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Abstract

Normalization methods improve both optimization and
generalization of ConvNets. To further boost performance,
the recently-proposed switchable normalization (SN) pro-
vides a new perspective for deep learning: it learns to se-
lect different normalizers for different convolution layers of
a ConvNet. However, SN uses softmax function to learn im-
portance ratios to combine normalizers, leading to redun-
dant computations compared to a single normalizer.

This work addresses this issue by presenting Sparse
Switchable Normalization (SSN) where the importance ra-
tios are constrained to be sparse. Unlike `1 and `0 con-
straints that impose difficulties in optimization, we turn this
constrained optimization problem into feed-forward compu-
tation by proposing SparsestMax, which is a sparse version
of softmax. SSN has several appealing properties. (1) It
inherits all benefits from SN such as applicability in var-
ious tasks and robustness to a wide range of batch sizes.
(2) It is guaranteed to select only one normalizer for each
normalization layer, avoiding redundant computations. (3)
SSN can be transferred to various tasks in an end-to-end
manner. Extensive experiments show that SSN outperforms
its counterparts on various challenging benchmarks such as
ImageNet, Cityscapes, ADE20K, and Kinetics.

1. Introduction
Normalization techniques [1,9,24,27] such as batch nor-

malization (BN) [9] are indispensable components in deep
neural networks (DNNs) [6,8]. They improve both learning
and generalization capacity of DNNs. Different normaliz-
ers have different properties. For example, BN [9] acts as a
regularizer and improves generalization of a deep network

∗equal contribution. This work will be presented at CVPR 2019.

[15]. Layer normalization (LN) [1] accelerates the train-
ing of recurrent neural networks (RNNs) by stabilizing the
hidden states in them. Instance normalization (IN) [24] is
able to filter out complex appearance variances [18]. Group
normalization (GN) [27] achieves stable accuracy in a wide
range of batch sizes.

To further boost performance of DNNs, the recently-
proposed Switchable Normalization (SN) [14] offers a new
viewpoint in deep learning: it learns importance ratios to
compute the weighted average statistics of IN, BN and LN,
so as to learn different combined normalizers for different
convolution layers of a DNN. SN is applicable in various
computer vision problems and robust to a wide range of
batch sizes. Although SN has great successes, it suffers
from slowing the testing speed because each normalization
layer is a combination of multiple normalizers.

To address the above issue, this work proposes Sparse
Switchable Normalization (SSN) that learns to select a sin-
gle normalizer from a set of normalization methods for each
convolution layer. Instead of using `1 and `0 regularization
to learn such sparse selection, which increases the difficulty
of training deep networks, SSN turns this constrained opti-
mization problem into feed-forward computations, making
auto-differentiation applicable in most popular deep learn-
ing frameworks to train deep models with sparse constraints
in an end-to-end manner.

In general, this work has three main contributions.
(1) We present Sparse Switchable Normalization (SSN)

that learns to select a single normalizer for each normaliza-
tion layer of a deep network to improve generalization abil-
ity and speed up inference compared to SN. SSN inherits all
advantages from SN, for example, it is applicable to many
different tasks and robust to various batch sizes without any
sensitive hyper-parameter.

(2) SSN is trained using a novel SparsestMax function
that turns the sparse optimization problem into a simple for-
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ward propagation of a deep network. SparsestMax is an ex-
tension of softmax with sparsity guarantee and is designed
to be a general technique to learn one-hot distribution. We
provide its geometry interpretations compared to its coun-
terparts such as softmax and sparsemax [16].

(3) SSN is demonstrated in multiple computer vision
tasks including image classification in ImageNet [20], se-
mantic segmentation in Cityscapes [4] and ADE20K [29],
and action recognition in Kinetics [11]. Systematic exper-
iments show that SSN with SparsestMax achieves compa-
rable or better performance than the other normalization
methods.

2. Sparse Switchable Normalization (SSN)
This section introduces SSN and SparsestMax.

2.1. Formulation of SSN

We formulate SSN as

ĥncij = γ
hncij −

∑|Ω|
k=1 pkµk√∑|Ω|

k=1 p
′
kσ

2
k + ε

+ β, (1)

s.t.

|Ω|∑
k=1

pk = 1,

|Ω|∑
k=1

p′k = 1, ∀pk, p′k ∈ {0, 1}

where hncij and ĥncij indicate a hidden pixel before and
after normalization. The subscripts represent a pixel (i, j)
in the c-th channel of the n-th sample in a minibatch. γ
and β are a scale and a shift parameter respectively. Ω =
{IN,BN,LN} is a set of normalizers. µk and σ2

k are their
means and variances, where k ∈ {1, 2, 3} corresponds to
different normalizers. Moreover, pk and p′k are importance
ratios of mean and variance respectively. We denote p =
(p1, p2, p3) and p′ = (p′1, p

′
2, p
′
3) as two vectors of ratios.

