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Abstract
White matter tractography, based on diffusion-weighted magnetic resonance images, is currently the only available in vivo
method to gather information on the structural brain connectivity. The low resolution of diffusionMRI data suggests to employ
probabilistic methods for streamline reconstruction, i.e., for fiber crossings. We propose a general probabilistic model for
spherical regression based on the Fisher-von-Mises distribution, which efficiently estimates maximum entropy posteriors of
local streamline directions with machine learning methods. The optimal precision of posteriors for streamlines is determined
by an information-theoretic technique, the expected log-posterior agreement concept. It relies on the requirement that the
posterior distributions of streamlines, inferred on retest measurements of the same subject, should yield stable results within
the precision determined by the noise level of the data source.

Keywords Diffusion MRI · Brain · Tractography ·Machine Learning ·Maximum-entropy inference · Algorithm validation

1 Introduction

1.1 CerebralWhite Matter and DiffusionMRI

The structural connectivity between different cortical brain
regions is established by white matter, that is composed of
myelinated axons to distribute action potentials as messages
between communicating neurons. The functional importance
of connectivity for cognition has been undisputedly recog-
nized byneuroscience research (Bargmann andMarder 2013;
Filley and Fields 2016).

The advent of diffusion-weighted magnetic resonance
imaging (DWI) (Chilla et al. 2015; Soares et al. 2013)
has empowered neuroscientists and neurologists to mon-
itor changes in the structural connectivity with potential
relevance for diagnosis, prognosis and therapy of neurode-
generative diseases (Oishi et al. 2011). DWI is currently
the only non-invasive, and non-radiative imaging modal-
ity, which enables neurologists to investigate the connective
micro-architecture of the white matter in a minimally inva-
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sive way. Its image contrast encodes the anisotropic diffusion
of water in tissue (Beaulieu 2002), making it a highly infor-
mative probe of the fibrous white matter (Bihan and Iima
2015). The axon bundles of white matter locally exhibit clear
preferential directions, as shown in Fig. 1a.

However, fiber tracking algorithms are required to recon-
struct consistent long-range tissue connectivity from local,
voxel-centric 1 DWI measurements.

1.2 Tractography

Long-range connections in the white matter are commonly
referred to as streamlines, fibers or tracts. Algorithmic meth-
ods to computationally reconstruct such streamlines from
DWI are known as tractography (Jeurissen et al. 2019; Nim-
sky et al. 2016). Schematically, tractography infers structural
connections between voxels to answer questions like “Does
there exist a structural connection between regions A and
B?”.Weshowaprototypical tractography result, also referred
to as tractogram, in Fig. 1b.

Tractography is clinically applied to gather health infor-
mation for a number of neurological conditions, especially
for preoperative planning of neurosurgery, and for research
on stroke and dementia impact on brain function (Yamada

1 A voxel is the 3-D analogue of a pixel.
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Fig. 1 Juxtaposition of (a) an anatomical sample of the cerebral
white matter illustrating the fibrous white matter bundles, and (b) a
reconstruction of white matter pathways by tractography from a DWI

measurement. The RGB colors correspond to the projection of the local
xyz fiber orientation (R = x, G = y, B = z)

et al. 2009). The data processing pipeline for tractography is
composed of three stages, (i) DWI measurements of appar-
ent diffusion, (ii) estimation of a local diffusion model per
voxel, and (iii) inference of streamlines following the local
diffusion model—as illustrated in Fig. 2.

Tractography poses amajor challenge due to its ambiguity
mostly caused by partial volume effects, since axon diame-
ters rarely exceed fewmicrometers,while theDWI resolution
is limited to the scale of millimeters. This lack of resolu-
tion severely complicates inference of streamlines since the
superposition of diffusion information renders it difficult to
disambiguate locations where fibers cross, touch, or fan apart
(Jbabdi and Johansen-Berg 2011). These complex fiber con-
figurations have been observed to be highly prevalent in the
white matter of human brains (Jeurissen et al. 2013) which
further impedes data analysis of white matter especially in
neurology.

The majority of tractography algorithms reconstructs
streamlines in a local manner, i.e. they proceed iteratively
from a given seed point, and greedily determine the direc-
tion of the next step based only on the local diffusion features,
and information from previous direction estimates. Tractog-
raphy algorithms can be distinguished into deterministic and
probabilistic methods depending on how they estimate the
direction of the next step. While deterministic methods com-
pute a point-estimate of the next direction in line with the
most-likely direction, probabilistic methods infer a distribu-
tion over possible directions. Sampling from this distribution
supports following multiple traces along different directions
at every step. In particular, probabilistic methods are able
to express the uncertainty of their predictions, which also
renders them more robust in the presence of noise.

1.3 Contributions

Probabilistic Regression for Tractography

Recently, algorithms based on supervised machine learning
(ML) have successfully extended the toolbox of local tracto-
graphy methods. Even though these ML algorithms depend
on the quality of the training streamlines, it has been shown
by several works that ML models trained on fibers produced
by another, unsupervised algorithm (teacher) can generalize
very well to new DWI data, even improving over the teacher
performance Wegmayr (2018), Neher et al. (2017), Benou
and Riklin-Raviv (2019).

In thiswork,wepresent a probabilistic regression approach
that avoids the conceptual problems of classification-based
models such as direction discretization, and the lack of a
closeness notion for directions. To define a proper regression
model for d-dimensional vectors on the unit-sphere s ∈ Sd−1

in a probabilistic framework, we propose a learnable pos-
terior based on the Fisher-von-Mises (FvM) distribution
(Mardia and Jupp 2000). Conditioned on the feature vector
x ∈ X ⊆ R

p, the posterior pFvM is given by

pFvM(s | x) := C
(
κ(x)

)
exp (κ(x)〈s,μ(x)〉) , (1)

where 〈s,μ(x)〉 denotes the scalar product between the
random output direction s and the mean direction μ(x).
C
(
κ(x)

)
abbreviates the normalization constant of pFvM.

Besides the mean direction, the scalar concentration κ(x)
is also a function of the input x , which accounts for
input-dependent noise, heteroscedastic noise. In the context
of tractography, x represents the local diffusion features,
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whereas s should be understood as the latent local direction
of the fiber bundle. The functionsμ(x), κ(x) are represented
by neural networks, and their parameters are learned by min-
imizing the negative log-likelihood of observed reference
streamlines.

Parameter inference for such a probabilistic approach
amounts to a model selection problem and has to be carefully
regularized to avoid an unbounded increase of the concen-
tration κ(x) during model training, which would effectively
reduce themodel to its deterministic variant.While this effect
is a common problem in many applications, both in trac-
tography (Benou and Riklin-Raviv 2019), and outside of it
(Sensoy et al. 2018; Kumar and Tsvetkov 2018), solutions
are typically based on heuristics with ad-hoc penalty terms.

Instead, we derive a sound regularization scheme based
on the information-theoretically optimal maximum entropy
principle (Jaynes 1957). The resulting Gibbs distribution
controls uncertainty by a precision parameter β that allows
us to adapt the posterior uncertainty to the noise in the data.
Even though the presented entropy-regularized FvM model
applies to general spherical regression tasks with the need
for uncertainty estimation, our focus is on applications to
tractography, hence we refer to it as Entrack. Other pattern
analysis applications of spherical or directional regression
can be found in the prediction of word embedding vectors
Kumar and Tsvetkov (2018), or object pose estimation from
images Prokudin et al. (2018).

The Optimal Precision

While the precision β mentioned above enables us to regu-
larize the global FvM posterior for streamline directions in
all voxels, it is a priori not clear how to determine its opti-
mal value. In particular, we are going to argue that common
cross-validation techniques are not effective, because they
measure the generalization error with respect to the poste-
rior mean direction, whereas the precision only controls the
width of the posterior distribution. Indeed, the smallest gen-
eralization error is achieved by the posterior distributionwith
infinite precision,which yields thewell-known empirical risk
minimizer as an estimator. Infinite precision implies minimal
entropy, which means a sub-optimal robustness of the poste-
rior distribution in the presence of noise. We also show that
even more involved evaluation schemes, such as the Trac-
tometer (Maier-Hein et al. 2017), are not a viable method to
determine the optimal posterior precision, because their eval-
uation is still based on a single measurement instance, which
is insufficient to estimate the influence of data fluctuations
on the resulting tractograms.

Our model selection criterion requires at least two mea-
surements to estimate the optimal posterior width relative
to the data noise. Formally, this two instance scenario
is described by the information-theoretic framework of

expected log-posterior agreement (PA) (Buhmann 2010),
which determines the optimal value of the precision parame-
ter by maximizing the relative overlap between the posterior
distributions on repeated measurements. We discuss its
implementation in the context of tractography, and perform
experiments on repeated DWI scans of the same subject to
estimate the optimal precision.

Extension of Previous Work

This work is an extended version of our previous confer-
ence paper Wegmayr et al. (2019). We have extended, and
reorganized the theoretical contributions about probabilistic
directional regression, and entropy regularization (Sect. 3),
including a novel annealing algorithm (Algorithm 1). More-
over, we propose the method of posterior agreement to
determine the optimal precision (Sect. 3.5), and describe how
to implement it for tractography (Sect. 4.3). The experiments
are extended considerably, too, by investigating case studies
of posterior estimation of local fiber direction (Sect. 5.3),
and its relationship with fractional anisotropy (Sect. 6.2).
Additionally, the evaluation on the Tractometer benchmark
has been extended to include more competing methods
(Sect. 6.3). Lastly, the experimental validation of posterior
agreement on retest data also represents a new contribution
(Sect. 6.5).

Overview

After summarizing related work in Sect. 2, we describe a
probabilistic model for spherical regression, based on the
FvM distribution, in Sect. 3.2.

To address the wide-spread problem of probabilistic
overfitting, we introduce a regularized Gibbs free energy
objective in Sect. 3.3, which controls the entropy of the
posterior distribution via a precision parameter. We discuss
its implications for model training, including an automatic
annealing algorithm for parameter optimization in Sect. 3.4.
Concluding the general description of methods, we present
the expected log-posterior agreement for the FvM posterior
in Sect. 3.5, which allows us to calibrate the precision param-
eter according to the noise level in the data.

