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Abstract

Image-to-image (i2i) translation is the dense regression problem of learning how to transform an input image into an output
using aligned image pairs. Remarkable progress has been made in i2i translation with the advent of deep convolutional
neural networks and particular using the learning paradigm of generative adversarial networks (GANSs). In the absence of
paired images, i2i translation is tackled with one or multiple domain transformations (i.e., CycleGAN, StarGAN etc.). In
this paper, we study the problem of image-to-image translation, under a set of continuous parameters that correspond to a
model describing a physical process. In particular, we propose the SliderGAN which transforms an input face image into a
new one according to the continuous values of a statistical blendshape model of facial motion. We show that it is possible to
edit a facial image according to expression and speech blendshapes, using sliders that control the continuous values of the
blendshape model. This provides much more flexibility in various tasks, including but not limited to face editing, expression
transfer and face neutralisation, comparing to models based on discrete expressions or action units.

Keywords GAN - Image translation - Facial expression synthesis - Speech synthesis - Blendshape models - Action units -

3DMM fitting - Relativistic discriminator - Emotionet - 4DFAB - LRW

1 Introduction

Interactive editing of the expression of a face in an image has
countless applications including but not limited to movies
post-production, computational photography, face recogni-
tion (i.e. expression neutralisation) etc. In computer graphics
facial motion editing is a popular field, nevertheless mainly
revolves around constructing person-specific models hav-
ing a lot of training samples (Suwajanakorn et al. 2017).
Recently, the advent of machine learning, and especially
Deep Convolutional Neural Networks (DCNNs) provide
very exciting tools making the community to re-think the
problem. In particular, recent advances in Generative Adver-
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sarial Networks (GANSs) provide very exciting solutions for
image-to-image (i2i) translation.

i2i translation, i.e. the problem of learning how to trans-
form aligned image pairs, has attracted a lot of attention
during the last few years (Isola et al. 2017; Zhu et al. 2017,
Choi et al. 2018). The so-called pix2pix model and alter-
natives demonstrated excellent results in image completion
etc. (Isola et al. 2017). In order to perform i2i translation
in absence of image pairs the so-called CycleGAN was pro-
posed, which introduced a cycle-consistency loss (Zhu et al.
2017). CycleGAN could perform i2i translation between two
domains only (i.e. in the presence of two discrete labels). The
more recent StarGAN (Choi et al. 2018) extended this idea
further to accommodate multiple domains (i.e. multiple dis-
crete labels).

StarGAN can be used to transfer an expression to a given
facial image by providing the discrete label of the target
expression. Hence, it has quite small capabilities in expres-
sion editing and arbitrary expression transfer. Over the last
few years, quite some deep learning related methodologies
have been proposed for transforming facial images (Choi
etal. 2018; Wiles et al. 2018; Pumarola et al. 2018). The most
closely related work to us is the recent work Pumarola et al.
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(2018) that proposed the GANimation model. GANimation
follows the same line of research as StarGAN to translate
facial images according to the activation of certain facial
Action Units (AUs)! and their intensities. Even though AU
coding is a quite comprehensive model for describing facial
motion, detecting AUs is currently an open problem both in
controlled, as well as in unconstrained recording conditions?
(Benitez-Quiroz et al. 2018, 2017). In particular, in uncon-
strained conditions the detection accuracy for certain AUs
is not high-enough yet (Benitez-Quiroz et al. 2018, 2017),
which affects the generation accuracy of GANimation®. One
of the reasons of the low accuracy of automatic annotation of
AU, is the lack of annotated data and the high cost of anno-
tation which has to be performed by highly trained experts.
Finally, even though AUs 10-28 model mouth and lip motion,
only 10 of them can be automatically recognized i.e. AUs 10,
12, 14, 15, 17, 20, 23, 25, 26, 28. To make matters worse,
the 10 AUs can only be recognized with low accuracy, thus
they cannot describe all possible lip motion patterns pro-
duced during speech. Hence, GANimation cannot be used in
straightforward manner for transferring speech.

In this paper, we are motivated by the recent successes
in 3D face reconstruction methodologies from in-the-wild
images (Richardson et al. 2017; Tewari et al. 2017; b; Booth
et al. 2018, 2017), which make use of a statistical model
of 3D facial motion by means of a set of linear blendshapes,
and propose a methodology for facial image translation using
GANSs driven by the continuous parameters of the linear
blendshapes. The linear blendshapes can describe both the
motion that is produced by expression (Cheng et al. 2018)
and/or motion that is produced by speech (Tzirakis et al.
2019). On the contrary, neither discrete emotions nor facial
action units can be used to describe the motion produced by
speech or the combination of motion from speech and expres-
sion. We demonstrate that it is possible to transform a facial
image along the continuous axis of individual expression and
speech blendshapes (Fig. 1).

Moreover, contrary to StarGAN, which uses discrete
labels regarding expression, and GANimation, which utilizes
annotations with regards to action units, our methodol-
ogy does not need any human annotations, as we operate
using pseudo-annotations provided by fitting a 3D Mor-
phable Model (3DMM) to images (Booth et al. 2018) (for
expression deformations) or by aligning audio signals (Tzi-

I AUs is a system to taxonomize motion of the human facial muscles
(Ekman et al. 2002).

2 The state-of-the-art AU detection techniques achieve around 50% F1
in EmotioNet challenge and from our experiments OpenFace (Amos
et al. 2016) achieves lower than 20-25%

3 The accuracy of the GANimation model is highly related to both
the AU detection, as well as the estimation of their intensity, since the
generator is jointly trained and influenced by a network that performs
detection and intensity estimation.
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rakis et al. 2019) (for speech deformations). Building on
the automatic annotation process exploited by SliderGAN,
a by-product of our training process is a very robust regres-
sion DCNN that estimates the blendshape parameters directly
from images. This DCNN is extremely useful for expression
and/or speech transfer as it can automatically estimate the
blendshape parameters of target images.

A recent approach of efficient GAN optimization which
has been used to produce higher quality textures (Wang
et al. 2018), is the Relativistic GAN (RGAN) (Jolicoeur-
Martineau 2019). RGAN was suggested in order to train the
discriminator to simultaneously decrease the probability that
real images are real, while increasing the probability that
the generated images are real. In our work, we incorporate
RGAN in the training process of SliderGAN and demon-
strate that it can improve the generator which produces more
detailed results in the task of i2i translation for expression and
speech synthesis, when compared to training with WGAN-
GP. In particular, we employ the Relativistic average GAN
(RaGAN) which decides whether an image is relatively more
realistic than the others on average, rather than whether it is
real or fake. More details, as well as the benefits from this
mechanism are presented in Sect. 4.1.

To summurize, the proposed method includes quite a few
novelties. First of all, we showcase that SliderGAN is able to
synthesize smooth deformations of expression and speech in
images by utilizing 3D blendshape models of expression and
speech respectively. Moreover, it is the first time to the best
of our knowledge that a direct comparison of blendshape
and AU coding is presented for the task of expression and
speech synthesis. In addition, our approach is annotation-free
but offers much better accuracy than AUs-based methods.
Furthermore, it is the first time that Relativistic GAN was
employed for the task of expression and speech synthesis.
We demonstrate in our results that SliderGAN trained with
the RaGAN framework (SliderGAN-RaD) benefits towards
producing more detailed textures, than when trained with
the standard WGAN-GP framework (SliderGAN-WGP).
Finally, we enhance the training of our model with syn-
thesized data, leveraging the reconstruction capabilities of
statistical shape models.

