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Abstract

Simultaneous semantically coherent object-based long-term 4D scene flow estimation, co-segmentation and reconstruction
is proposed exploiting the coherence in semantic class labels both spatially, between views at a single time instant, and
temporally, between widely spaced time instants of dynamic objects with similar shape and appearance. In this paper we
propose a framework for spatially and temporally coherent semantic 4D scene flow of general dynamic scenes from multiple
view videos captured with a network of static or moving cameras. Semantic coherence results in improved 4D scene flow
estimation, segmentation and reconstruction for complex dynamic scenes. Semantic tracklets are introduced to robustly
initialize the scene flow in the joint estimation and enforce temporal coherence in 4D flow, semantic labelling and reconstruction
between widely spaced instances of dynamic objects. Tracklets of dynamic objects enable unsupervised learning of long-term
flow, appearance and shape priors that are exploited in semantically coherent 4D scene flow estimation, co-segmentation and
reconstruction. Comprehensive performance evaluation against state-of-the-art techniques on challenging indoor and outdoor
sequences with hand-held moving cameras shows improved accuracy in 4D scene flow, segmentation, temporally coherent
semantic labelling, and reconstruction of dynamic scenes.

Keywords Semantic 4D flow - Reconstruction - Segmentation

1 Introduction

Advances in visual scene understanding using deep learning,
with convolutional neural network architectures and large
annotated image collections (Chen et al. 2016, 2018; Xie
et al. 2016; Luo et al. 2015), have achieved excellent per-
formance in per-pixel labelling of semantic categories in
real-world scenes from images.

These advances in semantic segmentation have been
exploited to improve scene flow estimation between pairs
of frames for dynamic scenes (Behl et al. 2017). However
semantic segmentation from a single view suffers from errors
due to the inherent visual ambiguity which leads to errors
in flow estimation at object boundaries and for regions of
uniform appearance. Errors may also be introduced in scene
flow estimated between pairs of frames due to large non-rigid
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motions and self-occlusions for dynamic sequences. In the
case of multiple views, independent classification for differ-
ent views and different time instants of the same scene may
result in inconsistent per-pixel flow and semantic labelling
for the same object.

This paper introduces a framework for semantically
coherent long-term 4D scene flow (aligning entire dynamic
sequence of > 150 frames), co-segmentation and reconstruc-
tion of dynamic scenes, as shown in Fig. 1 for the publicly
available Juggler dataset (Ballan et al. 2010) captured with 6
hand-held unsynchronised moving cameras. Joint semantic
co-segmentation(top-row), flow estimation, and 4D recon-
struction (bottom-row) results in significant improvement
in per-view 2D segmentation, 4D scene flow and recon-
struction. The approach enforces semantic coherence both
spatially across different views of the scene and temporally
across different observations of the same object for robust
long-term 4D flow estimation. Semantic tracklets are intro-
duced to identify similar frames in time across a sequence,
exploiting semantic, motion, shape and appearance infor-
mation between different observations of a dynamic object
over time. This gives improved temporal coherence enabling
long-term flow estimation along-with consistent semantic
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Semantic single view 2D segmentaion

Semantic 4D scene flow

Fig.1 Example of input image from Juggler dataset (Ballan et al. 2010)
and proposed framework resulting in an accurately labeled segmen-
tation, 4D reconstruction and scene flow (represented by color mask
propagation in dynamic object of the scene) (Color figure online)

co-segmentation of long sequences across multiple views.
Joint semantic scene flow, co-segmentation, and reconstruc-
tion enforces spatio-temporal semantic coherence in flow
estimation resulting in improved performance over previous
approaches which did not exploit semantic and depth infor-
mation in space and time.

Previous research has demonstrated the advantages of
joint semantic segmentation and flow estimation (Tokmakov
et al. 2019; Behl et al. 2017; Sevilla-Lara et al. 2016a; Zhu
et al. 2018), joint segmentation and reconstruction across
multiple views (Yang et al. 2018; Hane et al. 2013, 2016;
Engelmann et al. 2016; Kundu et al. 2014), co-segmentation
of multiple view images (Khoreva et al. 2019; Chiu and Fritz
2013; Kolev et al. 2012; Djelouah et al. 2015, 2016) and
temporal coherence in reconstruction (Li et al. 2018; Gold-
luecke and Magnor 2004; Floros and Leibe 2012; Larsen
et al. 2007; Mustafa et al. 2016a). Our contribution is the
introduction of a framework for joint semantically coher-
ent 4D scene flow with co-segmentation and reconstruction
of complex dynamic scenes to obtain semantically coherent
per-view long-term scene flow, 2D object segmentation and
4D scene reconstruction from wide-baseline camera views.
Our approach to long-term scene flow, co-segmentation and
4D dynamic shape reconstruction leverages recent advances
in single-view semantic segmentation and semantic flow esti-
mation.

The input to the framework is multi-view videos. Per-
view initial semantic segmentation is obtained using Mask
RCNN (He et al. 2017) and FCN (Chen et al. 2018), this could
in principle use any semantic video segmentation approach.
The initial semantic segmentation is combined with sparse
reconstruction to obtain initial semantic reconstruction. A
joint semantic flow, co-segmentation and reconstruction opti-
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mization is proposed to refine this initial segmentation and
reconstruction. Semantic coherence is enforced using seman-
tic tracklets, which link frames to enforce temporal coherence
between widely spaced timeframes. Semantic coherence
refers to spatial and temporal coherence of semantic labels
across the sequence. The per-view semantic flow and recon-
struction is combined across views for entire dynamic
sequence to obtain semantically coherent long-term dense
4D scene flow, co-segmentation and reconstruction.

