative Evaluation

We evaluate the proposed algorithm with five state-of-the-
art trackers (MUSTer [26], KCF [24], STC [55], Struck [21],
and TLD [28]) on seven sequences with representative chal-
lenging attributes in Figure 16. The MUSTer tracker con-
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Fig. 15 Validation of incorporating context. Distance precision re-
sults on learning translation filter with different sizes of context area on
the OTB2013 dataset [50]. (a) Enlarge the bounding box of target by a
given factor to incorporate surrounding context. (b) Uniformly pad the
width and height of target bounding box by a factor proportional to the
target size. The horizontal axis indicates the context area size that gives
rise to the best result on the particular sequence. The green line is the
averaged result, and the shaded area shows the standard deviation.

tains similar tracking components as our approach, i.e., trans-
lation and scale filters as well as a re-detection module, and
performs well against the other methods. However, the trans-
lation filters in MUSTer are learned from color attribute fea-
tures [13], which are not robust to background clutters (coke)
and fast motion (jumping). With the use of the kernelized
correlation filter learned from HOG features, the KCF tracker
(similar to the baseline CT-HOG method in Figure 11) per-
forms well in handling significant deformation and fast mo-
tion (david). However, the KCF tracker tends to drift when
the target undergoes temporary occlusion (coke) and fails to
recover from tracking failures (jogging-2). Furthermore, the
KCF tracker does not perform well for scenes with back-
ground clutters (shaking) due to the presence of noisy im-
age gradients. Although the STC tracker can estimate scale
changes, it does not perform well when the target objects
undergo significant scale changes or abrupt motion (jump-
ing). This is because the STC tracker uses intensity as fea-
tures and the scale is estimated from the response map of
one single translation filter. The Struck tracker does not per-
form well when the target objects undergo out-of-plane rota-
tion (david), heavy occlusion, background clutter (coke), or
out-of-view movement(jogging-2), as one single classifier is
unlikely to balance model stability and adaptivity well. The
TLD tracker can recover target objects from tracking fail-
ures by performing detection in each frame. However, the
tracking component in TLD is updated too aggressively to
locate objects undergoing significant deformation and fast
motion (shaking and jumping). As the TLD tracker updates
the detector in each frame, drifting (skating1) and false pos-
itive re-detections are likely to occur as well (jogging-2).

The proposed tracker performs well in estimating both
the translation and scale changes on these challenging se-
quences. We attribute the favorable performance to three
reasons. First, we learn the translation filter AT over a com-
plementary set of features: HOG and HOI. Our tracker is
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Fig. 16 Qualitative comparison. Tracking results on the seven challenging sequences are from our approach, the MUSTer [26], KCF [24], STC
[55], Struck [21] and TLD [28] algorithms (×: no tracking output). The proposed method performs favorably against the baseline trackers in terms
of both translation estimation and scale estimation. From first to last row: coke, shaking, skating1, david, car4, jumping and jogging-2.

#120 #060 #240

Fig. 17 Failure cases on the girl2, singer2 and soccer sequences [50].
Red: ours-deep; blue: ours; green: ground truth.

thus less sensitive to illumination and background clutter
(shaking and singer2), rotation (david), and partial occlu-
sion (coke). Second, the scale filter AS and the translation
filter AT are updated independently. This design effectively

alleviates the degradation of the translation filter caused by
inaccuracy in scale estimation as in the MUSTer tracker.
It also helps alleviate the drifting problem caused by scale
change, e.g., rapid performance loss in scale estimation on
the jumping sequence for the STC tracker. Third, the on-
line trained detector can re-detects target objects in case of
tracking failure, e.g., in the presence of the heavy occlu-
sion (coke) or target disappearance from the camera view
(jogging-2).

We show sample tracking failures by the proposed track-
ers in Figure 17. For the girl2 sequence, when long-term
occlusions occur, the proposed re-detection scheme is not
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Table 4 Overlap success rates (%) on the MEEM dataset. The best and
second best results are highlighted by bold and underline.

