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Abstract Facial action unit (AU) detection and face align-
ment are two highly correlated tasks, since facial landmarks
can provide precise AU locations to facilitate the extrac-
tion of meaningful local features for AU detection. However,
most existing AU detection works handle the two tasks in-
dependently by treating face alignment as a preprocessing,
and often use landmarks to predefine a fixed region or atten-
tion for each AU. In this paper, we propose a novel end-to-
end deep learning framework for joint AU detection and face
alignment, which has not been explored before. In particular,
multi-scale shared feature is learned firstly, and high-level
feature of face alignment is fed into AU detection. More-
over, to extract precise local features, we propose an adap-
tive attention learning module to refine the attention map
of each AU adaptively. Finally, the assembled local features
are integrated with face alignment feature and global feature
for AU detection. Extensive experiments demonstrate that
our framework (i) significantly outperforms the state-of-the-
art AU detection methods on the challenging BP4D, DISFA,
GFT and BP4D+ benchmarks, (ii) can adaptively capture the
irregular region of each AU, (iii) achieves competitive per-
formance for face alignment, and (iv) also works well un-
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der partial occlusions and non-frontal poses. The code for
our method is available at https://github.com/ZhiwenShao/
PyTorch-JAANet.
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1 Introduction

Facial action unit (AU) detection and face alignment are two
important face analysis tasks in the fields of computer vi-
sion and affective computing (Corneanu et al., 2016; Mar-
tinez et al., 2019). In most of face related tasks, face align-
ment (Kazemi and Sullivan, 2014; Zhang et al., 2016b; Shao
et al., 2020) is usually employed to localize certain distinc-
tive facial locations, namely landmarks, to define the fa-
cial shape or expression appearance. Facial AUs refer to a
unique set of basic facial actions at certain facial locations
defined by Facial Action Coding System (FACS) (Ekman
and Friesen, 1978; Ekman et al., 2002), which is one of
the most comprehensive and objective systems for describ-
ing facial expressions. Considering AU detection and face
alignment are coherently related to each other, they should
be beneficial for each other if putting them in a joint frame-
work. However, in literature it is rare to see such joint study
of the two tasks.

In some previous AU detection studies (Gudi et al., 2015;
Zhao et al., 2016b; Chu et al., 2017), facial landmarks are
only used to align faces into a common reference face, so
that the extracted features from each face correspond to the
same semantic locations. Since landmarks can also provide
precise AU locations, recent works pay more attention to ex-
tracting AU-related features from regions of interest (ROIs)
centered around the associated landmarks. For example, Li
et al. (2018, 2017a) proposed a deep learning based approach
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named EAC-Net for AU detection by enhancing and crop-
ping the ROIs with landmark information. However, they
just treated face alignment as a preprocessing. Wu and Ji
(2016) tried to exploit face alignment and AU detection si-
multaneously with a cascade regression framework, which is
a pioneering work for the joint study of the two tasks. How-
ever, this cascade regression method only uses handcrafted
features and is not based on the prevailing deep learning
technology, which limits its performance.

In addition to EAC-Net (Li et al., 2018) which prede-
fines the ROI of each AU with a fixed size and a fixed atten-
tion distribution, a few works also adopt the attention mech-
anism. Sanchez et al. (2018) used a predefined Gaussian dis-
tribution to generate an attention map for each AU, in which
the amplitude and size of the Gaussian distribution are deter-
mined by the AU intensity. However, these methods cannot
adapt to various AUs with irregular shapes and transforma-
tions. Recently, Shao et al. (2019) directly learned spatial
attentions of AUs without the prior landmark knowledge.
Although this work can find the irregular AU regions, some
irrelevant regions are also captured.

To tackle the above limitations, we propose a novel deep
learning based joint AU detection and face alignment frame-
work to exploit the strong correlation of the two tasks. In
particular, multi-scale feature shared by the two tasks is lear-
ned firstly, and high-level feature of face alignment is ex-
tracted and fed into AU detection. Moreover, to extract pre-
cise local features, we propose an adaptive attention learning
module to refine the attention map of each AU adaptively,
which is initially specified by the predicted facial landmarks.
Finally, the assembled local features are integrated with face
alignment feature and global feature for AU detection. In the
adaptive attention learning module, each AU has an indepen-
dent branch to refine its attention map under the supervision
of its local AU detection loss. Besides, the face alignment
feature and the global feature supplement other useful in-
formation on top of the assembled local features. The entire
framework is end-to-end without any post-processing oper-
ation, and all the modules are optimized jointly.

The contributions of this paper are threefold:

– We propose an end-to-end multi-task deep learning frame-
work for joint facial AU detection and face alignment.
To the best of our knowledge, jointly modeling these two
tasks with deep neural networks has not been done be-
fore.

– With the aid of face alignment results, an adaptive atten-
tion network is learned to determine the attention distri-
bution of the ROI of each AU.

– We conduct extensive experiments on benchmarks, where
our proposed joint framework significantly outperforms
the state-of-the-art AU detection methods, can adaptively
capture the irregular region of each AU, achieves com-

petitive performance for face alignment, and also works
well under partial occlusions and non-frontal poses.

In comparison to the earlier conference version (Shao
et al., 2018) of this work, we introduce the new local AU
detection loss in Sec. 3.5 to generalize the original idea of
the back-propagation enhancement. Specifically, we show
that the local AU detection loss is a more effective way to
supervise the refinement of attention maps so as to extract
more precise local features. We also remove the constraint
on the differences of the attention maps before and after
the refinement, which reduces the restrictions from prede-
fined attention maps and thus facilitates the adaptive learn-
ing of attentions. With these improvements, our framework
becomes more general and achieves better AU detection per-
formance. Aside from the changes in methodology, this ex-
tension also supplements the comparisons on challenging
GFT (Girard et al., 2017) and BP4D+ (Zhang et al., 2016a)
benchmarks, as well as the results under partial occlusions
and non-frontal poses. We name our framework as JÂA-Net
because of Joint learning and Adaptive Attention, in which
“Â” corresponds to “adaptive”, considering we improve the
adaptive attention learning of JAA-Net in our earlier confer-
ence version (Shao et al., 2018).

2 Related Work

Our proposed framework is closely related to existing land-
mark aided facial AU detection methods as well as joint
facial AU detection and face alignment methods, since we
combine both AU detection models and face alignment mod-
els.

2.1 Landmark Aided Facial AU Detection

The preprocessing step in most of the previous facial AU
recognition works is to detect and align faces with the help
of face detection and face alignment methods (Martinez et al.,
2019). Considering it is robust to measure the landmark-
based geometry changes, Benitez-Quiroz et al. (2016) pro-
posed an approach to fuse the geometry and local texture
information for AU detection, in which the geometry infor-
mation is obtained by measuring the normalized facial land-
mark distances and the angles of Delaunay mask formed
by the landmarks. Valstar and Pantic (2006) analyzed Ga-
bor wavelet features near 20 facial landmarks, and these
features were then selected and classified by Adaboost and
SVM classifiers for AU detection. Zhao et al. (2015, 2016a)
proposed a Joint Patch and Multi-Label Learning (JPML)
method for facial AU detection by taking into account both
patch learning and multi-label learning, in which the local
regions of AUs are defined as patches centered around the



JÂA-Net: Joint Facial Action Unit Detection and Face Alignment via Adaptive Attention 3

facial landmarks obtained using IntraFace (De la Torre et al.,
2015). Recently, Li et al. (2018, 2017a) proposed the EAC-
Net for facial AU detection by enhancing and cropping the
predefined ROI of each AU. All the ROIs with central lo-
cations specified by landmarks have a fixed size and a fixed
attention distribution.

All these researches demonstrate the effectiveness of uti-
lizing facial landmarks on feature extraction for AU detec-
tion task. However, they all treat face alignment as a sin-
gle and independent task and make use of the existing well-
designed facial landmark detectors.

2.2 Joint Facial AU Detection and Face Alignment

As a task belonging to facial expression recognition, facial
AU detection has a strong correlation with face alignment.
The correlation between the two tasks can be exploited to
help each other.

On one hand, the correlation has been leveraged in sev-
eral face alignment works. For example, Wu et al. (2017)
combined the tasks of face alignment, head pose estima-
tion, and expression related facial deformation analysis us-
ing a cascade regression framework. Zhang et al. (2014b,
2016b) proposed a Tasks-Constrained Deep Convolutional
Network (TCDCN) to optimize the feature map shared be-
tween face alignment and other heterogeneous but subtly
correlated tasks, e.g. head pose estimation and the inference
of facial attributes including expression. Ranjan et al. (2019)
proposed a deep multi-task learning framework named Hy-
perFace for simultaneous face detection, face alignment, pose
estimation, and gender recognition. All these works demon-
strate that related tasks such as facial expression recognition
are beneficial for face alignment. However, in TCDCN and
HyperFace, face alignment and other tasks are just simply
integrated with the first several layers shared. In contrast,
besides sharing feature layers, our proposed JÂA-Net also
feeds high-level representations of face alignment into AU
detection, and utilizes the estimated landmarks for the ini-
tialization of the adaptive attention learning.