The primary contribution is semantically coherent scene
flow, semantic co-segmentation and 4D reconstruction across
multiple views. An initial version of this work was published
in CVPR (Mustafa and Hilton 2017) where we proposed
a method for semantic segmentation and reconstruction of
dynamic scenes. The contributions of this paper over our
previous work are as follows: (a) Semantically coherent
long-term 4D scene flow estimation for dynamic scenes in
addition to semantic segmentation and reconstruction; (b)
Refined methodology enabling joint semantically coherent
scene flow, co-segmentation and reconstruction by adding
motion optimization in the energy defined in Eq. 6. The
resulting 2D flow is projected to the 3D reconstruction to
obtain the final 4D scene flow; (c) Refined methodology to
estimate semantic tracklets by adding motion constrain in
Eq. 1 and (d) Comprehensive performance evaluation of flow,
segmentation, and reconstruction on challenging datasets. To
the best of our knowledge, this is the first method address-
ing the problem of semantically and temporally coherent
long-term 4D scene flow; semantic co-segmentation and
reconstruction for dynamic scenes. The contributions of the
paper include:

— A method to estimate scene flow, 4D mesh and 2D seman-
tic video segmentation for natural dynamic scenes from
multi-view videos.

— Joint semantic scene flow, co-segmentation, and recon-
struction of dynamic objects in complex scenes exploit-
ing spatial and temporal coherence.

— Semantic tracklets for long-term 4D reconstruction by
enforcing spatial and temporal coherence in semantic
labelling for improved scene flow of video across wide-
timeframes.

— Improved flow, segmentation, and reconstruction of
dynamic scenes from multiple moving cameras

2 Related Work
2.1 Semantic Segmentation
Various methods have been proposed in the literature for

semantic segmentation of images. In the first category the
image is initially segmented followed by a per-segment
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object category classification (Mostajabi et al. 2015; Gupta
et al. 2014). However, errors in segmentation propagate to
the semantic labelling. Several papers address these issues
by proposing deep per-pixel CNN features followed by clas-
sification of each pixel in the image (Farabet et al. 2013;
Hariharan et al. 2015). The per-pixel prediction leads to
segmentations with fuzzy boundaries and spatially disjoint
regions. Another group of methods pioneered by Long et al.
(2015) and He et al. (2017) predict segmentations from
the raw pixels. Methods were introduced to improve the
spatial coherence of the semantic segmentation using condi-
tional random fields (CRF) (Kundu et al. 2016; Zheng et al.
2015; Chen et al. 2014). End-to-end methods were proposed
for semantic segmentation to overcome the limitations of
methods using CRF (Chen et al. 2018; Zhang et al. 2018),
improving the performance significantly.

Co-segmentation: This was first introduced by Rother et al.
(2006) for simultaneous binary segmentation of object parts
in an image pair and extended to simultaneous segmentation
of multiple images (Batra et al. 2010). Multi-view co-
segmentation in space and time was introduced in Djelouah
et al. (2016). A common foreground is obtained from multi-
ple views using the information from appearance and motion
cues. Semantic co-segmentation methods from a single video
use spatio-temporal object proposals (Joulin et al. 2012; Luo
et al. 2015), segments (Kolev et al. 2012), motion (Rother
et al. 2006) and foreground propagation (Goldluecke and
Magnor 2004). Recently, co-segmentation methods were
introduced to segment common objects in a collection of
videos for a single object (Maninis et al. 2018; Fu et al.
2014) or multiple objects (Tokmakov et al. 2019; Chiu and
Fritz 2013; Zhong and Yang 2016). A CNN method for both
single and multiple object segmentation was introduced in
Khoreva et al. (2019), exploiting an intuitive training strat-
egy from less data.

2.2 Semantic Flow Estimation

Methods have been proposed to exploit semantic information
to improve monocular flow or motion estimate per frame (Li
et al. 2018; Behl et al. 2017; Sevilla-Lara et al. 2016a; Zhu
et al. 2018; Tsai et al. 2016). Semantic 2D detections were
exploited to improve the tracking for autonomous driving
in Li et al. (2018). Advantages of segmentations, bound-
ing boxes and object coordinates to flow estimation were
reviewed in Behl et al. (2017) for the case of dynamic
road scenes. Sevilla-Lara et al. (2016a) exploit the advances
in static semantic segmentation to segment the image into
objects of different types followed by modelling motion for
each object depending on the type of object. However for
non-rigid dynamic objects such as people defining a unique
motion model for the entire object is not effective. A method

to exploit flow information for video segmentation was pro-
posed in Tsai et al. (2016), reporting improvement in video
segmentation exploiting flow information. However all of
these methods either work for street scenes or static scenes
and do not exploit any stereo or multiple view information.

2.3 Joint Estimation

General multi-view image segmentation methods use appear-
ance and contrast information which may not be sufficient in
the case of complex real world scenes. To improve the results
joint optimisation of segmentation with 3D reconstruction
has been proposed (Mustafa et al. 2016a) by including the
multiple view photo-consistency. This concept was extended
to semantic segmentation and reconstruction to obtain addi-
tional information from the scene (Jiao et al. 2018; Hane
etal. 2016; Xie et al. 2016). Methods were introduced to uti-
lize appearance-based pixel categories and stereo cues in a
joint framework for street scenes from a monocular camera
(Vineet et al. 2015; Floros and Leibe 2012). These meth-
ods used CRF to perform simultaneous dense reconstruction
and segmentation of street scenes captured from a moving
camera. A method to estimate pose and shape of people was
proposed in Zanfir et al. (2018) and another method to esti-
mate the pose and 3D shape of rigid objects on street scenes
was proposed (Engelmann et al. 2016). An unsupervised
method to jointly learn depth and flow using cross-task con-
sistency was proposed for monocular video (Zou et al. 2018).
Another method jointly estimates dense depth, optical flow
and camera pose (Yin and Shi 2018). Recently a method was
proposed for joint unsupervised learning of depth, camera,
motion, optical flow and motion segmentation (Ranjan et al.
2018). However these methods cannot be directly applied to
multi-view wide-baseline scenes. A method for joint estima-
tion of 3D geometry and pose was proposed for rigid objects
(Tulsiani et al. 2018). Dense semantic reconstruction of rigid
objects was proposed by Bao et al. (2013). Joint semantic
segmentation and reconstruction using multiple images was
proposed for static scenes (Hane et al. 2013). However, these
methods are limited to static scenes and rigid objects.

