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Abstract Deep neural networks deliver state-of-the-

art visual recognition, but they rely on large datasets,

which are time-consuming to annotate. These datasets

are typically annotated in two stages: (1) determining

the presence of object classes at the image level and

(2) marking the spatial extent for all objects of these

classes. In this work we use speech, together with mouse

inputs, to speed up this process. We first improve stage

one, by letting annotators indicate object class presence

via speech. We then combine the two stages: annota-

tors draw an object bounding box via the mouse and

simultaneously provide its class label via speech. Using

speech has distinct advantages over relying on mouse in-

puts alone. First, it is fast and allows for direct access to

the class name, by simply saying it. Second, annotators

can simultaneously speak and mark an object location.

Finally, speech-based interfaces can be kept extremely

simple, hence using them requires less mouse movement

compared to existing approaches. Through extensive

experiments on the COCO and ILSVRC datasets we

show that our approach yields high-quality annotations

at significant speed gains. Stage one takes 2.3×−14.9×
less annotation time than existing methods based on a

hierarchical organization of the classes to be annotated.

Moreover, when combining the two stages, we find that

object class labels come for free: annotating them at

the same time as bounding boxes has zero additional

cost. On COCO, this makes the overall process 1.9×
faster than the two-stage approach.
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Fig. 1: Illustration of common stages of image anno-

tation: annotators first provide object class labels at

the image level (Russakovsky et al. 2015a; Kuznetsova

et al. 2018) (red), sometimes associated to a specific

object via a click as in (Lin et al. 2014) and our

approach for object class labelling (green). Following

stages then annotate the spatial extent of all objects

of these classes, e.g. with bounding boxes or segmenta-

tions (blue). Speech provides a natural way to combine

the two stages to simultaneously annotate class labels

and bounding boxes.

1 Introduction

Deep neural networks need millions of training exam-

ples to obtain high performance. Large and diverse datasets

such as ILSVRC (Russakovsky et al. 2015a), COCO

(Lin et al. 2014) or Open Images (Kuznetsova et al.

2018) therefore lie at the heart of the breakthrough and

ongoing advances in visual recognition.

Datasets for recognition are typically annotated in

two stages (Russakovsky et al. 2015a; Kuznetsova et al.

2018; Lin et al. 2014; Su et al. 2012) (Fig. 1): (i) de-

termining the presence or absence of object classes in

each image, and (ii) providing bounding boxes or seg-

mentation masks for all objects of the classes present.
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Designing interfaces for stage one, which we call object

class labelling, has traditionally been challenging and

their use time-consuming. The key question is how to

quickly navigate a vocabulary to find the right classes

to annotate. A näıve approach is to ask a separate

yes/no question for each class in a given vocabulary.

Such a protocol is rooted on the vocabulary, not the

image content. It scales linearly in the size of the vo-

cabulary, even when only few of the classes are present

in the image (which is the typical case). Thus, it be-

comes very inefficient when the vocabulary is large. Let

us take the ILSVRC dataset as an example: getting la-

bels for the 200 object classes in its vocabulary would

take close to 6 minutes per image (Krishna et al. 2016),

despite each image containing only 1.6 classes on av-

erage. Previous methods have attempted to improve

on this by using a hierarchical representation of the

class vocabulary to quickly reject certain groups of la-

bels (Lin et al. 2014; Deng et al. 2014). This reduces the

annotation complexity to sub-linear in the vocabulary

size. But even with these sophisticated methods, object

class labelling remains time consuming. Using the hier-

archical method of (Deng et al. 2014) to label the 200

classes of ILSVRC still takes 3 minutes per image (Rus-

sakovsky et al. 2015b).

The COCO dataset has fewer classes (80) and was

labelled using the more efficient hierarchical method

of (Lin et al. 2014). Even so, it still took half a minute

per image.

In total, it took 20,000 hours to annotate object

class labels for the COCO dataset (Lin et al. 2014). An-

notating bounding boxes for these classes (stage two)

additionally takes at least 5,000 hours, even when us-

ing efficient box drawing interfaces (Papadopoulos et al.

2017a; Kuznetsova et al. 2018). Moreover, the two stages

cannot be easily merged to increase efficiency, due to

the complexity of hierarchical methods. Such a com-

bined class and box labelling stage would anyhow be

sequential, as annotators cannot simultaneously use the

mouse and keyboard to mark the location and provide

the class name.

Thus, despite the recent advances in object class

label and bounding box annotation, annotating large

datasets still requires tremendous amounts of time. At

the same time, (Sun et al. 2017) showed that perfor-

mance of current deep neural networks is not saturated.

These models still benefit from more data, which moti-

vates the community to collect and annotate even larger

datasets.

In this paper we propose to use speech, together

with mouse pointing, to aid the annotation of such

datasets. First, we use speech for object class labelling

and show that it enables significant speed gains (Sec. 3).

Then, we show that speech allows to naturally combine

class and box labelling into one task: annotators mark

an object location via the mouse and provide its class

label via speech at the same time (Sec. 4). This simul-

taneous class and box labelling allows to annotate class

labels at zero additional cost, compared to annotating

bounding boxes alone.

Annotating images via speaking and pointing has

multiple strong advantages: (i) it leads to significant

speed gains, as saying the class names is fast: people

can say 150 words per minute when describing images

(Vaidyanathan et al. 2018). In comparison, people nor-

mally type at 30-100 words per minute (Karat et al.

1999; Clarkson et al. 2005). (ii) speaking allows for

direct access to the class name via simply saying it.

Thereby annotators label classes of objects that they

see, i.e. the task is rooted on the image content and

naturally scales with the number of annotated objects.

(iii) it does not require the experiment designer to con-

struct a natural and intuitive hierarchy to access the

class labels, as in (Lin et al. 2014; Deng et al. 2014). (iv)

speaking and pointing can be done in parallel (Kahne-

man 1973; Oviatt 2003). This allows annotators to con-

currently solve multiple tasks, such as providing the se-

mantic label and the location of an object. In fact, peo-

ple naturally choose to point for providing spatial in-

formation and to speak for semantic information when

using multimodal interfaces (Oviatt 2003). (v) it makes

the interface design extremely simple, which is what al-

lows to combine object class labelling and bounding box

annotation into a single task.

Using speech as an input modality, however, poses

certain challenges. In order to extract object annota-

tions from speech and mouse inputs, several technical

challenges need to be tackled. These include transcrib-

ing the speech, inferring class labels, and aligning them

with object location annotations (Sec. 5). Furthermore,

as speech is free-form in nature, annotators need to be

trained to know the class vocabulary to be annotated,

in order to not label other objects or forget to annotate

some classes. In Sec. 3.2 & 4.2 we address these chal-

lenges, which allows us to design annotation interfaces

for fast and accurate labelling.

We validate our approach with extensive experi-

ments (Sec. 6 & 7). In particular we:

– Show that speech enables fast object class labelling:

2.3× faster on the COCO dataset (Lin et al. 2014)

than the hierarchical approach of (Lin et al. 2014),

and 14.9× faster than (Deng et al. 2014) on ILSVRC

(Russakovsky et al. 2015a).

– Show that the class labelling can be embedded into

the bounding box annotation stage, which allows

to produce class labels at zero additional cost. On
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COCO, this makes the overall process 1.9× faster

than the two-stage approach.

– Demonstrate that our method scales to large vocab-

ularies.