Section 4 presents the described methods in the context of
streamline tractography, which is also indicated by the term
Entrack. In particular,wedefine themodels forDWIdata, and
their interpretation in terms of tractograms. Based on a fac-
torization of tractograms into independent, piecewise linear
streamline segments, we use the entropy-regularized regres-
sionmodel in Sect. 4.1 to learn the relationship between local
fiber direction, and the diffusion data.

Using a step-wise tracking algorithm, we show how to use
the local Entrack posterior to obtain long-range streamlines
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Fig. 2 Illustration of the different steps of a tractography pipeline. (a) Schematic DWI-measurement. (b) Fitting a per-voxel model to the DWI
measurements, to obtain the diffusion features, here in terms of fiber orientation distributions (FOD). (c) Reconstruction of long-range streamlines
by tractography.

in Sect. 4.2. The calculation of the PA for tractograms from
repeated DWI measurements is described in Sect. 4.3.

After providing details about DWI data preprocessing
(Sect. 5.1), and the neural network implementation of the
Entrack posterior (Sect. 5.2), we perform case studies on
prototypical diffusion profiles in Sect. 5.3, to investigate the
patterns learned by the model.

We turn to whole-brain tractography in Sect. 6, includ-
ing experiments on synthetic phantom data (Sects. 6.1, 6.3
and 6.4), and on real data (Sect. 6.5). Finally, we conclude in
Sect. 7.

2 RelatedWork

2.1 Local Tractography Algorithms

Local tractography algorithms, as opposed to global tractog-
raphy (Reisert et al. 2011), reconstruct streamlines indepen-
dently, in an iterative way, based on the DWI signal in a close
spatial neighborhood. This design strategy has served as the
core idea of many tractography algorithms since streamline
tractography originally used Runge-Kutta methods to inte-
grate the streamline progression (see Basser et al. (2000)).

Later, the works of Behrens et al. (2003), Friman et al.
(2006) introduced local, probabilistic tractography models
based on mathematical models for the posterior distribu-
tion of the streamline direction. While these probabilistic
methods have proven to be robust to noise, they are com-
putationally expensive, because they need to re-estimate the
high-dimensional integrals involved in the posterior for every
voxel.

Very recently, a new generation of models based on super-
vised machine learning (ML) entered the scene, and they

promise to solve deficiencies of traditional models (Poulin
et al. 2019). (i) ML-methods solve the parameter estima-
tion problem only once over a representative set of examples
during their training phase. Afterwards during inference, the
algorithm only requires arithmetic evaluation of the model
function at each voxel, which is efficiently achieved.

(ii) Moreover, ML-methods are better suited to capture
complex patterns between DWI data and fiber direction in a
non-parametric way than traditional approaches, which are
limited by the richness of parametric statistical models.

However, ML-methods rely on fiber tracking examples to
yield supervision information which is not required for tra-
ditional (“unsupervised”) methods. To circumvent this issue,
supervised approaches have been trained on the output of the
previous state-of-the-art algorithms in traditional tractogra-
phy; furthermore, well-curated training sets are becoming
available in increasing numbers (Wasserthal et al. 2018;
Essen et al. 2013).

Depending on the estimation technique for local stream-
line directions, ML models for tractography have been
formulated either as regression problems or as classification
tasks. Classification models (Neher et al. 2017; Benou and
Riklin-Raviv 2019) are probabilistic in nature, but require
categorical classes to approximate continuous directions. In
contrast, regression models (Wegmayr 2018; Poulin et al.
2017) provide the more appropriate representation for con-
tinuous directions, but we are not aware of probabilistic
regression models in the context of tractography.

2.2 Uncertainty Quantification

Uncertainty in statistical inference arises in two distinctly
different flavors – epistemic and aleatoric uncertainty – as
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described by Kiureghian and Ditlevsen (2009) for general
engineering.

Kendall and Gal (2017) discusses the estimation of epis-
temic and aleatoric uncertainty in the context of computer
vision. The first one, epistemic uncertainty, refers to our
uncertainty about the model parameters, and it decreases
when more observed samples become available. The sec-
ond one, aleatoric uncertainty, refers to input-dependent
noise, which is inherent to the data distribution. As such,
it is unaffected by the number of observed samples. Very
recently, predictive models, which also incorporate estima-
tion of aleatoric noise, have received increasing attention,
e.g. for categorical classification (Sensoy et al. 2018).

Probabilistic regression has been addressed by Prokudin
et al. (2018), who uses a mixture of 1-dimensional FvM
distributions in the context of object-pose estimation, and
by Kumar and Tsvetkov (2018) for sequence-to-sequence
models for language generation. Similarly to this work, the
latter proposes a probabilistic error function based on d-
dimensional FvM distribution, however, their focus is rather
on reducing model training time than on uncertainty quan-
tification.

Lastly, we also mention the method of Hauberg et al.
(2015) for shortest-path tractography, who uses probabilistic
numerics to solve Gaussian-process ODEs.

2.3 Expected Log-Posterior Agreement

The framework of expected log-posterior agreement defines
amodel selectionmethod for algorithms and it was originally
derived from information-theoretic principles (Buhmann
2010). More precisely, as described by Buhmann (2013), it
measures the trade-off between informativeness, and stability
of a cost minimizing algorithm in terms of the overlap that its
posterior distribution exerts between repeatedmeasurements.
An algorithm’s posterior distribution is considered informa-
tive, if it narrows down the set of potential solutions for each
measurement, and it is considered stable, if the posteriors
obtained from repeated measurements agree with each other
in spite of measurement noise.

The PA framework, sometimes also referred to as Approx-
imation Set Coding, or Gibbs posterior agreement, has been
applied in various settings such as singular value decom-
position (Frank and Buhmann 2011), spectral clustering
(Chehreghani et al. 2012), Gaussian process regression (Fis-
cher et al. 2016), and combinatorial optimization problems
(Buhmann et al. 2018).

The PA criterion has also been applied in the context of
neuroscience, namely to determine the optimal number of
clusters for cortex parcellation (Gorbach et al. 2018).

3 Entropy-Regularized Spherical Regression

3.1 The Fisher-von-Mises Distribution

The FvM distribution is a unimodal, directional distribu-
tion defined on the d-sphere Sd−1. For random unit vectors
s ∈ Sd−1, the FvM density is given by

pFvM(s | μ, κ) := C(κ) exp (κ〈s,μ〉) (2)

with 〈s,μ〉 =∑d
i=1 siμi , and the normalizing constant

C(κ) = κd/2−1

(2π)d/2 Id/2−1(κ)
, (3)

where In(.) denotes the modified Bessel function of the first
kind. The FvM distribution is parameterized by the unit-
length mean directionμ ∈ Sd−1 and the scalar concentration
κ ∈ R

+. We illustrate the d = 3 dimensional FvM density
for three different concentration parameters κ in Fig. 3. The
norm of the first momentW (κ), and the entropy H(κ) of the
FvM distribution are given by

W (κ) : =

∥∥∥
∥∥∥∥

∫

Sd−1

s pFvM(s | μ, κ)ds

∥∥∥
∥∥∥∥
2

= Id/2(κ) / Id/2−1(κ), (4a)

H(κ) : = −
∫

Sd−1

log pFvM(s | μ, κ)pFvM(s | μ, κ)ds

= − logC(κ)− κW (κ). (4b)

We illustrate both functions for d = 3 in Fig. 4, and note
that in contrast to the mean direction μ, the norm of the
first moment, i.e. W (κ), can be smaller than 1. Indeed it
vanishes in the limit of very small concentration κ → 0when
pFvM approaches the uniform distribution proportional to the
inverse surface of the d-sphere:

C(0) = Γ (d/2+ 1)

dπd/2 , (5)

For very large concentration, the FvM distribution contracts
at the mean direction:

pFvM(s | μ, κ)
κ→∞−→ δ(s− μ), (6)

where δ denotes the Dirac measure.

3.2 Probabilistic Regression with the FvM

In spherical regression, we want to estimate the regression
function y : X → Sd−1, x �→ y(x), which maps the feature
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Fig. 3 Illustration of the FvM density distribution within the xz plane.
The mean direction is along the z-axis (arrow, θ = 0◦). The radius of
each polar plot is equal to r(θ) = 1+ pFvM(Rθ ez | ez, κ), whereRθ is a
rotation by θ degrees around the y-axis. The cones (dashed) correspond
to the 99.5-percentile cones for the respective concentrations.

space X ⊆ R
p to the d-sphere Sd−1. As the feature vectors

x ∈ X are drawn from a distribution p(x), the observations
y(x) are randomvariables. The estimated regression function
is denoted asμ, and as the involved vectors have unit-length,
the squared distance between a predictionμ(x) and the corre-
sponding observation y(x) effectively reduces to the negative
cosine loss, when disregarding constant terms:

� (μ(x), y(x)) = −〈μ(x), y(x)〉 , (7)

The loss in Eq. (7) is −1, if the prediction points into
the same direction as the observation, and 1 if they are anti-
parallel. To obtain the corresponding probabilistic regression
model, we additionally introduce a function κ : X → R+,
which acts as the concentration parameter of a predicted FvM
distribution pFvM(. | x) := pFvM (. | μ(x), κ(x)). The loss
of the functions μ(x), κ(x) is the negative log-likelihood of
the direction y(x) under the corresponding FvM distribution:

L
(
y(x), pFvM(. | x)) := − log pFvM (y(x) | μ(x), κ(x))

=− κ(x) 〈y(x),μ(x)〉 − logC
(
κ(x)

)
.