According to Eqn.(1), SSN is a normalizer with three
constraints including ‖p‖1 = 1, ‖p′‖1 = 1, and for
all pk, p′k ∈ {0, 1}. These constraints encourage SSN to
choose a single normalizer from Ω for each normalization
layer. If the sparse constraint ∀pk, p′k ∈ {0, 1} is relaxed to
a soft constraint ∀pk, p′k ∈ (0, 1), SSN degrades SN [14].
For example, the importance ratios p in SN can be learned
using p = softmax(z), where z are the learnable control
parameters of a softmax function1 and z can be optimized
using back-propagation (BP). Such slackness has been ex-
tensively employed in existing works [10, 12]. However,
softmax does not satisfy the sparse constraint in SSN.

Requirements. Let p = f(z) be a function to learn p in
SSN. Before presenting its formulation, we introduce four
requirements of f(z) in order to make SSN effective and
easy to use as much as possible. (1) Unit length. The `1

1The softmax function is defined by pk = softmaxk(z) =

exp(zk)/
∑|Ω|

k=1 exp(zk).
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Figure 1. Comparisons of softmax, sparsemax and Sparsest-
Max. O is the origin of R3. The regular triangle denotes a 2-D
simplex42 embedded into R3. u is the center of the simplex. The
cubes represent feature maps whose dimension is N×C×H×W .
We represent IN, BN and LN by coloring different dimensions
of those cubes. Each vertex represents one of three normalizers.
As shown in the upper plot, output of softmax is closer to u than
sparsemax and SparsestMax. SparsestMax makes important ratios
converge to one of vertices of the simplex in an end-to-end man-
ner, selecting only one normalizer from these three normalization
methods.

norm of p is 1 and for all pk ≥ 0. (2) Completely sparse
ratios. p is completely sparse. In other words, f(z) is re-
quired to return an one-hot vector where only one entry is
1 and the others are 0s. (3) Easy to use. SSN can be im-
plemented as a module and easily plugged into any network
and task. To achieve this, all the constraints of p have to be
satisfied and implemented in a forward pass of a network.
This is different from adding `0 or `1 penalty to a loss func-
tion, making model development cumbersome because co-
efficient of these penalties are often sensitive to batch sizes,
network architectures, and tasks. (4) Stability. The opti-
mization of p should be stable, meaning that f(·) should be
capable to maintain sparsity in the training phase. For ex-
ample, training is difficult if f(·) returns one normalizer in
the current step and another one in the next step.
Softmax and sparsemax? Two related functions are soft-
max and sparsemax, but they do not satisfy all the above
requirements. Firstly, softmax(z) is employed in SN [14].
However, its parameters z always have full support, that is,
pk = softmaxk(z) 6= 0 where softmaxk(·) indicates the
k-th element, implying that the selection of normalizers is
not sparse in SN.

Secondly, another candidate is sparsemax [16] that ex-
tends softmax to produces a sparse distribution. The



sparsemax(z) projects z to its closest point p on a (K-1)-
dimensional simplex by minimizing the Euclidean distance
between p and z,

sparsemax(z) := argmin
p∈4K−1

‖p− z‖22 , (2)

where 4K−1 denotes a (K-1)-D simplex that is a convex
polyhedron containing K vertices. We have 4K−1 :=
{p ∈ RK |1Tp = 1,p ≥ 0}where 1 is a vector of ones. For
example, when K = 3,42 represents a 2-D simplex that is
a regular triangle. The vertices of the triangle indicate BN,
IN, and LN respectively as shown in Fig.1.

By comparing softmax and sparsemax on the top of
Fig.1 when z is the same, the output p of softmax yel-
low dot is closer to u (center of the simplex) than that of
sparsemax blue dot. In other words, sparsemax produces
p that are closer to the boundary of the simplex than soft-
max, implying that sparsemax produces more sparse ratios
than softmax. Take z = (0.8, 0.6, 0.1) as an example,
softmax(z) = (0.43, 0.35, 0.22) while sparsemax(z) =
(0.6, 0.4, 0), showing that sparsemax is likely to make some
elements of p be zero. For the compactness of this work,
we provide evaluation of the sparsemax [7, 16] in section A
of Appendix. However, completely sparse ratios cannot be
guaranteed because every point on the simplex could be a
solution of Eqn.(2).

2.2. SparsestMax

To satisfy all the constraints as discussed above, we in-
troduce SparsestMax, which is a novel sparse version of the
softmax function. The SparsestMax function is defined by

SparsestMax(z; r) := argmin
p∈4K−1

r

‖p− z‖22 , (3)

where 4K−1
r := {p ∈ RK |1Tp = 1, ‖p− u‖2 ≥ r,p ≥

0} is a simplex with a circular constraint ‖p− u‖2 ≥
r,1Tp = 1. Here u = 1

K1 is the center of the simplex
and 1 is a vector of ones, and r is radius of the circle.

Compared to sparsemax, SparsestMax introduces a cir-
cular constraint ‖p− u‖2 ≥ r, 1Tp = 1 that has an in-
tuitively geometric meaning. Unlike sparsemax where the
solution space is4K−1, the solution space of SparsestMax
is a circle with center u and radius r excluded from a sim-
plex.

