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Abstract
Over the past few years, Generative Adversarial Networks (GANs) have garnered increased interest among researchers
in Computer Vision, with applications including, but not limited to, image generation, translation, imputation, and super-
resolution. Nevertheless, no GAN-based method has been proposed in the literature that can successfully represent, generate
or translate 3D facial shapes (meshes). This can be primarily attributed to two facts, namely that (a) publicly available 3D
face databases are scarce as well as limited in terms of sample size and variability (e.g., few subjects, little diversity in race
and gender), and (b) mesh convolutions for deep networks present several challenges that are not entirely tackled in the
literature, leading to operator approximations and model instability, often failing to preserve high-frequency components of
the distribution. As a result, linear methods such as Principal Component Analysis (PCA) have been mainly utilized towards
3D shape analysis, despite being unable to capture non-linearities and high frequency details of the 3D face—such as eyelid
and lip variations. In this work, we present 3DFaceGAN, the first GAN tailored towards modeling the distribution of 3D facial
surfaces, while retaining the high frequency details of 3D face shapes. We conduct an extensive series of both qualitative and
quantitative experiments, where the merits of 3DFaceGAN are clearly demonstrated against other, state-of-the-art methods
in tasks such as 3D shape representation, generation, and translation.
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1 Introduction

GANs are a promising unsupervised machine learning
methodology implemented by a system of two deep neural
networks competing against each other in a zero-sum game
framework (Goodfellow et al. 2014). GANs became imme-
diately very popular due to their unprecedented capability
in terms of implicitly modeling the distribution of visual
data, thus being able to generate and synthesize novel yet
realistic images and videos, by preserving high-frequency
details of the data distribution and hence appearing authen-
tic to human observers. Many different GAN architectures
have been proposed over the past few years, such as the Deep
Convolutional GAN (DCGAN) (Radford et al. 2016) and the
Progressive GAN (PGAN) (Karras et al. 2018), which was
the first to show impressive results in generation of high-
resolution images (Fig. 1).

A type of GANs which has also been extensively studied
in the literature is the so-called Conditional GAN (CGAN)
(Mirza and Osindero 2014), where the inputs of the genera-
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Fig. 1 A graphical representation of the data preprocessing step. We begin by applying non-rigidly a mesh template to the raw scan and we later
store the spatial information of the vertices (x, y, z) into a UV space. Lastly, a 2D nearest point interpolation is performed to fill out the missing
values

tor as well as the discriminator are conditioned on the class
labels. Applications of CGANs include domain transfer (Kim
et al. 2017; Bousmalis et al. 2017; Tzeng et al. 2017), image
completion (Li et al. 2017; Yang et al. 2017; Wang et al.
2017), image super-resolution (Nguyen et al. 2018; Johnson
et al. 2016; Ledig et al. 2017) and image translation (Isola
et al. 2017; Zhu et al. 2017; Choi et al. 2018; Wang et al.
2018).

Despite the great success GANs have had in 2D image/
video generation, representation, and translation, no GAN
method tailored towards tackling the aforementioned tasks
in 3D shapes has been introduced in the literature. This is
primarily attributed to the lack of appropriate decoder net-
works for meshes that are able to retain the high frequency
details (Dosovitskiy and Brox 2016; Jackson et al. 2017).

In this paper, we study the task of representation, gen-
eration, and translation of 3D facial surfaces using GANs.
Examples of the applications of 3DFaceGAN in the tasks
of 3D face translation as well as 3D face representation and
generation are presented in Figs. 2 and 3, respectively. Due
to the fact that (a) the use of volumetric representation leads
to very low-quality representation of faces (Fan et al. 2017;
Qi et al. 2017), and (b) the current geometric deep learning
approaches (Bronstein et al. 2017), and especially spectral
convolution, preserve only the low-frequency details of the
3D faces, we study approaches that use 2D convolutions in
a UV unwrapping of the 3D face. The process of unwrap-
ping a 3D face in the UV domain is shown in Fig. 1. Overall,
the contributions of this work can be summarized as fol-
lows.

– We introduce a novel autoencoder-like network archi-
tecture for GANs, which achieves state-of-the-art results
in tasks such as 3D face representation, generation, and
translation.

– We introduce a novel training framework for GANs, espe-
cially tailored for 3D facial data.

– We introduce a novel process for generating realistic 3D
facial data, retaining the high frequency details of the 3D
face.

The rest of the paper is structured as follows. In Sect. 2, we
succinctly present the various methodologies that can be uti-
lized in order to feed 3D facial data into a deep network and
argue why the UV unwrapping of the 3D face was the method
of choice. In Sect. 3, we present all the details with respect
to 3DFaceGAN training process, losses, and model architec-
tures. Finally, in Sect. 4, we provide information about the
database we collected, the preprocessing we carried out in
the databases we utilized for the experiments and lastly we
present extensive quantitative and qualitative experiments of
3DFaceGAN against other state-of-the-art deep networks.

2 3D Face Representations for Deep Nets

The most common representation of a 3D face is through a 3D
mesh. Adopting a 3D mesh representation requires applica-
tion of mesh convolutions defined on non-Euclidean domains
(i.e., geometric deep learning methodologies1). Over the
past few years, the field of geometric deep learning has
received significant attention (Maron et al. 2017; Litany et al.
2017; Lei et al. 2017). Methods relevant to this paper are
auto-encoder structures such as Ranjan et al. (2018); Litany
et al. (2018). Nevertheless, such auto-encoders, due to the
type of convolutions applied, mainly preserve low-frequency
details of the meshes. Furthermore, architectures that could
potentially preserve high-frequency details, such as skip con-
nections, have not yet been attempted in geometric deep
learning. Therefore, geometric deep learning methods are
not yet suitable for the problem we study in this paper.

Another way to work with 3D meshes is to concatenate the
coordinates of the 3D points in an 1D vector and utilize fully
connected layers to decode correctly the structure of the point
cloud (Fan et al. 2017; Qi et al. 2017). Nevertheless, in this
way the triangulation and spatial adjacent information is lost
and the number of the parameters describing this formulation
is extremely large which makes the network hard to train.

