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Abstract We propose CornerNet, a new approach to

object detection where we detect an object bounding

box as a pair of keypoints, the top-left corner and the

bottom-right corner, using a single convolution neural

network. By detecting objects as paired keypoints, we

eliminate the need for designing a set of anchor boxes

commonly used in prior single-stage detectors. In addi-

tion to our novel formulation, we introduce corner pool-

ing, a new type of pooling layer that helps the network

better localize corners. Experiments show that Corner-

Net achieves a 42.2% AP on MS COCO, outperforming

all existing one-stage detectors.

Keywords Object Detection

1 Introduction

Object detectors based on convolutional neural net-

works (ConvNets) (Krizhevsky et al., 2012; Simonyan

and Zisserman, 2014; He et al., 2016) have achieved

state-of-the-art results on various challenging bench-

marks (Lin et al., 2014; Deng et al., 2009; Everingham

et al., 2015). A common component of state-of-the-art

approaches is anchor boxes (Ren et al., 2015; Liu et al.,

2016), which are boxes of various sizes and aspect ra-

tios that serve as detection candidates. Anchor boxes

are extensively used in one-stage detectors (Liu et al.,

2016; Fu et al., 2017; Redmon and Farhadi, 2016; Lin

et al., 2017), which can achieve results highly competi-

tive with two-stage detectors (Ren et al., 2015; Girshick

et al., 2014; Girshick, 2015; He et al., 2017) while being

H. Law
Princeton University, Princeton, NJ, USA
E-mail: heilaw@cs.princeton.edu

J. Deng
Princeton Universtiy, Princeton, NJ, USA

more efficient. One-stage detectors place anchor boxes

densely over an image and generate final box predic-

tions by scoring anchor boxes and refining their coordi-

nates through regression.

But the use of anchor boxes has two drawbacks.

First, we typically need a very large set of anchor boxes,

e.g. more than 40k in DSSD (Fu et al., 2017) and more

than 100k in RetinaNet (Lin et al., 2017). This is be-

cause the detector is trained to classify whether each

anchor box sufficiently overlaps with a ground truth

box, and a large number of anchor boxes is needed to

ensure sufficient overlap with most ground truth boxes.

As a result, only a tiny fraction of anchor boxes will

overlap with ground truth; this creates a huge imbal-

ance between positive and negative anchor boxes and

slows down training (Lin et al., 2017).

Second, the use of anchor boxes introduces many

hyperparameters and design choices. These include how

many boxes, what sizes, and what aspect ratios. Such

choices have largely been made via ad-hoc heuristics,

and can become even more complicated when combined

with multiscale architectures where a single network

makes separate predictions at multiple resolutions, with

each scale using different features and its own set of an-

chor boxes (Liu et al., 2016; Fu et al., 2017; Lin et al.,

2017).

In this paper we introduce CornerNet, a new one-

stage approach to object detection that does away with

anchor boxes. We detect an object as a pair of keypoints—

the top-left corner and bottom-right corner of the bound-

ing box. We use a single convolutional network to pre-

dict a heatmap for the top-left corners of all instances

of the same object category, a heatmap for all bottom-

right corners, and an embedding vector for each de-

tected corner. The embeddings serve to group a pair of

corners that belong to the same object—the network is

trained to predict similar embeddings for them. Our ap-
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ConvNet
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Top-Left Corners

Bottom-Right Corners

Fig. 1 We detect an object as a pair of bounding box corners grouped together. A convolutional network outputs a heatmap
for all top-left corners, a heatmap for all bottom-right corners, and an embedding vector for each detected corner. The network
is trained to predict similar embeddings for corners that belong to the same object.

proach greatly simplifies the output of the network and

eliminates the need for designing anchor boxes. Our ap-

proach is inspired by the associative embedding method

proposed by Newell et al. (2017), who detect and group

keypoints in the context of multiperson human-pose es-

timation. Fig. 1 illustrates the overall pipeline of our

approach.

Another novel component of CornerNet is corner

pooling, a new type of pooling layer that helps a con-

volutional network better localize corners of bounding

boxes. A corner of a bounding box is often outside the

object—consider the case of a circle as well as the ex-

amples in Fig. 2. In such cases a corner cannot be lo-

calized based on local evidence. Instead, to determine

whether there is a top-left corner at a pixel location,

we need to look horizontally towards the right for the

topmost boundary of the object, and look vertically to-

wards the bottom for the leftmost boundary. This mo-

tivates our corner pooling layer: it takes in two feature

maps; at each pixel location it max-pools all feature

vectors to the right from the first feature map, max-

pools all feature vectors directly below from the second

feature map, and then adds the two pooled results to-

gether. An example is shown in Fig. 3.