Joint motion and reconstruction or segmentation (Roussos
et al. 2012; Sevilla-Lara et al. 2016b) methods were pro-
posed for dynamic scenes. Techniques have been introduced
to align dense meshes using correspondence information
between consecutive frames (Zanfir and Sminchisescu 2015;
Mustafa et al. 2016b) or extracting the scene flow by estimat-
ing the pairwise surface or volume correspondence between
reconstructions at successive frames (Wedel et al. 2011;
Basha et al. 2010). State-of-the-art joint estimation methods
give per frame reconstruction and semantic segmentation of
the scenes (Chen et al. 2019; Kendall et al. 2017) exploiting
a multi-task learning framework. However these methods
do not align meshes for the entire sequence, give seman-
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Fig.2 Semantically coherent co-segmentation, reconstruction and flow estimation framework

tically coherent segmentation, or work for wide-baseline
scenes. Our previous work (Mustafa and Hilton 2017)
gives per-frame semantic segmentation and reconstruction of
dynamic scenes, leading to unaligned meshes for dynamic
sequence. The proposed method estimates 4D scene flow
along with reconstruction and semantic co-segmentation,
aligning meshes for entire dynamic sequence giving long-
term semantic 4D scene flow.

This paper introduces joint semantic flow, co-segment-
ation, and reconstruction enforcing coherence in both the
spatial and temporal domains for scenes, with rigid and
non-rigid dynamic objects, captured with multiple wide-
baseline moving cameras. A key contribution of our work
is that we combine semantics, shape, motion and appearance
information in space and time in a single optimization to gen-
erate results automatically. The per-view motion, depth and
semantic segmentation is combined across views and time for
entire dynamic sequence to obtain 4D semantic flow. Evalu-
ation demonstrates improved accuracy and completeness of
flow, segmentation and reconstruction for complex dynamic
scenes.

3 Semantic 4D Scene Flow and
Segmentation

Overview:

This section gives an overview of the proposed framework
for semantic temporal coherence, illustrated in Fig. 2. It com-
prises of following stages:

— Input: Multi-view videos are input to the system.
— Initial Semantic Segmentation—Sect. 3.1:
Initial semantic labels are estimated for each pixel in the
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image per-view using state-of-the-art semantic segmen-
tation (He et al. 2017; Chen et al. 2018).

Initial Semantic Reconstruction—Sect. 3.1:

Semantic information for each view is combined with
sparse 3D feature correspondence between views to
obtain an initial semantic 3D reconstruction. This ini-
tial reconstruction combines semantic information across
views but results in inconsistency due to inaccuracies in
the initial per-view segmentation.

Semantic Tracklets—Sect. 3.2:

To enforce long-term semantic coherence temporally we
propose semantic tracklets that identify a set of similar
frames for each dynamic object. Similarity between any
pair of frames is estimated from the per-view semantic
labels, appearance, shape and motion information.
Semantic trackets provide a prior for the joint space-time
semantic co-segmentation and reconstruction to enforce
temporal coherence.

Joint Semantic Flow, Co-segmentation and
Reconstruction—Sect. 3.3: The initial semantic seg-
mentation and reconstruction is refined per-view for each
dynamic object through joint optimisation of flow, seg-
mentation, and shape across multiple views and over
time using the semantic tracklets. Per-view information
is merged into a single 3D model using Poisson surface
reconstruction (Kazhdan et al. 2006).

Semantic 4D Scene Flow and Segmentation—Sect. 3.3:
The process is repeated for the entire sequence and is
combined across views and in time to obtain seman-
tically coherent long-term dense 4D scene flow, co-
segmentation, and reconstruction for the complete scene.

The following sections include a detailed explanation of the
proposed approach and highlight the novel contributions.
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(a) Original Image Initial semantic segmentation

(c) Joint semantic 4D scene flow, segmentation & reconstruction

Fig.3 The improvement of semantic segmentation using the proposed framework for Odzemok and Mgician datasets

3.1 Initial Segmentation and Reconstruction

Initial Semantic Segmentation: Mask RCNN is used for
initial semantic segmentation because it is the state-of-the-
art object detector that computes per instance masks and
per instance class labels. This adopts a two-stage proce-
dure to predict semantic segmentation of images. The object
masks from Mask RCNN (He et al. 2017) are combined with
background segmentation (Chen et al. 2018) to obtain dense
semantic segmentation mask. For each frame in the sequence
we perform deep semantic segmentation which estimates the
probabilities of various classes at each pixel in the image. The
network is trained on MS-COCO (Lin et al. 2014) dataset
with 81 classes and is refined on PASCAL VOC12 (Evering-
ham et al. 2012) dataset. In spite of being the state-of-the-art
method the masks output still do not accurately align with
the object boundaries as illustrated in Fig. 3b.

Initial Semantic Reconstruction: Sparse feature-based
reconstruction of the scene is performed using SFD fea-
tures (Mustafa et al. 2019) and SIFT descriptor (Lowe 2004)
with the constraint that each 3D feature should be visible
in 3 or more camera views for robustness (Hartley and Zis-
serman 2003). The resulting point-cloud is clustered in 3D
(Rusu 2009). Clusters are formed between points with the
same class labels across multiple views such that each clus-
ter represents a semantically consistent object. Insufficient
3D features may occur on parts of an object due to lack
of texture or visual ambiguity. To avoid incomplete recon-
struction the sparse 3D object clusters are combined with
the initial semantic segmentation to obtain the initial seman-
tic reconstruction. A mesh is obtained for sparse 3D point
clusters by triangulation to obtain an initial coarse recon-
struction for each object. The initial coarse reconstruction is
back-projected in each view onto the initial semantic seg-
mentation. If the back-projected mask is smaller than its
respective semantic region in 2 or more views then the ini-
tial coarse reconstruction is dilated in volume(3D) by v to

enclose the object to match the segmentation boundaries in
Ny

. B¢—B¢ .
each view: v = NL;[ * ) oty 5~ where Nj is the num-
s

ber of views with smaller back-projected mask, B; is the
area of the semantic segmentation and B! is the area of the
back-projected mask of the initial coarse reconstruction. This
automatically initializes the reconstruction of each object in
the scene without any strong initial prior.