1 A thorough overview describing the first attempts towards geometric
deep learning can be found in Bronstein et al. (2017).
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Fig. 2 Results of 3DFaceGAN in the shape translation task on test data
of the proposed Hi-Lo database. The first row of shapes shows the low
quality facial meshes captured by a low cost sensor, whereas the bottom

row depicts the same subjects captured in high quality by an expensive
high-end apparatus. The middle row shows our shape translation output
results when the network takes as inputs the low quality 3D facial scans

(a)

(b)

Fig. 3 3D face representation and generation utilizing the proposed
3DFaceGAN. In a we demonstrate the 3D face representation capa-
bility of 3DFaceGAN. The first row shows the reconstructed 3D faces
whereas the second row shows the corresponding real 3D faces. As
evidenced, 3DFaceGAN is able to capture and reconstruct non-linear

details of the 3D face such as lips, eyelids, etc. In b we present the
generative nature of 3DFaceGAN. The left and right hand side show
the real 3D face targets. The generated samples in between show the
reconstructions and the interpolations of the targets in the latent space

Recently, many approaches aim at regressing directly on
the latent parameters of a learned model space, e.g., PCA,
rather than the 3D coordinates of points (Richardson et al.
2017; Tran et al. 2017; Dou et al. 2017; Genova et al. 2018).
This formulation limits the geometrical details of the 3D
representations and is restricted to their latent model space.
Some approaches try to alleviate this problem by combin-

ing a regression methodology with a multi-level face model
that induces an out-of-space generalization of the learned
subspace (Tewari et al. 2018). Additionally, Tewari et al.
(2019) propose to learn a face identity model from a multi-
frame video-based self-supervised deep network that jointly
learns to reconstruct 3D faces in-the-wild. Furthermore, vari-
ous model based extensions try to capture the high frequency
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Fig. 4 3DFaceGAN training process in a nutshell. The networks receive
(extract) 2D facial UVs as inputs (outputs). The corresponding 3D faces
are shown below or next to them. We firstly pre-train D (left figure).
We then use the learned weights/biases to initialize D and G and sub-

sequently start the adversarial training (right figure). The decoder parts
of D and G are depicted in red color as we freeze the weights/biases
updates during the training phase of 3DFaceGAN

facial characteristics by introducing a nonlinear subspace that
models both the shape and the appearance (Liu et al. 2019;
Tran et al. 2018). Although these methods produce realistic
facial characteristics, they are difficult to train and are very
sensitive to initialization. In contrast, a 3D volumetric space
is introduced in Jackson et al. (2017) as a representation of a
3D structure and exploits a Volumetric Regression Network
which outputs a discretized version of the 3D structure. Due
to discretization, the predicted 3D shape has low quality and
corresponds to non-surface points that are difficult to handle
(Fig. 4).

Lastly, in Feng et al. (2018), a UV spatial map framework
is utilized where the 3D coordinates of the points are stored
in a UV space instead of the texture values of the mesh.
This formulation exhibits a very good representation for 3D
meshes where there are no overlapping regions and the mesh
is optimally unwrapped. Since the 3D mesh is transferred in
a 2D UV domain, we are then able to use 2D convolutions,
with the whole range of capabilities they offer. As a result,
this is our preferred methodology for preprocessing the 3D
face scans, as further explained in Sect. 4.2.

3 3DFaceGAN

In this Section we describe the training process, network
architectures, and loss functions we utilized for 3DFace-
GAN. Moreover, we discuss the framework we utilized for
3D face generation as well as present an extension of 3DFace-
GAN which is able to handle data annotated with multiple
labels. Finally, we should point out that while most GANs
use discriminator architectures with logit outputs, in 3DFace-

GAN we use an autoencoder as a discriminator for reasons
that are thoroughly explained in Sect. 3.2 .

3.1 Objective Function

The main objective of the generator G is to retrieve a facial
UV map x as input and generate a fake one, G (x), which in
turn should be as close as possible to the real target facial UV
map y. For example, in the case of 3D face translation, the
input can be a neutral face and the output a certain expression
(e.g., happiness) or in the case of 3D face reconstruction the
input can be a 3D facial UV map and the output a recon-
struction of the particular 3D facial UV map. The goal of the
discriminator D is to distinguish between the real (y) and
fake (G (x)) facial UV maps. Throughout the training pro-
cess, D and G compete against each other until they reach an
equilibrium, i.e., until D can no longer differentiate between
the fake and the real facial UV maps.

Adversarial loss. To achieve the 3DFaceGAN objective, we
propose to utilize the following loss for the adversarial part.
That is,

LD = Ey [L (y)] − λadv · Ex [L (G(x))] ,

LG = Ex [L (G(x))] , (1)

where D (·) refers to the output of the discriminator D,
L (x)

.= ‖x − D(x)‖1, and λadv is the hyper-parameter
which controls how much weight should be put on L (G(x)).
The higher the λadv , the more emphasis D puts on the task
of differentiating between the real and fake data. The lower
the λadv , the more emphasis D puts on reconstructing the
actual real data. There is a fine line between which task D
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should primarily focus on by adjusting λadv . In our experi-
ments we deduced that for relatively low values of λadv we
retrieve optimal performance as then D is able to influence
the updates of G in such a way that the generated facial UV
maps are more realistic. During the adversarial training, D
tries to minimize LD whereas G tries to minimize LG . Simi-
lar to recent works such as Zhao et al. (2017); Berthelot et al.
(2017), the discriminator D has the structure of an autoen-
coder. Nevertheless, the main differences are that (a) we do
not make use of the margin m as in Zhao et al. (2017) or
the equilibrium constraint as in Berthelot et al. (2017), and
(b) we use the autoencoder structure of the discriminator and
pre-train it with the real UV targets prior to the adversar-
ial training. Further details about the training procedure are
presented in Sect. 3.2.