In order to satisfy the completely sparse requirement, we
linearly increase r from zero to rc in the training phase. rc is
the radius of a circumcircle of the simplex. To understand
the important role of r, we emphasize two cases. When
r ≤ ‖p0 − u‖2, where p0 is the output of sparsemax, then
p0 is also the solution of Eqn.(3) because p0 satisfies the
circular constraint. When r = rc, the solution space of
Eqn.(3) contains only K vertices of the simplex, making
SparsestMax(z; rc) completely sparse.

An example. Fig.2(a-f) illustrate a concrete example in
the case of K = 3 and z = (0.5, 0.3, 0.2). We can see
that the output of softmax is more uniform than sparsemax
and SparsestMax, and SparsestMax produces increasingly
sparse output as r grows. With radius r gradually increasing
in the training phase, the computations of SparsestMax are
discussed as below.

Stage 1. As shown in Fig.2(b,c), the solution of sparse-
max is p0 = (0.5, 0.3, 0.2) given z = (0.5, 0.3, 0.2). When
r = 0.15, p0 satisfies the constraint ‖p0 − u‖2 ≥ r. There-
fore, p0 is also the solution of SparsestMax. In this case,
SparsestMax is computed the same as sparsemax to return
the optimal ratios.

Stage 2. As illustrated in Fig.2(d), when r increases to
0.3 and thus ‖p0 − u‖2 < r when p0 = (0.5, 0.3, 0.2), it
implies that the circular constraint is not satisfied. In this
case, SparsestMax returns the point p1 on the circle, which
is computed by projecting p0 to the face of circle, that is,
p1 = r p0−u

‖p0−u‖2
+ u = (0.56, 0.39, 0.15) as the output.

Stage 3. As shown in Fig.2(e), when r = 0.6, p1 moves
out of the simplex. In this case, p1 is projected back to
the closest point on the simplex, that is p2, which is then
pushed to p3 by the SparsestMax function using

p3 = r′
p2 − u′

‖p2 − u′‖2
+ u′, (4)

where u′i = max{ (p1)i
2 , 0}, i = 1, 2, 3, p2 =

sparsemax(p1) and r′ =
√
r2 − ‖u− u′‖22. In fact, p2

lies on 41, u′ is the center of 41 and 41 is one of the
three edges of 42. Eqn.(4) represents the projection from
p2 to p3. We have p3 = (0.81, 0.19, 0) as the output. It
is noteworthy that when p1 is out of the simplex, p3 is
a point of intersection of the simplex and the circle, and
p3 can be determined by sorting p0. In this way, Eqn.(4)
can be equivalently replaced by argmax function. However,
Eqn.(4) shows great advantage on differentiable learning of
parameter z when K > 3.

Stage 4. As shown in Fig.2(f), the circle becomes the
circumcircle of the simplex when r = rc = 0.816 for K =3,
p3 moves to one of the three vertices. This vertex would be
the closest point to p0. In this case, we have p3 = (1, 0, 0)
as the output.

Implementation. In fact, Eqn.(3) is an optimization
problem with both linear and nonlinear constraints. The
above four stages can be rigorously derived from KKT con-
ditions of the optimization problem. The concrete evalua-
tion procedure of SparsestMax in case where K = 3 is
presented in Algorithm 1. We see that runtime of Algo-
rithm 1 mainly depends on the evaluation of sparsemax [25]
(line 1). As for SSN, we adopt a O(KlogK) algorithm [7]
to evaluate sparsemax. SparsestMax can be easily imple-
mented using popular deep learning frameworks such as Py-
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Figure 2. Illustration of (a) softmax, (b) sparsemax, (c-f) Spars-
estMax when K = 3 and (g-i) SparsestMax when K = 4. u
is the center of the simplex. u = ( 1

3
, 1

3
, 1

3
) for K = 3 and

u = ( 1
4
, 1

4
, 1

4
, 1

4
) for K = 4. Given z = (0.5, 0.3, 0.2),

(a) and (b) show that the outputs of softmax and sparsemax are
p = (0.39, 0.32, 0.29) and p = (0.5, 0.3, 0.2) respectively. (c-
f) show that the results of SparsestMax for r = 0.15, 0.3, 0.6
and 0.816 are p0 = (0.5, 0.3, 0.2), p1 = (0.56, 0.29, 0.15),
p3 = (0.81, 0.19, 0) and p3 = (1, 0, 0) respectively when
K = 3, a concrete calculation is given in Stage 1-4. When
K = 4, given z = (0.3, 0.25, 0.23, 0.22), the outputs of (g-i)
are p1 = (0.49, 0.25, 0.15, 0.11), p3 = (0.75, 0.23, 0.02, 0) and
p3 = (1, 0, 0, 0) for r = 0.3, 0.6 and 0.866 respectively. All p2s
are acquired by p2 = sparsemax(p1). (e) and (f) show that when
p1 is outside of the simplex4K−1, then projection space reduces
to4K−2 for K = 3 and K = 4.