– Show that through our training task annotators learn

to use the provided vocabulary for naming objects

with high fidelity.

– Analyze the accuracy of models for automatic speech

recognition (ASR) and show that it supports deriv-

ing high-quality annotations from speech.

This paper is an extension of our preliminary work

(Gygli and Ferrari 2019), which focused only on ob-

ject class labelling. It introduces a new annotation pro-

tocol to simultaneously annotate objects with bound-

ing boxes and class labels (Sec. 4), new experiments

(Sec. 7), and a better method for temporally segment-

ing and aligning speech with object location annota-

tions (Sec. 5).

2 Related Work

Using speech as an input modality has a long history

(Bolt 1980) and is recently emerging as a research di-

rection in Computer Vision (Dai 2016; Vasudevan et al.

2017; Vaidyanathan et al. 2018; Harwath et al. 2018).

To the best of our knowledge, however, our paper is

the first to show that speech allows for more efficient

object class labelling than (Lin et al. 2014; Deng et al.

2014) and enables simultaneous class and box labelling.

We now discuss previous works in the areas of leverag-

ing speech, efficient object class labelling, learning from

point supervision and bounding box annotation.

Leveraging speech inputs. To point and speak is

an efficient and natural way of human communication.

Hence, this approach was quickly adopted when design-

ing computer interfaces: as early as 1980, (Bolt 1980)

investigates using speech and gestures for manipulat-

ing shapes. Most previous works in this space analyse

what users choose when offered different input modali-

ties (Hauptmann 1989; Oviatt 1996; Oviatt et al. 1997;

Oviatt 2003), while only few approaches focus on the

added efficiency of using speech. The most notable such

work is (Pausch and Leatherby 1991), which measures

the time needed to create a drawing in MacDraw. They

compare using the tool as is, which involves selecting

commands via the menu hierarchy, to using voice com-

mands. They show that using speech gives an average

speedup of 21% and mention this is a “lower bound”,

as the tool was not designed with speech in mind.

In Computer Vision, (Vasudevan et al. 2017) de-

tect objects given spoken referring expressions, while

(Harwath et al. 2018) learn an embedding from spoken

image-caption pairs. Their approach obtains promis-

ing first results, but still performs inferior to learning

on top of textual captions produced by Google’s au-

tomatic speech recognition. (Damen et al. 2018) anno-

tates the EPIC-KITCHENS dataset based on spoken

free-form narratives, which cover some of the objects

present in the image. These narratives are however tran-

scribed manually, and then object class labels are de-

rived from transcribed nouns, again manually. Instead,

our approach is fully automatic and we exhaustively la-

bel all objects from a given vocabulary. Finally, more

closely related to our work, (Vaidyanathan et al. 2018)

re-annotated a subset of COCO with spoken scene de-

scriptions and human gaze. While efficient, free-form

scene descriptions are noisier when used for object class

labelling, as annotators might refer to objects with am-

biguous names, mention nouns that do not correspond

to objects shown in the image (Vaidyanathan et al.

2018), or there might be inconsistencies in naming the

same object classes across different annotators. Our ap-

proach avoids the additional complexities of parsing

free-form sentences to extract object names and gaze

data to extract object locations.

Efficient object class labelling. The näıve approach

to annotating the presence of object classes grows lin-

early with the size of the vocabulary (one binary present

/ absent question per class). The idea behind sub-linear

schemes is to group the classes into meaningful super-

classes, such that several of them can be ruled out at

once. If a super-class (e.g. animals) is not present in

the image, then one can skip the questions for all its

subclasses (cat, dog, etc.). This grouping of classes can

have multiple levels. The annotation schemes behind

COCO (Lin et al. 2014) and ILSVRC (Deng et al. 2014;

Russakovsky et al. 2015a) datasets both fall into this

category, but they differ in how they define and use the

hierarchy.

ILSVRC (Russakovsky et al. 2015a) was annotated

using a series of hierarchical questions (Deng et al.

2014). For each image, 17 top-level questions were asked

(e.g. “Is there a living organism?”). For groups that are

present, more specific questions are asked subsequently,

such as “Is there a mammal?”, “Is there a dog?”, etc.

The sequence of questions for an image is chosen dy-

namically, such that the they allow to eliminate the

maximal number of labels at each step (Deng et al.

2014). This approach, however, involves repeated visual

search, in contrast to ours, which is guided by the an-

notator scanning the image for objects, done only once.

Overall, this scheme takes close to 3 minutes per im-

age (Russakovsky et al. 2015b) for annotating the 200

classes of ILSVRC. On top of that, constructing such a
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hierarchy is not trivial and influences the final results

(Russakovsky et al. 2015a).

In the protocol used to create COCO (Lin et al.

2014), annotators are asked to mark one object for each

class present in an image by choosing its symbol from

a two-level hierarchy and dragging it onto the object

(Fig. 7). While this allows to take the image, rather

than the questions as the root of the labelling task, it

requires repeatedly searching for the right class in the

hierarchy, which induces significant time cost. In our

interface, such an explicit class search is not needed,

which speeds up the annotation process.

Rather than using a hierarchy, (Kuznetsova et al.

2018) annotated object class labels on the Open Im-

ages dataset by relying on an image classifier. The clas-

sifier creates a shortlist of object classes likely to be

present, which are then verified by annotators using bi-

nary questions. The shortlist is generated using a pre-

defined threshold on the classifier scores. Thus, this ap-

proach trades off completeness for speed. In practice,

(Kuznetsova et al. 2018) asks annotators to verify 10

out of 600 classes, but report a rather low recall of 59%,

despite disregarding “difficult” objects in evaluation.

Point supervision. The output of our interface for

object class labelling is a list of all classes present in

the image with a point on one object for each. This

kind of labelling is efficient and provides useful super-

vision for several image (Papadopoulos et al. 2017b;

Bearman et al. 2016; Laradji et al. 2018) and video

(Mettes et al. 2016; Manen et al. 2017) object localiza-

tion tasks. In particular, (Papadopoulos et al. 2017b;

Bearman et al. 2016; Manen et al. 2017) show that for

their task, point clicks deliver better models than other

alternatives when given the same annotation budget.

Bounding box annotation. Typically, bounding boxes

are annotated given image-level labels (Lin et al. 2014;

Su et al. 2012; Russakovsky et al. 2015a). (Su et al.

2012) reports that it takes 25.5 seconds to draw a bound-

ing box. Recently, (Papadopoulos et al. 2017a) pro-

posed extreme clicking, where a bounding box is anno-

tated by clicking on four extreme points of the object.

Using this procedure makes bounding box annotation

significantly faster: it takes only 7.4 seconds on average

to draw bounding boxes around for the objects in the

Open Images dataset (Kuznetsova et al. 2018). Hence,

we also use extreme clicking in our simultaneous class

and box labelling.

3 Object Class Labelling

We now describe our interface for using speech in the

first annotation stage: determining the presence or ab-

Fig. 2: Our interface for object class labelling.

Given an image the annotator is asked to click on one

object per class and say its name. To aid memory,

we additionally allow to review the class vocabulary

through the “Show classes” button.

sence of object classes in an image (Sec. 3.1). Before

annotators can proceed to the main task, we require

them to pass a training stage. This helps them memo-

rise the class vocabulary and get confident with using

the interface (Sec. 3.2). From the output of this anno-

tation task we derive class labels by transcribing the

recorded speech and mapping it to class names as de-

scribed in Sec. 5.1.