3.2 Semantic Tracklets

In the case of general dynamic scenes with non-rigid objects,
independent per-frame scene flow estimation, segmenta-
tion and reconstruction leads to incoherent results, for
example failure to predict flow and reconstruct thin struc-
tures such as limbs and poorly localized object boundaries.
Sequential methods for frame-to-frame temporal coherence
are prone to errors due to drift and rapid motion (Beeler
et al. 2011; Prada et al. 2016). Previous work Zhong and
Yang (2016) introduced semantic tracklets for object seg-
mentation in single view video based on co-segmentation
across video collections. In this paper to achieve long-term
scene flow, semantic co-segmentation and robust tempo-
rally coherent 4D reconstruction by introducing semantic
tracklets which link instances of dynamic objects across
wide-timeframes. This provides a prior to constrain long-
term flow, co-segmentation and reconstruction. In our work
semantic tracklets are defined for multiple views of the same
dynamic scene to ensure temporal and spatial coherence in
semantic 4D flow and 2D labelling, whereas in Zhong and
Yang (2016) tracklets segment objects in a single video and
relate them to similar object instances in multiple videos.
Semantic tracklets for a dynamic object are defined as a
set of frames which have similar motion across 3 or more
views, semantic labels, appearance and 2D shape as illus-
trated in Fig. 4. Tracklets are used for long-term learning of
flow, semantic labels, appearance and shape information for
per-view joint semantic 4D scene flow, co-segmentation and
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Spatial neighbourhood across views Appearance + Semantic

labels + Edge Information

Temporal neighbourhood on tracklets

View 8

0.87

Similarity
metric

Dynamic tracklets for a frame across time and views in Odzemok

Fig. 4 Example of dynamic tracklet generation (similar frames) for a
dynamic object at current frame 53 based on appearance, shape and
semantic information. The spatial and temporal neighbourhood are
shown at the top in green and yellow respectively for the optimization
(Color figure online)

reconstruction of each object. This improves the temporal
and semantic coherence in flow, reconstruction and segmen-
tation results as shown in Fig. 5.

Dynamic objects are identified in the scene using motion
information from sparse temporal SFD feature correspon-
dences with SIFT descriptors. The semantic, 2D shape,
motion and appearance similarity of the dynamic object is
evaluated for each frame against all previous frames to iden-
tify the set of similar frames which form a tracklet. Similarity
metric is defined as follows:

Ny
1 - c c c c
Si,j = —4NU ;(Cl,/ +Mi,j +Ji,j +Ll,j) (1)

where C() is the measure of appearance similarity, M() is
the measure of motion similarity, J () is the measure of shape
similarity and L() is the measure of semantic similarity. N,
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Odzemok

Handshake

Initial Multi-view - No  Multi-view - No  Proposed Multi-

Input Image view

Fig. 5 Comparison of segmentation of the proposed multi view
optimization against optimization with no semantic and no tracklet
information respectively for Handshake and Odzemok datasets

is the number of views at each frame. These similarities are
combined across time and views and all frames with sim-
ilarity > 0.75 are selected as Ng similar frames to form
a semantic tracklet 7; for each dynamic object at the i’"
frame, T; = {1, iV:sP where . € [0,i — 1]. An example of
the frame-to-frame similarities is illustrated in Fig. 6 for Jug-
gler sequence, depicting the differences in various measures

and the overall similarity matrix.

Semantic Similarity: The semantic region associated with
the object at each frame is identified using sparse wide-
timeframe SFD feature matches combined with SIFT descrip-
tor. An affine warp (Evangelidis and Psarakis 2008) based on
the feature correspondence and region boundary is employed
to transfer the semantic region segmentation to the current
frame. The semantic similarity metric L{ ; is defined as the
ratio of the number of pixels with the same class label z i
to the total number or pixels in the segmented region y; jat
frame i and j for view c:

¢ L 2
Li == )
Yi,j

c
i

Appearance Similarity: The appearance metric C;’ j between
frame i and j for the semantic region segmentation in view

¢ corresponding to a dynamic object is based on the ratio of
the number of temporal feature correspondences which are

consistent across three or more views qif jto the total num-

ber of feature correspondence in the segmented region u; i

(Mustafa et al. 2016b):

ey =~ 3)
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Fig.6 Similarity matrix for each component in semantic tracklet estimation, along with all the components combined matrix

Motion Similarity: The motion metric Mic, j between frame
i and j for the semantic region segmentation in view ¢ corre-
sponding to a dynamic object is based on the average motion
for the object across three or more views sl.i jto the maximum
motion between frames for entire sequence max (Mustafa
et al. 2016b):

C
ME, = L )
Y max

Shape Similarity: This metric gives a measure of the 2D
region shape similarity between pairs of frames for each
dynamic object. Semantic region segmentations are aligned
using an affine warp (Evangelidis and Psarakis 2008). This
is defined as the ratio of the intersection of the aligned seg-

mentation £ jto the union of the area a; it

JE =L (5)

Importance of Semantic Tracklet: Semantic tracklets pro-
vide both temporal and multi-view priors for semantic 4D
long-term flow estimation and co-segmentation. This is the
importance of semantics in obtaining improved scene flow,
segmentation and 4D reconstruction. Comparison is pre-
sented for optimization with/without semantic label and
temporal tracklet information for multiple views in Fig. 5.
Semantic tracklets result in significant improvement in scene
flow estimation, reconstruction and multi-view video seg-
mentation in comparison to state-of-the-art methods, as
demonstrated in Sect. 4. The importance of the proposed
semantically coherent optimization exploiting the infor-
mation from semantic labels and tracklets for proposed
multi-view joint optimization is shown in the Fig. 5. The pro-
posed approach consistently performs better giving a more
accurate flow and segmentation. The final proposed multiple
view 4D flow, co-segmentation and reconstruction method
using both semantic labels and tracklets gives significantly
improved and more robust 4D flow and segmentation.