We hypothesize two reasons why detecting corners

would work better than bounding box centers or pro-

posals. First, the center of a box can be harder to lo-

calize because it depends on all 4 sides of the object,

whereas locating a corner depends on 2 sides and is thus

easier, and even more so with corner pooling, which en-

codes some explicit prior knowledge about the defini-

tion of corners. Second, corners provide a more efficient

way of densely discretizing the space of boxes: we just

need O(wh) corners to represent O(w2h2) possible an-

chor boxes.

We demonstrate the effectiveness of CornerNet on

MS COCO (Lin et al., 2014). CornerNet achieves a

42.2% AP, outperforming all existing one-stage detec-

tors. In addition, through ablation studies we show that

corner pooling is critical to the superior performance of

CornerNet. Code is available at https://github.com/

princeton-vl/CornerNet.

2 Related Works

2.1 Two-stage object detectors

Two-stage approach was first introduced and popular-

ized by R-CNN (Girshick et al., 2014). Two-stage de-

tectors generate a sparse set of regions of interest (RoIs)

and classify each of them by a network. R-CNN gener-

ates RoIs using a low level vision algorithm (Uijlings

et al., 2013; Zitnick and Dollár, 2014). Each region is

then extracted from the image and processed by a Con-

vNet independently, which creates lots of redundant

computations. Later, SPP (He et al., 2014) and Fast-

RCNN (Girshick, 2015) improve R-CNN by designing

a special pooling layer that pools each region from fea-

ture maps instead. However, both still rely on separate

proposal algorithms and cannot be trained end-to-end.

Faster-RCNN (Ren et al., 2015) does away low level

proposal algorithms by introducing a region proposal

network (RPN), which generates proposals from a set of

https://github.com/princeton-vl/CornerNet
https://github.com/princeton-vl/CornerNet
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Fig. 2 Often there is no local evidence to determine the location of a bounding box corner. We address this issue by proposing
a new type of pooling layer.

feature maps

output

top-left corner pooling

Fig. 3 Corner pooling: for each channel, we take the maximum values (red dots) in two directions (red lines), each from a
separate feature map, and add the two maximums together (blue dot).

pre-determined candidate boxes, usually known as an-

chor boxes. This not only makes the detectors more effi-

cient but also allows the detectors to be trained end-to-

end. R-FCN (Dai et al., 2016) further improves the effi-

ciency of Faster-RCNN by replacing the fully connected

sub-detection network with a fully convolutional sub-

detection network. Other works focus on incorporating

sub-category information (Xiang et al., 2016), generat-

ing object proposals at multiple scales with more con-

textual information (Bell et al., 2016; Cai et al., 2016;

Shrivastava et al., 2016; Lin et al., 2016), selecting bet-

ter features (Zhai et al., 2017), improving speed (Li

et al., 2017), cascade procedure (Cai and Vasconcelos,

2017) and better training procedure (Singh and Davis,

2017).

2.2 One-stage object detectors

On the other hand, YOLO (Redmon et al., 2016) and

SSD (Liu et al., 2016) have popularized the one-stage

approach, which removes the RoI pooling step and de-

tects objects in a single network. One-stage detectors

are usually more computationally efficient than two-

stage detectors while maintaining competitive perfor-

mance on different challenging benchmarks.

SSD places anchor boxes densely over feature maps

from multiple scales, directly classifies and refines each

anchor box. YOLO predicts bounding box coordinates

directly from an image, and is later improved in YOLO9000 (Red-

mon and Farhadi, 2016) by switching to anchor boxes.

DSSD (Fu et al., 2017) and RON (Kong et al., 2017)

adopt networks similar to the hourglass network (Newell

et al., 2016), enabling them to combine low-level and

high-level features via skip connections to predict bound-

ing boxes more accurately. However, these one-stage

detectors are still outperformed by the two-stage de-

tectors until the introduction of RetinaNet (Lin et al.,

2017). In (Lin et al., 2017), the authors suggest that

the dense anchor boxes create a huge imbalance be-

tween positive and negative anchor boxes during train-

ing. This imbalance causes the training to be inefficient

and hence the performance to be suboptimal. They pro-

pose a new loss, Focal Loss, to dynamically adjust the

weights of each anchor box and show that their one-

stage detector can outperform the two-stage detectors.

RefineDet (Zhang et al., 2017) proposes to filter the an-
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chor boxes to reduce the number of negative boxes, and

to coarsely adjust the anchor boxes.

DeNet (Tychsen-Smith and Petersson, 2017a) is a

two-stage detector which generates RoIs without using

anchor boxes. It first determines how likely each loca-

tion belongs to either the top-left, top-right, bottom-

left or bottom-right corner of a bounding box. It then

generates RoIs by enumerating all possible corner com-

binations, and follows the standard two-stage approach

to classify each RoI. Our approach is very different from

DeNet. First, DeNet does not identify if two corners

are from the same objects and relies on a sub-detection

network to reject poor RoIs. In contrast, our approach

is a one-stage approach which detects and groups the

corners using a single ConvNet. Second, DeNet selects

features at manually determined locations relative to

a region for classification, while our approach does not

require any feature selection step. Third, we introduce

corner pooling, a novel type of layer to enhance corner

detection.