Torch [19].

2.3. Discussions

Properties of SparsestMax. The SparsestMax function
satisfies all four requirements discussed before. Since the
radius r increases from 0 to rc as training progresses, the
solution space of Eqn.3 shrinks to three vertices of the sim-
plex, returning ratios as a one-hot vector. The first two re-
quirements are guaranteed until training converged.

For the third requirement, the SparsestMax is performed
in a single forward pass of a deep network, instead of intro-
ducing an additional sparse regularization term to the loss
function, where strength of the regularization is difficult to
tune.

Stability of Sparsity. We explain that training SSN with

SparsestMax is stable, satisfying the fourth requirement. In
general, once pk = SparsestMaxk(z; r) = 0 for each k,
derivative of the loss function wrt. zk is zero using chain
rules as provided in section B of Appendix. This property
explicitly reveals that once an element of p becomes 0, it
will not ‘wake up’ in the succeeding training phase, which
has great advantage of maintaining sparsity in training.

We examine the above property for different stages as
discussed before. Here, we denote p − u and ‖p− u‖2 as
‘sparse direction’ and ‘sparse distance’ respectively. The
situation when pk = 0 only occurs on stage 1 and stage
3. In stage 1, SparsestMax becomes sparsemax [16], which
indicates that if pk = 0, the k-th component in p is much
less important than the others. Therefore, stopping learn-
ing pk is reasonable. In stage 3, pk = 0 occurs when p0

moves to p1 and then p2. In this case, we claim that p1 has
learned a good sparse direction before it moves out of the
simplex. To see this, when ‖p0 − u‖2 < r, p1 ≥ 0, let
g1 be the gradients of the loss function with respect to p1

during back-propagation. We can compute gd0 that is the di-
rectional derivative of the loss at p0 in the direction p0−u.
We have

gd0 =

(
∂p1

∂p0

)
Tg1(p0 − u)

= g1
T ‖p0 − u‖2 − (p0 − u)(p0 − u)T

‖p0 − u‖
5
2

(p0 − u)

= 0.

(5)

Eqn.(5) suggests that SGD would learn the sparse direc-
tion regardless of the sparse distance. In other words, the
importance ratios in SSN do not need to learn the sparse
distance. They focus on updating the sparse direction to
regulate the relative magnitudes of IN, BN, and LN in each
training step. This property intuitively reduces the difficulty
when training the important ratios.

Efficient Computations. Let L be the total number
of normalization layers of a deep network. In training
phase, computational complexity of SparsestMax in the en-
tire network is O(LKlogK), which is comparable to soft-
max O(LK) in SN when K = 3. However, SSN learns a
completely sparse selection of normalizers, making it faster
than SN in testing phase. Unlike SN that needs to estimate
statistics of IN, BN, and LN in every normalization layers,
SSN computes statistics for only one normalizer. On the
other hand, we can turn BN in SSN into a linear transforma-
tion and then merge it into the previous convolution layer,
which reduces computations.

Extend to K = n. SparsestMax can be generalized to
case where K = n. As discussed before, it results in a
one-hot vector under the guidance of a increasing circle.
SparsestMax works by inheriting good merit of sparsemax
and learning a good sparse direction. By repeating this



Algorithm 1 SSN with SparsestMax when K = 3.
Input: z, z′,u, r, µk, σ

2
k . r increases from zero

to rc in the training stage; µk and σk denote means and
variances from different normalizers, k ∈ {1, 2, 3}

Output: µ, σ2 . mean and variance in SSN
1: p0 = sparsemax(z)
2: if ‖p0 − u‖2 ≥ r then
3: p = p0

4: else p1 = r p0−u
‖p0−u‖2

+ u

5: if p1 ≥ 0, then
6: p = p1

7: else compute u′, r′ and p2 . see Stage 3
8: p = r′ p2−u′

‖p2−u′‖2
+ u′

9: end if
10: end if
11: return µ =

∑3
k=1 pkµk, σ

2 =
∑3

k=1 p
′
kσ

2
k . p′ is

computed the same as p

step, the projection space degenerates, ultimately leading
to a one-hot distribution. Fig.2 (g-i) visualizes Stage 2-4
when K = 4. We list skeleton pseudo-code for Sparsest-
Max when K = n in Algorithm 2

3. Relation with Previous Work

As one of the most significant components in deep neu-
ral networks, normalization technique [1, 9, 14, 24, 27] has
achieved much attention in recent years. These methods
can be categorized into two groups: methods normaliz-
ing activation over feature space such as [1, 9, 24, 27] and
methods normalizing weights over the parameter space like
[17,21]. All of them show that normalization methods make
great contribution to stabilizing the training and boosting
the performance of DNN. Recent study of IBN [18] shows
that the hybrid of multiple normalizers in the neural net-
works can greatly strengthen the generalization ability of
DNN. A more general case named Switchable Normaliza-
tion (SN) [14] is also proposed to select different normalizer
combinations for different normalization layers. Inspired
by this work, we propose SSN where the importance ra-
tios are constrained to be completely sparse, while inherit-
ing all benefits from SN at the same time. Moreover, the
one-hot output of importance ratios alleviates overfitting in
the training stage and removes the redundant computations
in the inference stage.