3.3 Joint Semantic Scene Flow, Co-segmentation
and Reconstruction

The goal of multi-view joint semantic flow estimation,
co-segmentation and reconstruction is to refine the ini-
tial semantic reconstruction obtained in Sect. 3.1 for each
dynamic object for the region Z per-view by optimizing the
following variables: (a) Translation for each pixel location
p = (xp,yp) in image I, m, = (8xp,dyp) in time from
a predefined set of flow vectors .Z; (b) A semantic label
from a set of semantic classes obtained as an initialization
(Sect. 3.1), & = {ll, e, l|$| }, to each pixel p for the ini-
tial semantic segmentation region .# of each object, where
|.Z| is the total number of classes in the network; and (c) An
accurate depth value is jointly assigned for each pixel p from
a set of depth values Z = {dl, e, d|@|_1, %}, where d;
is obtained by sampling the optical ray from the camera and
% is an unknown depth value to handle occlusions.
Long-term 4D flow and co-segmentation is achieved by
propagating the semantic labels across views and over time
using tracklets in the framework. Formulation of a cost func-
tion for semantically coherent depth and motion estimation
and co-segmentation is based on the following principles:

— Local spatio-temporal coherence: Spatially and tem-
porally neighbouring pixels are likely have the same
semantic labels if they have similar appearance.

— Multi-view coherence: The surface is photo-consistent
and semantically consistent across multiple views.

— Depth variation: The depth at spatially neighbouring pix-
els within an object varies smoothly for most of the
surface (except internal depth discontinuities).

— Long-term temporal coherence: The semantic labels on
each object remain consistent across a long time-frames
in a sequence.

The cost function enforces spatial and temporal constraints
on the semantic, appearance, motion and shape. Tempo-
ral semantic coherence is enforced using tracklets based on
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dynamic object similarity S; ; Eq. 1. An example of multi-
view semantic scene flow, segmentation and reconstruction
is shown in Fig. 3c. Enforcing temporal coherence with
semantic tracklets for a multi-view video reduces noise in
per-pixel labels. Errors in object segmentation remain due to
the low spatial resolution of the initial semantic boundaries
and visual ambiguity is addressed by combining information
across multiple views. Joint optimisation of multiple view
scene flow, co-segmentation and reconstruction minimises:

E(l,d,m) = AgEq(d) + A Eq(l) + A Ec(])
+AsmEsm(l,d) + A Es(l, d) + A Em (1, m)
(6)

where, d is the depth at each pixel, m is the motion and / is
the semantic label. E;() is the matching/depth cost, E, () is
the appearance/color cost, E.() is the constrast cost, E,, () is
the semantic labelling cost, E() is the smoothness cost, and
E,, () is the motion/flow cost. Individual cost terms enforce
spatial and temporal coherence for dynamic objects in seman-
tic labels, appearance, region boundary contrast and motion
cost. This is solved subject to a geodesic star-convexity con-
straint on the semantic labels / (Mustafa et al. 2016a):

min E(l,d,m) & min E(l,d,m)+ E*(l|x, %) @)
(l,d,m) 1eS*(%) (l,d,m)

where S*(%) is the set of all shapes which are geodesic
star-convex wrt the features in 4 = {c1, ..., ¢,} within the
initial semantic segmentation %. E*(I|x, %) is the geodesic
star-convexity constraint enforced on the semantic labels /.
a-expansion is used to iterate through the set of labels in
X x D x A (Boykov et al. 2001) and a solution is obtained
using graph-cuts (Boykov and Kolmogorov 2004) across spa-
tial and temporal neighbourhoods as shown in Fig. 4. The
initially reconstructed surface % is updated by minimizing
the Energy in Eq. 6, by estimating the depth, segmentation
and motion at each pixel within the projection of region &%
in each view.

Spatial neighbourhood: The spatial neighbourhood is
defined as pairs of spatially close pixels in the image
domain. A standard 8-connected spatial neighbourhood is
used denoted by vg; the set of pixel pairs (p, ¢) such that p
and ¢ belong to the same frame and are spatially connected.

Temporal neighbourhood: The temporal neighbourhood is
defined based on the set of tracklets 7; generated for any
frame i. Optical flow is used to compute a dense flow field on
the tracklets, initialized from the sparse temporal SIFT fea-
ture correspondences. EpicFlow (Revaud et al. 2015) is used
to preserve large displacements as the tracklets are distributed
widely in time, and forward-backward flow consistency is
enforced. Optical flow vectors define the temporal neighbour-
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hood Y7 = {(p, q)lg=p+ di,j}; where j is the number
of a frame in tracklet T; = {j = #,}, and d; ; is the displace-
ment vector from image i to j.

Semantic cost Ey,,, (I, d): This term enforces multi-view con-
sistency on the semantic labels of each pixel p. Inconsistent
labels across views are penalised to ensure semantic coher-
ence. This cost is computed based on the probability of the
class labels at each pixel for the initial semantic segmentation
(Chen et al. 2016). Unlike previous approaches to achieve
semantic coherence we enforce spatial and temporal consis-
tency using tracklets across the neighbourhoods. The term is
defined as:

Egn(l,d) =Y esn(p.dp.1p)
PEYS

esm(p.dp,lp) = Z?{:K] z2(p,r,lp),ifd, # U else a fixed
cost S is assigned. A 3D point P(p, dp) is assumed along
the optical ray passing through pixel p located ata distance d,,
from the reference camera. The projection of hypothesized
point P(p, dp) in view c is defined by r = ¢.(P). Nk is the
total number of views in which point P (p, d),) is visible.