On the other hand, the correlation can also contribute
to facial AU detection. However, the interaction of the two
tasks is usually one way in the aforementioned methods, i.e.
facial landmarks are used to extract features for AU detec-
tion. Instead of treating face alignment independently, Li
et al. (2013) proposed a hierarchical framework with Dy-
namic Bayesian Network to capture the joint local relation-
ship between facial landmark tracking and facial AU recog-
nition. However, this framework requires an offline facial
activity model construction and an online facial motion mea-
surement and inference, and only local dependencies be-
tween facial landmarks and AUs are considered. Inspired
by (Li et al., 2013), Wu and Ji (2016) tried to exploit global

AU relationship, global facial shape patterns, and global de-
pendencies between AUs and landmarks with a cascade re-
gression framework, which is a pioneering work for the joint
process of the two tasks. In contrast with these conventional
methods using handcrafted local appearance features, we
employ an end-to-end deep framework for joint learning of
facial AU detection and face alignment. Moreover, we de-
velop a deep adaptive attention learning method to explore
the feature distributions of different AUs in different ROIs
specified by the predicted facial landmarks.

3 JÂA-Net for Facial AU Detection and Face Alignment

3.1 Overview

The architecture of our proposed JÂA-Net is shown in Fig. 1,
which takes a color face with size l× l×3 as input. It con-
sists of four modules in different colors: hierarchical and
multi-scale region learning, face alignment, global feature
learning, and adaptive attention learning. Firstly, the hier-
archical and multi-scale region learning is designed as the
foundation of JÂA-Net, which extracts a multi-scale fea-
ture from local regions with different sizes. Secondly, the
face alignment module is designed to estimate the locations
of facial landmarks, which will be further utilized to prede-
fine the initial attention map of each AU. The global feature
learning is to capture the structure and texture information
of the whole face. Finally, the adaptive attention learning (in
red) is designed as the central part for AU detection with
a multi-branch network, which refines the attention map of
each AU adaptively so as to capture local AU features at dif-
ferent locations. The assembled local AU features are then
integrated with the face alignment feature and the global fea-
ture for final AU detection. The three modules, face align-
ment, global feature learning, and adaptive attention learn-
ing, are optimized jointly, which share the layers of the hi-
erarchical and multi-scale region learning.

3.2 Hierarchical and Multi-Scale Region Learning

Considering AUs in different local facial regions have vari-
ous structure and texture information, different local regions
should be processed with different filters. However, a plain
convolutional layer only uses a convolutional filter shared
across the entire spatial domain. To extract more precise fea-
tures of local regions, Zhao et al. (2016b) proposed a region
layer R(l1, l2,c1) which contains a plain convolutional layer
and a partitioned convolutional layer, as shown in Fig. 2(b).
In the partitioned convolutional layer, each local patch has
an independent convolutional filter. However, all the local
patches have identical sizes, which limits the performance of
the region layer to process various AUs with different sizes.
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Fig. 1 The architecture of our JÂA-Net framework, where the submodules, AU attention refinement and local AU feature learning (in red),
compose the adaptive attention learning module. The predefined and refined attention maps are overlaid on the input image for a better view. “C”
denotes concatenation of feature map channels, and “×” denotes element-wise multiplication of each feature map channel and the attention map.

l1×l2×2c1

l1×l2×c1l1×l2×4c1

l1×l2×c1

C +

Convolutional Layerl1×l2×4c1 l1×l2×4c1

l1×l2×4c1 l1×l2×4c1

+

(c)(b)

(a)

Fig. 2 The structures of different blocks for region learning. (a) A
block of two plain convolutional layers P(l1, l2,c1). (b) A block of
region layer R(l1, l2,c1). (c) A block of hierarchical and multi-scale
region layer Rhm(l1, l2,c1). The expression of l1× l2×c1 indicates that
the height, width, and channel of a layer are l1, l2, and c1, respectively.
“+” denotes element-wise sum of feature maps.

To address this issue, we propose a hierarchical and multi-
scale region layer Rhm(l1, l2,c1) to learn features from multi-
scale local regions. Fig. 2(c) illustrates its detailed struc-
ture. It consists of a plain convolutional layer and another
three hierarchical partitioned convolutional layers. Specifi-
cally, the feature map of the plain convolutional layer is uni-
formly divided into 8×8 patches, each of which is processed
with an independent convolutional filter by the first parti-
tioned convolutional layer. In the same manner, the second
and third partitioned convolutional layers apply independent
convolutional filters on the uniformly divided 4×4 and 2×2
feature map patches of their previous layers, respectively.
By concatenating the feature maps of the first, second, and

third partitioned convolutional layers, we can extract a hier-
archical and multi-scale feature map with the same number
of channels 4c1 as the feature map of the plain convolutional
layer. A residual structure (He et al., 2016) is then utilized to
element-wise sum the two feature maps, so as to learn over-
complete features and avoid the vanishing gradient problem.
Different from the region layer (Zhao et al., 2016b), our pro-
posed hierarchical and multi-scale region layer uses multi-
scale partitions, which are beneficial for covering all kinds
of AUs in the ROIs with different sizes.

In our JÂA-Net, this hierarchical and multi-scale region
learning module is composed by two blocks of Rhm(l, l,c)
and Rhm(l/2, l/2,2c), each of which is followed by a max-
pooling layer to reduce its feature map size. c is a parame-
ter with respect to the number of layer channels. The multi-
scale feature with size l/4× l/4×8c output by this module
is further fed into the rest three modules to facilitate both
AU detection and face alignment.

3.3 Face Alignment and Global Feature Learning

The face alignment module includes three successive blocks
of P(l/4, l/4,3c), P(l/8, l/8,4c), and P(l/16, l/16,5c), each
of which is followed by a max-pooling layer. This module
outputs a face alignment feature, which contains global fa-
cial shape information and local landmark information. As
shown in Fig. 1, the face alignment feature is fed into two
fully-connected layers with the dimensions of d and 2nalign
respectively, where nalign is the number of facial landmarks.
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Fig. 3 The architecture of the proposed adaptive attention learning, which consists of two steps horizontally, i.e. the AU attention refinement step
and the local AU feature learning step, and multiple branches with the same structure vertically, one branch for one AU. The three shown attention
maps correspond to AUs 1, 6, and 17, respectively. In the local AU feature learning step, each two plain convolutional layers have the same size.
“+” followed by “1/nau” denotes the element-wise average over all the local AU feature maps. Note that the cropping of attention maps in the
earlier conference version (Shao et al., 2018) is removed due to its redundancy.

We define the face alignment loss as

Ealign =
1

2d2
o

nalign

∑
j=1

[(y2 j−1− ŷ2 j−1)
2 +(y2 j− ŷ2 j)

2], (1)

where y2 j−1 and y2 j denote the ground-truth x-coordinate
and y-coordinate of the j-th facial landmark, ŷ2 j−1 and ŷ2 j
are the corresponding predicted results. do is the ground-
truth inter-ocular distance for normalization (Shao et al., 2016,
2020).

The global feature learning module is utilized to capture
global facial structure and texture information, which has
the same structure as the face alignment module. As illus-
trated in Fig. 1, its output global feature and the face align-
ment feature are both used for the final AU detection, which
can provide complementary useful information on top of the
local AU features.

3.4 Adaptive Attention Learning

Fig. 3 shows the architecture of the proposed adaptive atten-
tion learning. It consists of two steps: AU attention refine-
ment and local AU feature learning, where the first step is to
refine the predefined attention map of each AU with a sepa-
rate branch and the second step is to learn and extract local
AU features.
Predefinition of Attention Maps. In the AU attention re-
finement step, we first utilize the estimated facial landmarks

Table 1 Definitions for the locations of AU centers, which are appli-
cable to an aligned face with eye centers on the same horizontal line.
“Scale” denotes the distance between two inner eye corners. Besides
the definitions for 12 AUs in Li et al. (2018), we supplement the defi-
nitions for AUs 9, 25, and 26.

AU Description Location
1 Inner brow raiser 1/2 scale above inner brow
2 Outer brow raiser 1/3 scale above outer brow
4 Brow lowerer 1/3 scale below brow center
6 Cheek raiser 1 scale below eye bottom
7 Lid tightener Eye
9 Nose wrinkler 1/2 scale above nose bottom
10 Upper lip raiser Upper lip center
12 Lip corner puller Lip corner
14 Dimpler Lip corner
15 Lip corner depressor Lip corner
17 Chin raiser 1/2 scale below lip
23 Lip tightener Lip center
24 Lip pressor Lip center
25 Lips part Lip center
26 Jaw drop 1/2 scale below lip

by the face alignment module to predefine the locations of
AU centers. The rules for defining the locations of AU cen-
ters are detailed in Table 1. We also visualize the locations
of AU centers and landmarks on the input image in Fig. 3,
in which each AU has two centers due to the symmetry.
The predefined attention map of each AU contains two sub-
regions of interest (sub-ROIs) centered around the AU cen-
ters. Let the size of predefined attention maps be lapre ×
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lapre×1, we need to convert the locations of AU centers from
the image scale to current map scale by multiplying lapre/l
with both x- and y-coordinates of AU centers. The size of
each sub-ROI is set to be lapre ζ× lapreζ , where ζ is the width
ratio between the sub-ROI and the predefined attention map.