Other work focusing on the sparsity of parameters in
DNN is also related to this article. In [22], group Lasso
penalty is adopted to impose group-level sparsity on net-
works connections. But this work can hardly satisfy our
standardization constraints, i.e. sum of the importance ra-
tios in each layer equals one. Bayesian compression [13]
includes a set of non-negative stochastic gates to determine

Algorithm 2 SparsestMax for K = n

Input: z, u, r
Output: p = SparsestMax(z, r,u)

1: p0 = sparsemax(z)
2: if ‖p0 − u‖2 ≥ r then
3: p = p0

4: else p1 = r p0−u
‖p0−u‖2

+ u

5: if p1 ≥ 0, then
6: p = p1

7: else compute u′, r′ and p2 . see Stage 3
8: z = p2, p = SparsestMax(z, r′,u′)
9: end if

10: end if
11: return p

which weight is zero, making re-parameterized `0 penalty
differentiable. However, such regularization term makes the
model less accurate if applied to our setting where required
`0 norm is exactly equal to one. Alternatively, sparsemax
that preserves most of the attractive properties of softmax
is proposed in [16] to generate sparse distribution, but this
distribution is usually not completely sparse. This paper in-
troduces SparsestMax, which adds a circular constraint on
sparsemax to achieve the goal of SSN. It learns the sparse
direction regardless of sparse distance in the training phase,
and guarantees to activate only one control parameter. It
can be embedded as a general component to any end-to-end
training architectures to learn one-hot distribution.

4. Experiments

In this section, we apply SSN to several benchmarks in-
cluding image classification, semantic segmentation and ac-
tion recognition. We show its advantages in both perfor-
mance and inference speed comparing to existing normal-
ization methods.

4.1. Image Classification in ImageNet

In our experiments, we first evaluate SSN in the Ima-
geNet classification dataset [20], which has 1.28M training
images and 50k validation images with 1000 categories. All
classification results are evaluated on the 224×224 pixels
center crop of images in validation set, whose short sides
are rescaled to 256 pixels.

Implementation details. All models are trained using
8 GPUs and here we denote batch sizes as the number of
images on one single GPU and the mean and variance of
BN are calculated within each GPU. For convolution lay-
ers, we follow the initialization method used by [6]. Fol-
lowing [5], we initialize γ to 1 for last normalization layers
in each residual block and use 0 to initialize all other γ.
Learnable control parameters z in SSN are initialized as 1.
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IN LN BN GN SN SSN
top-1 71.6 74.7 76.4 75.9 76.9 77.2

∆ vs. BN -4.8 -1.7 - -0.5 0.5 0.8

Table 1. Comparisons of top-1 accuracy(%) of ResNet-50 in Im-
ageNet validation set. All models are trained with a batch size of
32 images/GPU. The second row shows the accuracy differences
between BN and other normalization methods.

SGD with momentum is used for all parameters, while the
learning rate of z is 1/10 of other parameters. We also ap-
ply a weight decay of 0.0001 to all parameters except z. We
train all the models for 100 epochs and decrease the learning
rate by 10× at 30, 60 and 90 epochs. By default, our hy-
perparameter radius r used as circular constraint increases
from 0 to 1 linearly during the whole training process, and z
will stop updating once its related importance ratio becomes
completely sparse.

Comparison with other normalization methods. We
evaluate all normalization methods using ResNet-50 [6]
with a regular batch size of 32 images per GPU. Table 1
shows that IN and LN achieve 71.6% and 74.7% top-1 ac-
curacy respectively, indicating they are unsuitable for image
classification task. BN works quite well in this setting, get-
ting 76.4% top-1 accuracy. SN combines the advantages
of IN, LN and BN and outperforms BN by 0.5%. Differ-
ent from SN, SSN selects exactly one normalizer for each
normalization layer, introducing stronger regularization and
outperforming SN by 0.3%. Fig.3 shows that SSN has lower
training accuracy than SN while maintains even higher val-
idation accuracy.