_IOgPsem(IpUp)
_IOg (1 - Psem(1p|lp))

ifl, =1,

Z@JJQ={ ifl, #1,

where [, is the semantic label at pixel r in view ¢ and
Psem(Ipll, = I;) denotes the probability of the semantic
label /; at pixel p in the classification image obtained from
initial semantic segmentation.

Contrast cost E.(I): The contrast cost (Chen et al. 2016)
is modified to introduce spatial and temporal semantic
coherence and ensure that for dynamic objects the region
boundaries have high contrast. Semantic region boundaries
are propagated using the tracklets as a prior for the optimiza-
tion:

E()= ) ep.q.lply 08 0y 0h)
PaYT
+ Z ec(p,q,lp,lq,ag,ﬂ;q,aé)
Pa€Vs
ec(p:q.1p,lg, 0, Vpg, 0p) = 11 (lpv lq)

_( Hs<m—s<qw§ ) _( HL(p)—L(g)IIZ )
2
X | Aegexp \20 )"/ 4 ) jexp 2oy)

where 1 (l[,, lq) = 1if(, # Ily)else0 and D), is the
Euclidean distance between pixel p and g. The first Gaus-
sian kernel is a bilateral kernel which depends on RGB color
(B() is bilateral filtered image) and pixel positions, and the
second kernel only depends on pixel positions L. The param-
eters oy, og and o, control the scale of the Gaussian kernels.
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The first kernel forces pixels with similar color and position
to have similar labels, while the second kernel only considers
semantic spatial proximity when enforcing smoothness. The
IB()=B(p)I®

prq
the mean computed across the neighbourhoods g and ¥

for spatial and temporally coherent contrast respectively.

value of oy = , with the operator () denoting

Appearance cost E, (): This costis computed using the neg-
ative log likelihood (Boykov and Kolmogorov 2004) of the
color models learned from the foreground object and back-
ground. In this work the foreground models are learnt from
the sparse features of the dynamic object in the current frame
and foreground regions from tracklets to improve the consis-
tency of the results. Static background models are learnt from
the sparse features outside the initial semantic segmentation
of the dynamic object in the current frame and the region out-
side the semantic segmentation in the tracklets. Appearance
cost is defined as:

E.() =) —logP(I,ll,)

PEYs

where P(1,|l, = [;) is the probability of pixel p in the ref-
erence image belonging to label /;. Color models use GMMs
with 10 components each for foreground or background.

Matching cost E;(d): The photo-consistency matching cost
across views is defined as:

Eqd) =) ea(p,dp)

PEYS

where eq(p,dp) = D ico,m(p, 1), if dp # U else My .
m(p,r) is inspired from Hu and Mordohai (2012). Mg, is
the fixed cost of labelling a pixel unknown. r denotes the pro-
jection of the hypothesised point P in an auxiliary camera
where P is a 3D point along the optical ray passing through
pixel p located at a distance d,, from the reference camera.
O is the set of k most photo-consistent pairs with a refer-
ence camera across views. 0y are identified using the highest
number or feature matches spatially across frames.

Motion cost E,, (I, m): This adds the brightness consistency
assumption to the cost function generalized for spatial and
temporal neighbourhood, defined as:

En(.m)= " ME(p.mp.lp) + AcEc(p.mp. 1)
PEYT
Ny
2
Ei(p,mp,1p) =Y | Ui(p,0) = Li(p+mp, 1 + 1)
i=1
ifattand t+1/, = lp+mp else 0
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Ny )
Ec(p.mp.lp) =Y > |(i(p.t) = Li(p +mp, 1)
PEYT =2

ifattl, =Ilpym,else 0

E;() penalizes deviation from the brightness constancy
assumption in time for a single view. Term E.() penalizes
deviation from the brightness constancy assumption between
the reference view and each of the other views at other time
instants. Here N, is the number of views at each time frame
and /; (p, t) is the intensity at a given pixel p at time instant
t in view i, Y5 and {7 are the spatial and temporal neigh-
bourhood.

This term denotes that the flow vector m , is located within
a window from a sparse constraint at p and it forces the flow
to approximate the sparse 2D temporal correspondences.

Smoothness cost E (I, d): The surface smoothness cost
introduced in Mustafa et al. (2016a) is extended to spatial
and temporal neighbourhoods:

Es(lod) =235 Y esUp.dp.lg.dg. dhpgy)
PqEYT
15 D eslp.dp.ly.dg. dygy)
P.q<¥s
es(lpsdpvlqydqadmax)

min(|dp —dy| , dmax), ifl, =lgandd,, dy # U
=1o, ifl, =lyanddp, dg = U
dmax, otherwise

dinax 18 introduced to avoid over-penalising large disconti-
nuities. d3,,, ensures spatial smoothness and d,,, ensures
smoothness over time between the temporal neighbourhood
of the tracklets and is set to twice d;, , . to allow large move-

ment in the object between tracklet frames.

Semantically and Temporally Coherent Reconstruction
The estimated dense flow for each view is projected to the 3D
visible surface to establish dense 3D correspondence (scene
flow) between frames and between semantic tracklets 7; to
obtain 4D semantically and temporally coherent dynamic
scene reconstruction, as illustrated in Fig. 1. Temporal cor-
respondence is first obtained for the view with maximum
visibility of 3D points. To increase surface coverage corre-
spondences are added in order of visibility of 3D points for
different views. Dense temporal correspondence is propa-
gated to new surface regions as they appear using the dense
flow estimated from joint refinement. Temporal coherence is
also estimated between semantic tracklets to overcome the
limitations of sequential correspondence propagation by cor-
recting any errors introduced in semantically and temporally
coherent reconstruction. As a result along with segmenta-
tion and reconstruction of dynamic scenes, we have temporal
and semantic per-pixel correspondence information in both
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Fig.7 3D temporal alignment between frames for Juggler dataset

2D and 3D, as shown for Juggler dataset in Fig. 7. The 2D
per-view depth maps are combined using Poisson surface
reconstruction (Kazhdan et al. 2006), which leads to loss in
the details in mesh of the object compared to the semantic
segmentation.