The predefined attention maps are set to only highlight in
the two sub-ROIs, in which the attention weight of any point
beyond the sub-ROIs is initialized to be 0. Specifically, for
the predefined attention map Vi of the i-th AU, if the k-th
point is in a sub-ROI, its attention weight is initialized as

vik = max{1− dikξ

lapre ζ
,0}, i = 1, · · · ,nau, (2)

where dik is the Manhattan distance of this point to the AU
center, and nau is the number of AUs. ξ ≥ 0 is a coefficient
to control the intensity of attention weights, in which the at-
tention weights of all the sub-ROI points will become 1 if
ξ = 0. Eq. (2) essentially suggests that the attention weights
are decaying when the sub-ROI points are moving away
from the AU center. The maximization operation in Eq. (2)
is to ensure vik ∈ [0,1]. If a point belongs to the overlap of
two sub-ROIs, it is set to be the maximum value of two com-
puted attention weights associated with each sub-ROI.
Refinement of Attention Maps. In each AU attention re-
finement branch, we employ three plain convolutional layers
with 8c channels and a plain convolutional layer with one
channel to process the predefined attention map, in which
the last plain convolutional layer followed by a sigmoid func-
tion outputs the refined attention map V̂i. The sigmoid func-
tion is to make each refined attention weight v̂ik ∈ (0,1),
in which the attention distributions of sub-ROIs and the re-
maining regions are both adaptively refined.

Considering that padding in plain convolutional layers
could do harm to the refinement of edge regions in attention
maps, as illustrated in Fig. 4, we set the padding of convolu-
tional filters in all the four plain convolutional layers to be 0.
In this case, the sizes of their feature maps will be reduced
after each convolution. As shown in Fig. 3, to match the size
l/4× l/4× 8c of the multi-scale feature output by the hi-
erarchical and multi-scale region learning module, the size
of the refined attention map should be l/4× l/4×1. There-
fore, we set lapre = l/4+8 so that the feature map widths of
the four plain convolutional layers become l/4+6, l/4+4,
l/4+2, and l/4, respectively.
Learning of Local AU Features. In the local AU feature
learning step, the refined attention map of each AU is first
element-wise multiplied with the multi-scale feature to ob-
tain AU attention weighted feature. Then, each branch is
performed with a network consisting of three max-pooling
layers, each of which follows a block of two plain convolu-
tional layers defined in Fig. 2(a). The last max-pooling layer
outputs the learned local AU feature f(l)i , and all the local

AU 4 AU 15
1.0

0.8

0.6

0.4

0.2

0.0

Fig. 4 The effect of padding in plain convolutional layers of the AU
attention refinement for two example AUs, in which the narrow regions
along four boundary edges have distinct attention weights (zoom-in for
best view). The colors from blue to red in the color bar denote attention
weights from 0 to 1.

AU features are assembled:

f(l) =
1

nau

nau

∑
i=1

f(l)i . (3)

The assembled local features f(l) capture precise local tex-
ture information with respect to AUs, which will then con-
tribute to the final AU detection. Note that the adaptive at-
tention refinement requires the supervision of AU detection.
To supervise the learning of each AU attention map, we ap-
ply a local AU detection loss Elocal au to each AU branch.
The details of Elocal au will be elaborated in Sec. 3.5.

3.5 Facial AU Detection

AU Detection Using Integrated Information. As illustrated
in Fig. 1, the face alignment feature with global facial shape
information and local landmark information, the global fea-
ture with global facial structure and texture information, and
the assembled local features with local texture information
are concatenated together and fed into two fully-connected
layers with the dimensions of d and 2nau, respectively. In
this way, the various useful information is integrated together
for facial AU detection. Finally, a softmax function is ap-
plied across each two units of the last 2nau-dimensional fully-
connected layer to obtain the predicted occurrence probabil-
ity p̂i of each AU.

Facial AU detection can be regarded as a multi-label
binary classification problem with the following weighted
multi-label cross entropy loss:

Ecross =−
nau

∑
i=1

wi[pi log p̂i +(1− pi) log(1− p̂i)], (4)

where pi denotes the ground-truth occurrence probability of
the i-th AU, which is 1 if occurrence and 0 otherwise. The
weight wi introduced in Eq. (4) is to alleviate the data im-
balance problem. For most facial AU detection benchmarks,
the occurrence rates of AUs are imbalanced (Martinez et al.,
2019). Since AUs are not mutually independent, imbalanced
training data has a bad influence on this multi-label learning
task. Particularly, we set wi = (1/ri)/∑

nau
u=1(1/ru), where ri

is the occurrence rate of the i-th AU in the training set.
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In many cases, some AUs appear rarely in training sam-
ples, for which the cross entropy loss in Eq. (4) often makes
the AU prediction strongly bias towards non-occurrence. To
address this, we exploit precision and recall which are both
relevant to the true positive. Since F1-score: F1= 2PR/(P+

R) considers both precision P and recall R, we introduce a
weighted multi-label Dice coefficient (F1-score) loss (Mil-
letari et al., 2016):

Edice =
nau

∑
i=1

wi(1−
2pi p̂i + ε

p2
i + p̂2

i + ε
), (5)

where ε is a smooth term. F1-score is known as the most
popular evaluation metric for facial AU detection. The use of
Eq. (5) keeps the consistency between the learning process
and the evaluation metric. By combining Eqs. (4) and (5),
we can obtain the overall AU detection loss:

Eall au = Ecross +Edice, (6)

where the occurrence probability p̂i of each AU is predicted
based on the integrated information of all the AUs.
Local AU Detection for Adaptive Attention Learning. As
illustrated in Fig. 3, the local AU detection loss Elocal au is
used to supervise the adaptive refinement of each AU atten-
tion map. In particular, the local feature f(l)i of the i-th AU
is followed by two fully-connected layers with the dimen-
sions of dl and 2 respectively, in which a softmax function
is applied to the last layer to predict a temporary occurrence
probability p̂(l)i . Similar to Eq. (6), Elocal au is defined as

Elocal au =−
nau

∑
i=1

wi[pi log p̂(l)i +(1− pi) log(1− p̂(l)i )]+

nau

∑
i=1

wi(1−
2pi p̂

(l)
i + ε

p2
i +(p̂(l)i )2 + ε

),

(7)

where p̂(l)i is predicted only based on the local information
of the i-th AU. The use of local information is beneficial
for avoiding the influence of irrelevant AUs on the atten-
tion refinement. Due to the same reason, the assembled local
features f(l) are set to discard the back-propagated gradients
from Eall au which uses the integrated information of all the
AUs. In this case, Elocal au is also responsible for supervising
the learning of each local feature f(l)i .

After introducing each loss term, we can define the over-
all loss of our JÂA-Net as

E = (Eall au +Elocal au)+λalignEalign, (8)

where λalign is a trade-off parameter. Our framework is train-
able end-to-end, in which the hierarchical and multi-scale
region learning, face alignment, global feature learning, and
adaptive attention learning are trained simultaneously. The
joint training of facial AU detection and face alignment con-
tributes to each other due to the close relationship between
the two tasks.

4 Experiments

4.1 Datasets and Settings

4.1.1 Datasets

Our JÂA-Net is evaluated on four widely used datasets for
AU detection, i.e. BP4D (Zhang et al., 2014a), DISFA (Mava-
dati et al., 2013), GFT (Girard et al., 2017), and BP4D+ (Zhang
et al., 2016a), in which both AU and landmark labels are
provided.

– BP4D contains 41 subjects with 23 females and 18 males,
each of which is involved in 8 sessions. There are 328
videos including about 140,000 frames with AU labels
of occurrence or non-occurrence. Each frame is also an-
notated with 49 landmarks detected by SDM (Xiong and
De la Torre, 2013). Similar to the settings of Zhao et al.
(2016b); Li et al. (2018), 12 AUs (1, 2, 4, 6, 7, 10, 12,
14, 15, 17, 23, and 24) are evaluated using subject ex-
clusive 3-fold cross-validation, where two folds are used
for training and the remaining one is used for testing.

– DISFA consists of 27 videos recorded from 12 women
and 15 men, each of which has 4,845 frames. Each frame
is annotated with AU intensities on a six-point ordinal
scale from 0 to 5, as well as 66 landmarks detected by
AAM (Cootes et al., 2001). To be consistent with BP4D,
we use 49 landmarks, a subset of the 66 landmarks. It has
a serious data imbalance problem, in which most AUs
have very low occurrence rates while only a few other
AUs have higher occurrence rates. According to the set-
ting in Zhao et al. (2016b); Li et al. (2018), AU inten-
sities equal or greater than 2 are considered as occur-
rence, while others are treated as non-occurrence. Sub-
ject exclusive 3-fold cross-validation is also conducted
with evaluations on 8 AUs (1, 2, 4, 6, 9, 12, 25, and 26).

– GFT includes 96 subjects from 32 three-subject groups
with unscripted social communication. Each subject is
captured using a video with annotations of 10 AUs (1,
2, 4, 6, 10, 12, 14, 15, 23, and 24), as well as 49 land-
marks detected by ZFace (Jeni et al., 2017). The cap-
tured frames exhibit moderate out-of-plane poses, result-
ing in a more challenging AU detection. Following the
original training/testing partitions in Girard et al. (2017),
we employ 78 subjects with about 108,000 frames for
training, and 18 subjects with about 24,600 frames for
testing.