Point Linking Network (PLN) (Wang et al., 2017)

is an one-stage detector without anchor boxes. It first

predicts the locations of the four corners and the center

of a bounding box. Then, at each corner location, it pre-

dicts how likely each pixel location in the image is the

center. Similarly, at the center location, it predicts how

likely each pixel location belongs to either the top-left,

top-right, bottom-left or bottom-right corner. It com-

bines the predictions from each corner and center pair

to generate a bounding box. Finally, it merges the four

bounding boxes to give a bounding box. CornerNet is

very different from PLN. First, CornerNet groups the

corners by predicting embedding vectors, while PLN

groups the corner and center by predicting pixel loca-

tions. Second, CornerNet uses corner pooling to better

localize the corners.

Our approach is inspired by Newell et al. (2017) on

Associative Embedding in the context of multi-person

pose estimation. Newell et al. propose an approach that

detects and groups human joints in a single network. In

their approach each detected human joint has an em-

bedding vector. The joints are grouped based on the

distances between their embeddings. To the best of our

knowledge, we are the first to formulate the task of

object detection as a task of detecting and grouping

corners with embeddings. Another novelty of ours is

the corner pooling layers that help better localize the

corners. We also significantly modify the hourglass ar-

chitecture and add our novel variant of focal loss (Lin

et al., 2017) to help better train the network.

3 CornerNet

3.1 Overview

In CornerNet, we detect an object as a pair of keypoints—

the top-left corner and bottom-right corner of the bound-

ing box. A convolutional network predicts two sets of

heatmaps to represent the locations of corners of dif-

ferent object categories, one set for the top-left corners

and the other for the bottom-right corners. The network

also predicts an embedding vector for each detected cor-

ner (Newell et al., 2017) such that the distance between

the embeddings of two corners from the same object

is small. To produce tighter bounding boxes, the net-

work also predicts offsets to slightly adjust the locations

of the corners. With the predicted heatmaps, embed-

dings and offsets, we apply a simple post-processing

algorithm to obtain the final bounding boxes.

Fig. 4 provides an overview of CornerNet. We use

the hourglass network (Newell et al., 2016) as the back-

bone network of CornerNet. The hourglass network is

followed by two prediction modules. One module is for

the top-left corners, while the other one is for the bottom-

right corners. Each module has its own corner pooling

module to pool features from the hourglass network be-

fore predicting the heatmaps, embeddings and offsets.

Unlike many other object detectors, we do not use fea-

tures from different scales to detect objects of different

sizes. We only apply both modules to the output of the

hourglass network.

3.2 Detecting Corners

We predict two sets of heatmaps, one for top-left corners

and one for bottom-right corners. Each set of heatmaps

has C channels, where C is the number of categories,

and is of size H ×W . There is no background channel.

Each channel is a binary mask indicating the locations

of the corners for a class.

For each corner, there is one ground-truth positive

location, and all other locations are negative. During

training, instead of equally penalizing negative loca-

tions, we reduce the penalty given to negative locations

within a radius of the positive location. This is because

a pair of false corner detections, if they are close to

their respective ground truth locations, can still pro-

duce a box that sufficiently overlaps the ground-truth

box (Fig. 5). We determine the radius by the size of an

object by ensuring that a pair of points within the ra-

dius would generate a bounding box with at least t IoU

with the ground-truth annotation (we set t to 0.3 in all

experiments). Given the radius, the amount of penalty

reduction is given by an unnormalized 2D Gaussian,
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Hourglass Network

Offsets

Embeddings

Heatmaps

Corner Pooling

Top-left Corners

Bottom-right corners

Prediction Module

Prediction Module

Prediction Module

Fig. 4 Overview of CornerNet. The backbone network is followed by two prediction modules, one for the top-left corners and
the other for the bottom-right corners. Using the predictions from both modules, we locate and group the corners.

Fig. 5 “Ground-truth” heatmaps for training. Boxes (green
dotted rectangles) whose corners are within the radii of the
positive locations (orange circles) still have large overlaps
with the ground-truth annotations (red solid rectangles).

e−
x2+y2

2σ2 , whose center is at the positive location and

whose σ is 1/3 of the radius.

Let pcij be the score at location (i, j) for class c

in the predicted heatmaps, and let ycij be the “ground-

truth” heatmap augmented with the unnormalized Gaus-

sians. We design a variant of focal loss (Lin et al., 2017):

Ldet = −1
N

C∑
c=1

H∑
i=1

W∑
j=1

{
(1− pcij)α log (pcij) if ycij = 1

(1− ycij)β (pcij)
α

log (1− pcij) otherwise
(1)

where N is the number of objects in an image, and

α and β are the hyper-parameters which control the

contribution of each point (we set α to 2 and β to 4 in

all experiments). With the Gaussian bumps encoded in

ycij , the (1− ycij) term reduces the penalty around the

ground truth locations.

