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Abstract Problems of segmentation, denoising, regis-

tration and 3D reconstruction are often addressed with

the graph cut algorithm. However, solving an uncon-
strained graph cut problem is NP-hard. For tractable

optimization, pairwise potentials have to fulfill the sub-

modularity inequality. In our learning paradigm, pair-

wise potentials are created as the dot product of a

learned vector w with positive feature vectors. In order
to constrain such a model to remain tractable, previous

approaches have enforced the weight vector to be pos-

itive for pairwise potentials in which the labels differ,

and set pairwise potentials to zero in the case that the

label remains the same. Such constraints are sufficient to

guarantee that the resulting pairwise potentials satisfy

the submodularity inequality. However, we show that

such an approach unnecessarily restricts the capacity

of the learned models. Guaranteeing submodularity for

all possible inputs, no matter how improbable, reduces

inference error to effectively zero, but increases model

error. In contrast, we relax the requirement of guar-

anteed submodularity to solutions that are probably

approximately submodular. We show that the conceptu-

ally simple strategy of enforcing submodularity on the

training examples guarantees with low sample complex-

ity that test images will also yield submodular pairwise

potentials. Results are presented in the binary and mu-

ticlass settings, showing substantial improvement from

the resulting increased model capacity.
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1 Introduction

Multiple problems emerging in computer vision, such as

segmentation, denoising, registration and 3D reconstruc-

tion, are addressed with Structured Output Support

Vector Machines (SSVM) applied to conditional ran-

dom field (CRF) models. The arising problem of energy

minimization in CRFs can be solved by a variety of meth-

ods, including loopy belief propagation, alpha-expansion,

alpha-beta swap and many others. A majority of energy

minimization algorithms require pairwise potentials to

fulfill (pairwise) submodular constraints or metric con-

straints. This requirement places a strong limitation on

the family of models that can be employed.

It is well known from statistical learning theory that

the prediction error of a discriminant function can be

decomposed into the error resulting from the learn-

ing procedure, and the error resulting from the model

class (Bartlett et al, 2006). In a structured output set-

ting, such as in learning the parameters of a CRF model,

a method may also have error resulting from suboptimal

inference. In this work we explore the tradeoffs resulting

from this third source of error, showing that (a) increas-

ing model capacity by allowing some test-time potentials

to be potentially non-submodular generally improves

accuracies over guaranteeing submodularity for all pos-

sible inputs and (b) we can bound the probability of a

non-submodular constraint occurring at test time with

low sample complexity. This latter result indicates that

relaxing submodularity constraints to guarantee “only”

probably submodular potentials is a safe and principled

strategy for increasing model capacity and increasing

the resulting system accuracy.
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In this work, we make several fundamental contribu-

tions to discriminative learning of CRF models: (a) a

formulation for learning models with probably submodu-

lar constraints, (b) an algorithm for efficiently generating

the most violated submodularity constraint, (c) the con-

cept of a tradeoff between model error and inference

error in CRF training, and (d) empirical results showing

substantial improvement on segmentation and multi-

label classification datasets. Source code of the learning

algorithms presented here are available for download

from github.com/bermanmaxim/probablySubmodular.

This paper is an extended version of (Zaremba and

Blaschko, 2016). Zaremba and Blaschko (2016) have

built on existing frameworks for discriminative CRF

training for image segmentation by: (i) introducing nec-

essary and sufficient conditions to ensure submodularity

of the inference process (Equation (10)) and the no-

tion of probably submodular constraints (Section 3),

(ii) developing binary label semantic segmentation appli-

cations (Section 7.1), and (iii) an optimization scheme

for the binary setting (Equation (22) and Algorithm 1).

We extend our previous work by adding the following

contributions: (i) an improved presentation of the out
of sample behaviour of the probably submodular set-

ting (Section 4), (ii) an improved training scheme with

increased computational efficiency (Section 6.1), (iii) ad-

ditional segmentation applications (Sections 7.2 and 7.3),

(iv) extension of the framework to the multi-label setting

(Sections 5.2 and 7.4).

1.1 Related work

Random field models in image segmentation initially

employed data independent pairwise terms encoding a

relatively simple prior that adjacent pixels were likely to

have the same label (Geman and Geman, 1984; Boykov

et al, 2001). The first data dependent pairwise terms

proposed in the literature were simple contrast depen-

dent terms with fixed positive weighting, resulting in a

guarantee of submodularity (Boykov and Jolly, 2001).

In the first applications of structured output support

vector machines to the discriminative learning of pair-

wise terms, only associative potentials were employed,

enforced by a single positive constraint (Anguelov et al,

2005). A later work employed only two positively con-

strained learned weights: one for a Potts-like term, and

one for a contrast dependent term (Szummer et al, 2008).

This simple positivity constraint is sufficient to guar-

antee submodularity for all possible inputs, but does

not give the learning algorithm much capacity to opti-

mize the pairwise terms. In contrast, we consider here

the optimization of hundreds or thousands of pairwise

parameters, providing a rich model space for learning in-

formative pairwise potentials. An alternative approach

is to consider only tree structured models (Nowozin

et al, 2010), but this again restricts the model space

and disallows potentially helpful model interactions.

In relaxing the constraint set to include models that

do not guarantee submodularity for all possible inputs,

we develop bounds on the probability of a test time

input resulting in a non-submodular potential. This

problem reduces to the problem of estimating the sample

complexity of learning a convex cone by an intersection

of half spaces.

The approach of bounding the error of an algorithm

is closely related to the notion of probably approximately

correct (PAC) learning (Valiant, 1984). In analogy to

PAC learning, probabilistic bounds have been considered

before in the development of inference algorithms for

computer vision problems, such as in the development

of thresholds for an object detection cascade architec-

ture (Felzenszwalb et al, 2010).