– BP4D+ consists of 140 subjects with 82 females and 58
males, each of which is involved in 10 sessions. Com-
pared with BP4D (Zhang et al., 2014a) dataset, it has
similar style but larger scale and variability. AU annota-
tions are provided for 4 sessions with totally 197,875
frames, in which each frame is also detected with 49
landmarks by ZFace (Jeni et al., 2017). To evaluate the
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Table 2 F1-frame and accuracy results for 12 AUs on BP4D (Zhang et al., 2014a). The results of LSVM (Fan et al., 2008) and JPML (Zhao et al.,
2016a) are from Zhao et al. (2016b), those of CPM (Zeng et al., 2015) are from Chu et al. (2017), and those of all the remaining methods are
directly taken from their original papers.
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1 23.2 32.6 36.4 43.4 39.0 51.7 49.1 43.4 45.8 53.8 68.9 55.9 73.9 75.2
2 22.8 25.6 41.8 40.7 35.2 40.4 44.1 38.0 39.8 47.8 73.9 67.7 76.7 80.2
4 23.1 37.4 43.0 43.3 48.6 56.0 50.3 54.2 55.1 58.2 78.1 71.5 80.9 82.9
6 27.2 42.3 55.0 59.2 76.1 76.1 79.2 77.1 75.7 78.5 78.5 81.3 78.2 79.8
7 47.1 50.5 67.0 61.3 72.9 73.5 74.7 76.7 77.2 75.8 69.0 71.9 74.4 72.3
10 77.2 72.2 66.3 62.1 81.9 79.9 80.9 83.8 82.3 82.7 77.6 77.3 79.1 78.2
12 63.7 74.1 65.8 68.5 86.2 85.4 88.3 87.2 86.6 88.2 84.6 87.4 85.5 86.6
14 64.3 65.7 54.1 52.5 58.8 62.7 63.9 63.3 58.8 63.7 60.6 57.4 62.8 65.1
15 18.4 38.1 33.2 36.7 37.5 37.3 44.4 45.3 47.6 43.3 78.1 71.6 84.7 81.0
17 33.0 40.0 48.0 54.3 59.1 62.9 60.3 60.5 62.1 61.8 70.6 73.7 74.1 72.8
23 19.4 30.4 31.7 39.5 35.9 38.8 41.4 48.1 47.4 45.6 81.0 74.6 82.9 82.9
24 20.7 42.3 30.0 37.8 35.8 41.6 51.2 54.2 55.4 49.9 82.4 84.1 85.7 86.3

Avg 35.3 45.9 48.3 50.0 55.9 58.9 60.6 61.0 61.1 62.4 75.2 72.9 78.2 78.6

performance on large-scale testing data, similar to Shao
et al. (2019), we train on the entire BP4D dataset (41
subjects with 12 AUs) and test on all the BP4D+ images.

4.1.2 Implementation Details

For each face image, we perform similarity transformation
including in-plane rotation, uniform scaling, and translation
to obtain an aligned 200×200×3 color face. This transfor-
mation is shape-preserving and brings no change to the ex-
pression. In order to enhance the diversity of training data,
aligned faces are further randomly cropped into 176× 176
and horizontally flipped. In our JÂA-Net, each convolutional
layer uses 3× 3 convolutional filters with a stride 1 and
a padding 1 except for the AU attention refinement layers
using a padding 0, and each max-pooling layer processes
2×2 spatial fields with a stride 2 and a padding 0. Besides,
each convolutional layer is operated with Batch Normaliza-
tion (BN) (Ioffe and Szegedy, 2015) and Rectified Linear
Unit (ReLU) (Nair and Hinton, 2010). Following the set-
tings in Zhao et al. (2016b); Li et al. (2018), JÂA-Net is
initialized with the parameters of the well-trained model for
BP4D when trained on DISFA.

Our JÂA-Net is implemented using PyTorch (Paszke et al.,
2019) with the stochastic gradient descent (SGD) solver, a
Nesterov momentum (Sutskever et al., 2013) of 0.9, and a
weight decay of 0.0005. We train JÂA-Net for up to 12
epochs with initial learning rate of 0.01, in which the learn-
ing rate is multiplied by a factor of 0.3 at every 2 epochs.
The parameters with respect to the structure of JÂA-Net are
chosen as l = 176, c = 8, d = 512, and dl = 64. Besides,

nalign = 49, nau is 12, 8, 10, and 12 for BP4D, DISFA, GFT,
and BP4D+, respectively, ε = 1, and ζ = 0.14 and ξ = 0.56
are used to generate an approximate Gaussian attention dis-
tribution for each AU sub-ROI. To set an appropriate value
for the trade-off parameter λalign, we select multiple small
sets from training data as validation sets, and perform cross-
validation on these sets. In each validation experiment, we
train JÂA-Net on the training data excluding the current
small validation set. λalign is set to 0.5 for the overall best
performance on the validation sets.

4.1.3 Evaluation Metrics

The evaluation metrics for the two tasks are chosen as fol-
lows:

– Facial AU Detection: Following the previous methods
of Zhao et al. (2016b); Li et al. (2018), the frame-based
F1-score (F1-frame, %) is reported. To conduct a more
comprehensive comparison, we also evaluate the perfor-
mance with accuracy (%). In addition, we compute the
average results over all AUs (Avg). In the following sec-
tions, we omit % in all the results for simplicity.

– Face Alignment: We report the mean error normalized
by inter-ocular distance, and treat the mean error larger
than 10% as a failure. In other words, we evaluate face
alignment methods on the two popular metrics (Kazemi
and Sullivan, 2014; Zhang et al., 2016b; Shao et al.,
2020): mean error (%) and failure rate (%), where % is
also omitted in the results.
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Table 3 F1-frame and accuracy results for 8 AUs on DISFA (Mavadati et al., 2013). The results of LSVM (Fan et al., 2008) and APL (Zhong
et al., 2015) are from Zhao et al. (2016b), and those of all the remaining methods are directly taken from their original papers.
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1 10.8 11.4 17.3 41.5 42.4 40.2 29.9 43.9 62.4 85.6 91.6 92.1 97.0
2 10.0 12.0 17.7 26.4 39.0 44.3 24.7 42.1 60.7 84.9 94.7 92.7 97.3
4 21.8 30.1 37.4 66.4 68.4 53.2 72.7 63.6 67.1 79.1 79.9 88.5 88.0
6 15.7 12.4 29.0 50.7 28.6 57.1 46.8 41.8 41.1 69.1 82.6 91.6 92.1
9 11.5 10.1 10.7 80.5 46.8 50.3 49.6 40.0 45.1 88.1 95.2 95.9 95.6
12 70.4 65.9 37.7 89.3 70.8 73.5 72.9 76.2 73.5 90.0 87.8 93.9 92.3
25 12.0 21.4 38.5 88.9 90.4 81.1 93.8 95.2 90.9 80.5 86.3 97.3 94.9
26 22.1 26.9 20.1 15.6 42.2 59.7 65.0 66.8 67.4 64.8 80.7 94.3 94.8

Avg 21.8 23.8 26.7 48.5 53.6 57.4 56.9 58.7 63.5 80.6 87.3 93.3 94.0

Table 4 F1-frame and accuracy results for 10 AUs on GFT (Girard et al., 2017). The results of LSVM (Fan et al., 2008) and AlexNet (Krizhevsky
et al., 2012) are from Girard et al. (2017), and EAC-Net (Li et al., 2018) is implemented on GFT using its released code.

AU 1 2 4 6 10 12 14 15 23 24 Avg

F1-Frame

LSVM (Fan et al., 2008) 38 32 13 67 64 78 15 29 49 44 42.9
AlexNet (Krizhevsky et al., 2012) 44 46 2 73 72 82 5 19 43 42 42.8

EAC-Net (Li et al., 2018) 15.5 56.6 0.1 81.0 76.1 84.0 0.1 38.5 57.8 51.2 46.1
TCAE (Li et al., 2019) 43.9 49.5 6.3 71.0 76.2 79.5 10.7 28.5 34.5 41.7 44.2
ARL (Shao et al., 2019) 51.9 45.9 13.7 79.2 75.5 82.8 0.1 44.9 59.2 47.5 50.1

Ertugrul et al. (2020) 43.7 44.9 19.8 74.6 76.5 79.8 50.0 33.9 16.8 12.9 45.3
JÂA-Net 46.5 49.3 19.2 79.0 75.0 84.8 44.1 33.5 54.9 50.7 53.7

Accuracy EAC-Net (Li et al., 2018) 94.8 89.0 95.6 89.6 88.5 90.4 96.0 91.3 80.2 84.8 90.0
ARL (Shao et al., 2019) 96.6 82.4 96.1 89.0 87.5 90.3 97.0 91.1 80.4 83.6 89.4

JÂA-Net 96.2 87.4 96.3 89.4 88.5 91.8 97.2 91.4 79.8 86.7 90.5

4.2 Comparison with State-of-the-Art Methods

We compare our method JÂA-Net against state-of-the-art
single-frame based facial AU detection methods under the
same evaluation setting. These methods include LSVM (Fan
et al., 2008), JPML (Zhao et al., 2016a), APL (Zhong et al.,
2015), AlexNet (Krizhevsky et al., 2012), DRML (Zhao et al.,
2016b), CPM (Zeng et al., 2015), EAC-Net (Li et al., 2018),
DSIN (Corneanu et al., 2018), CMS (Sankaran et al., 2019),
LP-Net (Niu et al., 2019), TCAE (Li et al., 2019), ARL (Shao
et al., 2019), and Ertugrul et al. (2020). Note that a few
related works like CNN+LSTM (Chu et al., 2017) and R-
T1 (Li et al., 2017a) are not compared due to their inputs of
a sequence of frames instead of a single frame.
Evaluation on BP4D. Table 2 reports the F1-frame and ac-
curacy results of different methods on BP4D. It can be seen
that our JÂA-Net overall outperforms all previous works in
terms of both F1-frame and accuracy metrics. JÂA-Net is
superior to all the conventional methods including LSVM,
JPML, and CPM, which demonstrates the strength of deep
learning based methods. Compared to the latest LP-Net and
ARL methods, JÂA-Net still achieves higher average F1-
frame and average accuracy. Note that CMS shows good

F1-frame results but poor accuracy results. In contrast, our
method obtains high accuracy without sacrificing F1-frame,
which is attributed to the integration of the cross entropy
loss and the Dice coefficient loss in Eq. (6).