2 Related Work

2.1 Facial Attribute Editing and Reenactment in
Images

Over the past few years, quite some models have been pro-
posed for the task of transforming images and especially
facial attributes in images of faces, e.g. expression, pose,
hair color, age, gender etc. A rough categorization of them
can be made depending on whether they are targeted to single
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Input

Sliding single parameters

Fig.1 Expressive faces generated by sliding a single or multiple blend-
shape parameters in the normalized range [—1, 1]. Rows 1 and 3 depict
3D expressive faces generated by a linear blendshape model of natu-
ral face motion and a set of expression parameters. The corresponding
edited images generated by SliderGAN using the same set of parame-

image manipulation or to face reenactment in a sequence of
frames.

Single Image Manipulation Targeted to single image
manipulation, DIAT (Li et al. 2016) uses an adversarial loss
to learn a one directional mapping between images of two
domains. CycleGAN (Zhu et al. 2017), also learns a two
direction mapping between images of two domains, using a
cycle consistency loss for regularization and separate gener-
ator and discriminator for each direction of the mapping.
IcGAN (Perarnau et al. 2016) is a conditional GAN for
image attribute editing, which can handle multiple attributes
with one generator. IcGAN learns an inverse mapping from
input images to latent vectors and manipulates attributes by
changing the condition for fixed latent vectors. Furthermore,
SatarGAN (Choi et al. 2018) employs a single generator and
a cycle consistency loss to learn one mapping for multiple
attributes from multiple databases.

The methods described above are designed to handle
single or multiple discrete attributes of images. Instead, Gan-
imation (Pumarola et al. 2018) builds upon StarGAN and
performs expression editing in single images, utilizing facial

ters are depicted in rows 2 and 4. As it is observed, the generated images
accurately replicate the 3D faces’ motion. The robustness of blendshape
coding of facial motion allows SliderGAN to perform speech synthesis,
as demonstrated in rows 5 (target speech) and 6 (synthesized speech),
for which a 3D blendshape model of human speech was utilized

action unit activations as continuous condition vectors. How-
ever, as we demonstrate throughout this paper, blendshape
coding is a more robust, efficient and intuitive alternative
for conditioning continuous expression editing in images.
Moreover, PuppetGAN (Usman et al. 2019) introduced a new
approach to training image manipulation systems. In partic-
ular, PuppetGAN transforms attributes in images based on
examples of how the desired attribute affects the output of a
crude simulation (e.g. a 3D model of facial expression). Also,
PuppetGAN uses synthetic data to train attribute disentangle-
ment eliminating the need for annotations for the real data,
as the disentanglement is extended to the real domain, too.
Instead of learning a generator, X2Face (Wiles et al. 2018)
changes expression and pose from driving images, pose or
audio codes, utilizing an embedding network and a driving
network. It is trained with videos requiring no annotations
apart from identity, but can be tested on single source and
target frames.

Finally, we acknowledge (Geng et al. 2019) which is a
concurrent work, very closely related to ours. In this work
the authors similarly to us employ blendshape parameters for
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expression editing but follow a different approach in image
editing, handling 3D texture (UV maps) and shape separately
and composing them in a final output image by rendering.
This method produces realistic results in expression manip-
ulation, but involves 3DMM fitting and rendering during
testing which can be computationally demanding. Neverthe-
less, it demonstrates the usefulness of blendshapes in the task
of automatic face manipulation.

Sequence Manipulation Face reenactment is the pro-
cess of animating a target face using the face, audio, text,
or other codes from a source video to drive the animation.
Differently to most of i2i translation methods, face reenact-
ment methods most often require thousands if not millions
of frames of the same person for training, testing or both.
Targeted to sequence manipulation, Face2Face (Thies et al.
2016) animates facial expression of the target video, based on
rendering a face with the requested expression, warping the
texture from the available frames of the target video and then
blending. Face2Face, also, does not require training. Deep
Video Portraits (Kim et al. 2018), produces similar results
to Face2Face but animates the whole head and is trained
for specific source and target videos, meaning that training
has to be repeated when the source or target changes. Other
methods drive the animation using audio or text as driving
codes (Suwajanakorn et al. 2017; Fried et al. 2019). Finally,
Deferred Neural Rendering (DNR) (Thies et al. 2019) is
based on learning neural textures, feature maps associated
with the scene capturing process, employed by a neural ren-
derer to produce the outputs. DNR is trained for specific
source and target videos, too.

2.2 GAN Optimization in i2i Translation Methods

i2i translation models have achieved photo-realistic results
by utilizing different GAN optimization methods in lit-
erature. pix2pix employed the original GAN optimization
technique proposed in Goodfellow et al. (2014). However,
the loss function of GAN may lead to the vanishing gradients
problem during the learning process. Hence, more effec-
tive GAN frameworks emerged that were employed by i2i
translation methods. CycleGAN uses LSGAN, which builds
upon GAN adopting a least squares loss function for the
discriminator. StarGAN and GANimation use WGAN-GP
(Gulrajani et al. 201), which enforces gradient clipping as a
measure to regularize the discriminator. WGAN-GP, builds
upon WGAN (Arjovsky et al. 2017) which minimizes an
approximation of the Wasserstein distance to stabilize train-
ing of GAN:Ss. In this work, we employ the Relativistic GAN
(RGAN) (Jolicoeur-Martineau 2019), which decides whether
an image is relatively more realistic than the others, rather
than whether it is real or fake. RGAN has been proven to
enhance the texture quality in i2i translation settings (Wang
et al. 2018).
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3 Face Deformation Modelling with
Blendshapes

3.1 Expression Blendshape Models

Blendshape models are frequently used in computer vision
tasks as they constitute an effective parametric approach for
modelling facial motion. The localized blendshape model
Neumann et al. (2013) proposed a method to localize sparse
deformation modes with intuitive visual interpretation. The
model was built by sequences of manually collected expres-
sive 3D face meshes. In more detail, a variant of sparse
Principal Component Analysis (PCA) was applied to a matrix
D = [d;,....d,] € R¥*™ which includes m difference
vectors d; € R, produced by subtracting each expressive
mesh from the neutral mesh of each corresponding sequence.
Therefore, the sparse blendshape components C € R"*!
where recovered by the following minimization problem:

argmin |[D — BC[|3 + Q(C) st V(B), (1)

where the constraint V can either be max (|Bx|) = 1, Vk
or max(By) = 1, B > 1, Vk, with By e R¥x!
denoting the k" component of the sparse weight matrix
B = [By, - ,B;]. According to Neumann et al. (2013),
the selection of the constraints mainly controls whether face
deformations will take place towards both negative and pos-
itive direction of the axes of the model’s parameters or not,
which is useful for describing shapes like muscle bulges. The
regularization of sparse components C was performed with
£1/£2 norm (Wright et al. 2009; Bach et al. 2012), while to
compute optimal C and B, an iterative alternating optimiza-
tion was employed. The exact same approach was employed
by Cheng et al. (2018), in the construction of the 4DFAB
blendshape model exploited in this work. The 5 most sig-
nificant deformation components of the 4DFAB expression
model are depicted in Fig. 2.

mean b/s 1 b/s 2 b/s 3 b/s 4 b/s 5

+30 +30

Fig.2 Visualization of the 5 most significant components of the blend-
shape model S,,,,. The 3D faces of this figure have been generated by
adding the multiplied components to a mean face
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Fig.3 Examples of the 3D representation of the expression of an image
by the model S,),. The 3D faces of this figure have been generated by
3DMM fitting on the corresponding images

3.2 Extraction of Expression Parameters by 3DMM
Fitting

3DMM fitting for 3D reconstruction of faces consists of
optimizing three parametric models, the shape, texture and
camera models, in order to render a 2D instance as close as
possible to the input image. To extract the expression parame-
ters from an image we employ 3DMM fitting and particularly
the approach proposed in Booth et al. (2018).