Reconstruction loss. With the utilization of the adversarial
loss (1), the generator G is trying to “fool” the discriminator
D. Nevertheless, this does not guarantee that the fake facial
UV will be close to the corresponding real, target one. To
impose this, we use an L1 loss between the fake sample
G (x) and the corresponding real one, y, so that they are
as similar as possible, as in Isola et al. (2017). Namely, the
reconstruction loss is the following.

Lrec = Ex ‖G (x) − y‖1 . (2)

Full objective. In sum, taking into account (1) and (2), the
full objective becomes

LD = Ey [L (y)] − λadv · Ex [L (G(x))] ,

LG = Ex [L (G(x))] + λrec · Lrec, (3)

where λrec is the hyper-parameter that controls how much
emphasis should be put on the reconstruction loss. Overall,
the discriminator D tries to minimizeLD while the generator
G tries to minimize LG .

3.2 Training Procedure

In this Section, we first describe how we pre-train the dis-
criminator (autoencoder) D and then provide details with
respect to the adversarial training of 3DFaceGAN.

Pre-training the discriminator. The majority of GANs in
the literature utilize discriminator architectures with logit
outputs that correspond to a prediction on whether the input
fed into the discriminator is real or fake. Recently proposed
GAN variations have nevertheless taken a different approach,
namely by utilizing autoencoder structures as discrimina-
tors (Zhao et al. 2017; Berthelot et al. 2017). Using an
autoencoder structure in the discriminator D is of paramount
importance in the proposed 3DFaceGAN. The benefit is
twofold: (a) we can pre-train the autoencoder D acting as

discriminator prior to the adversarial training, which leads to
better quantitative as well as more compelling visual results2,
and (b) we are able to compute the actual UV space dense
loss, as compared to simply deciding on whether the input
is real or fake. As we empirically show in our experiments
and ablation studies, this approach encourages the generator
to produce more realistic results than other, state-of-the-art
methodologies.

Adversarial training. Before starting the adversarial train-
ing, we initialize the weights and biases3 for both the
generator G and the discriminator D utilizing the learned
parameters estimated after the pre-training of D (the archi-
tecture of G is identical to the architecture of D). During
the training phase of 3DFaceGAN, we freeze the parameter
updates in the decoder parts for both the generator G and
the discriminator D. Furthermore, we utilize a low learning
rate on the encoder and bottleneck parts of G and D so that
overall the parameter updates are relatively close to the ones
found during the pre-training of D.

Network architectures. The network architectures for both
the discriminator D and the generator G are the same. In
particular, each network is consisted of 2D convolutional
blocks with kernel size of three, stride and padding size of
one. Down-sampling is achieved by average 2D pooling with
kernel and stride size of two. The convolution filters grow
linearly in each down-sampling step. Up-sampling is imple-
mented by nearest-neighbor with scale factor of two. The
activation function that is primarily used is ELU (Clevert
et al. 2016), apart from the last layer of both D and G where
Tanh is utilized instead. At the bottleneck we utilize fully
connected layers and thus project the tensors to a latent vec-
tor b ∈ R

Nb . To generate more compelling visual results,
we utilized skip connections (He et al. 2016; Huang et al.
2017) in the first layers of the decoder part of both the gener-
ator and the discriminator. Further details about the network
architectures are provided in Table 1.

3.3 3D Face Generation

Variational autoencoders (VAEs) (Kingma and Welling
2014) are widely used for generating new data using
autoencoder-like structures. In this setting, VAEs add a con-
straint on the latent embeddings of the autoencoders that
forces them to roughly follow a normal distribution. We can
then generate new data by sampling a latent embedding from
the normal distribution and pass it to the decoder. Neverthe-

2 note that pre-training D is not possible when the outputs are logits
since there are no fake data to compare against prior to the adversarial
training.
3 for brevity in the text, we will use the term parameters to refer to the
weights and the biases from this point onwards.
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Table 1 Generator/discriminator network architectures of 3DFace-
GAN. As far as the notation is concerned, C denotes the number of
input/output channels, K denotes the kernel size, S denotes the stride
size, P denotes the padding size, AvgPool2D denotes average 2D pool-
ing, UpNN denotes nearest-neighbor upsampling, and SF refers to
the scaling factor size of the nearest-neighbor upsampling. CONV-

BLOCK(C1, C2, K, S, P) and DECONV-BLOCK(C1, C2, K, S, P)
refer to a block of two convolutions where the first is CONV(C1, C2,
K, S, P) followed by an ELU (Clevert et al. 2016) activation function
and the second is CONV(C2, C2, K, S, P), also followed by an ELU
(Clevert et al. 2016) activation function

Part Input → Output shape Layer information

Encoder (h, w, 3) → (h, w, n) CONV-(Cn, K3x3, S1, P1), ELU

(h, w, n) → ( h2 , w
2 , 2n) CONV-BLOCK-(Cn, 2n, K3x3, S1, P1), AvgPool2D(K2x2, S2)

( h2 , w
2 , 2n) → ( h4 , w

4 , 3n) CONV-BLOCK-(C2n, C3n, K3x3, S1, P1), AvgPool2D(K2x2, S2)

( h4 , w
4 , 3n) → ( h8 , w

8 , 4n) CONV-BLOCK-(C3n, C4n, K3x3, S1, P1), AvgPool2D(K2x2, S2)

( h8 , w
8 , 4n) → ( h

16 , w
16 , 5n) CONV-BLOCK-(C4n, C5n, K3x3, S1, P1), AvgPool2D(K2x2, S2)

( h
16 , w

16 , 5n) → ( h
32 , w

32 , 6n) CONV-BLOCK-(C5n, C6n, K3x3, S1, P1), AvgPool2D(K2x2, S2)

( h
32 , w

32 , 6n) → ( h
32 , w

32 , 6n) CONV-BLOCK-(C6n, C6n, K3x3, S1, P1)