Many networks (He et al., 2016; Newell et al., 2016)

involve downsampling layers to gather global informa-

tion and to reduce memory usage. When they are ap-

plied to an image fully convolutionally, the size of the

output is usually smaller than the image. Hence, a lo-

cation (x, y) in the image is mapped to the location(
b xnc, b

y
nc
)

in the heatmaps, where n is the downsam-

pling factor. When we remap the locations from the

heatmaps to the input image, some precision may be

lost, which can greatly affect the IoU of small bounding

boxes with their ground truths. To address this issue we

predict location offsets to slightly adjust the corner lo-

cations before remapping them to the input resolution.

ok =
(xk
n
−
⌊xk
n

⌋
,
yk
n
−
⌊yk
n

⌋)
(2)

where ok is the offset, xk and yk are the x and y coor-

dinate for corner k. In particular, we predict one set of

offsets shared by the top-left corners of all categories,

and another set shared by the bottom-right corners. For

training, we apply the smooth L1 Loss (Girshick, 2015)

at ground-truth corner locations:

Loff =
1

N

N∑
k=1

SmoothL1Loss (ok, ôk) (3)

3.3 Grouping Corners

Multiple objects may appear in an image, and thus mul-

tiple top-left and bottom-right corners may be detected.

We need to determine if a pair of the top-left corner and

bottom-right corner is from the same bounding box.

Our approach is inspired by the Associative Embed-

ding method proposed by Newell et al. (2017) for the

task of multi-person pose estimation. Newell et al. de-

tect all human joints and generate an embedding for

each detected joint. They group the joints based on the

distances between the embeddings.

The idea of associative embedding is also applicable

to our task. The network predicts an embedding vector

for each detected corner such that if a top-left corner

and a bottom-right corner belong to the same bound-

ing box, the distance between their embeddings should
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be small. We can then group the corners based on the

distances between the embeddings of the top-left and

bottom-right corners. The actual values of the embed-

dings are unimportant. Only the distances between the

embeddings are used to group the corners.

We follow Newell et al. (2017) and use embeddings

of 1 dimension. Let etk be the embedding for the top-left

corner of object k and ebk for the bottom-right corner.

As in Newell and Deng (2017), we use the “pull” loss to

train the network to group the corners and the “push”

loss to separate the corners:

Lpull =
1

N

N∑
k=1

[
(etk − ek)

2
+ (ebk − ek)

2
]
, (4)

Lpush =
1

N(N − 1)

N∑
k=1

N∑
j=1
j 6=k

max (0, ∆− |ek − ej |) , (5)

where ek is the average of etk and ebk and we set ∆

to be 1 in all our experiments. Similar to the offset

loss, we only apply the losses at the ground-truth corner

location.

3.4 Corner Pooling

As shown in Fig. 2, there is often no local visual ev-

idence for the presence of corners. To determine if a

pixel is a top-left corner, we need to look horizontally

towards the right for the topmost boundary of an ob-

ject and vertically towards the bottom for the leftmost

boundary. We thus propose corner pooling to better lo-

calize the corners by encoding explicit prior knowledge.

Suppose we want to determine if a pixel at location

(i, j) is a top-left corner. Let ft and fl be the feature

maps that are the inputs to the top-left corner pooling

layer, and let ftij and flij be the vectors at location

(i, j) in ft and fl respectively. With H × W feature

maps, the corner pooling layer first max-pools all fea-

ture vectors between (i, j) and (i,H) in ft to a feature

vector tij , and max-pools all feature vectors between

(i, j) and (W, j) in fl to a feature vector lij . Finally,

it adds tij and lij together. This computation can be

expressed by the following equations:

tij =

{
max

(
ftij , t(i+1)j

)
if i < H

ftHj otherwise
(6)

lij =

{
max

(
flij , li(j+1)

)
if j < W

fliW otherwise
(7)

where we apply an elementwise max operation. Both

tij and lij can be computed efficiently by dynamic pro-

gramming as shown Fig. 8.

We define bottom-right corner pooling layer in a

similar way. It max-pools all feature vectors between

(0, j) and (i, j), and all feature vectors between (i, 0)

and (i, j) before adding the pooled results. The corner

pooling layers are used in the prediction modules to

predict heatmaps, embeddings and offsets.

The architecture of the prediction module is shown

in Fig. 7. The first part of the module is a modified

version of the residual block (He et al., 2016). In this

modified residual block, we replace the first 3× 3 con-

volution module with a corner pooling module, which

first processes the features from the backbone network

by two 3 × 3 convolution modules 1 with 128 channels

and then applies a corner pooling layer. Following the

design of a residual block, we then feed the pooled fea-

tures into a 3×3 Conv-BN layer with 256 channels and

add back the projection shortcut. The modified residual

block is followed by a 3×3 convolution module with 256

channels, and 3 Conv-ReLU-Conv layers to produce the

heatmaps, embeddings and offsets.