In our pipeline we employ the identity variation of LSFM
(Booth et al. 2016), which was learned from 10,000 face
scans of unique identity, as the shape model to be optimized.
To incorporate expression variation in the shape model, we
combine LSFM with the 4DFAB blendshape model (Cheng
et al. 2018), which was learned from 10,000 face scans
of spontaneous and posed expression. The complete shape
model can then be expressed as:

S(Pid, pexp) =58+ U jaPia + Us,exppexp

_ 2
=S+ [Us,id’ Us,exp][p;l;” P;rxp]T

’

where s is the mean component of 3D shape, U, ;s and
U expr are the identity and expression subspaces of LSFM
and 4DFAB respectively, and p;q and pexp, are the identity
and expression parameters which are used to determine 3D
shape instances.

Therefore, by fitting the 3DMM of Booth et al. (2018)
in an input image I, we can extract identity and expression
parameters p;4 and ey, thatinstantiate the recovered 3D face
mesh S(P;iq, Pexp). Based on the independent shape param-
eters for identity and expression, we exploit parameters pey
to compose an annotated dataset of images and their corre-
sponding vector of expression parameters {I’, pé p }iK: 1» with
no manual annotation cost.

4 Proposed Methodology
In this section we develop the proposed methodology for

continuous facial expression editing based on sliding the
parameters of a 3D blendshape model.

4.1 Slider-Based Generative Adversarial Network for
Continuous Facial Expression and Speech Editing

Problem Definition Let us here first formulate the prob-
lem under analysis and then describe our proposed approach
to address it. We define an input image L,,, € R x W3
which depicts a human face of arbitrary expression. We
further assume that any facial deformation or grimace evi-
dent in image I, can be encoded by a parameter vector
Porg = [Porg. 1> Porg,2+ -+ p,,,g,N]T, of N continuous scalar
values pyrg i, normalized in the range [—1, 1]. In addition,
the same vector p,,¢ constitutes the parameters of a linear 3D
blendshape model S, that, as in Fig. 3, instantiate the 3D
representation of the facial deformation of image I, which
is given by the expression:

Sexp(porg) =S+ Uexpporg7 (3)

where §is amean 3D face component and U, , the expression
eigenbasis of the 3D blendshape model.

Our goal is to develop a generative model which given
an input image I, and a target expression parameter vector
Pirg> Will be able to generate a new version I, of the input
image with simulated expression given by the 3D expression
instance Sexp (Prrg)-

Attention-Based Generator To address the above chal-
lenging problem, we propose to employ a Generative Adver-
sarial Network architecture in order to train a generator
network G that performs translation of an input image I,
conditioned on a vector of 3D blendshape parameters p;g;
thus, learning the generator mapping G(Ior¢[Prrg) — Lgen-
In addition, to better preserve the content and the colour of
the original images we employ an attention mechanism at the
output of the generator as in Alami Mejjati et al. (2018) and
Pumarola et al. (2018). That is we employ a generator with
two parallel output layers, one producing a smooth deforma-
tion mask G,, € RZ>*W and the other a deformation image
G; € RT*W>3 The values of G,, are restricted in the region
[0, 1] by enforcing a sigmoid activation. Then, G,, and G; are
combined with the original image I, to produce the target
expression Ig, as:

Igen = gmgi + (1 - gm)Iorg~ 4

Relativistic Discriminator We employ a discriminator
network D that forces the generator G to produce realis-
tic images of the desired deformation. Different from the
standard discriminator in GANimation which estimates the
probability of an image being real, we employ the Relativistic
Discriminator (Jolicoeur-Martineau 2019) which estimates
the probability of an image being relatively more realistic
than a generated one. That is if D;;,, = 0(C(I,rg)) is the
activation of the standard discriminator, then Dgyp img =
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Generator Training

E’att

>
Ld I

gmgi * (1 - gm)Iorg

|||||||
G

Relativistic Average Discriminator Training

Real image
[Elgen [Dimg (Igen )]
D:
) me 30
—_—

Dy

|||II|||
— >
D

(—y L:exp,D

porg

Fig. 4 Synopsis of the modules, losses and the training process of
SliderGAN. A attention-based generator G is trained to generate real-
istic expressive faces from continuous parameters by employing a set
of adversarial, generation, reconstruction, identity and attention losses.
The performance of our model is significantly boosted by employing

0 (Cyrg) —C(Lyen)) is the activation of the Relativistic Dis-
criminator. Particularly, we employ the Relativistic average
Discriminator (RaD) which accounts for all the real and gen-
erated data in a mini-batch. Then, the activation of the RaD
is:

DRaD,img -
o (C() —Ey,, [Cgen)]), if Lis a real image
olCd —E;

org

&)
[CTorg)]), if Lis a generated image

where Ej,,, and E/,,, define the average activations of all real
and generated images in a mini-batch respectively. We further
extend D by adding a regression layer parallel to D;,, that
estimates a parameter vector p.;, to encourage the generator
to produce accurate facial expressions, D(I) — D)) =

@ Springer

Fake image

|E10,g [Dimg (Iorg )]

i
D

synthetic image pairs through the L, loss. Moreover, a relativistic
discriminator D is trained to classify images as relatively more real or
fake, as well as to regress expression parameters of the input images in
order to increase the generation quality of G

Dimg
DP

._—>£

—

|Y gen

Igen ﬁadv

—>

exp,G

Pes:. Finally, we aim to boost the ability of G to maintain
face identity between the original and the generated images
by incorporating a face recognition module F.

Semi-supervised Training We train our model in a semi-
supervised manner with both data with no image pairs of the
same person under different expressions {I/ . g P, e Pir g W
and data with image pairs that we automatically generate as
described in detail in Sect. 5.1,{I}, ., Pl¢» If,.¢» P}, o}, . The
supervised part of training essentially supports SliderGAN
being robust on errors of expression parameters extracted
from 3DMM fitting. Further discussion on the nature and
effect of such errors is included in Sect. 5.6. The modules of
our model, as well as the training process of SliderGAN are
presented in Fig. 4.

Adversarial Loss To improve the photorealism of the syn-

thesized images we utilize the Wasserstein GAN adversarial
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objective with gradient penalty (WGAN-GP) (Gulrajani et al.
201). Therefore, the selected WGAN-GP adversarial objec-
tive with RaD is defined as:

ACaa’v = IEIO%, [DRaD,img (Iorg)]
—Elpe. pirg[Pra,img(GTorg, Prrg))] (6)
— hgpBron [(1V 10, Dimg Tgen) 2 — D71,

Different from the standard discriminator, both real and
generated images are included in the generator part of the
objective of Eq. 6. This allows the generator to benefit from
the gradients of both real and fake images, which as we show
in the experimental section leads to generated images with
sharper edges and more details. This contributes in better
representing the distribution of the real data.

Based on the original GAN rational (Goodfellow et al.
2014) and the Relativistic GAN (Jolicoeur-Martineau 2019),
our generator G and discriminator D are involved in a min-
max game, where G tries to maximize the objective of Eq.(6)
by generating realistic images to fool the discriminator, while
D tries to minimize it by correctly classifying real images as
more realistic than fake and generated images as less realistic
than real.

Expression Loss To make G consistent in accurately
transferring target deformations S, (psr) to the generated
images, we consider the discriminator D to have the role of
an inspector. To this end, we back-propagate a mean squared
loss between the estimated vector p,;; of the regression layer
of D and the actual vector of expression parameters of an
image.