Different batch sizes. For the training of different batch
sizes, we adopt the learning rate scaling rule from [5], as
the initial learning rate is 0.1 for the batch size of 32, and
0.1N/32 for a batch size of N. The performance of BN de-
creases from 76.4% to 65.3% when the batch size decreases
from 32 to 2 because of the larger uncertainty of statistics.
While GN and SN are less sensitive to batch size, SSN
achieves better performance than these two methods and

32 16 8 4 20.0

0.2

0.4

0.6 SN BN
SN IN
SN LN
SSN BN
SSN IN
SSN LN

(a) importance ratios distribution of µ

32 16 8 4 20.0

0.2

0.4

0.6 SN BN
SN IN
SN LN
SSN BN
SSN IN
SSN LN

(b) importance ratios distribution of σ

Figure 4. Comparisons of importance ratios distribution be-
tween SN and SSN. The model here is ResNet-50 with differ-
ent batch sizes. (a) visualizes the importance ratios distribution
of mean and (b) shows the result of variance. The x-axis denotes
the batch size. SSN distribution are shaded.

batch size 32 16 8 4 2
BN 76.4 76.3 75.2 72.7 65.3
GN 75.9 75.8 76.0 75.8 75.9
SN 76.9 76.7 76.7 75.9 75.6

SSN 77.2 77.0 76.8 76.1 75.9

Table 2. Top-1 accuracy in different batch sizes. We show
ResNet-50’s validation accuracy in ImageNet. SSN achieves
higher performance in all batch size settings.

outperforms them in all batch size settings, indicating SSN
is robust to batch size. The top-1 accuracies are reported in
Table 2. In Fig.4, we visualize the normalizer selection dis-
tribution of SSN in different batch sizes. Our results show
that the network would prefer BN in larger batch size while
LN in smaller batch size. We can also observe that the im-
portance ratio distribution is generally different between µ
and σ which is consistent with study in [15,23]. At the same
time, SSN would have a more distinct importance ratio dis-
tribution than SN.

Fast inference. Different from SN, SSN only need to se-
lect one normalizer in each normalization layer, saving lots
of computations and graphic memories. We test our infer-
ence speed using the batch size of 32 images on a single
GTX 1080. For fair comparison, we implement all normal-
ization layers in PyTorch. All BN operations are merged
into previous convolution operations. As showed in Table 3,
BN is the fastest. SSN uses BN, IN, or LN in each layer, be-
ing the second fastest. SSN is faster than IN, LN, GN and
SN in both ResNet-50 and ResNet-101 backbone. GN is
slower than IN because it divides channels into groups. SN
soft combines BN, IN, and LN, making it slower than SSN.

Comparison of normalizer selection between SSN
and SN. Fig.5 compares the breakdown results of normal-
izer selection between SSN and SN for all normalization
layers in ResNet-50 with a batch size of 32. Almost all
dominating normalizers in SN are selected by SSN. By our
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Figure 5. Comparison of normalizer selection between SSN and SN with a batch size of 32 images per GPU. The network we use is
ResNet-50, which has 53 normalization layers. The top and bottom plots denote importance ratios of mean and variance respectively. We
shade normalizers after 3x3 conv and mark normalizers after downsampling shortcut with “�”.

ResNet-50 ResNet-101
BN 259.756 ± 2.136 157.461 ± 0.482
IN 186.238 ± 0.698 116.841 ± 0.289
LN 184.506 ± 0.054 115.070 ± 0.028
GN 183.131 ± 0.277 113.332 ± 0.023
SN 183.509 ± 0.026 113.992 ± 0.015

SSN 216.254 ± 0.376 133.721 ± 0.106

Table 3. Throughput (images/second) in inference time over dif-
ferent normalization methods with ResNet-50 and ResNet-101 as
backbone. Larger is better. The mean and standard deviation are
calculated over 1000 batches.

analysis, those normalization layers with uniform impor-
tance ratios in SN are expected to focus on learning sparse
direction in SSN, and converge to a more appropriate nor-
malizer.

Learning sparse direction. As we mentioned in
Eqn.(5), SparsestMax focuses on learning sparse direction
regardless of sparse distance of importance ratios. To ver-
ify this property, we visualize the convergence trajectory of
importance ratios of some normalization layers across the
network. As shown in Fig.6, the importance ratios in SSN
make adjustment for their sparse directions under the guid-
ance of an increasing circle in each iteration, and keep the
direction stable until completely sparse. While the conver-
gence behavior of those ratios in SN seems to be a bit messy.

Insensitiveness to r’s increasing schedule. SSN has
an important hyperparameter r, which is the radius of in-
creasing circle. Here we examine that SSN is insensitive
to r’s increasing schedule. Through our analysis, once the
increasing circle is bigger than the inscribed circle of the
simplex (i.e. r > ri =

√
6/6 in the case of three normal-

izers), the sparse direction is likely to stop updating. In this
case, the normalizer selection is determined since the gra-
dients wrt. the control parameters become zero. Therefore,
the time stamp which r reaches ri matters most in the in-

Figure 6. Comparison of convergence of importance ratios
in some normalization layers across the network. These plots
visualize the variance importance ratios in (layer3.0.norm2),
(layer3.1.norm1), (layer3.1.norm2), (layer3.2.norm1),
(layer3.3.norm1) and (layer3.4.norm1) of ResNet-50 respec-
tively.

creasing schedule. In our default setting, r would increase
to ri at about 41 epoch when training 100 epochs. In our
experiment, we make r reach ri at 40, 50, 60 and 70 epochs
respectively. Our result shows that the performance main-
tains at 77.2±0.04%, showing that the schedule contributes
little to the final performance.