3.1 Annotation task

First, annotators are presented with the class vocabu-

lary and instructed to memorise it. Then, they are asked

to label images with object classes from the vocabulary,

by scanning the image and saying the names of the dif-

ferent classes they see. Hence, this is a simple visual

search task that does not require any context switching.

While we are primarily interested in object class labels,

we ask annotators to click on one object for each class,

as the task naturally involves finding objects anyway.

This matches the COCO protocol, allowing for direct

comparisons (Sec. 6.1). It further provides information

that can be used as input to weakly-supervised meth-

ods (Bearman et al. 2016; Papadopoulos et al. 2017b).

Fig. 2 shows the interface with an example image.

To help annotators restrict the labels they provide

to the predefined vocabulary, we allow them to review

it using a button that shows all class names including

their symbols.
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(a)

(b)

Fig. 3: Training process for object class labelling.

3a shows the training task: marking an object per class

with a click and saying and writing its name. 3b shows

the feedback given after each image.

3.2 Annotator training

Before tackling the main task, annotators go through

a training stage which gives feedback after every image

and also aggregated statistics after 80 images. If they

meet our accuracy targets, they can proceed to the main

task. If they fail, they can repeat the training until they

succeed.

Purpose of training. Training helps annotators to

get confident with an interface and allows to ensure

they correctly solve the task and produce high-quality

labels. As a consequence, it has become common prac-

tice (Russakovsky et al. 2015a; Su et al. 2012; Lin et al.

2014; Kuznetsova et al. 2018; Papadopoulos et al. 2017b).

While we want to annotate classes from a predefined

vocabulary, speech is naturally free-form. In our initial

experiments we found that annotators produced lower

recall compared to an interface which displays an ex-

plicit list of classes, due to this discrepancy. Hence, we

designed our training task to ensure annotators mem-

orise the vocabulary and use the correct object names.

Indeed, after training annotators with this process they

rarely use object names that are not in the vocabulary

and obtain a high recall, comparable to (Lin et al. 2014)

(Sec. 6.2 & 6.4).

Training procedure. The training task is similar to

the main task, but we additionally require annotators to

type the words they say (Fig. 3a). This allows to mea-

sure transcription accuracy and dissect different sources

of error in the final class labelling (Sec. 6.4). After

each image we give immediate feedback listing their

mistakes, by comparing their answers against a pre-

annotated ground truth. This helps annotators mem-

orise the class vocabulary and learn to spot all object

classes (Fig. 3b). We base this feedback on the written

words, rather than the transcribed audio, for technical

simplicity.

Passing requirements. At the beginning of training,

annotators are given targets on the minimum recall and

precision they need to reach. Annotators are required

to label 80 images and are given feedback after every

image, listing their errors on that image, and on how

well they do overall with respect to the given targets.

If they meet the targets after labelling 80 images, they

successfully pass training. In case of failure, they are

allowed to repeat the training as many times as they

want.

4 Simultaneous Bounding Box and Class

Labelling

We propose an interface to simultaneously annotate

bounding boxes and class labels, thus combining the

two standard stages into one. Before annotators can

proceed to the main task, we require them to pass a

training stage (Sec. 4.2). The annotation task produces

a series of bounding boxes with start and end times and

an audio recording for each image. We will transform

this data into the final object annotations by deriv-
ing object classes from speech and matching them to

bounding boxes as described in Sec. 5.

4.1 Annotation task

As in Sec. 3.1, annotators are presented with the class

vocabulary and instructed to memorise it (but can again

review it later). Then, they are asked to annotate all ob-

jects of all classes that are in the vocabulary. For each

object, the annotator simultaneously draws a bounding

box while saying its class name. We annotate bounding

boxes using the efficient extreme clicking method (Pa-

padopoulos et al. 2017a), which requires clicking on the

top, bottom, left- and right-most point of an object.

Hence, this annotation task requires speaking and click-

ing, which can naturally be done in parallel (Kahneman

1973; Oviatt 2003). Fig. 4 shows the interface with ex-

ample annotations.
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Fig. 4: Our interface for simultaneous class and

box labelling. Annotators are asked to mark all ob-

jects of a given vocabulary with a bounding box and

their class names.

cost=0 cost=0

cost=1 cost=0.2

person  dining  table

Fig. 5: Transcription segmentation. Our method

assigns a cost to each subsequence of words. Then, it

segments the transcription into the list of object class

names that has minimal cost. In this example, segment-

ing into {person,dining table} has zero cost, while all

other segmentations have cost > 0, as other possible

subsequences such as “person dining” are not in the

vocabulary.

4.2 Annotator training

We train annotators for the task of drawing bounding

boxes and saying object class names. Thereby we use

two training steps. The first trains annotators to quickly

draw accurate bounding boxes of a given object class,

following the training protocol of (Papadopoulos et al.

2017a; Kuznetsova et al. 2018). The second step trains

annotators to say the correct class names. It is simi-

lar to the training procedure for object class labelling

(Sec. 3.2), except that annotators have to mark an ob-

jects location with a bounding box, rather than just a

single click.

5 Transcription and temporal alignment

The interfaces presented in Sec. 3 & Sec. 4 both output

an audio recording and a sequence of object locations

(o1, o2, . . .), each with a time interval. The object loca-

tion is a single click in Sec. 3 and a bounding box in

Sec. 4. To produce the final object annotations, we first

transcribe and segment the audio to derive a sequence

of object class labels (Sec. 5.1). Then, we temporally

align the class labels to object locations using global

sequence alignment (Sec. 5.2). The same alignment al-

gorithm applies generally to both Sec. 3 & 4.

5.1 Infer class names from speech

We transcribe the audio with Google’s automatic speech

recognition API1. The API outputs a sequence of ut-

terances (continuous speech blocks, enclosed by pauses)

with a ranked list of transcription alternatives for each.

We first segment the different transcriptions into class

names and then choose the most likely transcription for

each utterance.

Segmenting a transcription. While the transcrip-

tion for an utterance would ideally only contain a single

class name, we find that in practice it sometimes con-

tains two or more classes, e.g. “person dining table”.

This happens when the pause between saying different

class names is too short. Thus, we propose an algo-

rithm to automatically segment the transcription into

the most likely sequence of class names.

We assign a cost to each subsequence of words, e.g.

“person”, “person dining”, etc. (Fig. 5). The cost cor-

responds to the dissimilarity between the subsequence

and the nearest class name in the vocabulary. Thereby

we represent a subsequence with its word2vec (Mikolov

et al. 2013) vector and use the cosine distance between

word vectors as a dissimilarity measure. For subsequences

that are in the vocabulary, e.g. “person” and “dining

table”, the cost is thus zero. For subsequences that are

semantically similar to words in the vocabulary, e.g.

“table” is similar to “dining table”, the cost is above

zero, but still low (0.2 in the figure). For subsequences

that do not even correspond to a valid noun, e.g. “per-

son dining”, we assign a fixed high cost (1 in the figure).

The total cost ε(s) of a segmentation s is the sum

over the cost of each subsequence in s. By relying on

word2vec distance, we assign low costs to synonyms of

vocabulary words. e.g. a segmentation of “person sofa”

into {person, sofa} would correctly get a low total cost

even when the vocabulary contains “couch” instead of

“sofa”.