Bottleneck1 ( h
32 × w

32 ×6n) → n Fully connected

Bottleneck2 n → ( h
32 × w

32 ×n) Fully connected

Decoder ( h
32 , w

32 , n) → ( h
16 , w

16 , n) DECONV-BLOCK(Cn, Cn K3x3, S1, P1), UpNN(SF2)

( h
16 , w

16 , n) → ( h8 , w
8 , n) DECONV-BLOCK(Cn, Cn, K3x3, S1, P1), UpNN(SF2)

( h8 , w
8 , n) → ( h4 , w

4 , n) DECONV-BLOCK(Cn, Cn, K3x3, S1, P1), UpNN(SF2)

( h8 , w
8 , n) → ( h4 , w

4 , n) DECONV-BLOCK(Cn, Cn, K3x3, S1, P1), UpNN(SF2)

( h2 , w
2 , n) → (h, w, n) DECONV-BLOCK(Cn, Cn, K3x3, S1, P1), UpNN(SF2)

(h, w, n) → (h, w, n) DECONV-BLOCK(Cn, Cn, K3x3, S1, P1)

(h, w, n) → (h, w, 3) DECONV(Cn, C3, K3x3, S1, P1), Tanh

less, it was empirically shown that enforcing the embeddings
in the training process to follow a normal distribution leads to
generators that are unable to capture high frequency details
(Litany et al. 2018). To alleviate this, we propose to generate
data using Algorithm 1, which better retains the generated
data fidelity, as shown in Sect. 4.

3.4 3DFaceGAN for Multi-Label 3D Data

Over the last few years, databases annotated with regards to
multiple labels are becoming available in the scientific com-
munity. For instance, 4DFAB (Cheng et al. 2018) is a publicly
available 3D facial database containing data annotated with
respect to multiple expressions.

We can extend 3DFaceGAN to handle data annotated with
regards to multiple labels as follows. Without any loss of gen-
erality, suppose there are three labels in the database (e.g.,
expressions neutral, happiness and surprise). We adopt the
so-called one-hot representation and thus denote the exis-
tence of a particular label in a datum by 1 and the absence
by 0. For example, a 3D face datum annotated with the
label happiness will have the following label representation:
l = [0, 1, 0], where the first entry corresponds to the label
neutral, the second to the label happiness and the third to
the label surprise. We then choose the desired l we want to
generate (e.g., if we want to translate a neutral face to a sur-

prised one, we would choose l = [0, 0, 1]) and then spatially
replicate it and concatenate it in the input that is then fed
to the generator. The real target is the actual expression (in
this case surprise) with the corresponding l spatially repli-
cated and concatenated. Apart from this change, the rest of
the training process is exactly the same as the one described
in Sect. 3.2.

Finally, to generate 3D facial data with respect to a partic-
ular label, we follow the same process as the one presented in
Algorithm 1, with the only difference being that we extract
different pairs of (μZ , Σ Z ) for every subset of the data, each
corresponding to a particular label in the database. We then
choose the pair (μZ , Σ Z ) corresponding to the desired label
and sample from this multi-variate Gaussian distribution.

4 Experiments

In this Section we (a) describe the databases which we used
to carry out the experiments utilizing 3DFaceGAN, (b) pro-
vide information with respect to the data preprocessing we
conducted prior to feeding the 3D data into the network, (c)
succinctly describe the baseline state-of-the-art algorithms
we employed for comparisons and (d) provide quantitative
as well as qualitative results on a series of experiments that
demonstrate the superiority of 3DFaceGAN.
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Algorithm 1: 3D face generation algorithm.

Step 1: Train 3DFaceGAN utilizing (3).
Step 2: Extract the trained G, and for all N training facial UV
maps:
for i = 1 : N do

Input UV map xi in G.
Extract the corresponding bottleneck zi ∈ R

Nb×1.
end
Step 3: Concatenate column-wise all of the bottlenecks, i.e.,
Z = [z1, z2, . . . , zN ].
Step 4: Extract the mean μZ of Z and the covariance Σ Z of the
zero-mean Z.
Step 5: To generate new data, retain only the trained Bottleneck2
and the Decoder part of G (see Table 1 for the network
structures) and sample a new zi (i.e., Bottleneck2 input) from the
multivariate Gaussian N (μZ ,Σ Z ).

Fig. 5 Re-sampling errors of different UV sizes. The quantitative errors
are 11.013 mm, 0.164 mm, 0.013 mm for the UV sizes of 128, 256, and
512, respectively, illustrated from left to right

Table 2 Generalization metric for the meshes of the test set for the
3D face representation task. The table reports the mean error (Mean),
the standard deviation (std), the Area Under the Curve (AUC), and the
Failure Rate (FR) of the Cumulative Error Distributions of Fig. 6a

Method Mean std AUC FR (%)

3DFaceGAN 0.0031 ± 0.0028 0.741 1.42e−7

CoMA 0.0038 ± 0.0037 0.716 3.66e−7

PCA 0.0040 ± 0.0040 0.711 0.91e−6

PGAN 0.0041 ± 0.0041 0.705 1.22e−6

4.1 Databases

4.1.1 The Hi-Lo database

Hi-Lo database contains approximately 6000 3D facial scans
captured during a special exhibition in the Science Museum,
London. It is divided into the high quality data (Hi) recorded

with a 3dMD face capturing system and the low quality (Lo)
data captured with a V1 Kinect sensor. All the subjects were
recorded in neutral expression. The overlapping subjects that
were recorded in both frameworks were approximately 3000.

The 3dMD apparatus utilizes a 4 camera structured light
stereo system which can create 3D triangular surface meshes
composed of approximately 60, 000 vertices joined into
approximately 120, 000 triangles. Moreover, the low qual-
ity database was captured with a KinectFusion framework
(Newcombe et al. 2011). In contrast to the 3dMD system,
multiple frames are required to build a single 3D represen-
tation of the subject’s face. The fused meshes were built
by employing a 6083 voxel grid. In order to accurately
reconstruct the entire surface of the faces, a circular motion
scanning pattern was carried out. Each subject was instructed
to stay still in a fixed pose during the entire scanning process
with a neutral facial expression. The frame rate for every
subject was constant at 8 frames per second.