3.5 Hourglass Network

CornerNet uses the hourglass network (Newell et al.,

2016) as its backbone network. The hourglass network

was first introduced for the human pose estimation task.

It is a fully convolutional neural network that consists

of one or more hourglass modules. An hourglass module

first downsamples the input features by a series of con-

volution and max pooling layers. It then upsamples the

features back to the original resolution by a series of up-

sampling and convolution layers. Since details are lost

in the max pooling layers, skip layers are added to bring

back the details to the upsampled features. The hour-

glass module captures both global and local features

in a single unified structure. When multiple hourglass

modules are stacked in the network, the hourglass mod-

ules can reprocess the features to capture higher-level of

information. These properties make the hourglass net-

work an ideal choice for object detection as well. In fact,

many current detectors (Shrivastava et al., 2016; Fu

et al., 2017; Lin et al., 2016; Kong et al., 2017) already

adopted networks similar to the hourglass network.

Our hourglass network consists of two hourglasses,

and we make some modifications to the architecture

of the hourglass module. Instead of using max pool-

1 Unless otherwise specified, our convolution module con-
sists of a convolution layer, a BN layer (Ioffe and Szegedy,
2015) and a ReLU layer
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Fig. 6 The top-left corner pooling layer can be implemented very efficiently. We scan from right to left for the horizontal
max-pooling and from bottom to top for the vertical max-pooling. We then add two max-pooled feature maps.

Top-left Corner Pooling

Backbone

Heatmaps

Embeddings

Offsets

1x1 Conv3x3 Conv-ReLU

ReLU

1x1 Conv-BN

3x3 Conv-BN

3x3 Conv-BN-ReLU

Top-left Corner Pooling Module

Fig. 7 The prediction module starts with a modified residual block, in which we replace the first convolution module with
our corner pooling module. The modified residual block is then followed by a convolution module. We have multiple branches
for predicting the heatmaps, embeddings and offsets.

ing, we simply use stride 2 to reduce feature resolu-

tion. We reduce feature resolutions 5 times and in-

crease the number of feature channels along the way

(256, 384, 384, 384, 512). When we upsample the features,

we apply 2 residual modules followed by a nearest neigh-

bor upsampling. Every skip connection also consists of

2 residual modules. There are 4 residual modules with

512 channels in the middle of an hourglass module. Be-

fore the hourglass modules, we reduce the image res-

olution by 4 times using a 7 × 7 convolution module

with stride 2 and 128 channels followed by a residual

block (He et al., 2016) with stride 2 and 256 channels.

Following (Newell et al., 2016), we also add interme-

diate supervision in training. However, we do not add

back the intermediate predictions to the network as we

find that this hurts the performance of the network. We

apply a 1 × 1 Conv-BN module to both the input and

output of the first hourglass module. We then merge

them by element-wise addition followed by a ReLU and

a residual block with 256 channels, which is then used as

the input to the second hourglass module. The depth of

the hourglass network is 104. Unlike many other state-

of-the-art detectors, we only use the features from the

last layer of the whole network to make predictions.

4 Experiments

4.1 Training Details

We implement CornerNet in PyTorch (Paszke et al.,

2017). The network is randomly initialized under the

default setting of PyTorch with no pretraining on any

external dataset. As we apply focal loss, we follow (Lin

et al., 2017) to set the biases in the convolution layers

that predict the corner heatmaps. During training, we

set the input resolution of the network to 511 × 511,

which leads to an output resolution of 128 × 128. To

reduce overfitting, we adopt standard data augmenta-

tion techniques including random horizontal flipping,

random scaling, random cropping and random color

jittering, which includes adjusting the brightness, sat-

uration and contrast of an image. Finally, we apply

PCA (Krizhevsky et al., 2012) to the input image.

We use Adam (Kingma and Ba, 2014) to optimize

the full training loss:

L = Ldet + αLpull + βLpush + γLoff (8)

where α, β and γ are the weights for the pull, push and

offset loss respectively. We set both α and β to 0.1 and
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Table 1 Ablation on corner pooling on MS COCO validation.