(8)

The functions μ, κ are typically parametrized, e.g. in
terms of neural networks. Given inputs x ∈ R

p, the sim-
plest such example would be

μϕμ
(x) := (Wμx + bμ)/‖Wμx + bμ‖2

κϕκ (x) := |〈wκ, x〉 + bκ |,
(9)

Fig. 4 Illustration of the entropy H(κ) (dotted) and the norm of the
first moment W (κ) (solid) of a FvM distribution. Figure reproduced
with slight modifications from Wegmayr et al. (2019)

with the weights and biases

ϕ := (ϕμ, ϕκ)

:= (Wμ, bμ,wκ, bκ ) ∈ R
d×p × R

d × R
d × R,

(10)

which define the parametrized FvM posterior

pFvMϕ (. | x) := pFvM
(
. | μϕμ

(x), κϕκ (x)
)
. (11)

In our experiments, the neural networks are more complex
than Eq. (9) , but it effectively plays the same role. Given a
training set {(xi , yi )}i=1...n (∀i : yi := y(xi )), the parameters
ϕ are estimated by minimizing the empirical risk function

ϕ̂ := argmin
ϕ

1

n

n∑

i=1

L
(
yi , pFvMϕ (. | xi )

)
. (12)

The risk function inherits the property of loss attenuation
from the loss function in Eq. (8), which means that the loss
caused by a large deviation −〈y(x),μ(x)〉 is reduced by a
low certainty κ(x). We illustrate the effect of loss attenuation
for the FvM distribution (d = 3) in Fig. 5. The attenuation
property ensures an increased robustness to outliers due to
an adaptive sensitivity of the loss function. Furthermore, the
concentration κ(x) is a function of the input and this fact
enables us to assess the certainty of the predicted direction
for any sample x .

However, in practice, these benefits of a probabilistic
formulation will be severely reduced by overfitting. When
the model complexity is large, e.g. for neural networks, the
posterior pFvMϕ can perfectly minimize the training risk, in
particular its concentration estimates will be biased towards
large values, as we can see from the gradient of the risk with
respect to the parameters ϕκ :
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Fig. 5 Illustration of loss attenuation for the FvM distribution. Each
line shows the negative log-likelihood as a function of κ for a fixed
value of 〈y(x),μ(x)〉. For high deviations between predictionμ(x) and
target y(x) (red lines), the minimum loss (black crosses) is realized at
a low concentration κ , while small deviations (green lines) have their
minima at higher concentrations. Figure reproduced with modifications
from Wegmayr et al. (2019) (Color figure online).

∇ϕκ

1

n

n∑

i=1

L
(
yi , pFvMϕ (. | xi )

)

= 1

n

n∑

i=1

∂L

∂κ

(
yi , pFvMϕ (. | xi )

)∇ϕκ κϕκ (xi )

= 1

n

n∑

i=1

(〈
yi ,μϕμ

(xi )
〉
−W

(
κϕκ (xi )

))∇ϕκ κϕκ (xi ), (13)

which tends to zero asymptotically ∀i : μϕμ
(xi ) → yi , and

∀i : κϕκ (xi ) →∞, recalling that limκ→∞ W (κ) = 1. This
trend is also documented in Fig. 5, where the concentra-
tion that minimizes the loss evolves towards large values for
improved model fit. Eventually, the FvM distribution fitted
to the training data will concentrate all its probability mass
on the mean direction. As a consequence, the probabilis-
tic model degenerates to the deterministic limit of Eq. (6),
and this behavior is undesirable for down-stream information
processing, where often access to typical samples is required
rather than simply extracting the most-likely direction.

Moreover, at large concentrations the entropy of the out-
put distributions is also minimal, which is detrimental for
its robustness to noise, as we will discuss, together with a
principled solution, in the next section.

3.3 Entropy Regularization

In the previous section we argued and demonstrated that
probabilistic models can treat experimental settings with
noise more effectively than their deterministic counterparts.
Still the essential question remains open: How robust are dif-
ferent parametric distributions to the fluctuations generated
by a particular data source?

The Maximum Entropy Principle, well known in physics
and information theory (Jaynes 1957), provides an answer to
this question of model uncertainty. In contrast to maximum-
likelihood estimation, which requires assumptions about the
parametric form of the desired distribution, the maximum-
entropy approach is based on the knowledge about moments
of the desired distribution. The maximum-entropy distribu-
tion obtains its robustness from the fact that it is the least
informative distribution, which still fulfills the known con-
straints.

To put it differently, the change of the maximum-entropy
distribution with respect to perturbations of the constraints is
the least possible, as it avoids any overspecification, which is
not supported by the data. In the context of spherical regres-
sion, the constraints are represented by the observations x
and the observed direction y(x). Each observation provides
a constraint in the entropy maximization over posterior dis-
tributions p(s | x) in the following sense:

max
p(.|x) Ep(s|x)

(− log p(s | x)) s.t. Ep(s|x)s = w y(x),

(14)

where Ep(s|x) denotes the expectation with respect to the
distribution p(s | x). The parameter w ∈ [0, 1] controls the
widthof thedistribution p(s | x), i.e. p(s | x) = δ

(
s− y(x)

)
,

if w = 1, and p(s | x) = C(0), if w = 0. The constraint can
also be written as Ep(s|x)

〈
s, y(x)

〉 = w, which also shows
that w should be interpreted as the amount of spread that
p(s | x) has around the observations y(x). Using a Lagrange
multiplier β ≥ 0, we can rewrite the constrained opti-
mization problem in Eq. (14) as an unconstrained problem
minp(.|x) gβ

(
y(x), p(. | x)), with

gβ (y(x), p(. | x)) = −Ep(s|x) 〈s, y(x)〉 + 1

β
Ep(s|x) log p(s | x) (15)

The functional gβ represents the Gibbs free energy, which
is the difference between the expected cost−Ep(s|x)

〈
s, y(x)

〉
,

and the entropy−Ep(s|x) log p(s | x)dividedby theLagrange
factor β, controlling the precision of the direction estimation.
The precision is determined by the value w in the constraint
of Eq. (14), and needs to be considered as a hyper-parameter
if we only observe y(x).

By variational calculus, we can derive the distribution that
minimizes Eq. (15) for one particular x :

p(s | x) = C(β) exp (β〈s, y(x)〉) with W
(
β) = w, (16)

which corresponds to the FvM distribution with a fixed con-
centration β around the mean direction y(x). While it is well
known that for the constraints in Eq. (14) the maximum-
entropy distribution is given by the FvM (Mardia 1975), we
are rather interested in learning the conditional distribution

123



International Journal of Computer Vision (2021) 129:656–680 663

Fig. 6 Illustration of the Gibbs free energy minima (Eq. (18), crosses)
as a function of κ , at different precisions β. We show two different, but
fixed deviations 〈y,μ〉 (× and +). Colors indicates low β (red), and
high β (blue). We omitted the solid lines for 〈y,μ〉 = 0.7 to avoid clut-
ter. Figure reproduced with modifications from Wegmayr et al. (2019)
(Color figure online).

p(. | x) over all x , which minimizes the expected Gibbs free
energy

Gβ := Ep(x)gβ

(
y(x), pFvM(. | x)

)
, (17)

for an arbitrary, but fixed data distribution p(x).
Based on the observation that the FvM functional in Eq.

(16) minimizes gβ , we make the ansatz p(. | x) = pFvM(
. | μ(x), κ(x)

)
, which replaces the constant β with the

input-dependent concentration κ(x), and the unknown func-
tion y(x) with the estimator μ(x). If we plug this into Eq.
(15), we obtain the proposed entropy-regularized loss func-
tion for the estimators μ(x), κ(x):

gβ

(
y(x), pFvM(. | x)) = −W

(
κ(x)

)〈
y(x), μ(x)

〉− 1

β
H
(
κ(x)

)
. (18)

The entropy-regularized objective in Eq. (18) has a similar
loss attenuating property as the loss based on the FvM log-
likelihood from Eq. (8). As shown in Fig. 6 for d = 3, the
free energy is minimized at lower concentration κ(x), when
the deviation 〈y(x),μ(x)〉 increases.

However, whereas the concentration diverges in the
maximum-likelihood approach when 〈y(x),μ(x)〉 → 1, it
remains finitewith themaximum-entropymethod even in this
case, because the precision parameter β limits the concen-
tration, as we will discuss in more detail in the next section.

3.4 Automatic Annealing Schedule

In analogy to Sect. 3.2, we denote the parameters of the
parametrized FvM posterior as ϕβ . We propose to deter-
mine these parameters byminimizing the expectedGibbs free
energy Gβ (Eq. (17)). In a learning setting, we substitute the
data distribution p(x) in Gβ by the empirical distribution of

the observed data xi and yi := y(xi ). The estimated param-
eters ϕ̂β of the FvM distribution are

ϕ̂β = argmin
ϕ

1

n

n∑

i=1

gβ

(
yi , pFvMϕ (. | xi )

)
. (19)

To determine the optimal precision parameter β, we need to
obtain the posterior parameters ϕ̂β at different values of β.
While this sounds conceptually straightforward, more con-
siderations are necessary in practice. To compare models at
different precision values, we need to assert, that the opti-
mization of the model parameters ϕβ has indeed equilibrated
at the given precision value β. More formally, we consider
the model parameters ϕβ in equilibrium at a given precision
β, when the following condition holds:

1

β
= 1

n

∑

i

〈
yi ,μ(xi )

〉

κ(xi )
. (20)

This condition can be motivated by the gradient of the risk
with respect to the parameters of the concentration, i.e.

∇ϕκ

1

n

n∑

i=1

gβ

(
yi , p

FvM
ϕ (. | xi )

)

= − 1

n

n∑

i=1

⎛

⎝ 1

β
−
〈
yi , μϕμ

(xi )
〉

κϕκ (xi )

⎞

⎠ ∂H

∂κ

(
κϕκ (xi )

)∇ϕκ κϕκ (xi ),

(21)

which shows that the equilibrium condition in Eq. (20) is
fulfilled, if the gradient vanishes. Additionally, we see again
that the concentration κ remains finite, and is limited by the
precision β, in contrast to Eq. (13).

In practice, it will depend on the optimization parameters
(learning rate, batch size, etc.), and the precision itself, if
the condition Eq. (20) is approximately fulfilled. Besides the
cumbersome tuning of optimization parameters, it is very
time-consuming to re-run the optimization for each precision
value with a new initialization of ϕ.