1 https://cloud.google.com/speech-to-text/
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We find the most likely segmentation s∗ of a tran-

scription as the one with the lowest total cost using dy-

namic programming. In the example from Fig. 5, this

would be s∗ = {person,dining table}, which has seg-

mentation cost ε(s∗) = 0.

Selecting the most likely transcription. An utter-

ance comes with multiple possible transcriptions, e.g.

“person dining table”,“ocean dining table”, “person dy-

ing table”. We re-rank these transcriptions by their

minimum segmentation cost (see above) and choose the

one with the lowest cost. If two transcriptions have the

same cost, we choose the one which the speech recog-

nition API ranked higher. In the above example, this

would allow to correctly identify “person dining table”

as the correct transcription, as its most likely segmen-

tation {person,dining table} contains only class names

from the vocabulary (and thus has zero cost). The other

alternatives have a non-zero cost, as “ocean” and “dy-

ing table” are not part of the vocabulary.

In rare cases the top transcription contains an ob-

ject name that is not in the vocabulary. In these cases

we map the object name to the closest class in the vo-

cabulary, using the cosine distance of their word2vec

(Mikolov et al. 2013) representation.

The final output of this algorithm is a sequence of

class labels (c1, c2, . . .), each with an associated start

and end time (we can do this as the speech recognition

API outputs the start and end time of each word).

5.2 Aligning class labels and object locations

We propose a method for temporally aligning the se-

quence of class labels (c1, c2, . . .) with object locations

(o1, o2, . . .). As annotators sometimes speak before or

after annotating the object location, rather than dur-

ing it, aligning the two is not trivial.

Hence, we align the elements in the two sequences

based on how much they temporally overlap (Fig. 6).

The cost of an alignment is the sum of aligning indi-

vidual elements, plus a gap penalty for each element

that has no correspondence. Gaps can happen in prac-

tice, e.g. if an annotator discards a bounding box anno-

tation, which would lead to a class label with no corre-

spondence. We define the cost of aligning two elements

as ρ(ci, oj) = 1 − i(ci, oj)/d(ci), where i(ci, oj) is the

temporal overlap of the object location and class la-

bel annotation times. d(ci) is the duration of saying

class label ci. The cost thus encourages aligning ele-

ments where the class name was said during the time

interval at which the object location was drawn. But it

does so smoothly, allowing for deviations from the ideal

case.

Fig. 6: Temporal alignment. Object locations and

class labels are aligned using the time intervals during

which they are annotated. The cost of an alignment de-

pends on the temporal overlap of saying the class name

and providing the object location. We find a globally

optimal alignment with the Needleman-Wunsch algo-

rithm (Needleman and Wunsch 1970). In above exam-

ple, the correct alignment of label 2 with box b has

higher cost than aligning it with box c (when consider-

ing this on its own). Using a global alignment technique

allows to correctly align them nonetheless.

We find the optimal global alignment by relying

on the Needleman-Wunsch algorithm (Needleman and

Wunsch 1970). Thereby each class label ci and object

location oj can be matched at most once and gaps are

possible. The algorithm uses dynamic programming to

find the best global alignment, which is the one that

has the minimum cost. We found a large range of gap

penalties to work well and empirically set it to 0.5.

This alignment algorithm outputs a sequence of ob-

ject annotations, each consisting of a class label c and

an object location o.

6 Experiments on Object Class Labelling

Here we present experiments on annotating object class

labels using our speech-based interface and the hierar-

chical interface of (Lin et al. 2014). First, in Sec. 6.1

we re-implement the interface of (Lin et al. 2014) and

compare it to the official reported results in (Lin et al.

2014). Then, we compare the two interfaces on the COCO

dataset, where the vocabulary has 80 classes (Sec. 6.2).

In Sec. 6.3 we scale up annotation to a vocabulary of

200 classes by experimenting on the ILSVRC dataset.

Finally, Sec. 6.4 provides additional analysis such as

the transcription and click accuracy as well as response

times per object.
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Fig. 7: Our re-implementation of the hierarchical inter-

face of (Lin et al. 2014) for object class labelling.

6.1 Hierarchical interface of (Lin et al. 2014)

In the interface of (Lin et al. 2014), annotators mark one

object for each class present in an image by choosing

its symbol from a two-level hierarchy and dragging it

onto the object. While (Lin et al. 2014) reports coarse

timings, we opted to re-implement their interface for

fair comparison and to do a detailed analysis on how

annotation time is spent (Fig. 7). First, we made five

crowd workers pass a training task equivalent to that

used for our interface (Sec. 3.2). Then, they annotated

a random subset of 300 images of the COCO validation

set (each image was annotated by all workers).

Results. Annotators take 29.9 seconds per image on

average, well in line with the 27.4 seconds reported in

(Lin et al. 2014). Hence, we can conclude that our im-

plementation is equivalent in terms of efficiency.

Annotators have produced labels with 89.3% preci-

sion and 84.7% recall against the ground truth (Tab. 1).

Thus, they are accurate in the labels they produce and

recover most object classes. We also note that the COCO

ground truth itself is not free of errors, hence limiting

the maximal achievable performance. Indeed, our recall

and precision are comparable to the numbers reported

in (Lin et al. 2014).

Time allocation. In order to better understand how

annotation time is spent, we recorded mouse and key-

board events. This allows us to estimate the time spent

on searching for the right object class in the hierarchy

of symbols and measure the time spent dragging the

symbol. On average, search time is 14.8s and drag time
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Fig. 8: Our approach vs. the hierarchical interface of

(Lin et al. 2014). Each point in the plot corresponds to

an individual annotator. F1 score is the harmonic mean

between recall and precision. Dataset: COCO.

3.4s per image. Combined, these two amount to 61%

of the total annotation time, while the rest is spent on

other tasks such as visual search. This provides a tar-

get on the time that can be saved by avoiding these two

operations, as done in our interface. In the remainder

of this section, we compare our speech-based approach

against this annotation method.

6.2 Our interface on COCO

We evaluate our approach and compare it to (Lin et al.

2014). Annotations with our interface were done by a

new set of crowd workers, to avoid bias arising from

having used the hierarchical interface before. The work-

ers are all Indian nationals and speak English with an

Indian accent. Hence, we use a model of Indian English

for the automatic speech recognition. We also provide

the class vocabulary as phrase hints2, which is crucial

for achieving high transcription accuracy (Sec. 6.4).

Speed and semantic accuracy. Fig. 8 and Tab. 1

show results. Our method achieves a speed-up of 2.3×
over (Lin et al. 2014) at similar F1 scores (harmonic

mean of precision and recall). In Sec. 6.1 we estimated

that annotation could be sped up by up to 2.6× by

avoiding symbol search and dragging. Interestingly, our

interface achieves a speedup close to this target, con-

firming its high efficiency.

Despite the additional challenges of handling speech,

average precision is only 1.7% lower than for (Lin et al.

2014). Hence, automatic speech transcription does not

affect label quality much (we study this further in Sec. 6.4).

Recall is almost identical (0.5% lower), confirming that,

2 https://cloud.google.com/speech-to-text/docs/basics#

phrase-hints
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thanks our training task (Sec. 3.2), annotators remem-

ber what classes they have to label.

Location accuracy. We further evaluate the location

accuracy of the clicks by using the ground-truth seg-

mentation masks of COCO. Specifically, given an ob-

ject annotation with class ci, we evaluate whether its

click position lies on a ground-truth segment of class

ci. If class ci is not present in the image at all, we ig-

nore that click in the evaluation to avoid confounding

semantic and location errors.