We apply the expression loss both on original images and
generated ones. Similarly to the classification loss of Star-
GAN Choi et al. (2018), we construct separate losses for the
two cases. For real images I,-; we define the loss:

1
Eexp,D = N”D(Iorg) - porg)”z, N

between the estimated and real expression parameters of I.¢,
while for the generated images we define the loss:

1
Eexp,g = N ”D(g(lorgs ptrg)) - ptrg)”zs (8)

between the estimated and target expression parameters of
Igen = Gorg, Pirg). Consequently, D minimizes Loyp, p to
accurately regress the expression parameters of real images,
while G minimizes L., ¢ to generate images with accurate
expression according to D.

Image Reconstruction Loss The adversarial and the
expression losses of Eq.(6) and Eq.(7), Eq.(8) respectively,
would be enough to generate random realistic expressive
images which however, would not preserve the contents of

the input image I,;4. To overcome this limitation we admit a
cycle consistency loss (Zhu et al. 2017) for our generator G:

1

Lree = Wih

1, ©))

”Iorg )

over the vectorized forms of the original image I,,, and
the reconstructed image L. = G(G(Iorg, Pirg), Porg). Note
that we obtain image I, .. by using the generator twice, first
to generate image Ly, = G(Iyg, Prre) and then to get the
reconstructed I.c = G(Igen, Porg), conditioning Ige, on the
parameters porg Of the original image.

Image Generation Loss To further boost our gen-
erator towards accurately editing expression based on a
vector of parameters, we introduce image pairs of the
form (L, Pl . I}, - Pl )/ that we automatically gener-
ate from neutral images as described in detail in Sect. 5.1.
We exploit the synthetic pairs of images of the same indi-
viduals under different expression by introducing an image
generation loss:

Lgen = ”Itrg - Igen“ls (10)

W x H

where I, and I, are images with either neutral or synthetic
expression of the same individual. Here, we calculate the
L1 loss between the synthetic ground truth image I, and
the generated by G, I,.,, aiming to boost our generator to
accurately transfer the 3D expression S, (p;r¢) to the edited
image.

Identity Loss Image reconstruction loss of Eq. (9), aids
to maintain the surroundings between the original and gen-
erated images. However, the faces’ identity is not always
maintained by this loss, as also show by our ablation study in
Sect. 5.9. To alleviate this issue, we introduce a face recog-
nition loss adopted from ArcFace (Deng et al. 2018), which
models face recognition confidence by an angular distance
loss. Particularly, we introduce the loss:

e €
»Cid =1- Cos(egena eorg) =1- Ms (1D

-
egen €org

where €50, = F(Ige,) and e,y = F(Iyrg) are embeddings
of I,., and I, respectively, extracted by the face recog-
nition module F. According to ArcFace, face verification
confidence is higher as the cosine distance cos(€gen, €org)
grows. During training, G is optimized to maintain face iden-
tity between Ig., and I,,; which minimizes Eq.(11).

Attention Mask Loss To encourage the generator to pro-
duce sparse attention masks G,, that focus on the deformation
regions and do not saturate to 1, we employ a sparsity loss
L. That is we calculate and minimize the L1-norm of the
produced masks for both the generated and the reconstructed
images, defining the loss as:
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1
[/att = m(”gm(lorg, ptrg)”l + ”gm(lgem purg)”l),
(12)

Total Training Loss We combine loss functions of Egs.
(6)—-(12) to form loss functions L£g and Lp for separately
training the generator G and the discriminator D of our model.
We formulate the loss functions as:

Lg =
L:adv + )Vexpcexp,g + )Vrec»crec + )\'id»cid + )\att[:attv
i

for unpaired data {I,,.,, pf]rg, pirg}ilil

£adv + )Vexpﬁexp,g + )Vrecﬁrec + )"genﬁgen + )"idcidv
L

~+ Aart Lase, for paired data {If,rg, pirg, I;rg, Pirg}i=1
(13)
»CD = _»Cadv + )Vexp['exp,Dv (14)

where Aexp, Arecs Agens Aig and Aqyy are parameters that reg-
ularize the importance of each term in the total loss function.
We discuss the choice of those parameters in Sect. 5.2.

As can be noticed in Eq.(13), we employ different loss
functions Lg, depending on if the training data are the real
data with no image pairs or the synthetic data which include
pairs. The only difference is that in the case of paired data
we use the additional supervised loss term L.

4.2 Implementation Details

Having presented the architecture of our model, here we
report further implementation details. For the generator
module G of SliderGAN, we adopted the architecture of
CycleGAN (Zhu et al. 2017) as it is proved to generate
remarkable results in image-to-iamge translation problems,
as for example in StarGAN (Choi et al. 2018). We extended
the generator by adding a parallel output layer to accomodate
the attention mask mechanism. Moreover, for D we adopted
the architecture of PatchGAN Isola et al. (2017) which pro-
duces probability distributions of the multiple image patches
to be real or generated, D(I) — D;y,. As described in Sect.
4.1, we extended this discriminator architecture by adding a
parallel regression layer to estimate continuous expression
parameters.

5 Experiments
In this section we present a series of experiments that we con-
ducted in order to evaluate the performance of SliderGAN.

First, we describe the datasets we utilized to train and test our
model (Sect. 5.1) and provide details on the training setting
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Fig.5 Synthetic expressive faces, generated by fitting a 3DMM on the
original images and rendering back with a randomly sampled expres-
sion. The images with a red frame are the original images

for each experiment (Sect. 5.2). Then, we test the ability of
SliderGAN to manipulate the expression in images by adjust-
ing a single or multiple parameters of a 3D blendshape model
(Sect. 5.3). Moreover, we present our results in direct expres-
sion transfer between an input and a target image (Sect. 5.4),
as well as in discrete expression synthesis (Sect. 5.5). Next,
we test Ganimation on expression editing when trained with
blendshape vectors instead of AUs (Sect. 5.6). We examine
the ability of SliderGAN to handle face deformations due
to speech (Sect. 5.7) and test the regression accuracy of our
model’s discriminator (Sect. 5.8). We close the experimental
section of our work by presenting an ablation study on the
contribution of the different loss functions (Sect. 5.9) and a
discussion on limitations and failure cases of our technique
(Sect. 5.10).

5.1 Datasets

Emotionet For the training and validation phases of our
algorithm we utilized a subset of 250,000 images of the Emo-
tioNet database (Benitez-Quiroz et al. 2016), which contains
over 1 million images of expression and emotion, accom-
panied by annotations about facial Action Units. However,
SliderGAN is trained with image - blendshape parameters
pairs which are not available. Therefore, in order to extract
the expression parameters we fit the 3DMM of Booth et al.
(2018) on each image of the dataset in use. To ensure the high
quality of 3D reconstruction, we employed the LSFM (Booth
et al. 2016) identity model concatenated with the expression
model of 4DFAB (Cheng et al. 2018. The 4DFAB expression
model was built from a collection of over 10,000 expressive
face 3D scans of spontaneous and posed expressions, col-
lected from 180 individuals in 4 sessions over the period of 5
years. SliderGAN exploits the scale and representation power
of 4DFAB to learn how to realistically edit facial expressions
in images. The method described above constitutes a tech-
nique to automatically annotate the dataset and eliminates
the need of costly manual annotation.
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3D Warped Images One crucial problem of training with
pseudo-annotations extracted by 3DMM fitting on images, is
that the parameter values are not always consistent as small
variations in expression can be mistakenly explained by the
identity, texture or camera model of the 3DMM. To over-
come this limitation, we augmented the training dataset with
expressive images that we render and therefore know the
exact blendshape parameter values. In more detail, we fit
with the same 3DMM 10,000 images of EmotioNet in order
to recover the identity and camera models for each image. A
3D texture can also be sampled by projecting the recovered
mesh on the original image. Then, we combined the iden-
tity meshes with randomly generated expressions from the
4DFAB expression model and rendered back on the original
images. Rendering 20 different expressions from each image,
we augmented the dataset by 200,000 accurately annotated
images. Some of the generated images are displayed in Fig.
5