Furthermore, all 3000 subjects provided metadata about
themselves, including their gender, age, and ethnicity. The
database covers a wide variety of age, gender (48% male,
52% female), and ethnicity (82% White, 9% Asian, 5%
Mixed Heritage, 3% Black and 1% other).

Hi-Lo database was utilized for the experiments of 3D face
representation and generation, where we utilized the high
quality data to train 3DFaceGAN. Moreover, Hi-Lo database
was used for demonstrating the capabilities of 3DFaceGAN
in a 3D face translation setting, where the low quality data are
translated into high quality ones. In all of the training tasks,
85% of the data were used for training and the rest were used
for testing. The subjects in the training and testing sets are
disjoint.

4.1.2 4DFAB Database

4DFAB database (Cheng et al. 2018) contains 3D facial data
from 180 subjects (60 females, 120 males), aged from 5 to
75 years old. The subjects vary in their ethnicity background,
coming from more than 30 different ethnic groups. For the
capturing process, the DI4D dynamic capturing system4 was
used.

4DFAB (Cheng et al. 2018) contains data varying in
expressions, such as neutral, happiness, and surprise. As a
result, we utilized it to showcase 3DFaceGAN’s capability
in successfully handling data annotated with multiple labels
in the task of 3D face translation as well as generation. In all
of the training tasks, 85% of the data were used for training
and the rest were used for testing. The subjects in the training
and testing sets are disjoint.

4 http://www.di4d.com.
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Fig. 6 a Generalization results on the test set for the 3D face represen-
tation task. The results are presented as cumulative error distributions of
the normalized dense vertex errors. 3DFaceGAN outperforms all of the

compared methods by a large margin. b Ablation study generalization
results for the 3D face representation task. The results are presented as
cumulative error distributions of the normalized dense vertex errors

Fig. 7 Qualitative results of 3DFaceGAN compared to CoMA (Ran-
jan et al. 2018) in the 3D representation task. Moreover, heatmaps are
provided, visualizing the errors of both approaches against the ground

truth test data. As evidenced, 3DFaceGAN is able to better capture the
variation in the test data, especially in the eye and nose regions, where
most of the non-linearities are present

4.2 Data Preprocessing

In order to feed the 3D data into a deep network several steps
need to be carried out. Since we employ various databases,
the representation of the facial topology is not consistent in

terms of vertex number and triangulation. To this end, we
need to find a suitable template T that can easily retain the
information of all raw scans across all databases and describe
them with the same triangulation/topology. We utilized the
mean face mesh of the LSFM model proposed by Booth et al.
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Table 3 Ablation study generalization results for the 3D face repre-
sentation task. The table reports the Area Under the Curve (AUC) and
Failure rate (FR) of the Cumulative error distributions of Fig. 6b

Method AUC FR (%)

3DFaceGAN 0.741 1.42e−7

3DFaceGAN_V3 0.736 2.62e−7

3DFaceGAN_V2 0.704 3.15e−6

Baseline (AE) 0.697 4.24−6

(2016), which consists of approximately 54, 000 vertices that
are sufficient to capture high frequency facial details. We then
bring the raw scans in dense correspondence by morphing
non-rigidly the template mesh to each one of them. For this
task, we utilize an optimal-step Non-rigid Iterative Closest
Point algorithm (De Smet and Van Gool 2010) in combi-
nation with a per vertex weighting scheme. We weight the
vertices according to the Euclidean distance measured from
the tip of the nose. The greater the distance from the nose tip,
the bigger the weight that is assigned to that vertex, i.e., less
flexible to deform. In that way we are able to avoid the noisy
information recorded by the scanners on the outer regions of
the raw scans.

Following the analysis of the various methods of feeding
3D meshes in deep networks in Sect. 2, we chose to describe
the 3D shapes in the UV domain. UV maps are usually uti-
lized to store texture information. In our case, we store the
spatial location of each vertex as an RGB value in the UV
space. In order to acquire the UV pixel coordinates for each
vertex, we start by unwrapping our mesh template T into a
2D flat space by utilizing an optimal cylindrical unwrapping
technique proposed by Booth and Zafeiriou (2014). Before
storing the 3D coordinates into the UV space, all meshes
are aligned in the 3D spaces by performing the General Pro-
crustes Analysis (Gower 1975) and are normalized to be in
the scale of [1,−1]. Afterwards, we place each 3D vertex in
the image plane given the respective UV pixel coordinate.
Finally, after storing the original vertex coordinates, we per-
form a 2D nearest point interpolation in the UV domain to fill
out the missing areas in order to produce a dense represen-
tation of the originally sparse UV map. Since the number of
vertices in ST is more than 50K , we choose a 256 × 256 × 3
tensor as the UV map size, which assists in retrieving a high
precision point cloud with negligible re-sampling errors. A
graphical representation of the preprocessing pipeline can be
seen in Fig. 1.

Higher UV resolutions than 256 × 256 × 3 will intro-
duce more convolutions, thus more parameters, without any
visible increments in accuracy of our final result. Figure 5
illustrates the re-sampled mesh topology (vertex position and
triangulation) of the same identity for different UV sizes. The
first column (a) depicts the re-sampled mesh topology from a

Fig. 8 Generated faces utilizing 3DFaceGAN

128 UV size, while columns (b) and (c) show the re-sampled
meshes from 256 and 512 UV sizes, respectively. We can
easily identify the misalignment of vertexes and the mixed
triangulation in the 128 resolution, whereas, in column (b),
the 256 UV size handles very well the topological structure
of the mesh except in some very rare cases around the edges
of the lips and the eyes where a large amount of points are
tightly grouped together in small areas. We measured the re-
sampling error with a point-to-point Euclidean distance and
the results are as follows.

– 11.013 mm for a UV size of 128,
– 0.164 mm for a UV size of 256,
– 0.013 mm for a UV size of 512.