Thus, we propose a robust, automatic annealing schedule
to efficiently produce models in equilibrium at different pre-
cision values. The detailed annealing procedure is described
by Algorithm 1, and its effect is illustrated in Fig. 7. Effec-
tively, the progress of optimization is automatically paced by
using Eq. (20) as a control criterion. As long as equilibrium
is not established for a particular precision value, this value is
held constant until the optimization of the model has equili-
brated. This computational strategy rendersmodel adaptation
more robust to the choice of optimization parameters.

Moreover, we can efficiently extract models for different
precision values during the course of a single training run,
without re-initializing the parameters.

Figure 8 illustrates the joint distribution of κ(xi ), and〈
yi ,μ(xi )

〉
at one point during a typical annealing process,
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Fig. 7 Typical training run: Evolution of the average concentration κ =
1
n

∑
i κ(xi ) (orange) in response to the automatic annealing schedule

described in Algorithm 1. The precision β (blue) is paced automatically
in accordance with the optimization progress (Color figure online).

which shows that the model is indeed approximately at equi-
librium. To see the effect of β on the optimization of the
parameters of μ more clearly as well, we also consider the
gradient of the loss in Eq. (18) with respect to μ. To main-
tain the unit-length constraint, we assume that μ = z/‖z‖2.
Thus, the gradient is given by

∇z gβ

(
y(x), pFvM(. | x)

)
= W (κ)

(
y

‖z‖2 − 〈y, z〉 z

‖z‖32

)

,

(22)

where we have written z, κ, y instead of z(x), κ(x), y(x) for
brevity. The gradient vanishes when z = y, and the opti-
mum with respect to μ does not depend on the precision β.
In practice, however, when we use gradient-descent to opti-
mize the risk function, the magnitude of the gradient will be
multiplied withW

(
κ
)
, which clearly depends on β. So while

the optimum for μ is still the same, we see that the precision

Algorithm 1 Annealing Schedule
Require: Training set {(xi , yi )}i=1...n , learning rate η, start and end

precision β0 < βs , growth rate γ > 1, tolerance ε ∈ (0, 1).
Ensure: Posterior parameters at equilibrium � = (ϕ̂β0 , . . . , ϕ̂βs ).

1: � ← ∅
2: ϕ ← ϕ0 � Parameter initialization
3: β ← 0
4: β ← β0
5: while β < βs do
6: while |1− β/β| > ε do � Check equilibrium eq. (20)
7: ϕ ← ϕ − η∇ϕ

1
n

∑n
i=1 gβ(yi , pFvMϕ (. | xi ))

8: β ← 1
n

∑
i

〈
yi ,μ(xi )

〉
/κ(xi )

9: end while
10: � ← � ∪ ϕ

11: β ← γ · β
12: end while
13: return �

Fig. 8 Joint distribution of per-sample concentration (y-axis, scaled
by average concentration κ = 1

n

∑
i κ(xi )), and per-sample cosine

deviation (x-axis) during a typical training run. The average per-sample
concentration is concentrated around the precision, i.e. κ/β = 0.985.
For reference, the dashed-blue box contains 95.6% of the samples. The
theoretical line of equilibrium is given by κ = β〈y,μ〉 (red line) (Color
figure online).

influences the effective learning rate for the parameters ofμ.
At the beginning of the annealing schedule, the factor W (κ)

is small, because the precision is small (see also Fig. 7), i.e.
the parameters ofμ are less susceptible to the deviation from
the target y. As the precision is gradually increased, the effec-
tive learning increases as well, and the gradient updates of μ

will push it stronger towards y.
To recapitulate, we have discussed how the precision

parameter β constrains the average concentration of the FvM
posterior during training, and how we can consistently, and
efficiently obtain model parameters at different levels of pre-
cision. In the next section, we address the question of how
to determine the optimal precision based on the noise in the
data.

3.5 Optimal Precision by Posterior Agreement

We have seen in the previous two sections, that the proposed
entropy regularization effectively limits the concentration
κ(x), however, it introduces the undetermined precision
hyper-parameter β.

A common strategy to determine hyper-parameters would
be cross-validation with respect to the generalization error
−∑i 〈yi ,μ(xi )〉onavalidation set.However, cross-validation
of this kind does not provide a solution here, becausewe have
shown in the last section that the optimum of the function
μ(x) is not affected by the precision (Eq. (22)).

One could object, that the generalization error does not
entirely reflect the learned posterior, but only its mean
direction, and that we should rather compute the expected
generalization error

∑
i ρβ(xi , yi ) with
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Fig. 9 Generalization error ρβ of the FvM posterior. While ρβ

decreases with the deviation between μ and y, its minimum is always
achieved for β →∞

ρβ(x, y) = −
∫

Sd−1

〈
y, s
〉
pFvMβ (s | x)ds

= −〈y,μ(x)
〉
W
(
κβ(x)

)
(23)

where we have defined pFvMβ := pFvM
ϕ̂β

, and κβ analogously.
Moreover, note again thatμ does not carry the precision sub-
script to indicate that it does not depend on β. Even though
the expected generalization error depends on the precision,
it does not have an optimum for finite β, as illustrated in
Fig. 9. Instead, the minimum is always achieved at β →∞,
which corresponds to the well-known empirical risk mini-
mizer. This argument shows that we can not determine the
optimal width of the posterior by minimizing risk since it
introduces a bias which underestimates uncertainty.

Instead, we need a criterion, which can assess the stability
of the posterior distribution with respect to data fluctuations.
For this purpose, we propose a method motivated by the
information-theoretic framework of expected log-posterior
agreement. It is applicable to any Gibbs posterior distribu-
tion, if we have access to repeated measurements, which are
used to assess the noise level in the data, and to calibrate the
precision β accordingly. Specifically, we require a validation
set, which provides two independent realizations x ′i , x ′′i for
each measurement i , i.e. a set {(x ′i , x ′′i )}i=1...n . In the context
of spherical regression, we define the PA for one repeated
measurement as

iβ(x ′, x ′′) :=

log2

⎛

⎜
⎝max

{
C(0)−1

∫

Sd−1

pFvMβ (s | x ′)pFvMβ (s | x ′′)ds , 1
}

⎞

⎟
⎠ ,

(24)

whereC(0) is the normalization of the uniformdistribution as
defined in Eq. (5). Performing the integration over all direc-

Fig. 10 Theoptimal precision (crosses) of the FvMposterior agreement
iβ is high for low deviation between μ′ and μ′′ (green), and decreases
for larger deviations (red). The agreement optima coincide with the
number of effective, conic bits (black line), given by Eq. (30) (Color
figure online).

tions s, the PA reads

iβ(x ′, x ′′) = log2

(

max
{
C(0)−1

C(κ ′β)C(κ ′′β)

C
(‖κ ′βμ′ + κ ′′βμ′′‖2

) , 1
}
)

,

(25)

where we have written κ ′β = κβ(x ′), etc. for brevity. The
maximal agreement is realized between the following two
limiting cases:

(i) When the posterior distribution is very broad, i.e. it does
not contain any information about themean direction, the
PA is zero:

lim
β→0

iβ(x ′, x ′′) = 0. (26)

(ii) For highly peaked posteriors with different mean direc-
tions due to noisy measurements, the agreement also
vanishes:

μ′ �= μ′′ ⇒ ∃β > 0 : C(κ ′β)C(κ ′′β)

C
(‖κ ′βμ′ + κ ′′βμ′′‖2

) ≤ C(0)

(27)

Indeed, if we increase β sufficiently high, the agreement
integral drops below the value C(0) achieved in the uniform
case, and the posterior agreement iβ(x ′, x ′′) becomes zero
again. We note, that the PA also vanishes for β > 0, if either
of the two measurements is uninformative, i.e. uniform by
either κ ′β = 0 or κ ′′β = 0.

InFig. 10we illustrate the behavior of iβ whenκ ′β = κ ′′β = β,
showing clearly the discussed trade-off between low preci-
sion and high precision.
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To determine the optimal precision based on a validation
set, we compute the average over all n repeated measure-
ments

Iβ = 1

n

∑

j=1

iβ(x ′j , x ′′j ), (28)

and maximize it with respect to β:

β̂ = arg max
β∈[0,∞)

Iβ . (29)

Moreover, we can assign an interesting interpretation to
the numeric values of i

β̂
. Let us consider the solid angle

Ωp(β) centered on an arbitrary, but fixed μ, which contains
p% of the probabilitymass of a general pFvM(s | μ, β) distri-
bution. We use it to partition the unit sphere into 4π/Ωp(β)

effective, conic bins. In this sense, the precision β determines
a quantization angle on the sphere. If wemeasure the number
of effective, conic bitswith the binary logarithm, we find that

i
β̂
� log2

(
4π

Ω99.5(β̂)

)
(30)

as shown by the black line in Fig. 10.
This result is interesting, because it suggests that the value

of iβ corresponds to the bit-rate of a noisy communication
scenario, as described in the original, information-theoretic
derivation by Buhmann (2010).

Besides, we can use it to define an intuitive scale for the
directional precision by calibrating it with respect to βθ ,
where θ is the aperture angle of the solid angle Ω99.5(β).
More precisely, the relationship between β and θ is given by

Ω99.5(β) = 2π(1− cos θ). (31)

Unless indicated otherwise, we scale all experimental pre-
cision values with respect to β15◦ = 114.40.

4 The Entrack Posterior for Tractography

In this section, we apply the entropy-regularized, proba-
bilistic regression objective from Eq. (18) to streamline
tractography on DWI measurements.

A DWI measurement I records the diffusion signal at
every location r in the measurement volume V ⊂ R

3 2

, i.e. I : V × (S2)
N → R+, (r, gn) �→ Ir(gn). Essentially,

2 In practice, V ⊂ Z
3, but we assume that a continuous measurement

can be achieved, e.g. by interpolation.

Ir(gn) corresponds to the magnitude of the local diffusion
signal along one of the N experimentally fixed magnetic
gradient directions gn . The diffusion signal exhibits an
invariance to inversion of the gradient directions gn , i.e.
Ir(−gn) = Ir(gn). In practice, it is common to work with
a lower-dimensional feature representation X f of the high-
dimensionalDWImeasurement, i.e.X f : V → R

p, r �→ ωr

such that f (gn | ωr) = Ir(gn). The function f is an exper-
imental aspect of tractography, and we discuss its concrete
implementation in Sect. 5.1, but for the following consider-
ations we assume it as fixed, i.e. X := X f .