This analysis shows that our interface leads to high

location accuracy: 96.1% of the clicks lie on the ob-

ject. For the hierarchical interface it is considerably

lower at 90.7%. While this may seem surprising, it can

be explained by the differences in the way the loca-

tion is marked. In our interface one directly clicks on

the object, while (Lin et al. 2014) requires dragging a

relatively large, semi-transparent class symbol onto it

(Fig. 7).

Parts of the speed gains of our interface are due to

concurrently providing semantic and location informa-

tion. However, this could potentially have a negative

effect on click accuracy. To test this, we compare to the

click accuracy that the annotators in (Bearman et al.

2016) obtained on the PASCAL VOC dataset. Their

clicks have a location accuracy of 96.7% comparable to

our 96.1%, despite the simpler dataset with larger ob-

jects on average, compared to COCO. Hence, we can

conclude that clicking while speaking does not nega-

tively affect location accuracy.

6.3 Our interface on ILSVRC 2014

Here we apply our interface and the hierarchical in-

terface of (Lin et al. 2014) to a larger vocabulary of

200 classes, using 300 images from the validation set

of ILSVRC (Russakovsky et al. 2015a). For (Lin et al.

2014) we manually constructed a two-level hierarchy of

symbols, based on the multiple hierarchies supplied by

(Russakovsky et al. 2015a). The hierarchy consists of 23

top-level classes, such as “fruit” and “furniture”, each

containing between 5 to 16 object classes.

Speed and semantic accuracy. Fig. 9 shows a com-

parison to (Lin et al. 2014) in terms of speed and accu-

racy, while Fig. 13 shows example annotations produced

with our interface. In Tab. 1, we also compare to the

speed of (Deng et al. 2014), the method that was used

to annotate this dataset. Our approach is substantially

faster than both: 2.6× faster than (Lin et al. 2014) and

14.9× faster than (Deng et al. 2014). We also note that

(Deng et al. 2014) only produces a list of classes present

Speech (Lin et al. 2014)
(Deng
et al. 2014)

COCO

Recall 84.2 % 84.7 %
Precision 87.6 % 89.3 %

Time / image 13.1s 29.9s
Time / label 4.5s 11.5s

ILSVRC
Recall 83.2 % 88.6 %

Precision 80.3 % 76.6 %
Time / image 12.0 sec. 31.1 sec. ≈ 179 sec.
Time / label 7.5 sec. 18.4 sec. ≈ 110 sec.

Table 1: Accuracy and speed of our interface (Speech)

and hierarchical approaches (Lin et al. 2014; Deng et al.

2014) for object class labelling. Our interface is signif-

icantly faster at comparable label quality. Timings for

(Deng et al. 2014) are taken from (Russakovsky et al.

2015b). Note that the numbers for Speech differ slightly

from those reported in (Gygli and Ferrari 2019), due to

the changes in the temporal segmentation and align-

ment (Sec. 5).
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Fig. 9: Our approach vs. the hierarchical interface (Lin
et al. 2014). Each point in the plot corresponds to an

individual annotator. Dataset: ILSVRC.

in an image, while our interface and (Lin et al. 2014)

additionally yield the location of one object per class.

Despite the increased difficulty of annotating this

dataset, which has considerably more classes than COCO,

annotators produce high-quality labels with our inter-

face. The F1 score is similar to that of (Lin et al. 2014)

(81.7% vs. 82.2%). While recall is lower for our inter-

face, precision is higher.

Fig. 10 shows a histogram of the annotation time

per image. Most images are annotated extremely fast,

despite the large vocabulary, as most images in this

dataset contain few classes. Indeed, there is a strong

correlation between the number of object classes present

in an image and its annotation time (rank correlation

0.55). This highlights the advantage of methods that

are rooted on the image content, rather than the vo-



10 Michael Gygli, Vittorio Ferrari

0 10 20 30 40 50 60 70

Time per image [s]

0

5

10

15

20

25

P
e
rc

e
n
ta

g
e
 o

f 
im

a
g
e
s

Time per image on ILSVRC dataset

Fig. 10: Histogram of the time required to annotate an

image using our interface. Dataset: ILSVRC.

cabulary: their annotation time is low for images with

few classes. Instead, methods rooted on the vocabulary

cannot exploit this class sparsity to a full extent. The

näıve approach of asking one yes/no question per class

is actually even slower the fewer objects are present, as

determining the absence of a class is slower than con-

firming its presence (Ehinger et al. 2009).

6.4 Additional analysis of our interface

Time allocation. To understand how much of the an-

notation time is spent on what, we analyse timings

for speaking and moving the mouse on the ILSVRC

dataset. Of the total annotation time, 26.7% is spent on

speaking. The mouse is moving 74.0% of the total an-

notation time, and 62.4% of the time during speaking.

The rather high percentage of time the mouse moves

during speaking confirms that humans can naturally

carry out visual processing and speaking concurrently.

In order to help annotators label the correct classes,

we allowed them to consult the class vocabulary, through

a button on the interface (Fig. 2). This takes 7.2% of

the total annotation time, a rather small share. Anno-

tators consult the vocabulary in fewer than 20% of the

images. When they consulted it, they spent 7.8 seconds

looking at it, on average. Overall, this shows the an-

notators feel confident about the class vocabulary and

confirms that our annotator training stage is effective.

In addition, we analyse the time it takes annota-

tors to say an object name in Fig. 11, which shows a

histogram of speech durations. As can be seen, most

names are spoken in 0.5 to 2 seconds.

Per-click response time. In Fig. 12 we analyse the

time taken to annotate the first and subsequent classes

of an image in the COCO dataset. It takes 3.3s to make

the first click on an object, while the second takes 2.0s
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Fig. 11: Histogram of the time spent saying the object

name on ILSVRC. Saying the object names is fast and

usually takes less than 2 seconds.

only. This effect was also observed by (Bearman et al.

2016). Clicking on the first object incurs the cost of the

initial visual search across the whole scene, while the

second is a continuation of this search and thus cheaper

(Watson and Inglis 2007; Rayner 2009; Lleras et al.

2005). After the second class, finding more classes be-

comes increasingly time-consuming again, as large and

salient object classes are already annotated. Indeed, we

find that larger objects are typically annotated first:

object size has a high median rank correlation with the

annotation order (−0.80). Interestingly, on the inter-

face of (Lin et al. 2014), this effect is less pronounced

(−0.50), as the annotation order is affected by the sym-

bol search and grouping of classes in the hierarchy. Fi-

nally, our analysis shows that the annotators spend 3.9s

between saying the last class name and submitting the

task, indicating that they do a thorough final scan of

the image to ensure they do not miss any class.

Mouse path length. To better understand the amount

of work required to annotate an image we also analyse

the mean length of the mouse path. We find that on

ILSVRC annotators using (Lin et al. 2014) move the

mouse for a 3.0× greater length than annotators us-

ing our interface. Thus, our interface is not only faster

in terms of time, but is also more efficient in terms

of mouse movements. The reason is that the hierarchi-

cal interface requires moving the mouse back and forth

between the image and the class hierarchy (Fig. 14).

The shorter mouse path indicates the simplicity and

improved ease of use of our interface.