Contemporary semantic segmentation methods al-

most always resort to deep learning, as e.g. the U-Net

architecture popular in medical computer vision appli-

cations (Ronneberger et al, 2015). However, there have

been successful integrations of conditional random field

structure within deep vision applications (Chen et al,

2015; Chandra and Kokkinos, 2016; Chen et al, 2017),

which pave the way to the transfer of our probabilistic

improvement to the expressivity of exact CRF models

to large-scale vision applications. Moreover, learning on

hard-coded features or with exact inference remains of

relevance in systems with limited data, or where strong

robustness guaranties are needed, as deep learning-based

solutions can be prone to adversarial attacks (Metzen

et al, 2017). In this work, we focus on a setting with a

fixed feature representation, which allows us to study in

a principled fashion the coupling between the features
and the model weights. This also allows us to frame to

problem of probably submodular learning as a frame-

work more general than semantic segmentation, which,

in particular, we also apply to multi-label classification

problems.

2 Discriminative training of segmentation

models

We consider the learning framework of Structured Sup-

port Vector Machines (SSVM) of Tsochantaridis et al

(2005), a large-margin classifier suited to problems with

structured input-output spaces, such as image segmen-

tation and multi-label problems (Bakır et al, 2007).

http://github.com/bermanmaxim/probablySubmodular
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The SSVM learns a function from a general input

space X to an output spaces Y by mapping an element

x ∈ X to a solution y∗ of the MAP inference problem

y∗ = arg max
y∈Y

wᵀψ(x, y) (1)

where w ∈ Rd is the weight vector of the model and

ψ : X × Y → Rd is the joint feature map encoding the

joint structure of the input-output space.

Following the 1-slack margin-rescaling formulation

of the SSVM (Joachims et al, 2009), the weight vector

w can be discriminatively learned from a training set S
of n training samples (xi, yi)i=1...n, by minimizing the

regularized large-margin objective

min
w,ξ

1

2
‖w‖2+Cξ (2)

subject to the SSVM constraints

1

n
wᵀ

n∑
i=1

(ψ(xi, yi)−ψ(xi, ȳi)) ≥
1

n

n∑
i=1

∆(yi, ȳi)− ξ(3)

for any joint labeling (ȳ1, . . . , ȳn) ∈ Yn, where the loss

∆ : Y × Y → R+ quantifies the dissimilarity of out-

puts (Joachims et al, 2009). The slack variable ξ in

Equation (2) represents the average training error over

the whole training dataset. The regularization constant

C > 0 controls the trade-off between the `2 regulariza-

tion of w and the minimization of the training error.

Despite the exponential number |Y|n of constraints

in the SSVM (Equation (3)), efficient algorithms, such as
the cutting-plane approach (Tsochantaridis et al, 2005;

Joachims et al, 2009), can be used to solve the quadratic

program (QP) in Equation (2). These algorithms require

efficient computation of the augmented inference max-

oracle

arg max
y∈Y

wᵀψ(xi, y) + ∆(yi, y). (4)

In this work, we consider the particular application

of SSVM of learning the potentials of a pairwise Con-

ditional Random Field (CRF) model (Anguelov et al,

2005; Szummer et al, 2008). In this case, elements of

X can be represented in terms of graphs. An x ∈ X is

associated with vertices Vx = (xk)k=1...|Vx| and edges

Ex ⊆ {{vi, vj}|(vi, vj) ∈ Vx × Vx ∧ vi 6= vj}. An output

y ∈ Y is a labeling (yk)k ∈ L|Vx| of each vertex in the

graph, where L is the set of labels. The joint features

ψ(x, y) decompose into unary and pairwise features over

the vertices and edges of the graph, such that (Szummer

et al, 2008)

(5)

wᵀψ(x, y) = wᵀ
u

∑
xk∈Vx

ψk(xk, yk)

+ wᵀ
p

∑
(xk,xl)∈Ex

ψk,l(xk, yk, xl, yl).

In this setting, one can see that the MAP inference

problem (1) corresponds to the traditional problem of

energy minimization of the CRF (Lafferty et al, 2001),

each vertex having a unary energy −wᵀ
uψ

k(xk, yk) and

each edge a pairwise energy −wᵀ
pψ

k,l(xk, yk, xl, yl).

In the following and without loss of generality, we

write the joint feature maps as Kronecker products (Mag-

nus and Neudecker, 1995):

ψku(xk, yk) = 1(yk)⊗ φku(xk); (6)

ψk,lp (xk, yk, xl, yl) = 1(yk)⊗ 1(yl)⊗ φk,lp (xk, xl) (7)

where 1 : L → {0, 1}|L| is a one-hot encoding of the

labels and φku and φk,lp are unary and pairwise features

associated to x. Similarly, wu can be split along this

decomposition into unary weights wα for every label

α ∈ L, and wp into wα,β for every α, β ∈ L.

While for general losses, the augmented inference

problem (4) can be harder to solve than the MAP in-
ference problem (1), a common choice is to pick a loss

that decomposes over the unary energies of the graph

(Tsochantaridis et al, 2005; Anguelov et al, 2005; Szum-

mer et al, 2008), i.e.

∆(yi, y) =
∑
xk∈Vx

δk(yi, y
k). (8)

Using such a decomposable loss, solving the augmented
inference problem (4) is equivalent to solving a MAP

inference problem (1) with modified unary energies. In

the following section, we discuss how enforcing addi-

tional constraints on w can ensure the tractability of

this MAP inference problem.

3 Submodularity in CRFs and probably

submodular constraints

Solving MAP inference in pairwise CRFs is NP-hard in

general (Barahona, 1982); however, particular restric-

tions on the pairwise potentials give rise to efficient

algorithms. In particular, imposing the submodularity

condition on the pairwise energies of the graph, i.e.1

〈wαα,φp(x
k, xl)〉+ 〈wββ ,φp(x

k, xl)〉
≥ 〈wαβ ,φp(x

k, xl)〉+ 〈wβα,φp(x
k, xl)〉

(9)

for every edge {xk, xl} ∈ Ex and every pair of labels

α, β ∈ L, leads to tractable inference: exact with bi-
nary labels (max-flow algorithm), or approximate with

strong approximation bounds for tasks with more than

two labels – for instance with the α − β swap algo-

rithm of Boykov et al (2001). This holds regardless of

1 In the following, we write φu(xk) and φp(xk, xl) as a

shorthand for φku(xk, xl) and φk,lp (xk, xl).
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the unary energies of the graph, hence the conditions

for augmented inference are the same. Submodularity

conditions (9) can be enforced as constraints on the

weight vector w. In the following, we detail different

sets of constraints that ensures that these inequalities

are satisfied.