4DFAB Images A common problem of developing gener-
ative models of facial expression is the difficulty in accurately
measuring the quality of the generated images. This is mainly
due to the lack of databases with images of people of the same
identity with arbitrary expressions. To overcome this issue
and quantitatively measure the quality of images generated
by SliderGAN, as well as compare with the baseline, we cre-
ated a database with rendered images from 3D meshes and
textures of 4DFAB. In more detail, we rendered 100 to 500
images with arbitrary expression from each of the 180 identi-
ties and for each of the 4 sessions of 4DFAB, thus rendering
300,000 images in total. To obtain expression parameters
for each rendered image, we projected the blendshape model
Sexp oneach corresponding 3D mesh S such that the obtained
parameters are p = U;p (S —s).

Lip Reading Words in 3D (LRW-3D) Lip Reading in
the Wild (LRW) dataset (Chung and Zisserman 2016) con-
sists of videos of hundreds of speakers including up to 1000
utterances of 500 different words. LRW-3D (Tzirakis et al.
2019) provides speech blendshapes parameters for the frames
of LRW, which were recovered by mapping each frame of
LRW that correspond to one of the 500 words to instances of
a 3D blendshape model of speech, by aligning the audio seg-
ments of the LRW videos and those of a 4D speech database.
Moreover, to extract expression parameters for each word
segment of the videos we applied the 3DMM video fitting
algorithm of Booth et al. (2018), which accounts for the tem-
poral dependency between frames. In Sect. 5.7, we utilize the
annotations of LRW-3D as well as the expression parameters
to perform expression and speech transfer.

5.2 Training Details

In all experiments, we trained our models with images of
size 128 x 128 pixels, aligned to a reference shape of 2D

landmarks. As condition vectors we utilized the 30 most sig-
nificant expression components of 4DFAB and the 10 most
significant speech components of LRW-3D (Tzirakis et al.
2019). The later where only used for the combined expres-
sion and speech synthesis experiments. We set the batch size
to 16 and trained our models for 60 epochs with Kingma and
Ba (2014) (81 = 0.5, B> = 0.999). Moreover, we chose loss
weights Agqp = 30, Aexp = 1000, A;ec = 10, Agep = 10,
Aig = 4 and Agy = 0.3. Larger values for A;4 significantly
restrict G, driving it to generate images very close to the orig-
inal ones with no change in expression. Also, lower values
for Mgy, lead to mask saturation.

In all our experiments training was performed in two
phases over a total of 60 epochs. Particularly, we first trained
our models for 20 epochs, utilizing only the generated image
pairs of the “3D warped images” database presented in
Sect. 5.1. This training phase makes our models robust to
parameter errors as further discussed in Sect. 5.6. Then, we
proceeded to unsupervised training for another 40 epochs
with a dataset of unpaired real images, which we selected
depending on the task. In this training phase our models
learn to generate the realistic details related to expression
and speech. For speech synthesis, we train the model from
the beginning with an extended parameter vector of 40 ele-
ments, setting the speech parameters to zero for the first phase
of training where we train only for expression.

In more detail, the datasets we employed for the sec-
ond phase of training in our experiments are as follows. We
employed:

e EmotioNet for our experiments on:

— 3D model-based expression editing (Sect. 5.3),

— expression transfer and interpolation on images of
Emotionet (Sect. 5.4),

— discrete expression synthesis (Sect. 5.5),

— comparing with Ganimation conditioned on blend-
shape parameters (Sect. 5.6),

— 3d expression reconstruction (Sect. 5.8),

— the ablation study (Sect. 5.9),

— limitations of our model (Sect. 5.10),

e 4DFAB Images for the experiment on expression transfer
and interpolation on images of 4DFAB (Sect. 5.4),

e LRW-3D for the combined expression and speech syn-
thesis experiment (Sect. 5.7).

5.3 3D Model-Based Expression Editing

Sliding Single Expression Parameters In this experiment
we demonstrate the capability of SliderGAN to edit the facial
expression of images when single expression parameters are
slid within the normalized range [—1, 1]. In Fig. 6 we provide
results for 10 levels of activation of single parameters of the
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model (-1, —0.8, —0.6, —0.4, —-0.2,0,0.2,0.4,0.6,0.8, 1),
while the rest parameters remain zero. As can be observed
in Fig. 6, SliderGAN successfully learns to reproduce the
behaviour of each blendshape separately, producing realistic
facial expressions while adequately maintaining the identity
of the input image. Also, the transition between the gen-
erated expressions is smooth for successive values of the
same parameter and the intensity of the expressions depen-
dent on the magnitude of the parameter value. Note that when
the zero vector is applied, SliderGAN produces the neutral
expression, whatever the expression of the original image.

Sliding Multiple Expression Parameters The main fea-
ture of SliderGAN is its ability to edit facial expressions in
images by sliding multiple parameters of the model, similarly
to sliding parameters in a blendshape model to generate new
expressions of a 3D face mesh. To test this characteristic of
our model, we synthesize random expressions by condition-
ing the generator input on parameter vectors with elements
randomly drawn from the standard normal distribution. Note
that the model was trained with expression parameters nor-
malized by the square root of the eigenvalues e;, i = 1, ..., N
of the PCA blendshape model. This means that all combi-
nations of expression parameters within the range [-1, 1]
correspond to feasible facial expressions.

As illustrated by Fig. 7, SliderGAN is able to synthesize
face images with a great variability of expressions, while
adequately maintaining identity. The generated expressions
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Fig.6 Expressive faces generated by sliding single blendshape (b/s) parameters in the range [—1, 1]. As it is observed, the edited images accurately
replicate the 3D faces’ motion in the whole range of parameter values
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accurately resemble the 3D meshes’ expressions when the
same vector of parameters is used for the blendshape model.
This fact makes our model ideal for facial expression editing
in images. A target expression can first be chosen by utilizing
the ease of perception of 3D visualization of a 3D blendshape
model and then, the target parameters can be employed by
the generator to edit a face image accordingly.

5.4 Expression Transfer and Interpolation

A by-product of SliderGAN is that the discriminator D
learns to map images to expression parameters Dy that
represent their 3D expression through S, (Dp). We capi-
talize on this fact to perform direct expression transfer and
interpolation between images without any annotations about
expression. Assuming a source image Iy, with expression
parameters pPgrc = Dp(Iyc) and a target image I, with
expression parameters p;rg = Dp(I;¢), we are able to trans-
fer expression py,¢ to image I, by utilising the generator of
SliderGAN, such that Ls;c— ¢ = GIsrc|Prrg). Note that no
3DMM fitting or manual annotation is required to extract the
expression parameters and transfer the expression, as this is
performed by the trained discriminator.

Additionally, by interpolating the expression parameters
of the source and target images, we are able to gener-
ate expressive faces that demonstrate a smooth transition
from expression pg,c to expression p;.g. Interpolation of
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Fig. 7 Expressive faces generated by sliding multiple blendshape (b/s) parameters in the range [—1, 1]. As it is observed, the wide range of the

edited images accurately replicate the 3D faces’ motion

the expression parameters can be performed by sliding an
interpolation factor a within the region [0,1] such that the
requested parameters are Pinrerp = APsre + (1 — @)Psrg.