Training time. Training annotators to achieve good

performance on the 200 classes of ILSVRC takes 1.6

hours for our interface, or 1 hour with the hierarchical

interface of (Lin et al. 2014). Instead, annotating the

full ILSVRC dataset would take 1,726 hours with our
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Fig. 12: Analysis of the time it takes for the first and

subsequent clicks when annotating object classes on the

COCO dataset.

interface vs. 4,474 hours with (Lin et al. 2014). Hence,

the cost of training is negligible and our interface is far

more efficient than (Lin et al. 2014) even after taking

training into account.

Transcription accuracy. The annotator training task

produces spoken and written class names for each anno-

tated object (Sec. 3.2). Using this data we evaluate the

accuracy of the automatic speech recognition (ASR).

For this we only take objects into account if they have

transcriptions results attached. This keeps the analy-

sis focused on transcription accuracy by ignoring other

sources of errors, such as incorrect temporal alignment

or annotators simply forgetting to say the class name

after they click on an object.

Tab. 2 shows the transcription accuracy in two se-

tups: with and without using the vocabulary as phrase

hints. Phrase hints allow to indicate phrases or words

that are likely to be present in the speech and thus help

the ASR model transcribe them correctly more often.

Using phrase hints is necessary to obtain high transcrip-

tion accuracy. Thanks to them, Recall@3 is at 96.5%

on COCO and 97.5% on ILSVRC. Hence, the top three

transcriptions usually contain the correct class name,

which we then extract as described in Sec. 5.1.

In fact, we actually consider the above numbers

to be a lower bound on the transcription accuracy in

the main task, as here we compare the transcriptions

against the raw written class names, which contain a

few spelling mistakes. Moreover, here the annotators

are in the training phase and hence still learning about

the task. Overall, the above evidence shows that ASR

achieves high accuracy, definitely good enough for la-

belling object class names.

Vocabulary usage. As speech is naturally free-form,

we are interested in knowing how often annotators use

Recall@1 Recall@3

COCO w/ hints 93.1 % 96.5 %
COCO w/o hints 70.5 % 84.7 %
ILSVRC w/ hints 93.3 % 97.5 %
ILSVRC w/o hints 70.2 % 89.5 %

Table 2: Transcription accuracy. Accuracy is high

when using phrase hints (see text).

object names that are outside of the vocabulary. Thus,

we analyse how often the written class name in the

annotator training task does not match a vocabulary

name. We find that on COCO annotators are essentially

only using names from the vocabulary (99.5% of the

cases). On ILSVRC they still mostly use names from

the vocabulary, despite the greater number of classes

which induces a greater risk of misremembering their

names (96.3% are in vocabulary).

Some of the out-of-vocabulary names are in fact

variations of names in the vocabulary. These cases can

be mapped to their correct name in the vocabulary as

described in Sec. 5.1. For example, for the ILSVRC

dataset some annotators say “oven”, which gets cor-

rectly mapped to “stove”, and “traffic signal” to “traffic

light”. In other cases the annotators use out-of-vocabulary

names because they actually label object classes that

are not in the vocabulary (e.g. “fork” and “rat”, which

are not classes of ILSVRC).

We find that our annotator training task helps re-

ducing the use of out-of-vocabulary names: on ILSVRC

the use of vocabulary names increases from 96.3% in

training to 97.5% in the main task.

Error analysis. To better understand the limits of our

method we conducted a detailed analysis of the errors

annotators make. We analyzed the recall per class and

as a function of the number of classes in an image.

In terms of average recall per class we find no signif-

icant difference between the annotations produced by

the hierarchical interface of (Lin et al. 2014) and our

method on the COCO dataset (82.1% vs 82.8%). On the

ILSVRC dataset, our method has a somewhat lower av-

erage class recall of 76.7% compared to (Lin et al. 2014)

with 84.5%. This is consistent with the difference in the

overall recall (Tab. 1). We attribute this difference to

the increased challenge of spotting 200 different classes,

without being explicitly asked about their presence.

Secondly, we analyzed recall as a function of the

number of distinct object classes present in an image.

On the COCO dataset, our method delivers equal or

slightly better recall to the hierarchical approach for

images with up to 3 classes (which is the most common

case, Fig. 15). For cluttered images with more than 3

classes, the recall of our method decreases to slightly
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Fig. 13: Example annotations on ILSVRC. For each click we show the three alternatives from the ASR model

(orange) and the final class label (green). The first three images show typical annotations produced by our method.

The last one shows a failure case: while the correct name is among the alternatives, an incorrect transcription

matching a class name ranks higher, hence the final class label is wrong.

Fig. 14: A comparison of typical mouse paths pro-

duced when annotating an image with our interface

(green) or with (Lin et al. 2014) (red). Circles indi-

cate clicks. Mouse paths for our interface are extremely

short, thanks to its simplicity and naturalness.

below that of the hierarchical approach. In such images

objects are often small and hard to spot, hence explic-

itly querying for then, as done in (Lin et al. 2014), can

help to find such objects. On ILSVRC, which consists of

simpler images with fewer distinct classes in an image

(1.6 in average), this effect is less visible.

7 Experiments on Bounding Box Annotation

We now present results on using speech to simultane-

ously annotate objects with a bounding box and their

class label. Thereby we compare our approach (Sec. 4)

to a standard two-stage approach. As in the previous

experiment we use 5 crowd workers, which each anno-

tate the 80 classes of the COCO dataset on 300 images.

Below we start by briefly explaining the two-stage

baseline (Sec. 7.1), before presenting the results of our

method (Sec. 7.2). Finally, Sec. 7.3 provides additional

analysis of our interface.

0 1 2 3 4 5 6 7 8 9

Number of classes in the image

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

Effect of image complexity on recall

Speech-based annotation (Ours)

Hierarchical (Lin et al.)

Fig. 15: Recall as a function of the number of

distinct object classes present in an image on the

COCO dataset. We find that for cluttered images,

annotators tend to miss fewer objects with (Lin et al.

2014) compared to our method.

7.1 Two-stage approach

We evaluate the standard way to annotate images with

object bounding boxes (Russakovsky et al. 2015a; Kuznetsova

et al. 2018; Su et al. 2012) or outlines (Lin et al. 2014),

which is typically done in two stages. In the first stage,

annotators are asked to mark the presence or absence

of object classes in each image. For this, we use the re-

sults produced by the hierarchical interface of (Lin et al.

2014) (Sec. 6.1). Thereby we use the object class labels

produced by a single annotator, randomly chosen for

each image. In the second stage, annotators are given

one of these class labels and are asked to draw bounding

boxes for all objects of that class. For this, we use the

efficient extreme clicking interface (Papadopoulos et al.

2017a). This task is repeated for each class marked as

present. We use the same interface as the one presented

in Sec. 4.1, adapted to this task.

Results. Tab. 3 shows results. The first stage of the

two-stage approach takes 29.9 seconds per image (Sec. 6.1).

Then, the second stage takes 7.4 seconds per box (Pa-
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padopoulos et al. 2017a; Kuznetsova et al. 2018). We

can estimate the total cost per box by diving the cost

of the first stage by the average number of boxes per

image (5.1s), and then adding the cost of the second

stage (7.4s). This gives a total cost of 12.5 seconds per

box.