Definitely submodular constraints We assume positiv-

ity of the pairwise features φp(x
k, xl) < 0. The set of

constraints

C1 :

{
wαα = wββ = 0 ∧wαβ 4 0 ∧ wβα 4 0

∀α 6=β ∈ L

}
(10)

introduced by Szummer et al (2008), enforces submodu-

larity conditions (9) for all inputs x ∈ X .

It is immediately clear on inspection of Equations (9)

and (10) that this set of constraints is sufficient, but

not necessary. We therefore introduce the relaxed set of

necessary and sufficient constraints

C2 :

{
wαα < 0 ∧ wββ < 0 ∧ wαβ 4 0 ∧ wβα 4 0

∀α 6=β ∈ L

}
(11)

also enforcing conditions (9) to be satisfied for all inputs

x ∈ X .

Probably submodular constraints We now make a prob-

abilistic argument, which we make precise in Section 4,

that we may further relax C2 to enforce linear constraints

on w of the form in Equation (9) only for the values of

φp(x
k
i , x

l
i) observed in the training data. We will refer

to this set of constraints as

C4 :


〈wαα,φp(x

k
i , x

l
i)〉+ 〈wββ ,φp(x

k
i , x

l
i)〉

≥ 〈wαβ ,φp(x
k
i , x

l
i)〉+ 〈wβα,φp(x

k
i , x

l
i)〉

∀α 6=β ∈ L, {xki , xli} ∈ Exi , xi ∈ S

 (12)

enforcing these conditions for the examples xi ∈ S only.

The key insight that allows us to make this relaxation

is that if a function is submodular on the training data,

with high probability it will be submodular on the test

data (see Section 4). Furthermore, the constraints are

linear in w and our optimization remains a quadratic

programming problem, albeit with a large set of con-

straints.

As a final set of constraints, we slightly restrict C4
to ensure that pairwise potentials of the same label are

negative (i.e. favored by the inference procedure), while

pairwise potentials of different labels are positive (i.e.
discouraged by the inference procedure), resulting in

the set of constraints

C3 :


〈wαα,φp(x

k
i , x

l
i)〉 ≥ 0; 〈wββ ,φp(x

k
i , x

l
i)〉 ≥ 0

〈wαβ ,φp(x
k
i , x

l
i)〉 ≤ 0; 〈wβα,φp(x

k
i , x

l
i)〉 ≤ 0

∀α 6=β ∈ L, {xki , xli} ∈ Exi , xi ∈ S

 .(13)

This specifies in a loose way prior knowledge about

the role of pairwise constraints in image segmentation,

while still giving sufficient model capacity to the learning

algorithm.

Gain in model capacity. We have that C1 ⊂ C2, i.e. con-
straints C1 are tighter than constraints C2. One might

wonder if using C2 effectively leads to a gain in model ca-

pacity over using constraint set C1. MRFs can have equiv-

alent parametrizations, and it could be the case that

any weight configuration in C2 can be reparametrized as

a weight configuration in C1. For instance, Kolmogorov

and Zabih (2004, Sec. 4.1) give a reparametrization al-

lowing to reduce a problem with non-zero same-label

pairwise potentials

−〈wαα,φp(x
k, xl)〉 and − 〈wββ ,φp(x

k, xl)〉 (14)

to an equivalent pairwise problem where these terms are

equal to 0. However, such a reparametrization requires

that the unary features φu be reparametrized in order

to incorporate some of the edge-dependent terms of

the energy in the unary potentials. Assuming that the

unary and pairwise features are fixed, we show that a

transformation of the model weights only is not sufficient

to reduce a model in C2 to a model in C1. In this setting,

we define reparametrization as follows:

Definition 1 A weight vector w1 ∈ Rd is reparametriz-

able into w2 ∈ Rd if both vectors lead to the same MAP

solution for every element of the input space:

arg max
y∈Y

wᵀ
1ψ(x, y) = arg max

y∈Y
wᵀ

2ψ(x, y) (15)

for all x ∈ X .

Intuitively, a model optimized with constraint set C2
can exploit information contained in the same-label
pairwise features, if this information is not also encoded

in the unary features, contrary to constraint set C1. This

argument is made explicit in the proof of the following

proposition.

Proposition 1 In general, elements of C2 cannot be

reparametrized to elements of C1.

Proof As an example, consider a problem with two vari-

ables x0, x1, two labels Y = {a, b}, and two samples in

S with ground truth labels y0 = (a, a) and y1 = (b, b).

Consider constant unary features φu(x00) = φu(x10) =

φu(x01) = φu(x11) = 0 and scalar pairwise features such

that φp(x
0
0, x

1
0) = −1 and φp(x

0
1, x

1
1) = 1. A weight vec-

tor such that waa < 0 and wbb > 0, satisfying C2, will

have zero error. Any weight vector such that waa = 0

and wbb = 0, satisfying C1, will not differentiate between

the two samples, and will therefore yield non-zero error.

ut
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In conclusion, there is a strict increase in model capacity

in general when optimizing the model weights with

constraint set C2 rather than C1, which we also validate

in our experiments.

Since C1 ⊂ C2 ⊆ C3 ⊆ C4, we strictly increase the

model capacity when we move from C1 to C4. C4 may

in the limit reach C2, but this would require a very un-

natural data set to impose such strong constraints. In

all experiments, we observe that C3 and C4 are substan-

tially larger than C2 and that the optimal weight vector
achieved by the objective in Equation (2) optimized

with constraints C3 lies outside C2. As detailed later,

C3 and C4 are empirically observed to be distinct and

resulting in different optimal w (Section 7).