4 Results and Evaluation

Joint semantic co-segmentation, reconstruction and scene
flow estimation (Sect. 3.3) is evaluated on a variety of publi-
cally available multi-view indoor and outdoor dynamic scene
datasets, details in Table 1.

4.1 4D Flow Evaluation

We evaluate semantic and temporal coherence obtained
using the proposed 4D semantic flow algorithm on all of
the datasets. Stable long-term 4D correspondence propa-
gation is illustrated using color coded results. First frame
of the sequence is color coded and the colors are propa-
gated between frames using the 2D-3D motion information
obtained from the joint refinement explained in Sect. 3.3.
Results of the proposed 4D temporal and semantic alignment,
illustrated in Fig. 8 shows that the colour of the points remains
consistent between frames. The proposed approach is quali-
tatively shown to propagate the correspondences reliably for
complex dynamic scenes with large non-rigid motion.

For comparative evaluation we use:(a) state-of-the-art
dense flow algorithm Deepflow (Weinzaepfel et al. 2013);
(b) a recent algorithm for alignment of partial surfaces

(4DMatch) (Mustafa et al. 2016b) and (d) Simple flow (Tao
et al. 2012). Qualitative results against 4DMatch, Deepflow
and Simpleflow shown in Fig. 9 indicate that the propagated
colour map does not remain consistent across the sequence
for large motion as compared to the proposed method (red
regions indicate correspondence failure).

For quantitative evaluation we compare the silhouette
overlap error (SOE). Dense correspondence over time is used
to create propagated mask for each image. The propagated
mask is overlapped with the silhouette of the projected sur-
face reconstruction at each frame to evaluate the accuracy of
the dense propagation. The error is defined as:

1 d Area of intersection
SOE = — 8
Z Z Area of back-projected mask ®

Evaluation against the different techniques is shown in
Table 2 for all datasets. As observed the silhouette overlap
error is lowest for the proposed approach showing relatively
high accuracy.

We evaluate the temporal coherence across the Magician
sequence, by evaluating the variation in appearance for each
scene point between frames and between semantic track-

2 2 2
lets for state-of-the-art methods, defined as: w ,

where A is the difference operator. Evaluation shown in
Table 3 against state-of-the-art methods demonstrates the
stability of long-term temporal tracking for proposed joint
semantic scene flow, co-segmentation and reconstruction.

4.2 Segmentation Evaluation

Mutli-view co-segmentation is evaluated against a variety of
state-of-the-art methods:

(a) Non-Semantic methods: Multi-view segmentation (MVVS)
(Djelouah et al. 2016), Joint segmentation and reconstruction
(TcMVS) (Mustafa et al. 2016a), and

(b) Semantic methods: Semantic co-segmentation in videos
(SCV) (Zhong and Yang 2016), Mask RCNN (He et al. 2017)

Table 1 The characteristic
properties of datasets used for

evaluation

Dataset Resolution No. of views Baseline
Odzemok (http://cvssp.org/data/cvssp3d/) 1920 x 1080 8 (2 moving) 25°
Handshake (Kim et al. 2012) 1920 x 1080 8 (all static) 20°
DogJump (http://4drepository.inrialpes.fr/) 1624 x 1080 16 (all static) 35°
Breakdance (Zitnick et al. 2004) 2048 x 2048 20 (all static) 15°
Magician (Ballan et al. 2010) 960 x 544 5 (all moving) 40°—55°
Juggler (Ballan et al. 2010) 960 x 544 6 (all moving) 25°-30°
HumanEva (Sigal et al. 2010) 640 x 480 3 (all static) 25°-30°
Human3.6 (Ionescu et al. 2014) 1000 x 1000 4 (all static) 25°-30°
Lightfield (Mustafa et al. 2017) 2048 x 2048 20 (all static) 5°
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Temporal

Semantic coherence

Semantic

HANDSHAKE

Fig. 8 Temporal and semantic coherence results using proposed
approach on Handshake, Lightfield and Breakdance datasets. Color-
coding for temporal coherence: Unique gradient colors are assigned to
first frame of the sequence for each object. Color-coding for semantic

4DMatch

Proposed

Deepflow Simpleflow

Odzemok

Magician

Lightfield

Fig.9 Dense flow comparison results on different dynamic sequences

and Conditional random field as recurrent neural networks
(CRF-RNN) (Zheng et al. 2015).

Proposed segmentation is also evaluated against single-
view segmentation methods MVC (Chiu and Fritz 2013)
and ObMiC (Fu et al. 2014). These are applied indepen-
dently on each view for comparison. Comparison against
MVVS (Djelouah et al. 2016) is shown in Fig. 10 and eval-
uation against TcMVS (Mustafa et al. 2016a), SCV (Zhong

| =

|

o
N

BREAKDANCE

coherence: head is red, left-arm is blue, right-arm is green, left-leg is
pink and right-leg is violet. Colors are propagated using proposed 4D
scene flow (Color figure online)

Table 2 Silhouette overlap error for multi-view datasets for flow eval-
uation, where SF is Simpleflow

Datasets Proposed 4DMatch Deepflow SF

Breakdance 0.60 0.81 1.14 1.35
Odzemok 0.66 0.95 1.38 1.82
Magician 0.78 0.98 1.67 1.97
Juggler 0.72 0.92 1.53 2.11
HumanEva 0.63 0.83 1.46 1.89
Handshake 0.81 0.99 1.55 2.31
Dogjump 0.69 0.86 1.34 1.83
Human3.6M 0.71 0.95 1.66 1.97
Lightfield 0.49 0.71 1.13 1.83

Bold values represent best performance

Table 3 Temporal coherence evaluation for Magician dataset against
existing methods