Ours MUSTer KCF DSST STC TLD
[26] [24] [55] [11] [28]

ball 65.3 96.7 97.2 57.9 44.3 6.72
billieJean 53.4 52.4 53.6 12.4 11.6 10.3
boxing1 46.5 14.4 29.3 40.5 22.7 7.88
boxing2 97.0 27.5 52.9 35.2 12.8 40.9
carRace 97.3 98.1 33.6 33.6 6.53 0.33
dance 36.1 26.5 26.0 25.4 22.7 13.9
latin 41.7 44.4 44.4 36.8 12.0 14.6
ped1 100 8.1 50.9 55.6 48.3 56.8
ped2 15.2 12.9 12.0 14.3 14.2 3.95
rocky 100 38.5 100 100 74.0 10.7

Average 65.3 41.9 50.0 41.2 26.9 16.6

Table 5 Distance precision rates (%) on the MEEM dataset. The best
and second best results are highlighted by bold and underline.

Ours MUSTer KCF DSST STC TLD
[26] [24] [55] [11] [28]

ball 66.4 96.5 96.7 56.6 56.8 6.72
billieJean 60.2 64.9 71.9 14.7 13.1 10.3
boxing1 49.2 20.3 26.5 46.4 29.0 3.03
boxing2 93.6 27.3 47.9 34.3 24.2 34.4
carRace 95.8 97.0 33.5 33.6 21.2 0.33
dance 25.1 22.5 22.8 21.0 19.3 10.2
latin 30.5 44.9 44.6 37.3 29.8 3.17
ped1 100 53.4 55.1 59.0 53.0 69.2
ped2 15.6 13.9 12.3 15.3 15.2 3.95
rocky 100 38.5 100 100 100 16.3

Average 63.6 47.9 51.1 41.8 36.2 15.8

activated due to the high similarity between the target and
surrounding people. In the singer2 sequence, our method
using deep features (ours-deep) fails to track the target as
deep features capture the semantics, which is not effective
in differentiating the dark foreground from the bright back-
ground. In contrast, our method with the handcrafted fea-
tures encodes the spatial fine-grained details and performs
well over the entire sequence. For the soccer sequence, the
cluttered background yields a large amount of spatial details
that lead our method not using deep features to drift, while
the semantics within deep features are robust to such appear-
ance variations.

6.8 MEEM Dataset

In addition to the OTB2013 and OTB2015 datasets, we com-
pare with correlation filter based trackers (MUSTer, KCF,
STC, and DSST) on the dataset used in the MEEM method
(http://cs-people.bu.edu/jmzhang/MEEM/MEEM.html).
The MEEM dataset contains 10 sequences with featured chal-
lenging attributes, such as heavy occlusion (dance, boxing1,
boxing2, ped1, and ped2), abrupt illumination changes (car-
Race, and billieJean), low contrast (ball, ped2, rocky, and
billieJean), and significant non-rigid deformation (latin, ball,

carRace, dance, and billieJean). This dataset contains ap-
proximately 7500 frames in total. We report the results of
our method without using deep features for fair compari-
son. We also include the TLD tracker in our comparison
to analyze the effectiveness of the re-detection module. For
fair comparisons, we fix all the parameters as used in the
OTB2013 and OTB2015 benchmark studies.

Table 4 and Table 5 show that the proposed algorithm
performs favorably against the state-of-the-art trackers with
more than 10% gains in both overlap success and distance
precision rate. Among the other correlation trackers, the KCF
method performs well due to the robustness of kernelized
correlation filters. The DSST and MUSTer trackers update
the translation filters by taking the scale changes into con-
sideration. We observe that such an update scheme does not
perform well on these challenging sequences as slight in-
accuracy in scale estimation causes significant performance
loss of the translation filter and the detection module. The
MUSTer tracker is sensitive to false positive detections and
thus fails to track target objects.