4 Sample Complexity of Probably Submodular

Constraints

We consider that our training images x be drawn i.i.d.

from some probability distribution p(x), an assumption
which is already implicit in the regularized risk minimiza-

tion of the SSVM. We therefore consider the vector val-

ued random variable φx(xki , x
l
i) where xi is drawn from

p(x) and k and l are sampled uniformly. Our precise task

is to determine whether C3 and C4 determined by the
training sample results in a high probability of the scalar

random variable 〈wαα,φx(xki , x
l
i)〉+〈wββ ,φx(xki , x

l
i)〉−

〈wαβ ,φx(xki , x
l
i)〉 − 〈wβα,φx(xki , x

l
i)〉 being non-negati-

ve, where w satisfies C3 or C4, respectively. We note that

C3 and C4 are both convex cones as they are the inter-

section of half-spaces that intersect the origin. Here, we
consider a conservative bound by noting that a convex

cone enclosing the data is strictly larger than its convex

hull and therefore the integral of the probability mea-

sure outside the convex cone is strictly smaller than the

integral of the probability measure outside the convex

hull (Figure 1).

Train data
Test data

Fig. 1 The probability of a test pairwise potential being
submodular can be reduced to the question of the sample
complexity of learning convex cones. To bound the probability
of a random variable landing outside the convex cone defined
by the training data, we use a bound on the probability of the
random variable landing outside the convex hull. This is suffi-
cient to bound the sample complexity of probably submodular
constraints as defined in Section 2.

Proposition 2 As n → ∞, the expected probability

that a test point lies in the convex hull of the training

data goes to 1.

Proof Let {Xi}1≤i<∞ denote a set of random variables

drawn i.i.d. from a probability distribution p. We denote

the volume of the convex hull of a sample taken with

respect to measure p as

volp(conv(X1, . . . , Xn)).

We have that

conv(X1, . . . , Xn) ⊆ conv(X1, . . . , Xn+1) =⇒ (16)

EX1,...,Xn∼p [volp(conv(X1, . . . , Xn))] <

EX1,...,Xn+1∼p [volp(conv(X1, . . . , Xn+1))] . (17)

The inequality is strict as we take the expectation

of samples from p, and for non-trivial distributions,

conv(X1, . . . , Xn) will not be equal to the support of p

with some probability strictly greater than zero.

Now that we have shown monotonicity, assume that

lim
n→∞

EX1,...,Xn∼p [volp(conv(Xi, . . . , Xn))] < 1.

By the definition of the volume taken with respect to

measure p (Billingsley, 1995), this indicates that there
is some portion of the space with non-zero measure that

gets sampled with probability zero, a contradiction. ut

To the best of our knowledge, finite sample bounds are

not known for arbitrary distributions, but have been

studied, e.g. for uniform distributions over polytopes

(Har-Peled, 2011) in which

(18)

EX1,...,Xn ∼p [1− volp(conv(X1, . . . , Xn))]

= Ω

(
logd−1 n

n

)

d being the dimensionality of the polytope. Proposition 2

indicates that the constraints being satisfied on the

training data will result in the constraints being satisfied

on the test data with high probability given sufficient

data.

5 Application settings

In our experiments, we specialize our framework to two

particular structured prediction tasks: semantic segmen-

tation and multi-label classification. In the following

subsections, we detail the construction of the graph and

features corresponding to these two tasks.
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5.1 Semantic segmentation

We apply our approach to semantic segmentation prob-

lems. In order to reduce the complexity of the semantic

segmentation, we commonly apply a first image seg-

mentation algorithm to segment the image or volume

into superpixels (or supervoxels). Each image x is thus
decomposed into superpixels xk, k = 1 . . . P , each of

which must be mapped to a label yk ∈ L indicating

which class the superpixel belongs to.

We frame this problem as a structured prediction

problem: each superpixel is represented by a vertex in

the input graph Vx, and the edges Ex link all pairs of su-

perpixels that are adjacent to eachother. The unary

features φu(xk) ∈ Rd correspond to image descrip-

tors extracted at each of the superpixels. The pair-

wise features φp(x
k, xl) are chosen to be a function

Q(φu(xk),φu(xk)) of the descriptors of the two neigh-

bouring superpixels. In particular, we use the element-

wise absolute differences between features in our exper-

iments, such that φp(x
k, xl)i = |φu(xk)i − φu(xk)i| for

i = 1 . . . d.

5.2 Multi-label Classification

We evaluate our approach on multi-label classification

tasks. For this problem, multiple classes can be assigned

to each example. Such tasks constitute non-trivial struc-

tured learning problems, and are good test-bed for the

study of structured learning algorithms with inexact

inference (Finley and Joachims, 2008).

The classification problem consists in learning a

function which maps inputs represented as a vector

of d-dimensional attributes x ∈ Rd to binary vectors

y ∈ {0, 1}|C|, indicating the presence or absence of each

class, given a set of classes C. This reduces the problem

to a binary structured prediction problem. To each in-

put x ∈ Rd, we associate an indirected fully-connected

graph with |C| vertices, where each binary output label

yk corresponds to a vertex xk ∈ Vx.

We assign unary and pairwise features specific to

each vertex vk and edges {xk, xl} ∈ Ex in the graph by

setting

φu(xk) = 1(xk)⊗ x; (19)

φp(x
k, xl) = 2({xk, xl})⊗R(x) (20)

where 1 : Vx → {0, 1}|C| is a one-hot encoding of the ver-

tices, 2 : Ex → {0, 1}|Ex| a one-hot encoding of the edges,

and R : Rd → Re extracts an edge feature vector from

x. This specifies the unary and pairwise features and

allows us to use our probably submodular framework.

The resulting SSVM model has unary weights wu of

dimension 2 |C| d, and pairwise weights wp of dimension

2 |C| (|C| − 1) e for a fully-connected graph structure.

6 Efficient constraint generation

The tractability constraints in sets C2, C4 can be written

as hard linear constraints cᵀw ≥ 0. As such, we can

incorporate them in the QP optimization (2). However,

C4 comprises (|L|·(|L|−1)/2) · |E|·|S| constraints; even

for moderately sized binary segmentation tasks with lim-

ited connectivity on small datasets, this large amount

cannot be handled by QP solvers. We address this prob-

lem in a cut approach; the most violated constraints

are iteratively added to the w-update (QP solver) sub-

routine of the SSVM until all constraints are satisfied,
leading experimentally to a small, manageable, number

of constraints added to the QP at any learning iteration.