By measuring the DWI features X of the underlying
brain tissue T , the goal of a tractography algorithm A is
to recover the corresponding long-range tissue connections
T, also referred to as tractogram:

T I , f−→ X
A−→ T

A tractogram T is a set of i = 1, . . . , n variable-length
streamlines ti = (ri,1, . . . , ri,ni ) ∈ (R3)ni , which should be
understood as a representation of tissue connectivity rather
than an anatomically faithful image of individual axons.

To learn the tractography mapping A : X → T, we fac-
torize the joint posterior p(T | X) of an entire tractogram
into the product of independent streamlines ti . Moreover, we
factorize each streamline into the product of its segments
yi, j ∝ ri, j − ri, j−1, but retain nearest-neighbor interactions
between successive segments. Thus, the posterior probabil-
ity of the direction yi, j , described by the FvM distribution,
is conditioned on the diffusion data X(ri, j−1) at the location
ri, j−1, and the incoming direction yi, j−1:

ptrk(yi, j | X(ri, j−1), yi, j−1) :=
pFvM

(
yi, j | μ(X(ri, j−1), yi, j−1), κ(X(ri, j−1), yi, j−1)

)
.

(32)

Due to the tractography context, we refer to the posterior ptrk

in Eq. (32) as Entrack posterior. Under these assumptions,
we can write the joint tractogram posterior as

p(T | X) =
n∏

i=1

p(ti | X)

=
n∏

i=1

p
(
yi,1 | X(ri,1)

)
p(ri,1)

ni∏

j=2

ptrk(yi, j | X(ri, j−1), yi, j−1),

(33)

where we also have made explicit the need for priors of the
fiber seed points ri,1, and the initial directions yi,1.
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4.1 Entrack: Learning the Local Posterior

Given a measurement of DWI features X, and a correspond-
ing reference tractogram T as supervision information for
training, our goal is to learn the posterior distribution of local
streamline direction ptrk(y | x, yin) based on the entropy-
regularized Gibbs free energy presented in Eq. (18). Note,
that we have denoted x ∈ R

p as the variable for the local
diffusion data, and yin ∈ S2 as the variable for the incom-
ing fiber direction. Together, they constitute the input vector
x = (x, yin) ∈ R

p × S2, which the Entrack posterior condi-
tions on.

In the following, we discuss how to decompose the data
set (X,T) such that it can be used with the risk function
introduced in Eq. (19). Specifically, we need to construct
samples

(
(xi , yini ), yi

)
to capture the relationship between

the target direction y and the input (x, yin). We detail the
corresponding sample generationprocess inAlgorithm2, and
illustrate it in Fig. 11.With an accordingly generated training
set X, we can use the entropy-regularized risk function from
Eq. (19) to estimate the parameters of ptrkβ := ptrk

ϕ̂β
.

However, we also need to account for the inversion sym-
metry of DWI data, which makes it equivalent to traverse
a streamline in forward, and backward direction. To ensure
that the posterior can learn this symmetry from the data, i.e.
ptrk(−y | x,−yin) = ptrk(y | x, yin), we incorporate this
invariance explicitly in the risk function by adding forwards
(u = +1), and backwards direction (u = −1):

ϕ̂β = argmin
ϕ

1

2N

N∑

k=1

∑

u∈{±1}
gβ

(
u · yk, ptrkϕ (. | xk, u · yink )

)
,

(34)

where N refers to the number of sample streamline segments.

Algorithm 2 Sample Generation
Require: DWI features X, tractogram T = {(ri,1, . . . , ri,ni )

}
i=1...n .

Ensure: Training set X =
{((

xk , yink
)
, yk
)}

k=1...N

1: X ← ∅
2: for i = 1, . . . , n do
3: for j = 3, . . . , ni do
4: y ← (ri, j − ri, j−1)/‖ri, j − ri, j−1‖2
5: x ← X(ri, j−1)

6: yin ← (ri, j−1 − ri, j−2)/‖ri, j−1 − ri, j−2‖2
7: X ← X ∪

((
x, yin

)
, y
)

8: end for
9: end for
10: return X

Fig. 11 Generation of a training sample from a reference streamline.
For each point along a fiber we extract the local diffusion data X(r j−1)

(red square), and the incoming direction y j−1 (red arrow) as inputs,
whereas the outgoing direction y j serves as target (green arrow) (Color
figure online).

4.2 Entrack: Streamline Inference

The trained FvM posterior ptrkβ is employed by the iterative
tracking algorithm as described by Algorithm 3.

To construct a streamline, we start from a seed point
r1 ∈ V , and obtain the local DWI features X(r1). Provided
with a prior direction y1 ∈ S2, e.g. from a diffusion-tensor
fit, we can establish the next point r2 of the streamline by
sampling a direction y2 from ptrkβ

(
y | X(r1), y1

)
, and setting

r2 = r1 + αy2, with a step size α. This iteration repeats,
until a termination criterion is met, such as a thresholds on
fiber length, strength of the diffusion signal, fiber bending
angle, or leaving a predefined region of interest (ROI). The
corresponding streamline ti simply consists of the traversed
points, i.e. ti = (ri,1, . . . , ri,ni ).

To obtain a dense tractogram T = {ti }i=1...n , we place n
seed points within a specified ROI, e.g. within a white matter
mask for whole-brain tractography.

4.3 Entrack: Posterior Agreement

In Sect. 3.5 we introduced the PA for general directional
regression with the FvM posterior, and nowwe describe how
we implement it for tractography to determine the optimal β
for ptrkβ .

Given two independent DWI measurements X′,X′′ of
the same subject, we denote the corresponding tractograms,
obtained with Algorithm 3 in conjunction with ptrkβ , as
T′β,T′′β . The tractograms carry the subscript β, because they
implicitly depend on the precision via the Entrack posterior
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Algorithm 3 Iterative Streamline Tractography
Require: DWI features X, seed point r1, prior direction y1, posterior

of local fiber direction ptrkβ

(
y | x, yin

)
, step size α.

Ensure: Predicted streamline t.

1: r ← r1
2: t ← {r1}
3: yin ← y1
4: y ∼ ptrkβ

(
. | X(r1), y1

)

5: while terminate
(
r, y, yin,X(r), t

) �= True do � Tracking Iteration
6: r ← r + αy
7: t ← t ∪ r
8: yin ← y
9: y ∼ ptrkβ

(
. | X(r), yin

)

10: end while
11: return t

ptrkβ . We recall that the PA iβ(x ′, x ′′) from Eq. (25) depends
on two measurements x ′, x ′′ of the same input, and the input
to the Entrack posterior consists of two components, i.e.
x = (

X(r), yin
)
. Given proper image registration between

X′ and X′′, it is straightforward to match the repeated mea-
surements of the DWI data by considering the same location,
i.e. X′(r),X′′(r).

To obtain yin(r)′, yin(r)′′ from the discrete streamlines
of the two tractograms T′β,T′′β we consider a small volume

around the location r, and compute yin(r)′, yin(r)′′ based on
the corresponding streamlines which pass through this voxel.
Thus, the continuous measurement volume V is decomposed
into little cuboids with voxel size a > 0, that are indexed
by their discrete location inside the measurement volume,
i.e. z ∈ Va = V ∩ {z · a | z ∈ Z

3}. We refer to the volume of
a voxel as vz = {r : ‖r − z‖∞ ≤ a/2}. Even though we
can now compute yin(z | T) ∝ ∑

i, j I{ri, j ∈ vz}yi, j , we
still need to take into account that independent streamline
bundles may cross at the same voxel, and they must not be
confused with each other.

Instead we need to consider each bundle b separately, and
condition the local direction on the bundle, too, i.e. yin(z, b |
T).More precisely,we consider a bundleb as a set of coherent
streamlines, which are similar in the sense that the average
pointwise distance is small for each pair of streamlines in a
bundle. This way, we can partition a tractogram into a set of
bundles B(T) = {b1, . . . , bk} such that ∀i, j : bi ∩ b j =
∅ ∧ ⋃i bi = T. We also refer to Garyfallidis et al. (2012) for
more details about the practical grouping of tractograms into
bundles. Using the partitioned tractogram B, we can compute
the local streamline direction per-bundle, up to normalization
to unit-length, as

yin(z, b | T) ∝
|T|∑

i=1

ni∑

j=1

I{ti ∈ b}I{ri, j ∈ vz}yi, j , (35)

with yi, j = (ri, j − ri, j−1)/‖ri, j − ri, j−1‖2. Essentially, we
have decomposed the tractogram T into the directions of its
individual fiber bundles at each voxel, which is also known
as fixel representation (Raffelt et al. 2017), referring to “a
specific fiber bundle within a specific voxel”. Consequently,
we can think of each tuple (z, b) as the coordinates of one
fixel. We define the posterior mean direction of such a fixel
as

μβ(z, b | X,Tβ) := μ
(
X(z), yin(z, b | Tβ)

)
, (36)

where μ is the mean direction of the Entrack posterior ptrkβ .
Lastly, when we compute the posterior concentration of a

fixel, i.e κβ(z, b | X,Tβ), we also need to take into account
the number of streamlines which represent the summary
direction yin(z, b | Tβ). Intuitively, we should be more cer-
tain about the summary direction, if it is represented bymany
fibers, i.e. the concentration should be increased 3. Formally,
the fixel concentration is scaled by the streamline density, i.e.