We also experimented with different interpolation method-
ologies. Instead of interpolating the 3D coordinates (x, y, z)
in the UV domain, we performed the interpolation based on
the barycentric coordinates of the underling pixel that is pro-
jected to the 3D shape. Although the resulting UV domains
are interpolated differently, we did not record any change in
the accuracy of our final result, which means that our net-
work architecture is able to learn the underling structure of
any UV domain regardless of the interpolation method.

4.3 Training

We trained all 3DFaceGAN models utilizing Adam (Kingma
and Ba 2015) with β1 = 0.5 and β2 = 0.999. The batch size
we used for the pre-training of the discriminator was 32 for a
total of 300 epochs. The batch size we used for 3DFaceGAN
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was 16 for a total of 300 epochs. For our model we used
n = 128 convolution filters and a bottleneck of size b = 128.
The total number of trainable parameters was 38.5 × 106.
The learning rates that we used for both the pre-training and
training of the discriminator was 5e−5 and the same was for
the training of the generator. We linearly decayed the learning
rate by 5% every 30 epochs during training. For the rest of
the parameters, we used λadv = 1e − 3, λrec = 1. Overall
training time on a GV100 NVIDIA GPU was about 5 days.

4.4 3D Face Representation

In the 3D face representation (reconstruction) experiments,
we utilize the high quality 3D face data from the Hi-Lo
database to train the algorithms. In particular, we feed the
high quality 3D data as inputs to the models and use the
same data as target outputs. Before providing the qualitative
as well as quantitative results, we briefly describe the baseline
models we compared against as well as provide information
about the error metric we used for the quantitative assess-
ment.

4.4.1 Baseline Models

In this Section we briefly describe the state-of-the-art models
we utilized to compare 3DFaceGAN against.

Vanilla Autoencoder (AE)

Vanilla Autoencoder follows exactly the same structure of
the discriminator we used in 3DFaceGAN. We used the same
values for the hyper-parameters and the same optimization
process. This is the main baseline we compared against and
the results are provided in the ablation study in Sect. 4.4.3.

Convolutional Mesh Autoencoder (CoMA)

In order to train CoMA (Ranjan et al. 2018), we use the
authors’ publicly available implementation and utilize the
default parameter values, the only difference being that the
bottleneck size is 128, to make a fair comparison against
3DFaceGAN, where we also used a bottleneck size of 128.

Principal Component Analysis (PCA)

We employ and train a standard PCA model (Jolliffe 2011)
based on the meshes of our database we used for training.
We aimed at retaining the 98% of variance of our available
training data which corresponds to the first 50 principal com-
ponents.

Progressive GAN (PGAN)

In order to train PGAN (Karras et al. 2018), we used the
authors’ publicly available implementation with the default
parameter values. After the training is complete, in order
to represent a test 3D datum, we invert the generator G as
in Lucic et al. (2018) and Mahendran and Vedaldi (2015),
i.e., we solve z∗ = argmin ‖x − G(z)‖ by applying gradient
descent on z while retainingG fixed (Mahendran and Vedaldi
2015).

4.4.2 Error Metric

A common practice when it comes to evaluating statisti-
cal shape models is to estimate the intrinsic characteristics,
such as the generalization of the model (Davies et al. 2008).
The generalization metric captures the ability of a model to
represent unseen 3D face shapes during the testing phase.
Table 2 presents the generalization metric for 3DFaceGAN
compared against the baseline models. The Failure Rate men-
tioned in Table 2 and later on in the text, represents the
frequency with which a method fails to represent a 3D face
for a specific amount of vertices within a threshold (the bins
of our graph) divided by the total number of bins. Essentially,
it is the probability of failure given a threshold. Moreover, in
order to compute the generalization error for a given model,
we compute the per-vertex Euclidean distance between every
sample of the test set and its corresponding reconstruction.
We observe that the model which holds the best error results
and thus demonstrates greater generalization capabilities is
the proposed 3DFaceGAN with mean error 0.0031 and stan-
dard deviation 0.0028. Additionally, as shown in Fig. 6a,
which depicts the cumulative error distribution of the nor-
malized dense vertex errors, 3DFaceGAN outperforms all of
the baseline models (Fig. 7).

4.4.3 Ablation Study

In this ablation study we investigate the importance of pre-
training the discriminator D prior to the adversarial training
of 3DFaceGAN as well as the freezing of the weights in the
decoder parts of both D and G. More specifically, we com-
pare 3DFaceGAN against the Vanilla Autoencoder (AE) and
another two 3DFaceGAN possible variations, namely (a) the
simplest case, where the discriminator and generator struc-
tures are retained as is, but no pre-training takes place prior
to the adversarial training (we refer to this methodology as
3DFaceGAN_V2), (b) the case where (i) the discriminator
and generator structures are retained as is, (ii) we pre-train
the discriminator and initialize both the generator and the
discriminator with the learned weights with no parame-
ters frozen during the adversarial training (we refer to this
methodology as 3DFaceGAN_V3). As shown in Fig. 6b and
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Low Quality Scan High Quality Scan 3DFaceGAN pix2pixpix2pixHD pix2pixHD smoothed pix2pix smoothed

Fig. 9 The qualitative results of our approach compared to state-of-
the-art baseline GAN methods in the 3D face translation task. The first
column depicts the low quality input mesh whereas the second column
represent the high quality ground truth meshes. We depict the raw results

of pix2pixHD (Wang et al. 2018) and pix2pix (Isola et al. 2017) along
with their smoothed versions. As a smoothing technique we utilized a
standard Laplacian smoothing operator

Table 3, 3DFaceGAN outperforms Vanilla AE and 3DFace-
GAN_V2 by a large margin. Moreover, 3DFaceGAN also
outperforms 3DFaceGAN_V3. As a result, not only does

3DFaceGAN have the best performance among the com-
pared 3DFaceGAN variants, but it also requires less training
time compared to 3DFaceGAN_V3, as the parameters in the
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(a) (b)

Fig. 10 a High quality estimation results for the 3D face translation
task. The results are presented as cumulative error distributions of the
normalized dense vertex errors. 3DFaceGAN outperforms all of the

compared methods by a large margin. b Ablation study with respect
to the 3D face translation task. The results are presented as cumulative
error distributions of the normalized dense vertex errors
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Fig. 11 Reconstruction quality of our proposed GAN network along
with pix2pixHD (Wang et al. 2018) and pix2pix (Isola et al. 2017)
in the 3D face translation task. As it can be seen, the mean error of
3DFaceGAN is considerably less than the other two approaches

decoder parts of both the generator and the discriminator are
not updated during the training phase and thus need not be
computed (Fig. 8).