Evaluation on DISFA. Experimental results on DISFA are
shown in Table 3, from which it can be observed that our
JÂA-Net outperforms all the state-of-the-art works with even
more significant improvements. Specifically, JÂA-Net in-
creases the average F1-frame and average accuracy by large
margins of 4.8 and 0.7 over ARL, respectively. Due to the
serious data imbalance issue in DISFA, performances of dif-
ferent AUs fluctuate severely in most of the previous meth-
ods. For instance, the F1-frame of AU 12 is far higher than
that of other AUs for LSVM and APL. Although EAC-Net
processes the imbalance problem explicitly, its detection re-
sult for AU 26 is much worse than other AUs. In contrast,
our method introduces the Dice coefficient loss to suppress
the prediction bias, and uses wi to give larger importance for
AUs with lower occurrence rates in Eq. (6), which contribute
to the better results.

Evaluation on GFT. Table 4 shows the F1-frame and ac-
curacy results of our JÂA-Net and previous works on GFT.
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Table 5 F1-frame and accuracy results for 12 AUs on large-scale BP4D+ (Zhang et al., 2016a). EAC-Net (Li et al., 2018) is implemented on
BP4D+ using its released code.

AU 1 2 4 6 7 10 12 14 15 17 23 24 Avg

F1-Frame EAC-Net (Li et al., 2018) 38.0 37.5 32.6 82.0 83.4 87.1 85.1 62.1 44.5 43.6 45.0 32.8 56.1
ARL (Shao et al., 2019) 29.9 33.1 27.1 81.5 83.0 84.8 86.2 59.7 44.6 43.7 48.8 32.3 54.6

JÂA-Net 39.7 35.6 30.7 82.4 84.7 88.8 87.0 62.2 38.9 46.4 48.9 36.0 56.8

Accuracy EAC-Net (Li et al., 2018) 78.5 85.1 88.3 81.6 80.0 84.7 82.7 61.5 88.6 75.4 84.2 91.5 81.9
ARL (Shao et al., 2019) 67.2 82.8 84.4 80.3 77.8 80.7 82.9 59.1 88.0 75.1 83.9 93.2 79.6

JÂA-Net 79.3 85.1 85.1 80.8 79.1 85.0 83.3 61.3 89.8 82.1 83.3 90.7 82.1

Table 6 The structures of different variants of JÂA-Net. R: region layer (Zhao et al., 2016b). HMR: hierarchical and multi-scale region layer.
GF: global feature learning. C: multi-label cross entropy loss. D: multi-label Dice coefficient loss. W: wi for weighting the loss of each AU. FA:
face alignment module. IF: integrating the face alignment feature, global feature, and assembled local features if they are available. LF: local AU
feature learning with input attention maps. AR: AU attention refinement. BE: back-propagation enhancement (Shao et al., 2018). Er: refinement
constraint (Shao et al., 2018). “w/o” is the abbreviation of “without”.

Method R HMR GF C D W FA IF LF AR BE Elocal au Er
R-Net

√ √ √

H-Net
√ √ √

HD-Net
√ √ √ √

HDW-Net
√ √ √ √ √

J-Net w/o IF
√ √ √ √ √ √

J-Net
√ √ √ √ √ √ √

JA-Net w/o GF
√ √ √ √ √ √ √

JA-Net
√ √ √ √ √ √ √ √

JÂA-Net w/o Elocal au
√ √ √ √ √ √ √ √ √

JÂA-Net w/o Elocal au+BE
√ √ √ √ √ √ √ √ √ √

JÂA-Net w/o Elocal au+BE+Er
√ √ √ √ √ √ √ √ √ √ √

JÂA-Net
√ √ √ √ √ √ √ √ √ √

Compared to the recently proposed EAC-Net, TCAE, ARL
and Ertugrul et al. (2020), JÂA-Net achieves better perfor-
mance with average F1-frame and average accuracy of 53.7
and 90.5, respectively. We notice that the numerical results
of our JÂA-Net on GFT are lower than those on BP4D and
DISFA. This is because BP4D and DISFA images are frontal
or near-frontal faces while GFT images are more challeng-
ing with out-of-plane poses. We will further evaluate our
method under non-frontal poses in Sec. 4.6.
Evaluation on BP4D+. Considering the scale and variabil-
ity of testing data also influence the evaluation performance,
we train JÂA-Net on all the BP4D images and test on the
entire BP4D+ dataset. Table 5 presents the results of EAC-
Net, ARL, and JÂA-Net on BP4D+. We can see that our
JÂA-Net has higher average F1-frame and average accuracy
than other works. When the scale and variability of testing
data are significantly increased, JÂA-Net still achieves the
overall best performance.

4.3 Ablation Study

4.3.1 Each Component in JÂA-Net

To investigate the effectiveness of each component in our
JÂA-Net framework, we implement different variants of JÂA-
Net, as summarized in Table 6. R-Net is a baseline method
which is composed by a region learning module with R(l, l,c)

and R(l/2, l/2,2c), the global feature learning module, and
the two fully-connected layers with dimensions d and 2nau.
Besides, it only employs a multi-label cross entropy loss.
JÂA-Net is named because of Joint learning and Adaptive
Attention. In this way, J-Net only considers Joint learning,
and JA-Net further uses predefined Attention maps to extract
local AU features. Table 7 presents the results of different
variants of JÂA-Net on BP4D benchmark.
Hierarchical and Multi-Scale Region Layer. Comparing
the results of H-Net with R-Net, we can observe that our
proposed hierarchical and multi-scale region layer improves
the performance of AU detection. This is due to that multi-
scale partitions help adapt to AUs with different sizes, and
hierarchical structure enlarges receptive fields on top of the
region layer (Zhao et al., 2016b). In addition to the stronger
feature learning ability, the hierarchical and multi-scale re-
gion layer utilizes fewer parameters. As illustrated in Fig. 2,
except for the common first plain convolutional layer, the
parameters of R(l1, l2,c1) is (3×3×4c1+1)×4c1×8×8=
9216c2

1 + 256c1, while the parameters of Rhm(l1, l2,c1) is
(3×3×4c1+1)×2c1×8×8+(3×3×2c1+1)×c1×4×
4+(3× 3× c1 + 1)× c1× 2× 2 = 4932c2

1 + 148c1, where
adding 1 corresponds to the biases of convolutional filters.
Dice Coefficient Loss. By integrating the Dice coefficient
loss with the cross entropy loss, HD-Net achieves higher av-
erage F1-frame and average accuracy than H-Net. This prof-
its from the Dice coefficient loss which optimizes networks
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Table 7 F1-frame and accuracy results for 12 AUs of different variants of our JÂA-Net on BP4D.

AU 1 2 4 6 7 10 12 14 15 17 23 24 Avg

F1-Frame

R-Net 39.9 37.6 48.2 74.5 71.3 81.4 84.7 58.6 28.2 59.1 35.9 39.6 54.9
H-Net 43.9 46.4 51.4 74.3 70.0 79.5 85.1 55.9 28.9 58.2 35.4 40.1 55.8

HD-Net 39.7 41.5 51.4 75.4 70.8 82.9 85.3 58.9 33.3 59.9 40.7 39.3 56.6
HDW-Net 43.4 41.5 51.3 75.5 72.3 82.8 85.9 60.2 34.0 62.0 38.2 41.5 57.4

J-Net w/o IF 42.4 40.2 54.4 76.0 70.3 81.4 86.5 59.2 39.6 61.1 42.2 42.3 58.0
J-Net 46.4 44.2 48.9 73.9 71.1 78.5 84.7 60.2 43.5 60.0 45.4 49.0 58.8

JA-Net w/o GF 47.1 42.8 51.5 75.0 74.2 78.7 85.8 58.1 45.6 58.2 45.8 49.4 59.3
JA-Net 48.3 44.2 52.9 75.7 74.3 82.1 87.6 61.0 39.7 63.1 42.8 46.9 59.9

JÂA-Net w/o Elocal au 48.8 43.1 50.6 77.1 76.6 81.4 87.1 64.0 43.8 61.0 46.9 52.0 61.0
JÂA-Net 53.8 47.8 58.2 78.5 75.8 82.7 88.2 63.7 43.3 61.8 45.6 49.9 62.4

JÂA-Net (ξ = 0) 45.6 45.9 53.7 76.3 73.8 81.5 88.6 62.8 48.8 62.4 48.7 53.0 61.8
JÂA-Net (p̂(l)i ) 49.7 41.7 54.3 77.0 75.3 82.5 88.3 60.1 49.4 58.8 45.6 49.4 61.0