Qualitative Evaluation Results of performing expression
transfer and interpolation on images of the 4DFAB ren-
dered database and Emotionet are displayed in Figs. 8 and
9 respectively, where it can be seen that the expressions of
the generated images obviously reproduce the target expres-
sions. The smooth transition between expressions pg, and
P:rg indicates that SliderGAN successfully learns to map
images to expressions across the whole expression parame-
ter space. Also, it is evident that D accurately regresses the
blendshape parameters from images I, by observing the
recovered 3D faces. The accuracy of the regressed parame-
ters is also examined in Sect. 5.8.

To further validate the quality of our results, we trained
GANimation on the same dataset with AU annotations
extracted with OpenFace (Amos et al. 2016) as suggesed
by the authors. We performed expression transfer between
images and present results for SliderGAN-RaD, SliderGAN-
WGP and GANimation. In Fig. 10, it is obvious that
SliderGAN-RaD benefits from the Relativistic GAN training
and produces higher quality textures than SliderGAN-WGP,
while both SliderGAN implementations better simulate the
expressions of the target images than GANimation.

Quantitative Evaluation In this section we provide quan-
titative evaluation on the performance of SliderGAN on
arbitrary expression transfer. We employ the 4DFAB ren-
dered images dataset which allows us to calculate the Image
Euclidean Distance (Wang et al. 2005) between ground truth
rendered images of 4DFAB and images generated by Slider-
GAN. Image Euclidea Distance is a robust alternative metric
to the standard pixel loss for image distances, which is
defined between two RGB images x and y each with M x N
pipxels as:

MN MN

1
5 2 2 explI P = PP 23 (xi = yi )l =y 11%) (15)

i=1j=1

where P; and P; are the pixel locations on the 2D image
plane and x;, y;, x;, y; the RGB values of images x and y at
the vectorized locations i and j.

We trained SliderGAN with the rendered images from
150 identities of 4DFAB, leaving 30 identities for testing. To
allow direct comparison between generated and real images,
we randomly created 10,000 pairs of images of the same ses-
sion and identity (this ensures that the images were rendered
with the same camera conditions) from the testing set and per-
formed expression transfer within each pair. To compare our
model against the baseline model GANimation, we trained
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Input Target

Fig.8 Expression interpolation between images of 4DFAB. First, we employ D to recover the expression parameters from an input and the target
images. Then, we capitalize on these parameter vectors to animate the expression of the input image towards multiple targets

Target

A

e

Fig. 9 Expression interpolation between images of Emotionet. First, we employ D to recover the expression parameters from an input and the
target images. Then, we capitalize on these parameter vectors to animate the expression of the input image towards multiple targets
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tion

SliderGAN-
WGP

» liderGAN-
RaD

Ganima-
tion

SliderGAN-
WGP

SliderGAN-

SliderGAN-
WGP

SliderGAN-

RaD
Fig. 10 Expression transfer between images of Emotionet. First, we higher quality textures than any of the other two methods (mostly evi-
employ D to recover expression parameters from the target images. dent in the mouth and eyes regions). Moreover, GANimation reproduces
Then, we utilize these parameter vectors to transfer the target expres- the target expressions with lower accuracy. (Please, zoom in the images
sions to the input images. From the results, SliderGAN-RaD produces to notice the differences in texture quality.)
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Table 1 TImage Euclidean Distance (IED), calculated between ground
truth images of 4DFAB and corresponding generated images by Gani-
mation (Pumarola et al. 2018), SliderGAN-WGP and SliderGAN-RaD

Method IED
GANimation Pumarola et al. (2018) 1.04e—02
SliderGAN-WGP 7.932—-03
SliderGAN-RaD 6.84¢ — 03

Results from SliderGAN-RaD produce the lowest IED between the
three methods

and performed the same experiment using GANimation on
the same dataset with AUs activations that we obtained with
OpenFace. Also, to showcase the benefits of the relativistic
discriminator in image quality of the generated images, we
repeated the experiment with SliderGAN-WGP. The results
are presented in Table 1 where it can be seen that SliderGAN-
RaD produces images with the lowest IED.

5.5 Synthesis of Discrete Expressions

Specific combinations of the 3D expression model parame-
ters represent the discrete expressions anger, contempt, fear,
disgust, happiness, sadness, surprise and neutral. To directly
translate input images into these expressions, we need appro-
priate blendshape parameter vectors which reproduce the
corresponding 3D model instances. Of course, as our condi-
tion vectors consist of real numbers, there do not exist unique
3D instances for each expression, but infinitely many with
varying intensity.

To extract such parameter vectors we adopted the fol-
lowing approach. First, we manually picked 10 images for
each category of the questioned expressions from EmotioNet.
Then, we employed D to estimate parameter vectors for each
image, similarly to the expression transfer of Sect. 5.4. We
computed the mean vectors for each of the 7 expressions
and manually adjusted the values trough visual inspection of
the 3D model instances, to create 3D faces that depict the
expressions in average intensity (removing any exaggeration
or mistakes from the discriminator).

We employ these parameter vectors to synthesize expres-
sive face images of the aforementioned discrete expressions
and test our results both qualitatively and quantitatively.

Qualitative Evaluation To evaluate the performance of
SliderGAN in this task, we visually compare our results
against the results of five baseline models: DIAT (Li et al.
2016), CycleGAN Zhu et al. (2017), IcGAN Perarnau
et al. (2016), StarGAN Choi et al. (2018) and GANimation
Pumarola et al. (2018). In Fig. 11 it is evident that Slider-
GAN generates results that resemble the queried expressions
while maintaining the original face’s identity and resolution.
The results are close to those of GANimation, however the
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Relativistic GAN training of SliderGAN allows for slightly
higher quality of images.

The neutral expression can also be synthesized by Slid-
erGAN when all the elements of the target parameter vector
are set to 0. In fact, the neutral expression of the 3D blend-
shape model is also synthesized by the same vector. Results
of image neutralization on in-the-wild images of arbitrary
expression are presented in Fig. 12, where it can be observed
that the neutral expression is generated without significant
loss in faces’ identity.

Quantitative Evaluation We further evaluate the qual-
ity of the generated expressions by performing expression
recognition with the off-the-self recognition system (Li et al.
2017). In more detail, we randomly selected 10,000 images
from the test set of Emotionet, translated them to each of
the discrete expressions anger, disgust, fear, happiness, sad-
ness, surprise, neutral and passed them to the expression
recognition network. For comparison, we repeated the same
experiment with SlidlerGAN-WGP and GANimation using
the same image set. In Table 2 we report accuracy scores for
each expression class separately, as well as the average accu-
racy score for the three methods. The classification results are
similar for the three models, with both implementations of
SliderGAN producing slightly higher scores, which denotes
that GANimation’s results include more failure cases.

5.6 Comparison with Ganimation Conditioned on
Blendshape Parameters

It would be reasonable to be assumed that by just substituting
AUs with blendshapes, Ganimation could be used to manip-
ulate images based on blendshape conditions. However, this
is not the case because Ganimation cannot handle errors of
the expression parameters.

3DMM fitting, being an inverse graphics approach to 3D
reconstruction, often produces errors related to mistakenly
explaining identity and pose of faces as expression and the
opposite. For example, a face with a long chin in a slightly
side pose might be partially explained by a 3DMM fitting
algorithm as a slightly open and shifted mouth or some other
similar expression. This is the case for 3D mesh projection
(as in the case of recovering parameters from the 4DFAB
meshes), too, with which identity can be mistakenly recon-
structed to an extend by the linear 3D expression model. This
makes the extracted expression parameters to be associated
with more attributes of images than only expression.