One Stage vs. Two Stage. We use argmax to derive a
sparse normalizer architecture from pretrained SN model
and compare it with SSN. For comparison, we continue to
train argmaxed SN for 20 epochs with an initial learning rate
of 0.001 and the cosine annealing learning rate decay sched-
ule. As a result, the sparse structure derived from SN model
only reaches 76.8%, which is not comparable to our one-



stage SSN. In all, SSN obtains sparse structure and shows
better performance without introducing additional compu-
tation.

Four normalizers in Ω. To evaluate the extensibility
of SparsestMax, we introduce GN [27] to initial Ω which
contains IN, BN and LN. For GN, we use a group number
of 32 which is the same as default setting in [27]. We ap-
ply both SN and SSN given the new Ω to ResNet-50 with
a batch size of 32. In such setting, that SSN obtains higher
accuracy 77.3% than 76.8% in SN, demonstrating the po-
tential extensibility of SparsestMax in a more generalized
scenario.

4.2. Semantic Segmentation in ADE and Cityscapes

To investigate generalization ability of SSN in var-
ious computer vision tasks, we evaluate SSN in se-
mantic segmentation with two standard benchmarks, i.e.
ADE20K [29] and Cityscapes [4]. For both of these two
datasets, we use 2 samples per GPU. For fair comparison
with SN [14], we also adopted DeepLab [3] with ResNet-
50 as the backbone network, where output stride=8 and the
last two blocks in the original ResNet contains atrous con-
volution layers with rate=2 and rate=4, respectively. Then
the bilinear operation is used to upsample the score maps
to the size of ground truth. In the training phase, we use
the ‘poly’ learning rate in both two datasets with power=0.9
and the auxiliary loss with the weight 0.4. The same setting
is also used in [28]. We compare proposed SSN with Syn-
chronized BN (SyncBN), GN and SN. For the former three
normalization methods, we adopted their pretrained models
in ImageNet. For SSN, we employ SN ImageNet pretrained
model [14] and use SparsestMax to make the importance
ratios completely sparse. Note that the Synchronized BN is
not adopted in both SN and SSN.

For ADE20K, we resize the input image to 450×450
and train for 100,000 iterations with the initial lr 0.02. For
multi-scale testing, we set input size={300, 400, 500, 600}.
Table 4 reports the experiment result in the ADE20K vali-
dation set. SSN outperforms SyncBN and GN with a mar-
gin without any bells and whistles in the training phase. It
also achieves 0.2% higher mIoU than SN in the multi-scale
testing.

For Cityscapes, we use random crop with the size
713×713 for all models, and train them with 400 epochs.
The initial lr is 0.01. The multiple inference scales are {1.0,
1.25, 1.5, 1.75}. According to Table 4, SSN performs much
better than SyncBN and GN. It achieves comparable result
with SN (75.7 vs. 75.8) in this benchmark.

4.3. Action Recognition in Kinetics

We also apply SSN to action recognition task in Kinet-
ics dataset [11]. Here we use Inflated 3D (I3D) convo-
lutional networks [2] with ResNet-50 as backbone. The

ADE20K mIoU% Cityscapes mIoU%
SyncBN 37.7 72.7

GN 36.3 72.2
SN 39.1 75.8

SSN 39.3 75.7

Table 4. Experiment results in ADE20K validation set and
cityscapes test set. The backbone network is ResNet-50 with di-
lated convolution layers. We use mutli-scale inference in the test
phase. SyncBN denotes multi-GPU synchronization of BN.

batch=8, length=32 batch=4, length=32
top1 top5 top1 top5

BN 73.3 90.7 72.1 90.0
GN 73.0 90.6 72.8 90.6
SN 73.5 91.2 73.3 91.2

SSN1 73.8 91.2 72.8 90.6
SSN2 73.4 91.1 73.0 91.2

Table 5. Result of ResNet-50 I3D in Kinetics with different nor-
malization layers and batch sizes. SSN1 is finetuned from ResNet-
50 SSN ImageNet pretrained model, and SSN2 is from ResNet-50
SN ImageNet pretrained model.

network structure and training/validation settings all fol-
low ResNet-50 I3D in [26, 27]. We use 32 frames as in-
put for each video, these frames are sampled sequentially
with one-frame gap between each other and randomly re-
sized to [256,320]. Then 224×224 random crop is ap-
plied on rescaled frames, and the cropped frames are passed
through the network. To evaluate SSN, we use two types of
pretrained models here, ResNet-50 SSN with all normal-
izer selections fixed and ResNet-50 SN with combined nor-
malizers. ResNet-50 SN are trained using SparsestMax to
learn sparse normalizer selection in Kinetics. Models are all
trained in Kinetics training set using 8 GPUs, and the batch
size settings used here are 8 and 4 videos.