AP AP50 AP75 APs APm APl

w/o corner pooling 36.5 52.0 38.8 17.5 38.9 49.4
w/ corner pooling 38.4 53.8 40.9 18.6 40.5 51.8

improvement +2.0 +2.1 +2.1 +1.1 +2.4 +3.6

Table 2 Reducing the penalty given to the negative locations near positive locations helps significantly improve the perfor-
mance of the network

AP AP50 AP75 APs APm APl

w/o reducing penalty 32.9 49.1 34.8 19.0 37.0 40.7
fixed radius 35.6 52.5 37.7 18.7 38.5 46.0
object-dependent radius 38.4 53.8 40.9 18.6 40.5 51.8

Table 3 Corner pooling consistently improves the network performance on detecting corners in different image quadrants,
showing that corner pooling is effective and stable over both small and large areas.

mAP w/o pooling mAP w/ pooling improvement

Top-Left Corners
Top-Left Quad. 66.1 69.2 +3.1
Bottom-Right Quad. 60.8 63.5 +2.7

Bottom-Right Corners
Top-Left Quad. 53.4 56.2 +2.8
Bottom-Right Quad. 65.0 67.6 +2.6

γ to 1. We find that 1 or larger values of α and β lead

to poor performance. We use a batch size of 49 and

train the network on 10 Titan X (PASCAL) GPUs (4

images on the master GPU, 5 images per GPU for the

rest of the GPUs). To conserve GPU resources, in our

ablation experiments, we train the networks for 250k

iterations with a learning rate of 2.5× 10−4. When we

compare our results with other detectors, we train the

networks for an extra 250k iterations and reduce the

learning rate to 2.5× 10−5 for the last 50k iterations.

4.2 Testing Details

During testing, we use a simple post-processing algo-

rithm to generate bounding boxes from the heatmaps,

embeddings and offsets. We first apply non-maximal

suppression (NMS) by using a 3×3 max pooling layer on

the corner heatmaps. Then we pick the top 100 top-left

and top 100 bottom-right corners from the heatmaps.

The corner locations are adjusted by the correspond-

ing offsets. We calculate the L1 distances between the

embeddings of the top-left and bottom-right corners.

Pairs that have distances greater than 0.5 or contain

corners from different categories are rejected. The aver-

age scores of the top-left and bottom-right corners are

used as the detection scores.

Instead of resizing an image to a fixed size, we main-

tain the original resolution of the image and pad it with

zeros before feeding it to CornerNet. Both the original

and flipped images are used for testing. We combine the

detections from the original and flipped images, and ap-

ply soft-nms (Bodla et al., 2017) to suppress redundant

detections. Only the top 100 detections are reported.

The average inference time is 244ms per image on a

Titan X (PASCAL) GPU.

4.3 MS COCO

We evaluate CornerNet on the very challenging MS

COCO dataset (Lin et al., 2014). MS COCO contains

80k images for training, 40k for validation and 20k for

testing. All images in the training set and 35k images in

the validation set are used for training. The remaining

5k images in validation set are used for hyper-parameter

searching and ablation study. All results on the test set

are submitted to an external server for evaluation. To

provide fair comparisons with other detectors, we re-

port our main results on the test-dev set. MS COCO

uses average precisions (APs) at different IoUs and APs

for different object sizes as the main evaluation metrics.
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w/o corner pooling

w/ corner pooling

Fig. 8 Qualitative examples showing corner pooling helps better localize the corners.

Table 4 The hourglass network is crucial to the performance of CornerNet.

AP AP50 AP75 APs APm APl

FPN (w/ ResNet-101) + Corners 30.2 44.1 32.0 13.3 33.3 42.7
Hourglass + Anchors 32.9 53.1 35.6 16.5 38.5 45.0
Hourglass + Corners 38.4 53.8 40.9 18.6 40.5 51.8

4.4 Ablation Study

4.4.1 Corner Pooling

Corner pooling is a key component of CornerNet. To

understand its contribution to performance, we train

another network without corner pooling but with the

same number of parameters.

Tab. 1 shows that adding corner pooling gives sig-

nificant improvement: 2.0% on AP, 2.1% on AP50 and

2.1% on AP75. We also see that corner pooling is es-

pecially helpful for medium and large objects, improv-

ing their APs by 2.4% and 3.6% respectively. This is

expected because the topmost, bottommost, leftmost,

rightmost boundaries of medium and large objects are

likely to be further away from the corner locations.

Fig. 8 shows four qualitative examples with and with-

out corner pooling.

4.4.2 Stability of Corner Pooling over Larger Area

Corner pooling pools over different sizes of area in dif-

ferent quadrants of an image. For example, the top-left

corner pooling pools over larger areas both horizontally

and vertically in the upper-left quadrant of an image,

compared to the lower-right quadrant. Therefore, the

location of a corner may affect the stability of the cor-

ner pooling.

We evaluate the performance of our network on de-

tecting both the top-left and bottom-right corners in

different quadrants of an image. Detecting corners can

be seen as a binary classification task i.e. the ground-

truth location of a corner is positive, and any location

outside of a small radius of the corner is negative. We

measure the performance using mAPs over all cate-

gories on the MS COCO validation set.

Tab. 3 shows that without corner pooling, the top-

left corner mAPs of upper-left and lower-right quad-

rant are 66.1% and 60.8% respectively. Top-left cor-

ner pooling improves the mAPs by 3.1% (to 69.2%)

and 2.7% (to 63.5%) respectively. Similarly, bottom-
right corner pooling improves the bottom-right corner

mAPs of upper-left quadrant by 2.8% (from 53.4% to

56.2%), and lower-right quadrant by 2.6% (from 65.0%

to 67.6%). Corner pooling gives similar improvement to

corners at different quadrants, show that corner pooling

is effective and stable over both small and large areas.