Furthermore, as a sanity check we evaluate if the

bounding boxes produced in this experiment are seman-

tically correct, by comparing their class labels against

the ground truth. Specifically, for each annotated bound-

ing box, we find the ground truth box with the highest

overlap and check whether the two boxes have the same

label. We ignore annotated boxes for which there is no

corresponding ground truth box. We find that the re-

sulting boxes have high semantic accuracy, with 96.4%

of the classes being correct. We further evaluate ge-

ometrical accuracy using mean intersection-over-union

(IoU). The bounding boxes have a mean IoU of 84.4%,

close to the human agreement upper-bound of 88% (Pa-

padopoulos et al. 2017a; Kuznetsova et al. 2018). Hence,

we conclude that the data produced by this baseline ex-

periment is of high quality.

7.2 Results for Simultaneous Class and Box Labelling

We analyze the time per box for our method in Tab. 3.

Simultaneously annotating one object with a bounding

box and class label with our method takes 6.5 seconds

on average. It thus provides a significant speedup of

1.9× over the two-stage approach.

This experiment shows the power of speech as an-

notation modality, as the class label can in fact be

annotated at zero additional cost over just annotating

bounding boxes. This is because speaking and pointing

can be done in parallel (Kahneman 1973; Oviatt 2003).

Interestingly, we find the joint approach to be even

slightly faster than bounding box annotation alone. This

may seem surprising, but it can be explained by how

the objects are annotated in the two cases: In our ap-

proach, all classes are annotated at once. Hence, the an-

notator parses the image only once, actively searching

for all objects across all classes in the vocabulary. In the

two-stage approach instead, annotators draw bounding

boxes of each class separately. For each class the im-

age is presented again, hence requiring repeated visual

search. This small extra cost translates into about 0.9s

per box on average. While it is not an intrinsic advan-

tage of using speech, as the two-stage approach could

be reorganized with a smarter interface that asks to box

all classes at once, we believe it is an interesting effect.

In terms of quality, we find that our approach pro-

duces bounding boxes with semantically accurate class

Ours (Box
& Speak)

Two-stage
approach

Semantic accuracy 94.2% 96.4%

IoU 83.4% 84.4%

Time / box 6.5 sec. 12.5 sec.

(5.1s + 7.4s)

Table 3: Bounding Box annotation results. Our

method of jointly providing class labels and boxes

is 1.9× faster than the standard two-stage approach.

Dataset: COCO.

labels (94.2%). This is, however, slightly below the two-

stage approach (−2.2%), which can be attributed to

transcription and alignment errors. Geometrical accu-

racy is high and similar to the two-stage approach (83.4%

vs. 84.4%). Thus, we conclude that our method pro-

duces annotations with comparable accuracy, but at a

significant speed gain of 1.9×. We show example anno-

tations generated with our interface in Fig. 16.

7.3 Additional analysis of our interface

Concurrency of speaking and clicking. In Fig. 17

we analyze the relative time at which annotators pro-

vide bounding boxes and say the class name. We find

that annotators typically do both at roughly the same

time, but have a tendency to start speaking before click-

ing on the object. This matches previous studies, which

found that annotators show multiple patterns of mul-

timodal annotation, where one input often partially

precedes the other (Oviatt et al. 1997; Oviatt 2003).

In fact, we observed this effect despite instructing an-

notators to “mark the object and speak at the same

time”. We conjecture that annotators start speaking af-

ter spotting an object and while they move the mouse

to the first click position. In fact this tendency is oc-

casionally so strong that there is no temporal overlap

between saying the class name and marking the object

location (3.6% of the cases).

As a consequence of this variability, correctly align-

ing bounding boxes and class names is not trivial. One

potential solution to this challenge could be to assume

a fixed pattern and force annotators to use it. As an

example: we could only transcribe the speech between

the first and last click of annotating a bounding box.

However, this will lead to deriving the class name from

incomplete audio when the annotator does not strictly

follow this imposed pattern. Hence, we opt to let the

annotators behave naturally, without enforcing a fixed

annotation pattern. Instead we handle the resulting dif-

ferences between the time they speak and point via our
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Fig. 16: Example annotations produced with simultaneous class and box labelling on COCO. Original

annotations in red, annotations produced with our method in green. Our method produces accurate bounding

boxes and semantic labels. In some cases, annotators delimit object classes differently than in the original annota-

tion (center). Annotators are able to simultaneously annotate semantic labels and boxes, even for complex images

with many objects present (right, original annotations omitted for better visibility).

robust alignment method (Sec. 5) which we evaluate

next.

Comparison of alignment methods. While our pre-

vious paper (Gygli and Ferrari 2019) used a heuristic

method for temporal segmentation and alignment, this

work proposes a principled approach to align the class

labels and object location annotations (Sec. 5). Using

our method leads to class labels with a semantic accu-

racy of 94.2%, compared to 80.9% for (Gygli and Ferrari

2019). We also find that some boxes have no class label

attached, due to issues in speech recognition, alignment

errors or annotators forgetting to say the class name.

For our alignment method, 1.2% of the bounding boxes

have no label, compared to 10.8% for (Gygli and Ferrari

2019). Hence, our method is not only more principled,

it also minimizes alignment errors, which leads to con-

siderably better accuracy in practice. At the same time

it remains fast. Inferring class names and aligning them

with the bounding box annotations takes ≈ 0.025s per

image on average, on both ILSVRC and COCO.

8 Discussion

Based on our experiments and observations we now dis-

cuss some of the insights on the advantages, limitations

and open questions in using speech-based annotation.

Annotating irrelevant images. In order to be able to

measure semantic and location accuracy of our method,

we re-annotated existing datasets. Thus, the images

we used all contain at least one object of the classes

contained in the vocabulary. We did not evaluate how

our method compares to previous methods on images

that do not contain contain any objects of the rele-

vant classes. However, this case is rare in practice, as

images in standard datasets are not uniformly sam-
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Fig. 17: Synchronicity of speaking and box draw-

ing. The green curve shows the number of objects (ver-

tical axis) for which the annotator was speaking at a

particular point in time (horizontal axis). The horizon-

tal axis is normalized by the amount of time needed to

draw the box for a particular object. This curve shows

that people typically start speaking a little before the

do the first click on the object (time point at 0) and fin-

ish speaking mostly by the time they did the last click

on the object (time point at 1).

pled out of the space of all possible images. Instead,

datasets are typically created by defining a fixed vo-

cabulary of classes and then explicitly retrieving im-

ages that contain these classes from web search en-

gines, e.g. COCO (Lin et al. 2014) and ILSVRC (Rus-

sakovsky et al. 2015a). More recently, the Open Images

dataset was constructed by uniformly sampling images

from Flickr, but then annotates a large vocabulary (600

classes) deliberately chosen to cover objects that are

frequent and important in these images (Kuznetsova

et al. 2018). Hence, essentially all images contain at

least one object from the vocabulary. Besides, we be-

lieve that even on irrelevant images our method would
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not be slower than hierarchical approaches (Lin et al.

2014; Deng et al. 2014). In our method, the annotator

would spend their time carefully scanning the whole im-

age looking for any class in the vocabulary. In the hier-

archical methods instead, the annotator would have to

scan the image looking for any class of each top-level su-

percategory in turn (e.g. “living organisms”, “carpentry

items” or “items that run on electricity” in ILSVRC).

While the latter might be a simpler task, it needs to be

repeated for each supercategory.