We show the qualitative tracking results on four chal-
lenging sequences in Figure 18 and compare their center lo-
cation error in Figure 19. Figure 18 shows that correlation
trackers without re-detection modules (e.g., KCF, STC and
DSST) are unable to recover target objects from heavy oc-
clusion (boxing1, boxing2, and ped1). We compare our ap-
proach with the MUSTer and TLD trackers in greater details.
In the boxing1 sequence, the target boxer in blue is occluded
by the other boxer and ropes. The MUSTer tracker uses a
pool of local key-point features as the long-term memory
of target appearance and fails to handle heavy occlusion as
few reliable key points are detected in such case. For the
TLD tracker, the detector is learned on the thresholded in-
tensity features, which are less discriminative in represent-
ing the target undergoing fast motion and frequent occlu-
sion. In the boxing2 sequence, the MUSTer tracker aggres-
sively updates the detector online and yields a false positive
detection in the 400th frame. This false positive detection
inaccurately reinitializes the tracking component and causes
rapid performance loss of both the tracker and detector in
subsequent frames. Instead, our tracker alleviates the noisy
update problem through a conservative update scheme and
thus increases tracking precision. In the ped1 sequence, the
MUSTer tracker does not estimate scale correctly at the be-
ginning of the sequence. The errors in scale estimation get
accumulated in subsequent frames and adversely affects the
translation estimation and the long-term memory module.
Our method updates the translation and scale filters indepen-
dently and does not from such error accumulation. For the
rocky sequence, parts of the target object are similar to the
tree branches in the background due to low image resolution.
As such, false positive detections cause both the MUSTer
and TLD trackers to lose the target object.

http://cs-people.bu.edu/jmzhang/MEEM/MEEM.html
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Fig. 18 Qualitative comparison in long-term tracking. Results on four challenging sequences: boxing1, boxing2, ped1, and rocky are from our
approach, the MUSTer [26], KCF [24], STC [55], DSST [11] and TLD [28] algorithms (×: no tracking output for TLD). Our approach performs
well against the baseline methods.

Overall, the proposed tracker effectively exploits mul-
tiple correlation filters for robust object tracking. Both the
qualitative (Figure 18) and quantitative (Figure 19) results
demonstrate that the proposed tracking algorithm performs
favorably against the state-of-the-art trackers.

7 Conclusion

In this paper, we propose an effective algorithm for robust
object tracking. Building on the recent success of correlation
filter based tracking algorithm, we extended it in several as-
pects. First, we address the stability-adaptivity dilemma by
exploiting three correlation filters: (1) translation filter, (2)
scale filter, and (3) long-term filter. These three filters work
collaboratively to capture both the short-term and long-term
memory of target object appearance. Second, we propose to
learn correlation filter using HOI features in addition to the
commonly used HOG features for improving localization

accuracy. We further investigate the appropriate size of sur-
rounding context and learning rates to improve the tracking
performance. Third, we explicitly handle tracking failures
by incrementally learning an online detector to recover the
targets. We provide a comprehensive ablation study to jus-
tify our design choices and understand the trade-off. Exten-
sive experimental results show that the proposed algorithm
performs favorably against the state-of-the-art methods in
terms of efficiency, accuracy, and robustness.

Acknowledgments

This work is supported in part by the National Key Research
and Development Program of China (2016YFB1001003),
NSFC (61527804, 61521062) and the 111 Program (B07022).



20 Chao Ma et al.

200 400 600 800 1000 1200 1400

Frame number

0

50

100

150

200

250

300

350

400

450

500

C
e
n
te

r 
lo

c
a
ti
o
n
 e

rr
o
r 

(i
n
 p

ix
e
ls

)

Center location error plot - boxing1

MUSTer

STC

DSST

KCF

TLD

Ours

100 200 300 400 500 600 700 800 900

Frame number

0

50

100

150

200

250

C
e

n
te

r 
lo

c
a

ti
o

n
 e

rr
o

r 
(i
n

 p
ix

e
ls

)

Center location error plot - boxing2

MUSTer

STC

DSST

KCF

TLD

Ours

50 100 150 200

Frame number

0

100

200

300

400

500

600

C
e

n
te

r 
lo

c
a

ti
o

n
 e

rr
o

r 
(i
n

 p
ix

e
ls

)