4.4.3 Reducing Penalty to Negative Locations

We reduce the penalty given to negative locations around

a positive location, within a radius determined by the

size of the object (Sec. 3.2). To understand how this

helps train CornerNet, we train one network with no

penalty reduction and another network with a fixed ra-

dius of 2.5. We compare them with CornerNet on the

validation set.

Tab. 2 shows that a fixed radius improves AP over

the baseline by 2.7%, APm by 1.5% and APl by 5.3%.

Object-dependent radius further improves the AP by
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Table 5 CornerNet performs much better at high IoUs than other state-of-the-art detectors.

AP AP50 AP60 AP70 AP80 AP90

RetinaNet (Lin et al., 2017) 39.8 59.5 55.6 48.2 36.4 15.1
Cascade R-CNN (Cai and Vasconcelos, 2017) 38.9 57.8 53.4 46.9 35.8 15.8
Cascade R-CNN + IoU Net (Jiang et al., 2018) 41.4 59.3 55.3 49.6 39.4 19.5
CornerNet 40.6 56.1 52.0 46.8 38.8 23.4

Table 6 Error analysis. We replace the predicted heatmaps and offsets with the ground-truth values. Using the ground-truth
heatmaps alone improves the AP from 38.4% to 73.1%, suggesting that the main bottleneck of CornerNet is detecting corners.

AP AP50 AP75 APs APm APl

38.4 53.8 40.9 18.6 40.5 51.8
w/ gt heatmaps 73.1 87.7 78.4 60.9 81.2 81.8
w/ gt heatmaps + offsets 86.1 88.9 85.5 84.8 87.2 82.0

Fig. 9 Qualitative example showing errors in predicting corners and embeddings. The first row shows images where CornerNet
mistakenly combines boundary evidence from different objects. The second row shows images where CornerNet predicts similar
embeddings for corners from different objects.

2.8%, APm by 2.0% and APl by 5.8%. In addition,

we see that the penalty reduction especially benefits

medium and large objects.

4.4.4 Hourglass Network

CornerNet uses the hourglass network (Newell et al.,

2016) as its backbone network. Since the hourglass net-

work is not commonly used in other state-of-the-art de-

tectors, we perform an experiment to study the contri-

bution of the hourglass network in CornerNet. We train

a CornerNet in which we replace the hourglass network

with FPN (w/ ResNet-101) (Lin et al., 2017), which is

more commonly used in state-of-the-art object detec-

tors. We only use the final output of FPN for predic-

tions. Meanwhile, we train an anchor box based detec-

tor which uses the hourglass network as its backbone.

Each hourglass module predicts anchor boxes at multi-

ple resolutions by using features at multiple scales dur-

ing upsampling stage. We follow the anchor box design

in RetinaNet (Lin et al., 2017) and add intermediate

supervisions during training. In both experiments, we

initialize the networks from scratch and follow the same

training procedure as we train CornerNet (Sec. 4.1).

Tab. 4 shows that CornerNet with hourglass net-

work outperforms CornerNet with FPN by 8.2% AP,

and the anchor box based detector with hourglass net-

work by 5.5% AP. The results suggest that the choice of

the backbone network is important and the hourglass

network is crucial to the performance of CornerNet.
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Table 7 CornerNet versus others on MS COCO test-dev. CornerNet outperforms all one-stage detectors and achieves results
competitive to two-stage detectors

Method Backbone AP AP50 AP75 APs APm APl AR1 AR10 AR100 ARs ARm ARl

Two-stage detectors
DeNet (Tychsen-Smith and Petersson, 2017a) ResNet-101 33.8 53.4 36.1 12.3 36.1 50.8 29.6 42.6 43.5 19.2 46.9 64.3
CoupleNet (Zhu et al., 2017) ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8 30.0 45.0 46.4 20.7 53.1 68.5
Faster R-CNN by G-RMI (Huang et al., 2017) Inception-ResNet-v2 (Szegedy et al., 2017) 34.7 55.5 36.7 13.5 38.1 52.0 - - - - - -
Faster R-CNN+++ (He et al., 2016) ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9 - - - - - -
Faster R-CNN w/ FPN (Lin et al., 2016) ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2 - - - - - -
Faster R-CNN w/ TDM (Shrivastava et al., 2016) Inception-ResNet-v2 36.8 57.7 39.2 16.2 39.8 52.1 31.6 49.3 51.9 28.1 56.6 71.1
D-FCN (Dai et al., 2017) Aligned-Inception-ResNet 37.5 58.0 - 19.4 40.1 52.5 - - - - - -
Regionlets (Xu et al., 2017) ResNet-101 39.3 59.8 - 21.7 43.7 50.9 - - - - - -
Mask R-CNN (He et al., 2017) ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2 - - - - - -
Soft-NMS (Bodla et al., 2017) Aligned-Inception-ResNet 40.9 62.8 - 23.3 43.6 53.3 - - - - - -
LH R-CNN (Li et al., 2017) ResNet-101 41.5 - - 25.2 45.3 53.1 - - - - - -
Fitness-NMS (Tychsen-Smith and Petersson, 2017b) ResNet-101 41.8 60.9 44.9 21.5 45.0 57.5 - - - - - -
Cascade R-CNN (Cai and Vasconcelos, 2017) ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2 - - - - - -
D-RFCN + SNIP (Singh and Davis, 2017) DPN-98 (Chen et al., 2017) 45.7 67.3 51.1 29.3 48.8 57.1 - - - - - -