4.5 3D Face Translation

In the 3D face translation experiments, we utilize the low and
high quality 3D face data from the Hi-Lo database to train

Table 4 High quality 3DRMSE results for the 3D face translation task.
The table reports the Area Under the Curve (AUC) and failure rate of
the cumulative error distributions of Fig. 10a

Method AUC Failure rate (%)

3DFaceGAN 0.827 5.49e−6

pix2pixHD 0.760 5.18e−5

pix2pix 0.757 1.81e−5

Denoising CoMA 0.742 2.41e−4

Table 5 Ablation study 3DRMSE results for the 3D face translation
task. The table reports the Area Under the Curve (AUC) and failure rate
of the cumulative error distributions of Fig. 10b

Method AUC Failure rate (%)

3DFaceGAN 0.827 5.49e−6

3DFaceGAN_V3 0.819 8.70e−6

3DFaceGAN_V2 0.794 1.38e−5

Baseline (Denoising AE) 0.758 1.95e−5

the algorithms. In particular, we feed the low quality 3D data
as inputs to the models and use the high quality data as target
outputs.

Before providing the qualitative as well as quantitative
results, we briefly describe the baseline models we compared
against as well as provide information about the error metric
we used for the quantitative assessment.

4.5.1 Baseline Models

In this Section we briefly describe the state-of-the-art deep
models we utilized to compare 3DFaceGAN against.
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Input Scan 3DFaceGAN pix2pixDenoising AE pix2pixHDDenoising CoMA

Happiness

Surprise

Fig. 12 Qualitative results of our approach compared to state-of-the-
art baseline GAN methods in the multi-label 3D face translation task in
various expressions (e.g., happiness, surprise) trained with the 4DFAB
(Cheng et al. 2018) database. The first column depicts the neutral input
mesh whereas the rest of the columns represent the translated meshes

of the respective state-of-the art methods compared to our approach. As
can be seen, 3DFaceGAN is able to retain the high-frequency details in
a higher level compared to CoMA (Ranjan et al. 2018), the second best
method, which produces more smoothed outputs

Denoising Vanilla Autoencoder (Denoising AE)

Denoising Vanilla Autoencoder follows exactly the same
structure as the Vanilla AE in Sect. 4.4, the only difference
being the inputs fed to the network (i.e., we feed the low qual-
ity 3D data as inputs to the model and use the high quality
data as target outputs). This is the main baseline we compared
against and the results are provided in the ablation study in
Sect. 4.5.3.

Denoising Convolutional Mesh Autoencoder (Denoising
CoMA)

Denoising CoMA (Ranjan et al. 2018), follows exactly the
same structure as CoMA (Ranjan et al. 2018) in Sect. 4.4,

the only difference being again the inputs fed to the network
(i.e., we feed the low quality 3D data as inputs to the model
and use the high quality data as target outputs).

pix2pix

pix2pix (Isola et al. 2017) is amongst the most widely uti-
lized GANs for image to image translation applications. We
used the official implementation and hyper-parameter initial-
izations provided by the authors in (Isola et al. 2017).

pix2pixHD

More recently pix2pixHD (Wang et al. 2018) was proposed,
which can be considered as an extension of pix2pix (Isola
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LQ Neutral HQ Happiness HQ SurpriseHQ Neutral HQ Neutral

Input Model1 Output Model2 OutputsGround Truth

Fig. 13 Some visualizations of the cross-dataset experiment. As
explained in Sect. 4.7, we utilize the Hi-Lo database to train a model
that transfers the neutral low-quality (LQ) 3D faces to the corresponding
high-quality (HQ) ones (Model1). Then, we train a model that trans-
fers the generated HQ neutral 3D faces to the desired expressions, such
as happiness or surprise (Model2). Please note that the 3D expression
translation model is trained solely on 4DFAB (Cheng et al. 2018) as the
Hi-Lo database contains subjects only in neutral expression. Since the

depicted low-quality inputs do not give away much information about
the identity of each subject, we introduce the leftmost column which
shows the neutral HQ, ground truth 3D faces of the Hi-Lo dataset. In this
way, it is easier for the reader to observe that the identity information
is retained throughout the whole experiment. In sum, as it is evidenced,
3DFaceGAN can be utilized in two different datasets and then the corre-
sponding trained models can be combined to transfer attributes between
the datasets

et al. 2017) and which is able to better handle data of higher
resolution. We used the official implementation and hyper-
parameter initializations provided by the authors in Wang
et al. (2018). As evinced in Figs. 9, 10, and 11, pix2pixHD
(Wang et al. 2018) outperforms pix2pix (Isola et al. 2017),
and this is expected since pix2pixHD (Wang et al. 2018) uses
more intricate structures for both the generator and discrim-
inator networks.

4.5.2 Error Metric

For each low quality test mesh we aim to estimate the high
quality representation based on the 3dMD ground truth data.
The error metric between the estimated and the real high
quality mesh is a standard 3D Root Mean Square Error
(3DRMSE) where the Euclidean distances are computed
between the two meshes and normalized based on the inter-
ocular distance of the test mesh. Before computing the metric
error we perform dense alignment between each test mesh
and its corresponding ground truth by implementing an itera-
tive closest point (ICP) algorithm (Besl and McKay 1992). In
particular, we utilized the anisotropic implementation of the

ICP algorithm (Maier-Hein et al. 2011). In order to avoid any
inconsistencies in the alignment we compute a point-to-plane
rather than a point-to-point error. Finally, the measurements
are performed in the inner part of the face, where we crop
each test mesh at a radius of 150mm around the tip of the
nose. As can be clearly seen in Fig. 10a as well as in Table 4,
3DFaceGAN outperforms all of the compared state-of-the-
art methods.