κβ(z, b | X,Tβ) := n(z, b | Tβ)κβ

(
X(z), yin(z, b | Tβ)

)
,

(37)

where the streamline density is defined as

n(z, b | T) := 1

a3

n∑

i=1

ni∑

j=1

I{ti ∈ b}I{ri, j ∈ vz} (38)

In particular, the fixel concentration κβ(z, b | X,Tβ) is
zero, i.e. the posterior doesn’t contain any information about
the fixel direction, when we don’t observe any streamline.
Putting everything together, we obtain the posterior agree-
ment for one fixel, based on Eq. (25), as

2iβ(z,b) =

max

{

4π
C
(
κ ′β(z, b)

)
C
(
κ ′′β(z, b)

)

C
(‖κ ′β(z, b)μ′

β(z, b)+ κ ′′β(z, b)μ′′
β(z, b)‖2

) , 1

}

(39)

where we have defined κ ′β(z, b) := κβ(z, b | X′,T′β), etc.
for brevity. Consequently, the average PA over all fixels is
given by

Iβ = 1

|Va |
∑

z∈Va

1

|Bz|
∑

b∈Bz
iβ(z, b), (40)

with the set of bundles that intersect a particular voxel
denoted as Bz = {b ∈ B(T′β ∪ T′′β) : ∃t ∈ b : ∃r ∈ t :
r ∈ vz}.
3 Refer to appendix A for a formal justification.
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5 Experiments

Weprovide the entire code implementing this work at https://
github.com/vwegmayr/tractography, which includes code
for managing data acquisition, data preprocessing, sample
generation, model training, model inference, and evaluation.

5.1 Data and Preprocessing

In the following we summarize the most important details
about the DWI data and its preprocessing, i.e. how we obtain
the DWI features X.

ISMRM15 Data

The simulated DWI data, that was also used in the ISMRM15
challenge, can be obtained from http://tractometer.org/. We
use the DWI data referred to as “basic data” on the challenge
website. The corresponding DWI image has the shape 90×
108×90×33, with 32 gradient directions b = 1000 s/mm2,
plus one acquisition with b = 0 s/mm2. The voxel size is 2
mm.

We preprocess the DWI image according to the standard
preprocessing pipeline described by Glasser et al. (2013),
using the MRtrix tool (https://mrtrix.org/). This procedure
includes the following steps, where we indicate the corre-
sponding MRtrix commands in parentheses:

1. Basic denoising (dwidenoise)
2. Eddy current & motion correction (dwipreproc)
3. B0 intensity normalization (dwinormalize)

After preprocessing, we estimate the DWI features for
every voxel z in terms of fiber orientation distribution (FOD)
coefficients XFOD : V → R

15; r �→ {Dlm
r }: 4

1. Response function estimation (dwi2response)
2. Constrained spherical deconvolution (dwi2fod)
3. Log-Domain intensity normalization (mtnormalise)

HCP Data

The HCP diffusion data, accessible at the website https://
db.humanconnectome.org/, are already preprocessed accord-
ing to the standard preprocessing pipeline by Glasser et al.
(2013). TheDWI image has the shape 145×174×145×108,
and we extract 90 gradient directions with b = 1000 s/mm2,
plus 18 interlaced acquisitions with b = 0 s/mm2. The voxel
size is 1.25 mm.

4 Please refer to appendix C for more details.

We perform the same procedure to estimate the per-voxel
FOD as described for the ISMRM15 data.

TractSeg Streamlines

The TractSeg dataset (Wasserthal et al. 2018) is a collec-
tion of high-quality white matter reference tracts for 105
subjects, whose diffusion data is also included in the HCP
dataset. It can be downloaded at https://zenodo.org/record/
1477956. Each reference tractogram contains ∼ 1.7 million
fibers, grouped into 72 reference bundles, which amount to
∼ 70 million fiber segments in total.

For training, we use the tractogram of subject 992774, and
reduce it to 20% of its size by sub-sampling the streamlines,
weighted by bundle-size to ensure that small bundles are not
under-represented.

5.2 Entrack Model Architecture and Training

In this section, we discuss our implementation of the Entrack

posterior ptrk
(
y | μ(X(r), yin

)
, κ
(
X(r), yin

))
, in particular

the implementation of the functions μ, κ .
While the general formulation supports a wide range of

possible functions, we chose a deep neural network model
due to its superior ability to extract patterns automatically
(Goodfellow et al. 2015). Moreover, neural networks (NN)
naturally support modular architectures, which allows us
to readily formulate μ, κ in terms of two output modules
NNμ,NNκ , based on a shared NN module NNz :

μ
(
X(r), yin

) = NNμ

(
z
(
X(r), yin

))

κ
(
X(r), yin

) = NNκ

(
z
(
X(r), yin

))

z
(
X(r), yin

) = NNz
(
X(r), yin

)
(41)

Specifically, eachNNmodule is a series of fully-connected
layers, as shown inFig. 12, togetherwith the detailed parame-
ters. The inputsX(r), yin are bothflattened, and concatenated
to form a 408-dimensional input vector, i.e. 3 dimensions for
yin , and 405 = (3×3×3)×15 dimensions forX(r), which
represents the 15 FOD coefficients (l = 4) for each voxel in
a 3× 3× 3 cube centered on the location z = a[r/a], where
a is the voxel size.

Model Training

The described NN model for the Entrack posterior is trained
on samples obtained from the TractSeg streamlines of subject
992774, using the sample generation procedure described by
Algorithm 2.
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Fig. 12 Neural network implementation of the parametrized Entrack
posterior. The input layer is the 408-dimensional vector

(
x, yin

)
. The

shared layers (gray boxes) consist of 4 fully-connected layers, eachwith
2048 hidden units, using the ReLU activation function. The two output
branches for μ (green boxes), and κ (orange boxes), share the same
hidden representation z (bold margin). Each of them has its appropriate
activation function, i.e. normalization to unit-norm for μ, and absolute
value for the positive κ (Color figure online).

For parameter optimization, we use the annealing scheme
described in Algorithm 1 with η = 0.99, ε = 0.01, β0 = 10,
βs = 1000. Moreover, we use the Adam optimizer (Kingma
and Ba 2014) with a learning rate of 2 · 10−4, and a batch
size of 512. Note, the number of training epochs depends on
how fast the annealing proceeds, but in our experiments it
typically reached the target precision within 30 epochs.

5.3 Local Case Studies of Entrack Posterior

To better understand which patterns the Entrack model has
recognized in the training data, we perform a series of exper-
iments on prototypical inputs.

Single Fiber Direction

In this setup, we investigate how μ
(
X(r), yin

)
, and κ

(
X(r),

yin
)
behave when we rotate yin , while keeping X(r), and β

fixed. For this purpose, we select DWI features X(r) from a
voxel in the corpus callosum (see inset of Fig. 13a), which
exhibits a clear, unidirectional DWI signal visualized by the
gray FOD in Fig. 13b.

In Fig. 13awe consider the change of κ , whenyin is rotated
in-plane, relative to the fixed DWI input. More precisely, the
figure shows the function κ

(
X(r),Rθex

)
, whereRθ is a 3×3

rotation matrix whose rotation axis is perpendicular to the
plane of view, and ex = (1, 0, 0).

Weobserve, that the concentration of theEntrack posterior
is largest along the DWI main direction, and decreases when
perpendicular. This behaviormakes sense, becausewe expect
the uncertainty to be small, when the incoming fiber direction
agreeswith the local diffusion data, and to increasewhen they
disagree.

Moreover, the angular profile is approximately inversion-
symmetric, as should be expected from the properties ofDWI

data. In Fig. 13b we consider the probability of proceeding
along yin , i.e. log ptrk(yin | X(r), yin), again with yin =
Rθex .

As expected, the probability to follow the previous direc-
tion, is the highest when it is aligned with the diffusion data.

However, it is also high, when yin is perpendicular to the
main direction of diffusion. We can understand this unex-
pected behavior in the sense, that the model recognizes
situations where the incoming direction clearly contradicts
the present direction of diffusion. But instead of predicting a
suboptimal superposition between the previous direction and
the DWI main direction, the non-linear model favors conti-
nuity with respect to the incoming direction.

This interpretation is also supported by Fig. 13c, which
shows the amount and direction of deflection of μ from yin .
The two black arrows in the figure represent one exemplaric
pair yin and μ(x, yin) to illustrate the deflection. The exem-
plaric incoming direction has an incidence angle of about
θ = 45◦, for which we read off a deflection of ca. +20◦,
as shown by the radius and color of the intersecting lobe.
Thus, the mean-direction predicted by the model is rotated
20◦ clockwise with respect to the incoming direction.

This example shows, that the model pushes the incoming
direction closer to the main direction of diffusion, if they suf-
ficiently agree. In contrast, when the incoming direction does
not relate to the diffusion data (e.g. at θ ≈ 90◦), the model
predicts no deflection, but rather follows the previous direc-
tion, effectively implementing a continuity prior. We provide
a similar case study, which supports the same conclusions,
but for crossing fiber directions, in appendix F.

Influence of Precision

In this experiment, we investigate how the local log-
probability profile from Fig. 13b changes as a function of
the precision β. For this purpose, we visualize the profile of
log ptrkβ (yin | X(r), yin) for different values of β in Fig. 14.
As expected, the sensitivity of the posterior to the details
of the data increases with the precision. More precisely, the
dependence of log ptrkβ

(
Rθex | X(r),Rθex

)
on θ is strongly

modulated by the DWI data for high precision β, and tends
to be isotropic, i.e. insensitive, for small values of β. This
observation illustrates nicely the concept of precision: At
low precision, the output distribution is broadened, taking
into account only the strongest part of the data signal. On
one hand, this smoothing renders the posterior robust to data
fluctuations, on the other hand, it suppresses fine details in
patterns. It only starts to take into account more details, when
we increase the precision. Thus, the posterior will capture
higher-order patterns in the data, but it will also be more
susceptible to noise.
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Fig. 13 Case study of ptrkβ (yin | X(r), yin) at β/β15◦ = 1.58, when
X(r) is a fixed location chosen inside the corpus callosum (black inset,
left). The predominant FOD is strongly unimodal (gray dumbbell, cen-

ter). Each sub-figure relates to the same FOD, and in each case the polar
angle θ indicates the in-plane orientation of yin = Rθ ex (Color figure
online).

Fig. 14 Log-likelihood log ptrkβ (yin | X(r), yin) for low precision β

(red), and high precision (blue). The inset FOD (gray dumbells, center)
illustrates the fixed input data X(r). The polar angle θ controls the
orientation of yin = Rθ ex (Color figure online).