One-stage detectors
YOLOv2 (Redmon and Farhadi, 2016) DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4
DSOD300 (Shen et al., 2017a) DS/64-192-48-1 29.3 47.3 30.6 9.4 31.5 47.0 27.3 40.7 43.0 16.7 47.1 65.0
GRP-DSOD320 (Shen et al., 2017b) DS/64-192-48-1 30.0 47.9 31.8 10.9 33.6 46.3 28.0 42.1 44.5 18.8 49.1 65.0
SSD513 (Liu et al., 2016) ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8 28.3 42.1 44.4 17.6 49.2 65.8
DSSD513 (Fu et al., 2017) ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1 28.9 43.5 46.2 21.8 49.1 66.4
RefineDet512 (single scale) (Zhang et al., 2017) ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4 - - - - - -
RetinaNet800 (Lin et al., 2017) ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2 - - - - - -
RefineDet512 (multi scale) (Zhang et al., 2017) ResNet-101 41.8 62.9 45.7 25.6 45.1 54.1 - - - - - -

CornerNet511 (single scale) Hourglass-104 40.6 56.4 43.2 19.1 42.8 54.3 35.3 54.7 59.4 37.4 62.4 77.2
CornerNet511 (multi scale) Hourglass-104 42.2 57.8 45.2 20.7 44.8 56.6 36.6 55.9 60.3 39.5 63.2 77.3

Fig. 10 Example bounding box predictions overlaid on predicted heatmaps of corners.

4.4.5 Quality of the Bounding Boxes

A good detector should predict high quality bound-

ing boxes that cover objects tightly. To understand the

quality of the bounding boxes predicted by CornerNet,

we evaluate the performance of CornerNet at multi-

ple IoU thresholds, and compare the results with other

state-of-the-art detectors, including RetinaNet (Lin et al.,

2017), Cascade R-CNN (Cai and Vasconcelos, 2017)

and IoU-Net (Jiang et al., 2018).

Tab. 5 shows that CornerNet achieves a much higher

AP at 0.9 IoU than other detectors, outperforming Cas-

cade R-CNN + IoU-Net by 3.9%, Cascade R-CNN by

7.6% and RetinaNet 2 by 7.3%. This suggests that Cor-

2 We use the best model publicly available on
https://github.com/facebookresearch/Detectron/blob/

master/MODEL_ZOO.md

nerNet is able to generate bounding boxes of higher

quality compared to other state-of-the-art detectors.

4.4.6 Error Analysis

CornerNet simultaneously outputs heatmaps, offsets,

and embeddings, all of which affect detection perfor-

mance. An object will be missed if either corner is

missed; precise offsets are needed to generate tight bound-

ing boxes; incorrect embeddings will result in many

false bounding boxes. To understand how each part con-

tributes to the final error, we perform an error analysis

by replacing the predicted heatmaps and offsets with

the ground-truth values and evaluting performance on

the validation set.

Tab. 6 shows that using the ground-truth corner

heatmaps alone improves the AP from 38.4% to 73.1%.

https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md
https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md
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Fig. 11 Qualitative examples on MS COCO.

APs, APm and APl also increase by 42.3%, 40.7% and

30.0% respectively. If we replace the predicted offsets

with the ground-truth offsets, the AP further increases

by 13.0% to 86.1%. This suggests that although there

is still ample room for improvement in both detecting

and grouping corners, the main bottleneck is detecting

corners. Fig. 9 shows some qualitative examples where

the corner locations or embeddings are incorrect.

4.5 Comparisons with state-of-the-art detectors

We compare CornerNet with other state-of-the-art de-

tectors on MS COCO test-dev (Tab. 7). With multi-

scale evaluation, CornerNet achieves an AP of 42.2%,

the state of the art among existing one-stage methods

and competitive with two-stage methods.

5 Conclusion

We have presented CornerNet, a new approach to ob-

ject detection that detects bounding boxes as pairs of

corners. We evaluate CornerNet on MS COCO and

demonstrate competitive results.
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