Noting d the dimension of the pairwise features, let P

be the |E|·|S|×d matrix of all pairwise feature vectors in

the training data and B the |L|(|L|−1)/2× |L|2 matrix

of rows

(1(α)⊗ 1(α))ᵀ + (1(β)⊗ 1(β))ᵀ

− (1(α)⊗ 1(β))ᵀ − (1(β)⊗ 1(α))ᵀ (21)

for all labels α 6= β. The constraints in C4 take the form

(B ⊗ P)wp ≥ 0. Because of the large number of con-

straints, computing the constraints margins after each

w − update takes a significant amount of computation
time. We detail in the following different ways to reduce

the computational impact of this computation.

Tensor factorization The complexity of computing the

constraint margins (B ⊗ P)wp can be reduced by ob-

serving that

(B⊗P)wp = vec Pw̃pB
ᵀ (22)

with w̃p a matrix constructed such that vec w̃p = wp.

The computation of the right-hand side V := P(w̃pB
ᵀ)

saves a factor of |L|2 operations for computing all the

constraint margins. The resulting w-update subroutine

of the SSVM is presented in Algorithm 1.

6.1 Delayed constraint generation

Even with this acceleration, computing the |E||S| ×
|L|(|L|−1)/2 matrix V still requires O(|E|·|S|·|L|2·d)

operations. On a small-sized problem with 103 edges,

200 images, 2 labels and pairwise features of dimension

500, this results in 400 million floating point operations

for updating the hard constraints margins after each
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Algorithm 1: w-update subroutine of proba-

bly submodular SSVM

input : SSVM constraints C(t) at iteration t;
constraint matrices P,B; current w

output : optimal w∗ satisfying C(t) and
submodular constraints

1 Loop
2 (w∗, ξ∗)← arg min(w,ξ) {‖w‖2/2 + Cξ}
3 s.t. (w, ξ) ∈ C(t) // QP solver
4 W← w̃pBᵀ

5 V← PW
6 (i, j)← arg minV
7 if Vi,j ≥ 0 then return w∗

// all bounds positive
8 else Ct = Ct ∪ {constraint (bj ⊗ pi)wp ≥ 0}

// most violated constraint

update of the weight vector, which significantly impacts

the learning time – as illustrated by our experiments.

To address this issue, we use a delayed constraint

generation approach. The key observation is that in later

learning iterations, the optimal weight vector w does

not change drastically. Constraints corresponding to a

high positive margin in V are therefore likely to stay

enforced after updating w. Formally, for each probably

submodular constraint c : cᵀw ≥ 0, we introduce a

lower bound on the margin lc ≤ cᵀw. After a weight

update w→ w′, we have

cᵀw′ = cᵀw + 〈w′ −w, c〉 ≥ lc − ‖w′ −w‖·‖c‖; (23)

by application of the Cauchy-Schwartz inequality. There-

fore the update lc → l′c = lc − ‖w′ − w‖·‖c‖ yields a

correct new lower bound. We can safely save computa-

tions by avoiding the updating of constraint margins

that are lower-bounded by a positive value.

As before, we write the operations in matrix form.

We store the norm of all constraints, and the margin of

lower bounds (initialized to −∞), in two matrices N and

L of same size as V. By storing the results of margin

computations in L, raising the bound to the actual

value, we avoid referring to V altogether. Algorithm 2

presents the resulting algorithm integrated in the w-

update subroutine, called at each iteration t of the

SSVM.

Pretraining In initial iterations of the learning proce-

dure, w changes significantly and most of the constraints

have to be recomputed. To mitigate this, we can use a

two-stage learning. First, the weights and dual variables

of the SSVM are trained until convergence with no sub-

modular constraints – resulting in an inexact truncated

graph-cut inference. Second, we enfore submodularity

with the above approach, with exact inference. The

SSVM converges to the same global optimum, but the

Algorithm 2: Accelerated w-update subrou-

tine of probably submodular SSVM

input : SSVM constraints C(t) at iteration t;
constraint matrices P,B,N; current w,
current bounds L

output : optimal w∗ satisfying C(t) and
submodular constraints; new bounds L

1 Loop
2 (w∗, ξ∗)← arg min(w,ξ) {‖w‖2/2 + Cξ}
3 s.t. (w, ξ) ∈ C(t) // QP solver
4 L← L− ‖w∗ −w‖·N // update bounds
5 W← w̃pBᵀ

6 for (i,j) such that Li,j ≤ 0 do
7 Li,j ←

∑
k Pi,kWk,j

// compute margins

8 (i, j)← arg minL
9 if Li,j ≥ 0 then return w∗,L

// all bounds positive
10 else Ct = Ct ∪ {constraint (bj ⊗ pi)wp ≥ 0}

// most violated constraint

pretraining warm-starts the exact learning closer to
convergence.

Constraint minibatches The 2-stage pretraining strat-

egy can be generalized to an n-stage learning approach,

where batches of constraints are added sequentially, in
order to balance the computation time between conver-

gence to the objective of the SSVM and computation

of margins. We experiment with this approach in the

experimental section.

7 Experiments and results

7.1 Segmentation on TU Darmstadt dataset

We evaluate the computational gains of our method on

a 10-fold cross validation of the 111 images of the TU

Darmstadt cows dataset provided by Leibe et al (2004).

The images are first oversegmented into ∼ 500 SLIC

superpixels Achanta et al (2012) with a compactness

parameter m = 20 and a prior smoothing with a gaus-

sian kernel of width σ = 2.0 pixels. We use 3-channel

color histograms with 53 = 125 bins as unary features

φu(xk) for every superpixel k, and absolute differences of

histograms as pairwise features for adjacent superpixels.