6 Whole-Brain Tractography

In the previous section we studied local properties of the
Entrack posterior ptrkβ (y | X(r), yin). In this section, we
focus on its performance in the context of whole-brain trac-
tography, i.e. the iterative tracking procedure of Algorithm 3.
In particular, we are interested to determine the optimal value
for the precision β. For all whole-brain tractography experi-
mentswe use the posteriormodel ptrkβ trained onHCP subject
992774, as described in Sect. 5.2.
Experimental Parameters We describe the concrete exper-
imental parameters required for Algorithm 3 to produce a

whole-brain tractogram. Besides the posterior ptrkβ , several
other, influential factors are involved in the iterative predic-
tion:

– Interpolation: The original ISMRM data comes at a
voxel size of 2 mm, we up-sample it to the resolution
of the HCP data (1.25 mm), using trilinear interpolation.

– Seeds: We place one seed point at the center of every
voxel inside a white-matter mask, which was thresholded
at a value of 0.1.

– Prior: We use the main principal axis of a diffusion-
tensor fit as initial incoming direction y1.
To address the ambiguity about the sign of the prior direc-
tion, each streamline is propagated in both directions.

– Step Size: We use a step size of 0.25 mm, i.e. 1/5 of the
voxel size.

– Length Constraints: Fibers are automatically termi-
nated after 800 steps, and we only retain streamlines with
a length between 30 mm and 200 mm.

– Fiber Termination: Besides termination by length, we
also terminate fibers when they arrive at a voxel outside
of the white matter mask.

– Fiber Filtering: Besides the length restriction, we do not
further filter the predicted fibers, e.g. by curvature, etc.

ISMRM15 Phantom and The Tractometer The Tractometer
(TM) is an evaluation tool for tractography results (Côté et al.
2013; Maier-Hein et al. 2017), and it served also as compar-
ison measure in the ISMRM15 tractography challenge. It is
based on a simulated DWI phantom of the brain, which was
generated using 25 carefully prepared fiber bundles, which
mimic the complex fiber arrangement in the white matter
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(Poupon et al. 2010; Neher et al. 2014). A cross-sectional
view of these bundles is shown in Fig. 1b.

The TM defines two sets of metrics, which assess on one
hand the quality of long-range connectivity, and on the other
hand the bundle fidelity of predicted fibers. The first group
of metrics includes valid bundles (VB), invalid bundles (IB),
valid connections (VC), invalid connections (IC), and non
connections (NC). The second group of metrics includes
mean overlap (OL), mean overreach (OR), and mean F1
score (F1). Please refer to appendix D for more details about
these evaluation scores.

6.1 Precision Dependence of TM Scores

In Fig. 15, we present the TM metrics as a function of the
precision β. As a major observation, the TM scores do not
seem to suggest a consistent optimal precision. The VC-
score increasingly saturates to a maximum value of 0.52
(β/β15◦ = 1.58), while the maximum F1-score of 0.54
(β/β15◦ = 0.42)marginally decreases by2.5%over the same
range. TheVB-score toggles between 23 and 24, and remains
stable otherwise. The IB-score is the least consistent, with a
local minimum of 123 at β/β15◦ = 0.66, however its total
variation over the range of β is also very small ≈ 5%. This
observation indicates, that besides the lackof a clear optimum
with respect to the precision, the TM scores are also not very
sensitive to β, except the VC-score, which increases by 20%.
The behavior of the VC score rather suggests a comparison
with the generalization error, described in Eq. (23), which
also saturates for β →∞, and does not have an optimum at
finite precision.

6.2 Posterior Concentration and Fractional
Anisotropy

A common quantitative measure of how much the diffusion
signal is confined along a single direction is the fractional
anisotropy FA ∈ [0, 1]: 5 It relates to the eccentricity of the
diffusion ellipsoid, and it is 0 for an isotropic sphere, which
is characteristic for voxels with ambiguous DWI measure-
ments, whereas it is 1 for voxels with a diffusion ellipsoid
clearly elongated in one direction. In Fig. 16, we show that
the posterior concentration κ

(
x, yin

)
has indeed a strong cor-

relation with FA(x) (r = 0.42), which means that there is a
strong link between model certainty, and the articularity of
the diffusion signal.

6.3 Comparison to the State-of-the-Art

To provide an absolute reference point for the presented TM-
scores, we include an overview of the scores achieved by

5 Please refer to appendix C for more details.

Fig. 15 Tractometer scores S as function of the precision β. Each score
is scaled by its maximum Smax (see legend for values) for better com-
parability.

Fig. 16 Joint histogram of the predicted concentrations κ(x, yin) (y-
axis, scaled by average κ), and the corresponding fractional anisotropy
FA(x) of the diffusion data. The predicted concentrations show a strong
correlation with the fractional anisotropy of the diffusion data (r=0.42).

current tractography solutions based on supervised machine
learning in table 1. Besides the row “ISMRM15 ∅”, which
represents the average over all teams of the ISMRM15 chal-
lenge (ML and non-ML), we have divided the results into
two groups. The first group, marked with an asterisk, repre-
sents results where the model was trained on the synthetic
DWI phantom, and these data are also used for evaluation.
The work of Neher et al. (2017) refers to this setting as
in silico→in silico, meaning that training fibers for these
algorithms were obtained on the phantom data by another
state-of-the-art algorithm. Even though the training fibers do
not exactly correspond to the evaluation fibers, there exists a
strong statistical dependence andwe can not consider this set-
ting as a valid generalization test. Instead, the model should
be trained, and evaluated on two independent instances of
(synthetic) DWI data. But as the ISMRM challenge provides
only one instance,models should be trained on realDWIdata,
e.g. from the HCP. As expected, the results in this setting fall

123



International Journal of Computer Vision (2021) 129:656–680 673

Table 1 Tractometer scores on the synthetic ISMRM data set.

Model VB↑ IB↓ VC↑ OL↑ OR↓ F1↑
ISMRM15 ∅ 21 88 54 31 23 44

Neher (2017) 23 94 52 59 37 n.a.

Wegmayr (2018) 23 57 72 16 28 n.a.

Entrack (sample) 24 123 52 58 39 54

Entrack (mean) 24 116 54 45 35 47

FvM (sample) 23 154 44 53 36 51

FvM (mean) 23 112 55 48 34 49

Detrack 23 133 43 44 34 48

Classifier (mean) 22 133 36 45 33 46

Poulin (2017)* 23 130 42 64 35 64

Benou (2019)* 25 56 71 69 23 70

Entrack (mean)* 24 126 65 62 36 59

Entrack (sample)* 24 117 65 60 36 58

Up/down-arrows indicate higher/lower-is-better, and best scores for
each subgroup (w/*: in silico→in silico, w/o*: in vivo→in silico) are
shown in bold.

behind compared to the results in the in silico→in silico
setting, which should be considered as (overly) optimistic
estimates of the generalization performance. Aside from this
criticism, it is apparent that all algorithms fail to consistently
outperform the competitors in the realistic in vivo→in silico
setting.

Instead,we can observe a strong trade-off betweenOL and
VC/IB. On one hand, the work of Wegmayr (2018) achieves
very good VC/IB (72%/57), but poor OL (16%), on the other
hand Entrack (sample) and Neher et al. (2017) achieve much
better OL (58% and 59%, respectively), but poorer VC (52%
and 52%, respectively). The results for the Entrack model
were obtained at β/β15◦ = 1.58. A similar trade-off is seen
between the (sample)/(mean) variants, which refer to how
the fiber directions are obtained from the posterior during
streamline progression. At each tracking step, the (sample)
variant draws a randomdirection from the posterior,while the
(mean) variant always chooses the most likely direction. The
Entrack (sample) method achieves superior bundle coverage
compared to the (mean)method (OL 58%vs. 45%), but at the
cost ofmore false-positives (IB 123 vs. 116). The same is true
for the FvM model, which has the same architecture as the
Entrack model, but is trained without entropy regularization,
i.e. using the probabilistic regression objective in Eq. (12).
The bundle coverage of the FvM(sample)model is also better
than its (mean) variant (OL 53% vs. 48%), but also at the cost
of more false-negative bundles (IB 154 vs. 112).

Moreover, we highlight that the TM scores support a
model ranking Entrack (sample)! FvM (sample)!Detrack
! Classifier (mean), which denotes the respective benefits
of entropy regularization, a probabilistic loss, and a regres-
sion model. The Detrack model has the same neural network

Fig. 17 Whole-brain tractogram predicted by the proposed Entrack
model on the synthetic ISMRM data, at a precision of β/β15◦ = 1.58.
For comparison, consider the ground-truth tractogram in Fig. 1b.

architecture as FvMandEntrack, butwithout the output for κ ,
and it is trained with the standard negative cosine loss of Eq.
(7). TheClassifiermodel also shares the same neural network
architecture as all the other models, but it has a softmax out-
put over directions, and is trained by the usual cross-entropy
loss for classification. We note, that each of the listed models
should be understood as a module in the complete pipeline
described by Algorithm 3. Such a pipeline is controlled by
various other significant influence factors (training data, seed
points, etc.) that are different in each case, thereby limiting
comparability. We can only assert that the results of Classi-
fier, Detrack, FvM, and Entrack have been conditioned on
the same pipeline, so that their differences can be attributed
indeed to the respective choices of the objective functions.

6.4 Qualitative Results on ISMRM

In addition to the evaluation metrics provided by the Trac-
tometer, we present qualitative tractogram visualizations. In
Fig. 17we show an overview-section of the whole-brain trac-
togram obtained with the Entrack model on the ISMRM
data, which should be compared to the ground-truth fibers
in Fig. 1b.