Methods Frame-to-frame Tracklets

Mean SD Mean SD
Proposed 4.67 2.61 5.63 2.48
4DMatch 6.42 3.27 7.88 3.94
Deepflow 7.33 4.40 17.54 8.47
Simpleflow 8.21 4.60 23.30 9.55

Bold values represent best performance
SD standard deviation

and Yang 2016) and CRF-RNN (Zheng et al. 2015) are
shown in Fig. 12 for dynamic datasets. Ground-truth seg-
mentation comparison with TcMVS (Mustafa et al. 2016a)
is shown in Fig. 11. Quantitative evaluation against state-
of-the-art methods is measured by Intersection-over-Union
with ground-truth, shown in the Table 4. Ground-truth is
available online for most of the datasets and obtained by
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Frame 825

Human3.6

Breakdance

HumanEva

Original Images Initial semantic labels

Fig. 12 Comparison of segmentation on public datasets against state-
of-the-art methods: TcMVS (Mustafa et al. 2016a) (region in red
represents region missing from ground-truth and green represents region

4.3 Reconstruction Evaluation

The reconstruction results obtained from the proposed
approach are compared against state-of-the-art approaches
in joint segmentation and reconstruction (TcMVS Mustafa
et al. 2016a) and multi-view stereo (Colmap Schonberger
et al. 2016, MVE Semerjian 2014, SMVS Langguth et al.
2016). MVE, SMVS and Colmap are state-of-the-art multi-
view stereo techniques which do not refine the segmentation.

Proposed joint estimation

CRF-RNN Scv

TcMVS

not present in ground-truth), CRF-RNN (Zheng et al. 2015) and SCV
(Zhong and Yang 2016) (Color figure online)

All the methods are initialized with the same initial semantic
reconstruction (Sect. 3.1) for fair comparison. Comparison
of reconstructions Fig. 13 demonstrates that the proposed
method gives consistently more complete and accurate mod-
els. Figure 14 presents a comparison to a statistical model-
based approach MBR (Rhodin et al. 2016) which reconstructs
a single human body shape from the whole sequence together
with pose at each frame. This provides a good estimate of the
underlying body shape but does not take into account cloth-
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Magician Juggler Handshake

Odzemok

Fig. 13 Comparison of reconstruction of dynamic objects against
Colmap (Schonberger et al. 2016), MVE (Semerjian 2014), SMVS
(Langguth et al. 2016) and TcMVS (Mustafa et al. 2016a) (same seman-
tic labels are assigned to all methods for fair comparison)

- R i ¥ = S5 8
MBR - Silhouette overlap and mesh Proposed — Silhouette overlap and mesh

Fig. 14 Comparison of reconstruction against MBR (Rhodin et al.
2016) from 4 views of falling down (Kim et al. 2012) dataset

Proposed

Fig.15 Comparison of full scene reconstruction against SMVS (Schon-
berger et al. 2016) and MVE (Semerjian 2014) (same semantic labels
are assigned to all the approaches for fair comparison)

ing resulting in inaccurate silhouette overlap. Comparison of
full scene reconstruction against MVE and SMVS is shown
in Fig. 15 showing improved completeness and accuracy.
Joint semantic 4D scene flow, co-segmentation and recon-
struction results in a 3D model for which every surface point
has consistent surface labelling across all views and over
time. To illustrate the semantic wide-timeframe coherence
achieved using the proposed approach unique colors are
assigned to human body parts in one frame and the colors
are propagated using the estimated temporal coherence. The

@ Springer

Table 5 Parameters for all datasets

EQ

Ad Asm As Am Aa Ae
Odzemok 1.0 0.7 0.2 04 0.5 5
Breakdance 1.0 0.7 0.2 0.4 0.5 5
DogJump 1.0 0.7 0.2 0.4 0.5 5
HumanEva 1.0 0.7 0.2 0.4 0.5 5
Lightfield 1.0 0.7 0.2 0.4 0.5 5
Juggler 1.0 0.9 0.1 0.6 0.6 7.5
Handshake 1.0 0.9 0.1 0.6 0.6 7.5
Magician 1.0 0.9 0.1 0.6 0.6 7.5
Human3.6 1.0 0.9 0.1 0.6 0.6 7.5

color in different parts of the object remains consistent over
time as shown in Fig. 8.

Parameters: Results are insensitive to parameter setting for
all indoor and outdoor scenes. Table 5 shows the parame-
ters used, with constant contrast cost A., = Ay = 0.5 and
smoothness cost 15 = 0.4, AT = 0.6.

Limitations: The proposed approach is dependent on an ini-
tial semantic labelling of the scene for each view obtained
using Mask-RCNN. Gross errors or mislabeling may be prop-
agated resulting in incorrect semantic reconstruction, such as
the soft-toys labelled as people on the left hand side of the
Odzemok dataset Fig. 2. Whilst enforcing semantic coher-
ence is demonstrated to improve scene flow, segmentation
and reconstruction for a wide-variety of scenes visual ambi-
guity in appearance and occlusion may degrade performance.

5 Conclusion

This paper proposes a novel approach to joint semantic
4D scene flow, multi-view co-segmentation and reconstruc-
tion of complex dynamic scenes. Temporal and semantic
coherence is enforced over long-time frames by semantic
tracklets identifying similar frames using the semantic label,
appearance, shape and motion information. Tracklets are
used for long-term learning to constrain flow per-frame and
co-segmentation optimization on general dynamic scenes.
Joint optimization simultaneously improves the scene flow,
semantic segmentation and reconstruction of the scene by
enforcing semantic coherence both spatially across views and
temporal across widely-spaced similar frames. Comparative
evaluation demonstrates that enforcing semantic coherence
achieves significant improvement in scene flow and segmen-
tation of general dynamic indoor and outdoor scenes captured
with multiple hand-held cameras. Introduction of space-time
semantic coherence in the proposed framework achieves bet-
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ter reconstruction and flow estimation against state-of-the-art
methods.
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