In the setting of Ganimation, these errors have a negative
impact on the robustness and generalisation ability of the
model. Particularly, the discriminator becomes dependent on
more facial attributes than just expression in regressing the
3DMM parameters. This motivates the generator to repro-
duce the identity, pose and style of the training images
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Fig. 11 Generation of the 7
discrete expressions a anger, b

contempt, ¢ disgust, d fear, e Input
happiness, f sadness, g surprise.
By comparing SliderGAN
against DIAT (Li et al. 2016),
CycleGAN Zhu et al. (2017), DIAT
IcGAN Perarnau et al. (2016),
StarGAN Choi et al. (2018) and
GANimation Pumarola et al.
(2018) we observe that our . CycleG AN
model generates results of high
texture quality that resemble the
queried expressions. The results
of the rest of the methods where
taken from Pumarola et al. ICGAN
(2018)
StarGAN
GANimation
SliderGAN-
RaD

Fig. 12 Neutralization of in-the-wild images of arbitrary expression.
The neutralization takes place by setting all blendshape parameter val-
ues to zero

rather than only the target expression, as the two modules
compete in the min-max optimization problem of the GAN.

This problem is handled in SliderGAN by two of the main
contributions of our work. First, the 3D warped images used
for the 20 first epochs of the training, help the generator pro-
duce expressions consistent with the expression blendshapes,
even though realistic texture deformations are missing at this
stae (e.g wrinkles when smiling). Second, the face recogni-
tion error L;; substantially supports retaining the identity
between input and generated images, making SliderGAN
robust to the errors of 3DMM fitting. The contribution of
both losses in training is further examined in Sect. 5.9. As
it can be seen in Fig. 13, the results produced by Ganima-
tion include significant artifacts which are directly related to
the identity pose and style of the target images. Contrarily,
images generated from SliderGAN do not present such arti-
facts in most cases and when such artifacts are visible they
exist to a considerably lesser extent.

Table 2 Expression recognition results by applying the off-the-self expression recognition system (Li et al. 2017) of images generated by GANi-

mation (Pumarola et al. 2018), SliderGAN-WGP and SliderGAN-RaD

Method Anger Disgust Fear Happiness Sadness Surprise Neutral Average
GANimation Pumarola et al. (2018) 0.552 0.446 0.517 0.658 0.632 0.622 0.631 0.579
SliderGAN-WGP 0.550 0.463 0.514 0.762 0.633 0.678 0.702 0.614
SliderGAN-RaD 0.591 0.481 0.531 0.798 0.654 0.689 0.708 0.636

Accuracy scores from both SliderGAN models outperform those of GANimation, while SliderGAN-RaD achieves thehighest accuracy in all

epressions
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Fig. 13 Evaluation of Ganimation when switching AUs with blenddshapes. Ganimation is not able to handle the errors in expression parameters
extracted from 3DMM fitting. The synthesized data, as well as the additional identity loss enables SliderGAN to better translate input images to

target expressions

Input

Target video / Synthesized expression and speech

Fig.14 Combined expression and speech animation from a single inputimage. We utilize as targets the expression and speech blendshape parameters
of consecutive frames of videos of LRW, to synthesize sequences of expression and speech from a single input image

5.7 Combined Expression and Speech Synthesis and
Transfer

Blendshape coding of facial deformations allows modelling
arbitrary deformations (e.g. deformations due to identity,
speech, non-human face morphing etc.) which are not limited
to facial expressions, unlike AUs coding which is a system
that taxonomizes the human facial muscles (Ekman et al.
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2002). Even though AUs 10-28 model mouth and lip motion,
not all the details of lip motion that takes place during speech
can be captured by these AUs. Moreover, only 10 (AUs 10,
12, 14, 15, 17, 20, 23, 25, 26 and 28) out of these 18 AUs can
automatically be recognized, which is achieved only with
low accuracy. On the contrary, a blendshape model of the
3D motion of the human mouth and lips would better cap-
ture motion during speech, while it would allow the recovery
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Input

Fig. 15 Comparison of combined expression and speech animation
from a single input image between GANimation (Pumarola et al. 2018),
SliderGAN-WGP and SliderGAN-RaD. We utilize as targets the expres-
sion and speech blendshape parameters of consecutive frames of a video
of LRW. Then we reconstruct the expression and speech from a single

of robust representations from images and videos of human
speech.

We capitalize on this fact and employ the mouth and lips
blendshape model of Tzirakis et al. (2019), Sspeccn(q) =
S + Uspeecnq, to perform speech synthesis from a single
image with SliderGAN. Particularly, we employ the LRW-
3D database which contains speech blendshape parameters
annotations for the 500 words of LRW (Chung and Zisserman
2016), to perform combined expression and speech synthe-
sis and transfer, which we evaluate both qualitatively and
quantitatively.

LRW contains videos with both expression and speech.
Thus, to completely capture the smooth face motion across
frames we employed for each frame 30 expression parame-
ters recovered by 3DMM fitting and 10 speech parameters of
LRW-3D which correspond to the 10 most significant com-
ponents of the 3D speech model S;peecr . That is we combined

Target video / Synthesized expression and speech
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tion

SliderGAN-
WGP
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RaD

Iy Ground
Truth

" Ganima-
tion

SliderGAN-
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input frame of the same video. Both SliderGAN implementations recon-
struct face motion more accurately than GANimation. Also, the texture
quality of the results is higher in SLiderGAN-RaD than in SLiderGAN-
WGP as expected. (Please, zoom in the images to notice the differences
in texture quality.)

the parameters of two separate 3D blendshape models, S,y
and S peech, under our SliderGAN framework by stacking all
40 parameters in a single vector, to train a model which can
generate frame sequences where both facial expression and
lip/mouth motion varies. Simply stacking the parameters in
one vector is a reasonable way to combine them in this case
because S, and Speecr, are linear models and have the same
mean component (the LSFM mean face), which means that
simple addition of instances of the two models yields possible
3D faces. Also, both include values in the interval [—1, 1].
We trained SliderGAN with 180,000 frames of LRW, after
training with the warped images, without leveraging the tem-
poral characteristics of the database, that is we shuffled the
frames and trained our model with random target vectors to
avoid learning person specific deformations.

Qualitative Evaluation Results of performing expression
and speech synthesis from a video using a single image are
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presented in Fig. 14 where the the parameters and the input
frame belong to the same video (ground truth frames are
available) and in Fig. 15 where the parameters and the input
frame belong to different videos of LRW.

For comparison we trained GANimation on the same
dataset with AU activations obtained by OpenFace. As can
be seen by Fig. 15, GANimation is not able to accurately
simulate the lip motion of the target video. On the contrary,
SliderGAN-WGP simulates mouth and lip motion well, but
produces textures that look less realistic. SliderGAN-RaD
produces higher quality results that look realistic in terms of
accurate deformation and texture.

Quantitative Evaluation To measure the performance
of our model we employ Image Euclidean Distance (IED)
(Wang et al. 2005) to evaluate the results of expression and
speech synthesis when the input frame and target parameters
belong to the same video sequence. Due to changes in pose
in the target videos, we align all target frames with the corre-
sponding output ones before calculating IED. The results are
presented in Table 3, where it can be seen that SliderGAN-
RaD achieves the lowest error.