Center location error plot - ped1

MUSTer

STC

DSST

KCF

TLD

Ours

50 100 150 200 250 300

Frame number

0

50

100

150

200

250

300

350

400

C
e

n
te

r 
lo

c
a

ti
o

n
 e

rr
o

r 
(i
n

 p
ix

e
ls

)

Center location error plot - rocky

MUSTer

STC

DSST

KCF

TLD

Ours

Fig. 19 Quantitative results in center location error on the four
challenging sequences in Figure 18. Our method performs favorably
against the compared trackers.
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SUPPLEMENTARY DOCUMENT

In this supplementary document, we present three additional
ablation studies on the OTB2013 dataset. First, we show the
results of updating the correlation filters by directly mini-
mizing the errors over all the tracked results. Second, we
analyze the robustness of the proposed method by spatially
shifting the ground truth bounding boxes. Third, we investi-
gate the effect of training data for the LSTM tracker.

By directly minimizing the errors over all the tracked
results, we consider all the extracted appearances {xj , j =

1, 2, . . . , p} of the target object from the first frame up to the
current frame p. The cost function is the weighted average
quadratic error over these p frames. We assign each frame
j with a weight βj ≥ 0 and learn correlation filter w by
minimizing the following objective function:

min
w

p∑
j=1

βj

(∑
m,n

∣∣〈φ (xjm,n) , wj〉− yj(m,n)∣∣2 + λ
〈
wj , wj

〉)
,

(23)

where wj =
∑
k,l a(k, l)φ(x

j
k,l). We have the solution to

(23) in the Fourier domain as:

Ap =
∑p
j=1 βjKjx � Y∑p

j=1 βjK
j
x �

(
Kjx + λ

) , (24)

where Kjx = F
{
kjx
}

and kjx(m,n) = k(xjm,n, x
j). We

perform a grid search and set the weight βj = 0.01 and the
update rate λ = 10−4 for the best accuracy. We restore the
parameter {Kjx}, j = 1, 2, . . . , p − 1, to update the corre-
lation filter in frame j. Note that such an update scheme is
not applicable in practice as it requires a linearly increasing
computation and memory storage over the increase of frame
number p. The average tracking speed is 2.5 frames per sec-
ond (fps) vs. 20.8 fps (ours) on the OTB2013 dataset. How-
ever, Figure 20 shows that this update scheme does not im-
prove performance. The average distance precision is 83.5%
vs. 84.8% (ours), and the average overlap success is 62.0%
vs. 62.8% (ours).

We spatially shift the ground truth bounding boxes with
eight directions (Figure 21) and rescale the ground truth
bounding boxes with scaling factors 0.8, 0.9, 1.1 and 1.2.
Figure 22 shows that slightly enlarge the ground truth bound-
ing boxes (with scaling factor 1.1) does not significantly af-
fect the tracking performance.

We follow the project [43] (https://github.com/
Guanghan/ROLO) to implement a baseline tracker, which
uses the LSTM cell to produce tracking results. We use the
same 50 sequences from the OTB2013 dataset as the test set
and the remaining sequences of OTB2015 as the validation
set. Figure 23 shows the tracking performance on training,
validation, and test sets. The large performance gap on train-
ing and validation/test sets is due to limited training data.
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Fig. 20 Performance of different update schemes on the OTB2013
dataset [50] under one pass evaluation (OPE). Considering all the
tracked results (ours-all-update) to update the translation filter does not
improve tracking performance. The legend of precision plots shows the
distance precision scores at 20 pixels. The legend of success plots con-
tains the overlap success scores with the area under the curve (AUC).

Figure 1. Spatial shifts. The amount of shift is 10% of width or
height of the ground-truth bounding box.
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Fig. 21 Spatial shifts. The amount of shift is 10% of width or height
of the ground-truth bounding box.
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Fig. 22 Tracking performance with spatially shifted ground truth
bounding boxes on the OTB2013 dataset [50] under one pass evalu-
ation (OPE).
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Fig. 23 Performance comparison of the baseline LSTM tracker
[43] on training, validation, and test sets under one pass evaluation
(OPE). The legend of precision plots shows the distance precision
scores at 20 pixels. The legend of success plots contains the overlap
success scores with the area under the curve (AUC).
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