During evaluation, for each video we average softmax
scores from 10 clips as its final prediction. These clips are
sampled evenly from whole video, and each one of them
contains 32 frames. The evaluation accuracies in Kinetics
validation set are shown in Table 5. Both SSN1and SSN2

outperform the results of BN and GN in the batch size of 8
videos per GPU, and SSN1 achieves the highest top-1 accu-
racy, it’s 0.26% higher than SN and 0.46% higher than BN.
For smaller batch size setting, the performance of SSN lies
between SN and GN.

5. Conclusion

In this work, we propose SSN for both performance
boosting and inference acceleration. SSN inherits all advan-
tages of SN such as robustness to a wide range of batch sizes
and applicability to various tasks, while avoiding redundant



computations in SN. This work has demonstrated SSN’s su-
periority in multiple tasks of Computer Vision such as clas-
sification and segmentation. To achieve SSN, we propose
a novel sparse learning algorithm SparsestMax which turns
constrained optimization problem into differentiable feed-
forward computation. We show that SparsestMax can be
built as a block for learning one-hot distribution in any deep
learning architecture and is expected to be trained end-to-
end without any sensitive hyperparameter. The application
of proposed SparsestMax can be a fruitful future research
direction.
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Appendices

A. Evaluation for Sparsemax
The following theorem gives the closed-form solution to

the standard sparsemax which is also provided in [7, 16].

Theorem 1. Defining the optimization problem, p =
sparsemax(z) := argmin

p∈4K−1

‖p− z‖22, then solution is of the

form:
pi = max{zi − τ(z), 0} (6)

where τ : RK → R is a function of z. Specifically, given
the sort of z, z(1) ≥ z(2) ≥ · · · ≥ z(K), define a(z) =
max{k ∈ [K]|1 + kz(k) >

∑
j≤k z(j)} and the support of

p as S(z) = {j ∈ [K]|pj > 0}, then

τ(z) =
(
∑

j≤a(z) z(j))− 1

a(z)
=

(
∑

j∈S(z) zj)− 1

|s(z)|
(7)

Theorem 1 states that all we need for evaluating the
sparsemax is to compute threshold τ(z) according to the
sorted elements of z. Then all elements above this thresh-
old will be shifted by τ(z), and the others will be set to
zero. For example, when z = (0.8, 0.6, 0.1), by Theo-
rem 1, we have a(z) = 2 and thus τ(z) = 0.2. Hence,
sparsemax(z) = (0.6, 0.4, 0).

B. Stability of Sparsity of SparsestMax
In this section we focus on case where K = 3 to explain

the stability of sparsity of SparsestMax through its back-
propagation. We denote p = SparsestMax(z, r) and p0 =
sparsemax(z) given r ∈ [0, rc] and consider three cases in
Algorithm 1 when the gradient back-propagates .

Case 1, if ‖p0 − u‖2 ≥ r, we have p = p0. Note that
(p0)i = max{zi − τ(z), 0} where (·)i denotes i-th compo-
nent of a vector, the gradient of pi wrt. zj can be calculated
as

∂pi
∂zj

=
∂(p0)i
∂zj

=

{
δij − 1

|S(z)| if i, j ∈ S(z),

0 else
(8)

where S(z) = {i|(p0)i > 0, i = 1, 2, 3} and δij is equal to
one when i = j and zero otherwise. Eqn.(8) shows that if
pk = 0 then ∂pi

∂zk
= 0 for all i = 1, 2, 3 since k /∈ S(z).

Case 2, when ‖p0 − u‖2 < r and p1 > 0, we have
p = p1. The condition p1 > 0 implies that p0 > 0. By
Eqn.(8), the gradient ∂(p0)i

∂zj
6= 0 for every i and j. We

obtain
∂pi
∂zj

=

3∑
k=1

∂pi
∂(p0)k

∂(p0)k
∂zj

6= 0, (9)

which shows that learning of important ratios p depends on
all zi, i = 1, 2, 3. Besides, Equation (5) in the paper reveals

that SGD would learn the sparse direction regardless of the
sparse distance in this case since the directional derivative
of the loss at p0 in the direction p0 − u is equal to zero.

Case 3, when ‖p0 − u‖2 < r and some elements of p1

are negative, we have p = p3 which is obtained by Eqn.(4).
p1 has negative components, meaning that the correspond-
ing elements of p2 are exactly equal to zero and so does
p. If (p2)k = 0, then ∂(p2)i

∂(p1)k
= 0 for all i = 1, 2, 3 since

p2 = sparsemax(p1).
According to the above discussions, we conclude that the

situation when pk = 0 only occurs in Case 1 and 3 which
correspond to Stage 1 and 3 in the paper respectively. In
addition, once pk = SparsestMax(z; r) = 0 for each k,
the derivative of the loss function wrt. zk is zero using
chain rules. In Case 1, SparsestMax has the same output as
sparsemax. Hence, pk = 0 implies that the k-th component
in p is much less important than those positive components
in p. In Case 3, it has been explained in the paper that p1

has learned a good sparse direction before pk decreases to
zero.