Accuracy

R-Net 72.2 79.2 74.7 75.3 64.6 73.2 81.3 60.0 81.0 71.8 80.1 81.9 74.6
H-Net 72.3 81.5 76.6 76.0 65.6 73.7 82.0 59.0 80.8 71.5 79.6 82.3 75.1

HD-Net 70.5 78.9 75.9 76.5 66.3 77.1 82.4 60.7 80.3 73.0 82.6 85.0 75.8
HDW-Net 72.4 79.9 75.6 76.6 67.6 77.9 83.3 60.8 80.6 74.3 83.1 85.0 76.4

J-Net w/o IF 76.3 80.4 78.2 78.3 67.5 77.1 84.8 61.3 81.7 72.1 81.2 85.4 77.0
J-Net 77.0 78.9 78.5 78.1 69.8 76.2 85.2 65.4 81.7 70.5 82.5 84.7 77.4

JA-Net w/o GF 75.9 78.0 78.1 78.3 72.8 75.9 86.5 62.7 84.3 70.2 81.7 86.0 77.5
JA-Net 77.4 77.8 78.7 77.7 71.4 78.0 86.4 64.7 81.9 72.8 83.4 85.2 78.0

JÂA-Net w/o Elocal au 78.4 81.0 77.7 78.8 74.2 78.1 85.9 63.1 82.3 72.9 81.4 84.6 78.2
JÂA-Net 75.2 80.2 82.9 79.8 72.3 78.2 86.6 65.1 81.0 72.8 82.9 86.3 78.6

JÂA-Net (ξ = 0) 77.2 81.9 78.3 78.7 72.1 78.1 87.2 64.5 82.8 72.0 81.8 86.3 78.4
JÂA-Net (p̂(l)i ) 73.8 78.6 79.7 78.4 71.3 78.9 86.4 62.9 83.6 72.7 83.7 86.3 78.0

from the perspective of the evaluation metric F1-score. The
cross entropy loss is effective for classification, but often
makes the predictions strongly bias towards non-occurrence
for some AUs with low occurrence rates in the training set.
The Dice coefficient loss can suppress the prediction bias by
focusing on precision and recall which are both related to
the true positive.

Weighting the Loss of Each AU. After using wi to weight
the loss of each AU, HDW-Net improves the average F1-
frame and average accuracy to be 57.4 and 76.4 over HD-
Net, respectively. Benefiting from the weighting to address
the data imbalance issue, our method obtains more signifi-
cant and balanced performance.

Integration of Features. Compared to HDW-Net, J-Net w/o
IF achieves better results by adding the face alignment mod-
ule, in which the face alignment feature is not fed into AU
detection. When integrating the face alignment feature and
the global feature for AU detection, J-Net further improves
the AU detection performance. These demonstrate that the
joint learning with face alignment, as well as the face align-
ment feature with global facial shape information and local
landmark information both contribute to AU detection.

When integrating the two tasks deeper by utilizing the
estimated landmarks to generate predefined attention maps,
JA-Net w/o GF advances the average F1-frame from level 58
to level 59. Specifically, JA-Net w/o GF element-wise multi-
plies predefined attention maps with the multi-scale feature,
and only integrating the face alignment feature and the as-

sembled local features. Its improvement over J-Net shows
the effectiveness of the assembled local features.

Since the global feature can provide complementary glo-
bal facial structure and texture information, JA-Net achieves
better performance with the average F1-frame of 59.9 by
adding the global feature. However, the predefined atten-
tion maps use a fixed size and a fixed attention distribution
for each sub-ROI and completely ignore regions beyond the
sub-ROIs, which makes JA-Net fail to adapt to AUs with
different sizes and exploit correlations among different fa-
cial parts.
Adaptive Attention Learning. To adapt to various AUs, our
JÂA-Net employs the AU attention refinement step to adap-
tively learn attention maps, and uses the local AU detection
loss Elocal au to supervise the attention refinement. The com-
parison results of JA-Net, JÂA-Net w/o Elocal au, and JÂA-
Net demonstrate that AU attention refinement and Elocal au
are both beneficial for extracting precise local AU features
so as to facilitate AU detection.

In JÂA-Net, each AU sub-ROI is predefined as an ap-
proximate Gaussian attention distribution with ξ = 0.56. To
validate the robustness of our proposed adaptive attention
learning, we set ξ = 0 to give predefined attention weight
value 1 for all the points in the sub-ROIs. We can observe
that JÂA-Net (ξ = 0) achieves comparable performance to
JÂA-Net. Besides, we show the results of p̂(l)i predicted by
the local AU detection loss Elocal au in JÂA-Net, whose av-
erage F1-frame 61.0 and average accuracy 78.0 are worse
than 62.4 and 78.6 of the final predictions p̂i. This again in-
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Table 8 F1-frame (F1) and accuracy (Acc) results on BP4D using different adaptive attention learning strategies.

AU 1 2 4 6 7 10 12 14 15 17 23 24 Avg

F1

JÂA-Net w/o Elocal au 48.8 43.1 50.6 77.1 76.6 81.4 87.1 64.0 43.8 61.0 46.9 52.0 61.0
JÂA-Net w/o Elocal au+BE 49.6 47.2 52.1 77.5 74.7 82.5 88.0 61.9 43.1 63.4 46.5 52.5 61.6

JÂA-Net w/o Elocal au+BE+Er 47.1 46.9 51.1 77.1 76.2 82.8 88.0 61.7 43.2 63.0 44.3 48.1 60.8
JÂA-Net w/o Elocal au+BE (λe = 3) 45.7 46.4 53.8 78.3 74.2 82.1 88.3 61.9 40.4 62.7 47.3 51.7 61.1

JÂA-Net 53.8 47.8 58.2 78.5 75.8 82.7 88.2 63.7 43.3 61.8 45.6 49.9 62.4

Acc

JÂA-Net w/o Elocal au 78.4 81.0 77.7 78.8 74.2 78.1 85.9 63.1 82.3 72.9 81.4 84.6 78.2
JÂA-Net w/o Elocal au+BE 75.7 83.6 77.5 79.7 72.6 78.8 86.5 62.5 82.6 73.4 81.8 86.3 78.4

JÂA-Net w/o Elocal au+BE+Er 75.6 80.4 76.9 78.1 72.4 78.0 86.4 64.2 81.8 73.0 82.7 86.1 78.0
JÂA-Net w/o Elocal au+BE (λe = 3) 77.7 81.4 81.5 78.4 70.8 78.0 86.7 61.4 81.7 71.9 84.0 86.4 78.3

JÂA-Net 75.2 80.2 82.9 79.8 72.3 78.2 86.6 65.1 81.0 72.8 82.9 86.3 78.6

dicates the usefulness of face alignment feature and global
feature.

4.3.2 Different Strategies for Adaptive Attention Learning

Back-Propagation Enhancement and Refinement Con-
straint. In the earlier conference version (Shao et al., 2018),
an alternative strategy for adaptive attention learning is pro-
posed. In particular, to enhance the supervision from Eall au
on the AU attention refinement step, a back-propagation en-
hancement method is proposed to enlarge the back-propagated
gradients for each attention map:

∂Eall au

∂ V̂i
← λe

∂Eall au

∂ V̂i
, (9)

where λe ≥ 1 is the enhancement coefficient. By enhancing
the gradients from Eall au, the attention maps are performed
stronger adaptive refinement. The default value of λe is 2.

Besides, to avoid the refined attention maps deviating
too far from the predefined attention maps, a constraint is
introduced for AU attention refinement:

Er =−
nau

∑
i=1

nam

∑
k=1

[vik log v̂ik +(1− vik) log(1− v̂ik)], (10)

where nam = l/4× l/4 is the number of points in each re-
fined attention map, and each predefined attention map with
size lapre × lapre × 1 is resized to be l/4× l/4× 1 as the
ground truths. Eq. (10) essentially measures the cross en-
tropy between the refined and predefined attention maps.
Discussions. The results using the back-propagation enhance-
ment and the refinement constraint Er are shown in Table 8.
JÂA-Net w/o Elocal au+BE+Er is the re-implementation of
the earlier version (Shao et al., 2018), in which the only dif-
ferences lie in the removal of cropping attention maps and
the replacement of element-wise sum with element-wise av-
erage for assembling local feature maps. We can observe
that JÂA-Net w/o Elocal au+BE achieves better performance
than JÂA-Net w/o Elocal au, which demonstrates the effec-
tiveness of the back-propagation enhancement. However, af-
ter further employing the Er, the results of JÂA-Net w/o

Elocal au+BE+Er become worse. This because Er enforces a
limited solution space for the refinement of attention maps,
in which the optimal solutions are often ignored.

We also notice that JÂA-Net w/o Elocal au+BE (λe = 3)
fails to obtain better results than JÂA-Net w/o Elocal au+BE
when the value of λe is increased from 2 to 3. This indi-
cates that the selection of λe value is important. In addition,
the information of irrelevant AUs from Eall au may disturb
the attention refinement of current AU. Instead, we intro-
duce the local AU detection loss Elocal au without the re-
quirement of hyper-parameter λe to generalize the idea of
back-propagation enhancement, in which the influence by ir-
relevant AUs is also avoided. Besides, we discard the the re-
finement constraint Er to learn more precise attention maps.
In this way, our JÂA-Net is more general and achieves better
performance than the earlier version (Shao et al., 2018).