5.8 3D Expression Reconstruction

As also described in Sect. 5.4, a by-product of SliderGAN
is the discriminator’s ability to map images to expres-
sion parameters D) that reconstruct the 3D expression as
Sexp(Dp). We test the accuracy of the regressed parameters
on images of Emotionet in two scenarios: a) we calculate the
error between parameters recovered by 3DMM fitting and
those regressed by D on the same image (Table 4 row 1) and
b) we test the consistency of our model and calculate the error
between some target parameters p;-, and those regressed by
D on amanipulated image which was translated to expression
Pirg by SliderGAN-RaD (Table 4 row 2).

For comparison, we repeated the same experiment with
GANimation for which we calculated the errors in AUs acti-
vations. For both experiments we employed 10000 images
from our test set. The results demonstrate that the discrimina-
tor of SliderGAN-RaD extracts expression parameters from
images with high accuracy compared to 3DMM fitting. On
the contrary, GANimation’s discriminator is less consistent in
recovering AU annotations when compared to those of Open-
Face. This, also, illustrates that the robustness of blendshape
coding of expression over AUs, makes SliderGAN more suit-
able than GANimation for direct expression transfer.

Nevertheless, as it is reasonable to assume, 3DMM fit-
ting is more stable and accurate in recovering expression
parameters from images, than the trained discriminator. The
superiority of 3DMM fitting is mostly evident in images with
difficult faces and extreme expressions. As it can be seen in
Fig. 16, D produces substantially close 3D reconstruction
results to those of 3DMM fitting for the easier image cases,
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Table 3 Image Euclidean Distance (IED), calculated between ground
truth images of LRW and corresponding generated images by Gani-
mation (Pumarola et al. 2018), SliderGAN-WGP and SliderGAN-RaD

Method IED

GANimation Pumarola et al. (2018) 3.07¢ — 02
SliderGAN-WGP 1.14e — 02
SliderGAN-RaD 9.35¢ — 03

Results from SliderGAN-RaD produce the lowest IED between the
three methods, which indicates the robustness of blendshape coding for
speech utlized by SliderGAN

Table4 Expression representation results on SLiderGAN-RaD (blend-
shape parameters coding) and Ganimation (AUs activations coding)

SliderGAN GANimation
Pumarola
et al. (2018)
1 N p3pmm,i—Pp.ill
N 2int IP3pmm.ill 0.131 0.427
1 N Pirg,i —Pp.il
D R e 0.258 0513

SliderGAN is capable to accurately and robustly recover expression
representations, while GANimation fails to detect AUs activations

which result in almost identical translated images. Contrar-
ily, the regressed 3D expression reconstructions of D are
obviously less accurate for the harder cases, which affects
the quality of expression transfer between input and target
images.

Lastly, D does not achieve state-of-the art results in 3D
reconstruction of expression but allows our model to be inde-
pendent from additional 3DMM fitting during testing, which
is clearly an advantage. Alternatives, for more stable expres-
sion transfer between images would be to employ different
DCNN-based models dedicated to blendshape parameters
regression, or 3DMM fitting but with a higher cost in required
resources and execution time.

5.9 Ablation Study

In this section we investigate the effect of the different losses
that constitute the total loss functions £g and Lp of our
algorithm. As discussed in Sect. 4.1, both training in a semi-
supervised manner with loss Lg., and employing a face
recognition loss L;; between the original and the generated
images, contribute significantly in the training process of the
generator G. In fact, we only focus on these two terms as they
are essential for making SliderGAN robust against errors in
expression parameters used as ground truth during training.
These errors, caused by limitations of 3DMM fitting, make
parameters to be mistakenly associated to more attributes of
images than just expression (e.g pose, identity), as further
discussed in Sect. 5.6. The rest loss terms of SliderGAN are



International Journal of Computer Vision (2020) 128:2629-2650

2647

input

ir;pgt

easy for D

hard for D

Fig. 16 Comparison of image translation with expression parameters
recovered from 3DMM fitting and the discriminator of SliderGAN. D
recovers expressions adequately close to those of 3DMM fitting for

either essential in GAN training (L4, ), Or common in simi-
lar architectures such as the StarGAN and Ganimation (L.,
Lexp,Ds Lexp,G» Larr) and thus are not explicitly discussed.

To explore the extend at which these losses affect the per-
formance of G, we consider three different models trained
with variations of the loss function of SliderGAN which are:
a) Lg does not include L;4, b) Lg does not include Lgey,
and ¢) Lg does not include both £;4 and L;,. Fig. 17 depicts
results for the same subject generated by the three models
as well as SliderGAN. As it can be observed in row “with-
out L;;”, the absence of L;4 results in images that clearly
reflect the target expressions, but with changed identity and
artifacts. Thus, £;4 substantially supports retaining the iden-
tity between input and generated images. As it is shown in
row “without L,,,”, training our model utilizing £;4 and not
Lgen results in images with only slightly changed identity
between input and output images, that however reflect other
attributes of the target images along with expression such as
pose, head shape and color.

When both £;4 and L, are omitted as in row “without
Liq + Lgen”, both the identity preservation and the expres-
sion accuracy decrease drastically. Generally, the GAN loss

most images which are noted as “easy”. Then, the image translation in
the two cases is almost identical. However, on “hard” cases the accuracy
of D drops, as also does the quality of expression editing

Input

Slider-
GAN

Fig. 17 Results from the ablation study on SliderGAN’s loss function
components. It is evident that both losses £;4 and L., have significant
impact on the training of the model

@ Springer
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Identity drift
input

target output input

Difficult input
target output

Difficult target
input

target output

Fig. 18 Limitations of SliderGAN. The main limitations are the identity transfer from target images to the output, the unsuccessful manipulation
of non-natural images and the compromised generation of extreme expressions

is responsible for generating realistic images with higher
frequency details that an /; or /; reconstruction loss cannot
produce. However, in this case the GAN loss is not enough,
because of the inconsistency of expression parameters which
makes image generation problematic.

Finally, including both loss functions in training, enables
SliderGAN to produce images that preserve all attributes
of the input images but expression, which is manipulated
according to the target expressions.

5.10 Limitations of SliderGAN

In this section we discuss the main limitations of our proposed
model to indicate possible directions for improvement.

One important limitation is that SliderGAN does not
always maintain the identity of the input images completely
unchanged as can be seen in Fig. 18. This happens mainly, in
cases of extreme expressions or expressions with few close
samples in the training set of real images. Thus, in those
cases SliderGAN over-fits to specific images, reproducing
the identity in the generator’s output. This could probably be
solved if a more balanced database in terms of expressions
was employed. It is worth noting that the identities are per-
fectly maintained in the case of training with 4DFAB, which
is a controlled database and includes lots of images for every
expression.

Another limitation is generating extreme expressions or
manipulating images with extreme expressions. In both
cases, images often present a lot of artifacts as shown in Fig.
18. This is because extreme expressions are not well repre-
sented in the training dataset and of course, bigger parts of
the image have to be edited which makes it a more difficult
task for the generator.

Lastly, editing non real faces, such as sketches of faces,
faces of character models, faces with makeup etc., most often

@ Springer

produces artifacts as shown in Fig. 18, for the same reasons
as editing extreme expressions.

6 Conclusion

In this paper, we presented SliderGAN, a new and very flex-
ible way for manipulating the expression (i.e., expression
transfer etc.) in facial images driven by a set of statistical
blendshapes. To this end, a novel generator based on Deep
Convolutional Neural Networks (DCNNs) is proposed, as
well as alearning strategy that makes use of adversarial learn-
ing. A by-product of the learning process is a very powerful
regression network that maps the image into a number of
blendshape parameters, which can then be used for condi-
tioning the inputs of the generator.
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