Our inference uses graph-cuts optimization (Boykov

et al, 2001) which is exact in the case of submodular

potentials in this binary setting. The dynamic intro-

duction of submodular constraints before each step of

loss-augmented inference, as described in Section 6, en-

sures that the CRF potentials remain submodular over

the training set throughout the entire training, and

therefore, the exactness of the training procedure. In



8 Maxim Berman, Matthew B. Blaschko

our probably submodular framework, non-submodular

potentials can arise at test-time; we truncate these po-

tentials to recover submodularity prior to the graph-cuts

procedure, as described in Rother et al (2005).

In line with standard practice in segmentation, we

report results with respect to two metrics. The global

metric counts superpixel-wise accuracy, while the av-

erage metric counts average per-class superpixel-wise

accuracies. The latter metric is more informative, as the

background is typically much more prevalent than the

foreground. We have employed both variants in the con-

struction of the structured output loss function, ∆(yi, y),

and have trained different models that have optimized

each.

For each method and loss metric an initial training

with 1/5 fraction of the training data set aside as valida-

tion data to set the SSVM regularization parameter C.

This is done in order to remove the dependence on the
regularization parameter for comparing the performance

between methods. C is chosen as the best performing

one on the validation set among five values logarithmi-
cally spaced between 0.1 and 10. We set the stopping

criterion of the SSVM as a threshold of tol = 0.001 on

the value of the dual gap relative to the objective. For

this criterion all methods converged within a similar

number of cutting plane iterations 126± 21.

(a) Accuracies for models trained to optimize the sum of
pixel errors over all training images

(b) Accuracies for models trained to optimize the average
per-class pixel accuracies.

Fig. 2 Comparison of results of the binary segmentation of
the TU Darmstadt Database of cows. Models have increased
capacity as the plot moves from left to right.

Results are presented in Figure 2. In addition to the

four constraint sets described in Section 2, we consider

two additional constraint sets in our experiments. The

constraint set

C0 = {w | wαα = wββ = wαβ = wβα = 0} (24)

represents a simple SVM, with no effective pairwise

potentials, which we cast as a special case of our learning

framework. The constraint set denoted as C4 corresponds

to a variant of the probably submodular model where,

in addition to the submodularity constraints on the

training set, the training procedure enforces that the

pairwise potentials of the test set (not observing the test

labels) are guaranteed to be submodular. This setting

falls under the general definition of transductive learning,

in which the test points are known during the training

procedure (Vapnik, 1998, Chapter 8).

We have that C0 ⊂ C1 ⊂ C2 ⊆ C3 ⊆ C4. As expected,

this gain in model expressiveness translates into a gain of

performance as we go from smaller to bigger acceptable

optimization domains. These performance gains have

been verified to be statistically significant. A t-test yields

a p-value less than 10−5 for a comparison of the methods

resulting from optimizing the SSVM subject to w ∈ C1
vs. w ∈ C4 both for the global and average metrics.

Table 1 presents the number of active hard con-

straints for every method. Hard constraints that are

active at convergence indicate that the data term in

the optimization objective is pushing the vector w to-

wards a solution outside of the constraint set Ci of the

optimization domain. We see that as we go to broader op-

timization domains, from C0 to Cf , the hard constraints

tend to be more often inactive, therefore putting less

stringent constraints on the learned model.

Active
constraints

All
constraints

Definitely submodular models
C0 326 415
C1 301 426
C2 256 405
C4 126 814

Probably submodular models
C3 999 1609
C4 116 699

Table 1 Active constraints: number of active hard constraints
after convergence. All constraints: number of unique hard
constraints introduced in the QP-solver at any point over the
course of the SSVM optimization.

Probably submodular models trade off inference er-

ror with model expressivity. Table 2 shows the percent-

age of pairwise constraints that are non-submodular in
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(a) Original image. (b) Ground truth. (c) SVM (C0). (d) Szummer et al (2008) (C1).

(e) Necessary and sufficient def-
initely submodular (C2).

(f) Probably submodular (C3). (g) Probably submodular (C4).(h) Probably submodular with
transductive constraints (C4).

Fig. 3 Example segmentations from methods trained to optimize each of the constraint sets considered here. As we move from
(a) to (e) we increase model capacity and substantially increase the accuracy of the resulting segmentation. .

the test set. Figure 3 gives examples of segmentations

predicted by the different constraint sets, including the

method of Szummer et al (2008) corresponding to the

set C1, and the probably submodular constraint sets C3
and C4.

Non-submodular potentials

cows dataset feline retinal dataset

C3 5 · 10−2 4 · 10−4

C4 0 1 · 10−2

Table 2 Fraction of non-submodular potentials measured
on the test set for probably submodular models. For defi-
nitely submodular models, and for the transductive probably
submodular set C4, this number is always zero.

We do not observe a difference in performance be-

tween C4 and C4, which corroborates our observation

made in section 4 that enforcing the constraints on the

training set is enough to enforce with high probability

the submodularity of the potentials at test-time. This

also shows that the inexactness of the truncated graph-

cuts procedure, due to the submodular edges arising

at test-time after probably submodular training with

C4, plays negligible role, as is expected given the small

portion of effective non-submodular potentials on the

test-set observed in Table 2.

Evaluation of the constraint generation efficiency Ta-

ble 3 shows the improvements in computational effi-

ciency of our delayed constraint generation scheme and

the 2-stage training, for one fold of the data. Figure 4

shows the number of computed constraint margins. Com-

bining inexact pretraining and delayed constraint gen-

eration limits the number of computed margins. In the

first SSVM iteration, many hard constraints have to be

added to make w satisfy the constraints C4; in subse-

quent iterations, the number of added constraints per

iteration becomes small (1 or 2).