The learned attention maps by JÂA-Net w/o Elocal au+
BE+Er, JÂA-Net, and ARL for two example BP4D images
are visualized in Fig. 5. By the adaptive attention learn-
ing, the refined attention maps of JÂA-Net and JÂA-Net
w/o Elocal au+BE+Er both adjust the predefined size and the
predefined attention distribution of each AU sub-ROI. We
can see that JÂA-Net adaptively refines the attention maps
within a larger range so as to capture more accurate irregular
region of each AU than JÂA-Net w/o Elocal au+BE+Er. For
example, AUs 12, 14, and 15 with different characteristics
have the same predefined attention maps. The refined atten-
tion maps of these AUs by JÂA-Net w/o Elocal au+BE+Er
are similar, while their refined attention maps by JÂA-Net
look different. We also notice that there are low attentions in
regions beyond the sub-ROIs for the refined attention maps,
which contributes to exploiting correlations among differ-
ent facial parts. With the adaptively refined attention maps,
our JÂA-Net can accurately capture the local feature with
respect to each AU.

Fig. 5 also presents the learned attention maps of a re-
cent method ARL (Shao et al., 2019). It learns the attention
map of each AU only with the supervision of AU detection.
We can see that each learned attention map by ARL cap-
tures the rough AU region as well as other correlated re-
gions. However, some irrelevant regions are also captured,
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Fig. 5 Visualization of learned attention maps by different methods for two example BP4D images. The first and fifth rows show the predefined
attention map of each AU. Attention weights are visualized with different colors in the color bar, which are overlaid on the images for a better
view.

which have a bad impact on AU detection. On the other
hand, our JÂA-Net can accurately detect the irregular region
of each AU with the help of landmark knowledge, while the
regions beyond the irregular sub-ROIs are treated with equal
importance. Although a few correlated regions far from the
sub-ROIs are not highlighted, the use of the face alignment
feature and global feature can supplement other required in-
formation. Moreover, the comparison results in Sec. 4.2 also
demonstrate better performance of our JÂA-Net than ARL.

4.4 JÂA-Net for Face Alignment

We have validated the contribution of face alignment to AU
detection in Sec. 4.3.1. To also investigate the effectiveness
of AU detection for face alignment, we implement a baseline
face alignment method called JÂA-Net w/o AU which only
achieves the face alignment task with the removal of AU de-
tection components. Specifically, it consists of the hierarchi-
cal and multi-scale region learning module, face alignment
module, and two fully-connected layers with dimensions d
and 2nalign.

Table 9 shows the mean error and failure rate results of
JÂA-Net and JÂA-Net w/o AU on BP4D benchmark. We
also compare with state-of-the-art face alignment methods
with trained models released, including ERT (Kazemi and

Table 9 Mean error (lower is better) and failure rate (lower is better)
results of different face alignment methods on BP4D.

Method Mean Error Failure Rate
ERT

(Kazemi and Sullivan, 2014) 4.73 3.49

TCDCN
(Zhang et al., 2016b) 6.57 1.88

MCL
(Shao et al., 2020) 7.20 1.69

OpenPose
(Cao et al., 2019) 3.93 0.27

LAB
(Wu et al., 2018) 4.50 0.11

HRNetV2
(Wang et al., 2020) 4.35 0.02

JÂA-Net w/o AU 6.78 6.22
JÂA-Net 3.80 0.32

Sullivan, 2014), TCDCN (Zhang et al., 2016b), MCL (Shao
et al., 2020), OpenPose (Cao et al., 2019; Simon et al., 2017),
LAB (Wu et al., 2018), and HRNetV2 (Wang et al., 2020).
It can be seen that our JÂA-Net significantly outperforms
ERT, TCDCN and MCL in terms of both mean error and
failure rate. The recently proposed OpenPose, LAB, and HR-
NetV2 achieve very low failure rates, while JÂA-Net has the
lowest mean error. Despite being devised for AU detection,
our JÂA-Net’s performance is comparable to other methods.
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Fig. 6 Face alignment results for example images from BP4D. “GT”
denotes the ground-truth locations of facial landmarks.

Lower Upper Right Left NoneFull

Fig. 7 An example BP4D face with different occlusions, in which
“Full” means the whole face is visible.

Besides, with the help of AU detection, JÂA-Net outper-
forms JÂA-Net w/o AU with large margins of 2.98 and 5.90
for mean error and failure rate, respectively. This demon-
strates that the AU detection task is also beneficial for face
alignment. Face alignment and AU detection contribute to
each other in our proposed joint framework. We also com-
pare JÂA-Net with JÂA-Net w/o AU on several example
images from BP4D in Fig. 6. We can observe that JÂA-Net
more accurately detects landmarks than JÂA-Net w/o AU
especially for the landmarks in regions of eyes and mouth.
In particular, JÂA-Net shows higher accuracy for eyes of the
former three images, as well as mouth of the latter two im-
ages. Note that the ground-truth annotations of landmarks
along the eyes for the last image (in a red box) are inaccu-
rate, while our JÂA-Net can detect its eyes well. Moreover,
for AU detection, our JÂA-Net is robust to the minor er-
rors in ground-truth landmark annotations of training data.
This is because our JÂA-Net learns attention maps adap-
tively, which only requires rough locations of predefined AU
centers.

4.5 JÂA-Net for Faces with Partial Occlusions

In this section, we investigate the influences of partial oc-
clusions on AU detection. Following the settings of Li et al.
(2018); Shao et al. (2019), we directly employ the trained
JÂA-Net models on BP4D via 3-fold cross-validation to eval-
uate the corresponding testing set with partial occlusions.
Specifically, each testing face is occluded with only lower,
upper, right, and left half-faces visible, respectively. Fig. 7
illustrates an example face with different partial occlusions.
The F1-frame results of EAC-Net (Li et al., 2018), ARL (Shao
et al., 2019), and JÂA-Net on partially occluded BP4D faces
are shown in Table 10.

Table 10 F1-frame results of our JÂA-Net and state-of-the-art meth-
ods on partially occluded BP4D faces. The best result of each row is
shown in bold, and the best average results of all methods are shown in
brackets.

AU Full Lower Upper Right Left

E
A

C
-N

et
(L

ie
ta

l.,
20

18
)

1 39.0 31.8 27.4 31.4 25.2
2 35.2 30.0 31.6 34.6 32.4
4 48.6 21.8 29.1 21.1 28.7
6 76.1 70.5 54.9 39.7 52.9
7 72.9 72.3 74.4 66.4 70.1
10 81.9 77.0 64.6 60.9 62.6
12 86.2 75.0 67.6 57.9 59.9
14 58.8 58.5 51.6 48.2 45.7
15 37.5 15.0 14.8 7.3 18.4
17 59.1 58.1 39.3 38.7 37.8
23 35.9 28.6 18.9 27.1 12.5
24 35.8 16.3 13.0 4.3 7.6

Avg 55.9 [46.3] 40.6 36.5 37.8

A
R

L
(S

ha
o

et
al

.,
20

19
)

1 45.8 6.3 20.4 36.1 43.3
2 39.8 8.9 17.1 24.2 38.5
4 55.1 34.3 17.1 43.2 44.7
6 75.7 69.3 57.1 58.7 46.8
7 77.2 70.2 65.6 75.4 59.9
10 82.3 68.0 56.3 57.8 66.4
12 86.6 77.2 68.6 56.9 55.3
14 58.8 53.5 36.3 31.4 35.7
15 47.6 18.8 18.0 0.0 0.1
17 62.1 58.8 51.5 60.3 58.3
23 47.4 30.1 12.1 10.2 26.3
24 55.4 35.9 10.4 34.4 45.7

Avg 61.1 44.3 35.9 [40.7] [43.4]

JÂ
A

-N
et

1 53.8 6.8 50.3 27.4 37.5
2 47.8 7.1 43.8 31.6 30.2
4 58.2 27.6 36.9 29.1 39.7
6 78.5 67.3 63.9 54.9 65.9
7 75.8 69.5 68.6 74.4 71.2
10 82.7 76.4 74.3 64.6 79.8
12 88.2 79.7 72.1 67.6 76.3
14 63.7 39.4 37.4 51.6 36.5
15 43.3 40.1 17.6 14.8 6.5
17 61.8 58.9 48.3 39.3 23.5
23 45.6 21.8 1.7 18.9 12.1
24 49.9 32.4 20.3 13.0 4.6

Avg [62.4] 43.9 [44.6] 40.2 40.3

Compared to EAC-Net and ARL, our JÂA-Net achieves
competitive performance for images with half-faces occluded.
In addition, the average F1-frame results of JÂA-Net for the
four half-face occlusions are more balanced than those of
EAC-Net and ARL, which demonstrates the robustness of
JÂA-Net on partial occlusions. This is partially due to that
our JÂA-Net jointly trains AU detection and face alignment,
and uses predicted landmarks to predefine attention maps, in
which the implicit constraint of facial shape contributes to
the robustness of landmark detection on occlusions. Besides,
compared to “Full”, the predictions of almost all AUs be-
come worse in half-face images, even though these AUs are
not occluded. This indicates that correlations among AUs
are beneficial for the detection of a single AU, in which its
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Table 11 Overall F1-frame results on all the 9 poses of FERA 2017 (Valstar et al., 2017). CRF (Lafferty et al., 2001) is implemented by Valstar
et al. (2017) as a baseline method.