Scaling to larger vocabularies. We experiment with

200 classes, a size which lies in the ballpark of the

largest current datasets for object detection. Scaling

to larger vocabularies is a challenge for any annota-

tion method. While our method relies on memorization

of the class names for fast annotation, we enable the

annotator to quickly review the class vocabulary dur-

ing annotation (Sec. 3.1). In practice, annotators rarely

depend on this and only 7.2% of the total annotation

time is spend looking up class names for a vocabulary

of 200 classes (Sec. 6.4). This suggests that our ap-

proach might scale to many more classes as well. Im-

portantly, scaling hierarchical methods also has its chal-

lenges, most notably the construction of a hierarchical

representation of classes that is intuitive for annotators

to use. Even for 200 classes, this is not trivial and influ-

ences the final results as noted by (Russakovsky et al.

2015a).

Generally, scaling exhaustive annotation to thou-

sands of classes is an unsolved problem and it is unclear

how well any existing method would work in practice as

no experiments have been reported (as opposed to an-

notating a few classes from a large vocabulary in each

image (Deng et al. 2009). In our experience the main

challenge is not memorizing the class names, but teach-

ing annotators how to recognize, distinguish and de-

limit classes within a large vocabulary. For example, in

ILSVRC, annotated with a hierarchical interface, lob-

sters and scorpions are often confused and sometimes

annotated as both. How to handle this challenge is a

topic of ongoing research (Pont-Tuset et al. 2019).

Mapping speech to object classes. In preliminary

experiments we made annotators manually select the

class name out of the 3 most likely classes according to

our method (Sec. 5.1). However, we found that such a

manual selection takes considerable time, reducing the

efficiency gains of using speech. Hence, we opted for

automatically selecting the most likely class (Sec. 5.1).

This approach is significantly faster while still deliver-

ing accurate annotations (Tab. 1 & 2), hence providing

a better speed-accuracy trade-off.

9 Conclusion

We use multimodal inputs for fast image annotation.

At the core of our method lies speech: annotators pro-

vide class labels by simply by saying the names of the

objects that are present in an image. We have proposed

two kinds of speech-based interfaces: First, an interface

for object class labelling, a task that has traditionally

been time consuming and difficult to design. We have

shown that our method offers considerable speed gains,

thanks to speech: it is 2.3×−14.9× faster than previous

methods (Lin et al. 2014; Deng et al. 2014). Second,

an interface for simultaneous class and box labelling.

Previous methods annotate the two in separate stages

(Russakovsky et al. 2015a; Kuznetsova et al. 2018; Su

et al. 2012). Instead, we have shown that using speech

allows to naturally combine them, which makes the

overall process 1.9× faster than previous methods. This

is thanks to the fact that saying the class name while

drawing a bounding box can be done at zero additional

cost. Finally, we have conducted a detailed analysis of

our interfaces, speech transcription and temporal align-

ment. We believe this offers helpful insights for building

even more efficient annotations tools in the future.
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Appendix A - Two-level Hierarchy for ILSVRC

For reference we provide the hierarchy we constructed
to use the interface of (Lin et al. 2014) with the 200 class
vocabulary of the ILSVRC dataset (Deng et al. 2009).
The hierarchy is based on the hierarchy of questions
supplied in (Deng et al. 2009), but modified to balance
the size of the groups and reduced to two-levels. It con-
sists of 22 semantic groups and a small group of “misc
objects”:

1. Wind instruments:
(a) trumpet; (b) saxophone; (c) trombone; (d) flute;
(e) oboe; (f) harmonica; (g) french horn; (h) accor-
dion

2. Other musical instruments:
(a) piano; (b) guitar; (c) violin; (d) chime; (e) maraca;
(f) drum; (g) cello; (h) banjo; (i) harp

3. Fruit:
(a) pineapple; (b) fig; (c) orange; (d) banana; (e) straw-
berry; (f) apple; (g) lemon; (h) pomegranate

4. Other food:
(a) pizza; (b) guacamole; (c) popsicle; (d) hamburger;
(e) hotdog; (f) burrito; (g) pretzel; (h) mushroom;
(i) bagel; (j) artichoke; (k) cucumber; (l) bell pep-
per; (m) cabbage

5. Clothing:
(a) miniskirt; (b) diaper; (c) brassiere; (d) bathing
cap; (e) bow tie; (f) helmet; (g) tie; (h) swimming
trunks; (i) swimsuit; (j) hat; (k) sunglasses

6. Flying Animals:
(a) bee; (b) ladybug; (c) butterfly; (d) dragonfly; (e) bird

7. Felines and Canines:
(a) tiger; (b) lion; (c) domestic cat; (d) fox; (e) dog

8. Animals with hooves:
(a) camel; (b) hippopotamus; (c) swine; (d) cattle;
(e) zebra; (f) sheep; (g) horse; (h) antelope

9. Animals with 6 or more legs:
(a) lobster; (b) scorpion; (c) isopod; (d) centipede;
(e) ant; (f) tick

10. Animals with no legs:
(a) snake; (b) goldfish; (c) jellyfish; (d) ray; (e) snail;
(f) starfish; (g) whale; (h) seal

11. Other animals:
(a) red panda; (b) porcupine; (c) giant panda; (d) rab-
bit; (e) koala; (f) elephant; (g) otter; (h) squirrel;
(i) monkey; (j) hamster; (k) skunk; (l) armadillo; (m) bear;
(n) frog; (o) lizard; (p) turtle

12. Vehicles:
(a) airplane; (b) golfcart; (c) watercraft; (d) train;
(e) bus; (f) snowmobile; (g) bicycle; (h) unicycle; (i) snow-
plow; (j) car; (k) motorcycle; (l) cart

13. Cosmetics:
(a) lipstick; (b) face powder; (c) perfume; (d) hair
spray; (e) cream

14. Medical items:
(a) neck brace; (b) stethoscope; (c) band aid; (d) sy-
ringe; (e) stretcher; (f) crutch

15. Furniture:
(a) bench; (b) chair; (c) bookshelf; (d) babys bed;
(e) table; (f) sofa; (g) filing cabinet

16. Carpentry items:
(a) axe; (b) nail; (c) power drill; (d) chain saw; (e) screw-
driver; (f) hammer

17. School supplies:
(a) pencil box; (b) pencil sharpener; (c) rubber eraser;
(d) ruler; (e) binder

18. Game equipment:
(a) baseball; (b) golf ball; (c) tennis ball; (d) racket;
(e) rugby ball; (f) volleyball; (g) ping-pong ball; (h) cro-
quet ball; (i) basketball; (j) soccer ball; (k) puck

19. Sports equipment:
(a) dumbbell; (b) balance beam; (c) horizontal bar;
(d) ski; (e) bow; (f) punching bag

20. Consumer electronics:
(a) remote; (b) digital clock; (c) computer mouse; (d) com-
puter keypad; (e) laptop; (f) printer; (g) iPod; (h) screen;
(i) tape player; (j) microphone

21. Electronic appliances:
(a) washer; (b) coffee maker; (c) microwave; (d) waf-
fle iron; (e) toaster; (f) refrigerator; (g) stove; (h) dish-
washer; (i) vacuum; (j) electric fan; (k) hair drier

22. Non-electric kitchen items:
(a) bowl; (b) ladle; (c) salt shaker; (d) can opener;
(e) cocktail shaker; (f) frying pan; (g) spatula; (h) plate
rack; (i) strainer; (j) corkscrew; (k) water bottle; (l) mug;
(m) pitcher; (n) wine bottle; (o) milk can

23. Misc objects:
(a) person; (b) traffic light; (c) flowerpot; (d) purse;
(e) backpack; (f) plastic bag; (g) lamp; (h) beaker;
(i) soap dispenser