7.2 Segmentation photon receptor cells in 2D retinal

images

We evaluate our approach on the publicly available

UCSB retinal dataset, which has 50 greyscale laser scan-

ning confocal images of normal and 3-day detached

feline retinas (Gelasca et al, 2008). As in subsection 7.1,

we first oversegment the images into ∼ 600 superpixels

using the SLIC algorithm. As in a previous work by

Lucchi et al (2015) that used structured prediction on

this dataset, we use a concatenation of 10-bin intensity

histograms and 8 × 8 grey level co-occurrence matrix

(GLCM) with one-pixel displacement (Haralick et al,

1973) as unary features for each of the superpixels. This

yields a 74-dimensional unary feature vector. We set the

pairwise features between adjacent superpixels as the

vector of absolute difference between the corresponding

unary features. We train the different methods using

the per-class averaged accuracy loss ∆avg. We report

the results over 40 random folds, each fold containing

40 training images 10 test images. For each method, the

regularization parameter C is chosen by cross-validation
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Table 3 Training efficiency gains with/without delayed constraint generation and 2-stage weights pretraining

method # margins computed SSVM iterations total constraint gen. time total training time

def. submodular 296 607 s
1-pass, full 102.5 · 106 581 400 s 593 s
1-pass, delayed 67.9 · 106 581 329 s 652 s
2-pass delayed 6.5 · 106 658 41 s 555 s
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(a) (b) (c) (d)
Fig. 4 Number of constraint margins computed with (solid) or without (dashed) delayed constraint generation. The horizontal
axis is the number of cutting plane iterations (i.e. the numer of times passing through the outer loop of Algorithms 1 or 2). (a):
per call to the QP solver, (b): running total. (a) shows only one fold of the dataset, (b) also shows other folds, which have
similar behavior. Shaded area: first SSVM iteration. (c), (d): margins computation without inexact pretraining: in this case, the
delayed constraints approach saves a substantial amount of computation.

Table 4 Test performances and Jaccard index of the segmentations obtained on the UCSB retinal dataset. The values are
averaged across the 40 random folds. VOC is the VOC score (or mean IoU).

C0 C1 C2 C3 C4 C4 QPBO

1−∆avg(%) 93.1 93.5 95.7 95.7 96.6 96.6 92.4
IoU (%) 72.8 78.5 85.0 85.2 87.2 87.2 79.7
VOC (%) 73.3 80.0 86.4 86.7 88.5 88.4 81.7

on the training set of each fold. We set the relative

tolerance of the cutting-plane SSVM to tol = 10−4. We
report the resulting accuracy using the class-averaged

accuracy over all superpixels in the test set – which is

the training objective and therefore accurately repre-

sents the gain in capacity of the probably submodular

framework. We also report the mean per-image pixel-

wise Jaccard index – or intersection-over-union metric

IoU =
True Positive

True Pos. + False Pos. + False Negative
(25)

commonly used in image segmentation. additionally, we

report the VOC score, which is the mean between the

IoU of the foreground class and the IoU of the back-

ground class, and was used in Lucchi et al (2015) in

place of the IoU of the foreground class alone (Cheng

and Varshney, 2017; Casser et al, 2018). These results

are summarized in Table 4, averaging the performance

across folds on the test set. We observe that the inter-

mediate probably constraint set C3 does not provide

significant gains over the definitively submodular set C2,

indicating that this set of constraints effectively degen-

erates to the definitively submodular set of constraints.

The full-fledged probably submodular approach under

the constraint set C4 does nevertheless lead to perfor-

mance gains over C2, significant under a paired Student’s
t-test with a 5% acceptance level. As before we see that

the transductive probably submodular constraint set

C4 does not lead to significant improvements over C4,

validating our approach and leading to the conclusion

that the geometry of the dataset necessary for efficient

inference is accurately captured by the training set alone.

Table 2 indicate that only a small amount of edges are

non-submodular at test time for the two probably sub-

modular constraint sets, indicating that the truncated

graph cut inference is very close to being exact.

We also compare with using an approximate solver

for the SSVM learning, without submodularity con-

straints: we use QPBO, which corresponds to the ex-

tended roof duality solver of (Rother et al, 2007). We

see that the QPBO solver converges to a suboptimal

solution, with a lower test accuracy than the SSVM
optimized with definitely submodular (C2) or probably

submodular (C4) constraints.

Figure 5 shows an example of a segmented retinal

image and highlight the gains obtained by training the

model with more expressive constraint sets.
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(a) Ground truth (b) C0 (c) C1 (d) C2

(e) C3 (f) C4 (g) C4

Fig. 5 Contours of segmentations obtaining using the different constraint sets on a feline retinal image. The use of larger
constraint sets leads to a better performance of the model; moreover the transductive probably submodular constraint set C4
does not perform better than the probably submodular set C4.

7.3 Mitochondria segmentation from 3D electron

microscopy

We perform for structured learning in a publicly avail-

able 3D electron microscopy image taken from the CA1

hippocampus region of the brain (Lucchi et al, 2012),

with annotation of the mitochondria. This dataset has

been shown to benefit from structured learning over

unary voxel-based non-structured approaches (Lucchi

et al, 2015), and consists of two greyscale volumes con-

taining 1024 × 768 × 165 voxels, one being used for

training and one being used for testing. We perform ini-

tial supervoxel segmentation with ∼ 130K supervoxels

with compacity m = 20, after initial gaussian smooth-

ing of the image volumes with σ = 5. To cross-validate

the regularization parameter of the different methods,

we split the training volume into two 512× 768× 165

sub-volumes and perform validation of the C among

11 values logarithmically distributed between 10−2 and

103 for each method considered. For each superpixel, we

extract unary features as the concatenation of 40-bin

intensity histograms, a 8 × 8 grey-level co-occurence

matrix with 1 pixel displacement in the three dimen-

sions, and a bias channel of constant value 1. We use the

absolute difference between unary features as pairwise

features. The SSVM is optimized with a per-class aver-

age loss, with a final bound of 10−3 on the primal-dual

cutting-plane relative optimization gap and a maximum

number of 5000 iterations.

We report the accuracies of the SSVM prediction

on the train and test set after optimization with the

different constraint sets considered, in terms of the test

set superpixel loss ∆avg in Table 5. In addition, we

compare with the QPBO approximate solver (as in

Section 7.2), as well as truncated Graph-Cuts with no

submodularity constraints (TGC). We also report the

pixelwise IoU and VOC score on the test set, as well as

the supervoxel oracle performance O, which is the best

performance one may obtain using these supervoxels.