AU CRF

(L
aff

ert
y et

al.
, 2

00
1)

Fus
ion

(L
i e

t a
l.,

20
17

b)

AUM
PNet

(B
ati

sta
et

al.
, 2

01
7)

CNN+BLSTM
-R

NN

(H
e et

al.
, 2

01
7)

EAC-N
et

(L
i e

t a
l.,

20
18

)

ARL

(S
ha

o et
al.

, 2
01

9)

JÂ
A-N

et

1 15.4 28.8 34.5 36.9 27.2 24.0 30.2
4 17.2 22.5 27.8 26.4 33.2 28.0 28.8
6 56.4 60.0 67.7 67.8 69.9 68.3 68.2
7 72.7 74.9 79.4 76.3 80.8 78.1 78.2
10 69.2 75.1 78.5 80.1 83.4 75.7 78.3
12 64.7 73.0 76.2 79.6 80.2 76.3 77.8
14 62.2 60.6 69.2 66.4 62.1 62.7 67.4
15 14.6 24.6 26.7 26.9 25.1 30.0 30.6
17 22.4 28.4 36.4 36.6 34.2 37.9 41.9
23 20.7 24.8 25.0 24.8 26.1 39.8 31.2

Avg 41.6 47.3 52.1 52.2 52.2 52.1 53.3

1     (-40, -40) 2     (-40, -20) 3     (-40, 0) 4     (0, -40) 5     (0, -20)

6     (0, 0) 7     (40, -40) 8     (40, -20) 9     (40, 0)

Fig. 8 An example FERA 2017 face with nine poses, in which the
angle degrees (yaw, pitch) of each pose are presented.

prediction requires information from correlated AUs in other
potentially occluded facial parts.

4.6 JÂA-Net for Faces with Non-Frontal Poses

To evaluate our JÂA-Net on faces with non-frontal head
poses, we conduct an experiment on FERA 2017 (Valstar
et al., 2017) benchmark. FERA 2017 includes BP4D (Zhang
et al., 2014a) and BP4D+ (Zhang et al., 2016a) with 9 poses,
in which each face image is rotated with pitch angles of−40,
−20 and 0 degrees, and yaw angles of −40, 0 and 40 de-
grees from its frontal pose, respectively. The nine poses of
an example face is illustrated in Fig. 8. Similar to Li et al.
(2018); Shao et al. (2019), we utilize BP4D with 41 sub-
jects for training, a subset of BP4D+ with 20 subjects for
testing, in which 10 AUs (1, 4, 6, 7, 10, 12, 14, 15, 17,
and 23) are evaluated. We compare JÂA-Net against state-
of-the-art methods including CRF (Lafferty et al., 2001),
Fusion (Li et al., 2017b), AUMPNet (Batista et al., 2017),
CNN+BLSTM-RNN (He et al., 2017), EAC-Net (Li et al.,
2018), and ARL (Shao et al., 2019).

Table 11 shows the overall F1-frame results on all the
9 poses. We can see that our JÂA-Net outperforms all the
other methods. Since facial shape formed by landmarks is
related to head poses, the joint learning with face alignment
in JÂA-Net contributes to AU detection with non-frontal
poses. CNN+BLSTM-RNN is the state-of-the-art method
in FERA 2017 challenge, which uses Bidirectional Long
Short-Term Memory Recurrent Neural Networks (BLSTM-
RNN) to model temporal information among frames. In con-
trast, JÂA-Net achieves better performance only based on
single input frame.

We also present the F1-frame results of CRF, EAC-Net,
ARL and JÂA-Net for each pose in Table 12. It can be ob-
served that our JÂA-Net achieves the best performance in
terms of average F1-frame for most poses (2, 3, 4, 6, and 9).
This demonstrates that our method is robust to faces with
various non-frontal poses.

5 Conclusion

In this paper, we have developed a novel deep learning frame-
work for joint facial AU detection and face alignment. Joint
learning of the two tasks contributes to each other by shar-
ing features and initializing the attention maps with the face
alignment results. In addition, we have proposed the adap-
tive attention learning module to localize irregular regions of
AUs adaptively so as to extract more precise local features.
Our framework is end-to-end without any post-processing
operation.

We have compared our approach with state-of-the-art
methods on the challenging BP4D, DISFA, GFT, and BP4D+
benchmarks. It is demonstrated that our approach signifi-
cantly outperforms the state-of-the-art AU detection meth-
ods. In addition, we have conducted an ablation study which
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Table 12 F1-frame results for each of the 9 poses of FERA 2017. The best average results of all methods for each pose are shown in bold.

AU 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
CRF (Lafferty et al., 2001) EAC-Net (Li et al., 2018)

1 10.3 15.0 13.6 19.3 19.6 17.1 18.0 14.5 12.3 18.8 37.5 22.2 10.1 40.0 66.7 40.1 33.3 40.0
4 15.0 15.9 14.8 19.1 19.0 18.3 20.2 20.2 17.5 7.0 40.0 33.3 40.0 30.7 66.7 25.0 18.2 8.0
6 50.5 55.7 13.4 68.9 74.7 72.4 56.0 53.2 49.3 66.7 66.7 72.2 60.8 68.2 80.0 69.2 75.0 52.1
7 72.1 72.9 41.3 74.6 79.7 78.7 71.6 74.7 75.8 66.7 62.9 73.1 75.7 85.7 85.7 83.7 84.7 73.3
10 55.4 71.0 64.2 77.7 77.6 75.0 63.9 67.9 65.9 85.0 69.2 76.9 83.3 90.9 75.0 62.8 92.3 82.8
12 52.2 67.8 18.4 78.6 80.9 77.1 59.6 63.8 60.1 74.3 68.5 85.1 74.2 86.7 66.7 64.3 84.2 72.0
14 51.5 56.3 9.0 67.5 72.4 74.4 61.9 67.0 67.8 66.7 51.1 51.2 68.9 59.3 50.0 60.0 61.2 74.1
15 13.1 15.0 14.2 14.6 14.6 14.6 14.3 15.9 15.2 57.1 5.1 36.4 25.0 28.6 10.2 7.0 40.0 11.8
17 17.3 25.1 23.5 24.2 24.6 24.1 22.0 21.1 19.5 23.5 36.4 34.7 35.3 46.2 50.0 58.8 21.4 44.4
23 22.7 22.9 19.9 20.8 19.6 16.6 20.1 20.1 20.8 44.4 36.3 7.3 57.1 47.1 6.3 9.0 46.2 11.7

Avg 36.0 41.8 23.2 46.5 48.2 46.8 40.8 41.8 40.4 50.3 46.9 48.5 52.1 58.3 54.1 46.4 55.7 46.2
AU ARL (Shao et al., 2019) JÂA-Net
1 22.9 26.3 24.2 25.3 26.3 26.3 16.9 21.0 24.0 24.8 30.7 28.1 30.2 34.5 34.7 22.2 30.9 31.2
4 23.1 24.6 29.2 29.6 30.0 30.7 22.7 31.3 30.8 13.1 26.3 22.5 38.6 36.5 34.7 26.7 28.2 28.1
6 59.8 68.0 71.5 70.6 70.0 71.5 57.9 69.8 70.5 57.9 69.0 70.1 72.0 72.3 72.2 56.9 69.6 68.1
7 70.7 79.5 80.8 79.6 80.5 81.0 72.7 76.2 78.2 75.0 77.1 79.2 78.5 80.2 80.9 74.6 78.0 79.7
10 65.4 78.4 78.2 78.8 79.1 79.2 66.4 75.3 75.4 69.2 79.4 81.3 80.5 81.8 80.6 72.0 78.0 78.5
12 67.2 78.1 78.6 79.5 80.3 81.3 64.8 76.1 76.2 58.6 80.0 80.5 81.5 81.8 83.0 67.9 78.9 79.4
14 58.5 63.6 60.9 62.0 64.4 62.8 58.0 65.0 67.2 64.0 63.5 65.3 69.2 70.0 68.8 67.9 68.7 67.2
15 13.9 31.7 36.4 31.9 34.1 35.1 12.3 30.3 32.8 16.1 27.2 37.0 34.8 32.8 33.1 19.6 33.2 31.2
17 34.7 40.4 40.9 39.8 39.9 40.7 29.5 34.6 36.2 29.6 44.0 43.1 49.1 46.5 43.7 32.6 44.0 41.2
23 28.0 40.8 40.3 44.8 46.2 43.7 31.0 39.1 37.4 22.3 35.0 35.6 35.4 37.5 37.1 17.3 26.9 26.7

Avg 44.4 53.1 54.1 54.2 55.1 55.2 43.2 51.9 52.9 43.1 53.2 54.3 57.0 57.4 56.9 45.8 53.6 53.1

indicates that each component in our framework is benefi-
cial for AU detection, and the introduced local AU detection
loss is an effective strategy for adaptive attention learning.
Besides, the visual results demonstrate that our approach can
adaptively capture the irregular region of each AU.

We have further compared our approach against a base-
line method with the removal of AU detection components,
as well as state-of-the-art face alignment methods. The re-
sults indicate that AU detection also contributes to face align-
ment, and our approach achieves competitive face alignment
performance. Moreover, we have conducted experiments to
validate the effectiveness and robustness of our framework
on faces with partial occlusions and non-frontal poses, re-
spectively. Our proposed framework is also promising to be
applied for other face analysis tasks and other multi-task
problems.
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