4.5.3 Ablation Study

For the ablation study in this set of experiments, we use
exactly the same 3DFaceGAN variants as the ones we uti-
lized in Sect. 4.4.3. Moreover, instead of the vanilla AE in
this experiment we utilize the denoising AE. As evinced in
Fig. 10b and Table 5, 3DFaceGAN clearly outperforms all
of the compared models.

4.6 Multi-label 3D Face Translation

In this experiment we utilize 4DFAB (Cheng et al. 2018)
for the multi-label transfer of expressions. In particular, we
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feed the neutral faces to the models and receive as outputs
either the ones bearing the label happiness or surprise. It
should be noted here that whereas 3DFaceGAN requires only
a single model to be trained under the multi-label expres-
sion translation scenario, the rest of the compared models
require different trained models for each label, i.e., a model
for expression happiness and a model for expression sur-
prise. As baseline models for comparisons, we use exactly
the same as the ones in Sect. 4.5, the only difference being
the inputs fed to network as well as the corresponding targets.
Qualitative comparisons against the compared methods are
presented in Fig. 12.

4.7 Cross-Dataset Attribute Transfer

In this experiment, we combine both of the databases we uti-
lized so far, i.e., the Hi-Lo and the 4DFAB database (Cheng
et al. 2018). Hi-Lo is a database which contains 3D face
shapes of low and high quality in neutral expression. On the
other hand, 4DFAB (Cheng et al. 2018) is a database that con-
tains only high quality 3D face shapes in various expressions.
As a result, we carried out the cross dataset experiment as
follows: we train 3DFaceGAN as we did in Sect. 4.5 with the
training data of the Hi-Lo database (Model1). We also train
3DFaceGAN as we did in Sect. 4.6 with the training data of
the 4DFAB database (Cheng et al. 2018) (Model2). We then
combine both of the trained models as follows. First, we pass
the test data of the Hi-Lo database through the first model
(Model1) and subsequently generate the high-quality neu-
tral outputs. We then feed the generated, high-quality neutral
outputs to the second model (Model2) and, by using the
mechanism described in Sect. 4.6, we generate new expres-
sions, depending on the label we desire. Some qualitative
results of this procedure are presented in Fig. 13, where we
generate high-quality expressions such as surprise or happi-
ness from low quality neutral inputs.

4.8 3D Face Generation

In the 3D face generation experiment, we utilized the high
quality data of the Hi-Lo database to train the algorithms. In
particular, we feed the high quality 3D data as inputs to the
models and use the same data as target outputs.

4.8.1 Baseline Models

The baseline models we used in this set of experiments are
the same as the ones presented in Sect. 4.4.

4.8.2 Error Metric

The metric of choice to quantitatively assess the performance
of the models in this set of experiments is specificity (Brunton

Table 6 Specificity metric on the test set for the 3D face generation
task. We generate 10, 000 random faces from each model. The table
reports the mean error (Mean) and the standard deviation (std)

Method Mean std

3DFaceGAN 1.28 ±0.183

CoMA 1.40 ±0.205

PCA 1.43 ±0.232

PGAN 1.79 ±0.189

Fig. 14 Generated faces with expression utilizing 3DFaceGAN multi-
label approach

et al. 2014). For a randomly generated 3D face, specificity
metric measures the distance of this 3D face to its nearest
real 3D face belonging in the test, in terms of minimum per
vertex distance over all samples of the test set. To evaluate
this metric, we randomly generate n = 10, 000 face meshes
from each model. Table 6 reports the specificity metric for
3DFaceGAN compared against the baseline models. In order
to generate random meshes utilizing 3DFaceGAN, we sam-
ple from a multivariate Gaussian distribution, as explained in
Sect. 3.3. To generate random meshes utilizing PGAN (Kar-
ras et al. 2018), we sample new latent embeddings from the
multivariate normal distribution and feed them to the gener-
ator G. To generate random faces utilizing CoMA (Ranjan
et al. 2018), we utilize the proposed variational convolu-
tional mesh autoencoder structure, as described in (Ranjan
et al. 2018). For the PCA model (Jolliffe 2011), we gener-
ate meshes directly from the latent eigenspace by drawing
random samples from a Gaussian distribution defined by the
principal eigenvalues. As shown in Table 6, 3DFaceGAN
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achieves the best specificity error, outperforming all com-
pared methods by a large margin.

In Fig. 8, we present various visualizations of realistic
3D faces generated by 3DFaceGAN. As can be clearly seen,
3DFaceGAN is able to generate data varying in ethnicity,
age, etc., thus capturing the whole population spectrum.

4.9 Multi-label 3D Face Generation

In this set of experiments, we utilized the 4DFAB (Cheng
et al. 2018) data to generate random subjects of various
expressions such as happiness and surprise, as seen in Fig. 14.
The 3D faces were generated utilizing the methodology
detailed in Sect. 3.4. As evinced, 3DFaceGAN is able to
generate expressions of subjects varying in age and ethnic-
ity, while retaining the high-frequency details of the 3D face.

5 Conclusion

In this paper we presented the first GAN tailored for the
tasks of 3D face representation, generation, and translation.
Leveraging the strengths of autoencoder-based discrimina-
tors in an adversarial framework, we propose 3DFaceGAN, a
novel technique for training on large-scale 3D facial scans. As
shown in an extensive series of quantitative as well as qualita-
tive experiments against other state-of-the-art deep networks,
3DFaceGAN improves upon state-of-the-art algorithms for
the tasks at-hand by a significant margin.
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