As before, we see an improvement associated to the

use of larger optimization domains for the model param-

eter. Only a small fraction 3.5 ·10−05 of non-submodular

edges are present on the test set after optimization un-

der the probably submodular constraint set C4. While

the training accuracy (objective) is increasing when re-
laxing constraints from C0 to C4 as expected, we notice

that in this case the test accuracy on C3 is greater than

the test accuracy on C4, especially in terms of IoU and

VOC score. In this case, we believe that the added con-

straints in C3 can have a regularizing effect that helps

the generalization of the model.

While using a truncated graph-cut solver leads to

subpar performance on this problem, we see that the

QPBO solver reaches competitive accuracies. However,
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(a) Ground truth (b) C0 (c) C1 (d) C2

(e) C3 (f) C4 (g) QPBO

Fig. 6 Slice of the test segmentation volume obtained for the Mitochondria volumetric segmentation task. .

Table 5 Train and test losses and test performances of the segmentations of the 3D electron microscopy images of mitochondria
in the hippocampus. “Oracle” corresponds to the supervoxel oracle performance. “SSVM iter.” reports the number of SSVM
iterations of the method.

C0 C1 C2 C3 C4 C4 TGC QPBO Oracle

1−∆train
avg (%) 87.6 96.9 97.0 97.4 98.0 98.0 85.2 97.9

1−∆test
avg (%) 87.7 95.9 95.6 96.5 96.2 96.1 78.8 96.0 100

IoU (%) 43.9 60.4 58.0 64.5 56.9 56.6 51.9 58.0 100
VOC (%) 69.1 78.5 77.1 80.8 76.5 76.3 74.5 77.1 90.05

SSVM iter. 369 1082 1303 976 3981 3322 25 5000

it is also the only method that does not converge within

5000 SSVM iterations. Inexact algorithms can lead to

a poor estimation of the primal-dual optimization gap,
on which our termination criterion is founded.

A visualization of a slice of the segmentation volumes

resulting from the different methods is given in Figure 6.

7.4 Multi-label classification datasets

We evaluate our structured prediction learning frame-

work in multi-label classification settings, as described

in Section 5.2. We use the yeast (Elisseeff and We-

ston, 2001) dataset, which has 1500 training and 917

test instances with d = 103 attributes and |C|= 103

classes, and the scene (Gjorgjevikj and Madjarov, 2011)

dataset, which has 1211 train and 1196 test instances

with d = 294 attributes and |C|= 6 classes. For each

input x, we construct the edge features R(x) (Equation

(20)) by a dimensionality reduction of x. Specifically,

we transform x into an 20-dimensional PCA reduction

x̃ learned on the training set, and set R(x) to be the

concatenation of the positive and negative part of x̃:

R(x)= max(x̃, 0)⊕max(−x̃, 0), (26)

satisfying the feature positivity assumption of our con-

strained SSVM framework.

Table 6 compares the resulting accuracies after train-

ing with the Hamming loss, using a SSVM regularization

parameter C = 0.1 and a final bound on the relative

optimization gap of 10−2 and a maximum number of 200

iterations. C0 is an SVM trained with a unary-only solver.

C2 and C4 corresponds to our submodular and probably

submodular constraint set, leading to an exact graph-

cut inference. We also report the accuracies of models

learned without submodular constraints using approxi-

mate inference algorithms, namely truncated graph-cuts

(TGC), QPBO and the TRW-S tree-reweighted algo-

rithm of Kolmogorov (2005). All methods converge in

less than 200 SSVM optimization iterations, except the

TRW-S-based model on the yeast dataset.

Approximate algorithms leads to bad solutions on

these multi-label classification problems – sometimes

worse than the accuracy of C0 which uses unaries alone.
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Table 6 Train and test accuracies for the multi-label classification datasets, with standard error bars.

dataset C0 C2 C4 TGC QPBO TRW-S (Fin–Best)

yeast
1−∆train(%) 69.8 ±.5 80.7 ±.4 80.7 ±.4 72.6 ±.6 67.7 ±.6 70.5 ±.6
1−∆test(%) 69.6 ±.6 80.0 ±.4 80.0 ±.4 71.8 ±.6 66.9 ±.6 69.6 ±.6 79.8 ±.5

scene
1−∆train(%) 85.5 ±.4 93.7 ±.3 94.3 ±.2 83.8 ±.5 74.1 ±.5 74.2 ±.3
1−∆test(%) 84.5 ±.4 90.2 ±.3 90.4 ±.3 83.3 ±.4 72.8 ±.5 72.8 ±.5 89.9 ±.3

This exemplifies the need for exact inference algorithms

in structured prediction learning problems, and the merit

of extending the relaxing the constraints of exact models

through the probably submodular framework.

Finally, we report accuracies obtained by (Finley
and Joachims, 2008), which also uses a SSVM learn-

ing setting, only with simple indicator edge features

corresponding to R(x) = 1, (where the probably sub-

modular and the definitely submodular constraints sets

are the same). We report their best reported accuracies

among various inference algorithms (Fin–Best). While

the error bars of our method (C4) overlap w.r.t. Fin-

ley and Joachims (2008), we note that Fin-Best uses

a brute-force exact algorithm, which cannot scale to

larger problems, while our algorithm can, thanks to fast

graph-cut inference.

8 Conclusions

We present the probably submodular framework, which

allow to learn more expressive CRF models without sac-

rificing tractability, through the use of exact graph-cut
based inference routines. This methods leads to more

expressive models without paying the price of tractabil-
ity. We presented efficient optimization strategies for

the probably submodular structured SVM framework.

Although we have presented our approach in the case

of exact optimization routines of the learning objective,

through the duality certificates of the SSVM cutting-

plane optimization, our method can be extended to

first-order optimization schemes such as projected sto-

chastic gradient descent.

Our algorithms were implemented as additions to

the Python module for structured prediction PyStruct

of Müller and Behnke (2014). The code and experiments

have been made available on the repository github.com/

bermanmaxim/probablySubmodular.
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