Additionally, to facilitate a more detailed analysis, we
have computed the voxel mask of the predicted corticospinal
tract (CST), and visualize its overlap, overreach, and under-
reach with respect to the ground-truth bundle in Appendix G.
Lastly, we demonstrate visualizations of the heteroscedastic
uncertainty estimated by the Entrack posterior in Fig. 18.
On one hand, we can visualize the spatial dependence of
κ
(
X(r), yin

)
(Figs. 18a and b), and on the other hand, we

can compute per-fiber statistics, such as the log-probability
per streamline, i.e.
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Fig. 18 Per-point, and per-fiber statistics on the ISMRM reference
fibers. (a) Illustration of the spatial variation of the local certainty κ .
Bundle cores tend to be more certain (red), while the certainty of their
outlines is reduced (green). (b) Enhanced view of increased uncertainty

at fiber ends (blue). (c) Illustration of fibers with high average log-
probability log p(blue), and low log p (red). (d) Enhanced view of an
implausible loop (red, center). Figure reproduced fromWegmayr et al.
(2019) (Color figure online).

log p = 1

L

L∑

j=2

log ptrk(y j | X(r j ), y j−1), (42)

shown in Figs. 18c and d. As we have discussed before, the
concentration parametermeasures the degree of certainty that
the model encodes on the fiber direction at a given location.
In Fig. 18a we can observe that the concentration/certainty
is larger at the core of bundles than in the periphery, which
agreeswith the fact that the diffusion data is less ambiguous at
the bundle cores than at the boundaries. Areas that are closer
to the white matter boundary, such as bundle outlines, have
lower concentration, because the diffusion signal isweaker in
those areas. In particular, fiber end points exhibit the lowest
concentrations, as they are located right at the white matter
boundary, as shown in Fig. 18b.

In addition to per-point statistics, the per-fiber statistic
log p can be used to automatically detect fiber outliers, as
shown in Fig. 18c and d. Clearly, without marking fibers
in comparison to the average log-likelihood, it is highly
error-prone to discover such outliers visually in a tangled
whole-brain tractogram. The illustrated implausible loopwas
found in the ISMRMground-truthfibers,which are otherwise
well prepared. This finding also underlines the difficulty of
preparing high-quality reference standards for tractography.
Lastly, we note that in contrast to e.g. curvature based outlier-
detection, the Entrack model acts as a data-informed filter,
i.e. it can recognize fibers, which are strongly bending, but
supported by the diffusion data, whereas these fibers would
be discarded by a curvature dominated filter.

6.5 HCP Retest Data and Posterior Agreement

In this section, we show the results for the optimal preci-
sion obtained with the PA criterion from Sect. 4.3, based
on two independent DWI measurements of the HCP sub-
ject 917255. In Fig. 19, we show the measured values of
the expected posterior agreement Iβ from Eq. (40), and the

Fig. 19 Average log-posterior agreement (red crosses), and generaliza-
tion error (blue). The phenomenological model PAβ (Eq. (43), orange,
solid) agrees well with the empirical PA, and achieves its maximum
value i

β̂
= 4.14, at β̂/β15◦ = 0.41.

expected generalization error ρβ from Eq. (23). In contrast to
the Tractometer scores, we observe a clear optimum of Iβ at
β̂/β15◦ = 0.41. As anticipated by our discussion in Sect. 3.5,
the generalization error ρβ suggests β̂ → ∞ and thus fails
to provide a finite estimate for the precision.

Furthermore, we are interested to explain the empirical
PA with a phenomenological model of the form

PAβ(θ̄ , n̄) = log2 4π
C(βn̄β)2

C
(
βn̄β

√
2(1+ cos θ̄ )

) , (43)

which depends only on the summary statistics θ̄ , n̄. These
are the average number of fibers per fixel

n̄β = W (β/λ)

2
∑

z|Bz|
∑

z

∑

b∈Bz

(
n′(z, b)+ n′′(z, b)

)
, (44)

whereW (.)was introduced in Eq. (4a), and the average devi-
ation between the fixel direction on the two instances:
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Fig. 20 Comparison of predicted fibers obtained on two measurements
of HCP subject 917255, at different precisions. The fibers predicted
on the two measurements are distinguished by color (red, blue). More-

over, the shown streamlines all pass through one particular voxel (black
arrow). The inset shows an enlarged view at the location of this partic-
ular voxel in the corticospinal tract (green dot).

cos θ̄ := 1
∑

z|Bz|
∑

z

∑

b∈Bz

〈
μ′

β(z, b),μ′′
β(z, b)

〉
. (45)

This description has one free parameter λ, which essen-
tially captures how fast the local variance of a fiber bundle
increases when the precision is decreased. We refer to
appendix B for more details about the origin of the parameter
λ. It is a joint property of the iterative tracking together with
the local posterior, and the DWI data distribution. In partic-
ular, it can be considered as a measure of how fast bundles
produced by a particular tracking algorithm, on a particular
DWI source, tend to disintegrate when the precision is low-
ered, as illustrated by Fig. 20. In our case, using λ = 10
provides a good match between the measured PA, and the
phenomenological model, as shown by the orange curve in
Fig. 19. Its maximum value is i

β̂
= 4.14, which means, at

the given noise level, we can contract the Entrack posterior
up to a concentration, which is equivalent to the partition of
the sphere into ≈ 16 = 2iβ̂ equally sized cones. A higher
resolution can not be argued for, since it would increas-
ingly reduce the agreement between the posteriors on the
twomeasurements. This effect is not capturedby the expected
generalization error ρβ (blue curve in Fig. 19), showing again
that ρβ is not an appropriate measure to determine a finite
optimal precision, which is necessary tomaintain the benefits
of probabilistic models.

Qualitative Results on HCP Data

Weprovide some qualitative tractography examples obtained
at the optimal precision β̂ in Fig. 21. The selected fiber tracts
were selected according to examples previously shown in the
literature, e.g. in Neher et al. (2017), Poulin et al. (2017).

7 Discussion & Conclusion

We have presented a general probabilistic model for spher-
ical regression based on the Fisher von Mises distribution,
with an application to connectomics and the underlying
inference of streamlines in white matter of the brain. Our
theoretical considerations advocate the model to address
loss attenuation, and heteroscedastic uncertainty quantifi-
cation. For the proposed FvM model, we investigate the
issue of probabilistic overfitting in tractography, which is
commonly encountered in different probabilistic models, but
only addressed by ad-hoc solutions. For instance, Kumar
and Tsvetkov (2018) experiment with different regulariza-
tion terms for the concentration, but it remains unclear which
should be recommended in other applications. The classifi-
cation model for tractography by Benou and Riklin-Raviv
(2019) suggests a label smoothing heuristic to assert finite
concentrations, and to establish a notion of angular close-
ness between direction “classes”.

Instead, we advocate a regularization based on the maxi-
mumentropy principle. Specifically, we derive theGibbs free
energy for the FvM distribution, and discuss its theoretical
properties, in particular the role of the precision parameter
β. In contrast to tuning hyper-parameters in regularization
heuristics, themeaningofβ is clearlymotivated as the inverse
width of the posterior distribution.

Based on the free energy objective, we also propose an
automatically paced annealing scheme for model training, in
the spirit of the deterministic annealing algorithm (Hofmann
and Buhmann 1997), which is used to find superior global
optima of non-convex optimization problems. Apart from
themaximum entropy approach, we argue that it is inherently
impossible to determine the precision parameter β with com-
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Fig. 21 Selected fiber tracts obtained on HCP data by Entrack at β̂.
Top row: TractSeg reference fibers (Wasserthal et al. 2018). Bottom
row: Fibers predicted by Entrack at β̂. From left to right: 1. Corpus Cal-

losum, 2. Parieto-Occipital Pontine + Corticospinal + Fronto-Pontine
tracts, 3. Frontal Part of Corpus Callosum, 4. Cingulum.

mon cross-validation techniques, since they do not bias the
mode of the posterior distribution, but only its width. For this
reason we propose a method, which takes into account the
stability of the posterior distributionwith respect to repeated
measurements of the data, because the agreement between
normalized distributions clearly depends on their width.

In the context of our tractography experiments, we refer
to the entropy-regularized posterior distribution as Entrack
model. Firstly, we study its capability of uncertainty quan-
tification with prototypical cases of DWI data, which show
that the Entrack model, parametrized by a neural network,
has learned non-trivial patterns of streamline progression.
Secondly, we employ the Entrack posterior, which describes
the distribution of local streamline direction, for iterative
whole-brain tractography to reconstruct long-range tissue
connectivity. On one hand, we show that it produces com-
petitive results in the Tractometer evaluation, which is based
on the synthetic ISMRM15 phantom with known ground-
truth. In particular, our ablation study shows a progressive
improvement of Tractometer scores with respect to the base-
line classification model. It is outperformed by deterministic
regression, which is moreover improved by its probabilistic
formulation, and even more so by the proposed entropy-
regularized Entrack model. This model ranking indicates the
respective benefits of regression over classification, proba-
bilistic over deterministic, and entropy-regularized statistical
inference over the maximum likelihood technique.

However, as expected, the Tractometer evaluation, based
on one data instance, does not support to determine a finite
optimal precision, which is essential to maintain the benefits
of probabilistic models. Instead, we show that the posterior
agreement, computed from two independent DWI measure-
ments, defines a finite optimal precision, which takes into
account the stability of tractograms under data fluctuations.
We complete our study with qualitative examples of whole-

brain tractography on both, the synthetic ISMRM15 data,
and real HCP data.

In summary, the study documents a supervised approach
to infer streamlines fromDWI data and it validates the results
by monitoring the stability of tractograms for repeated DWI
measurements. Our modeling strategy generalizes to other
data analysis challenges in biomedicine where a gold stan-
dard is difficult to establish and standard approaches fail to
provide uncertainty calibration in accordancewith data noise.
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A Fixel Posterior

Consider a fixel (z, b), represented by the average direction
yinz,b := yin(z, b | T) of nz,b := n(z, b | T) streamlines y j .

To represent the fixel posterior as a joint posterior over its
streamlines, we write

ptrkjoint
(
y | X(z), yinz,b

) ∝
nz,b∏

j=1

ptrk
(
y | X(z), y j

)
. (46)

After normalization, the joint concentration canbe approx-
imated as

κ joint = ∥∥
nz,b∑

j=1

κ(X(z), y j )μ(X(z), y j )
∥
∥
2

= κ(X(z), yinz,b)
∥
∥

nz,b∑

j=1

μ(X(z), y j )
∥
∥
2

= κ(X(z), yinz,b)nz,b

(47)

wherewehave assumed in thefirst step, that the concentration
is similar for all fibers of one fixel, and in the second step
that the local fiber means are approximately aligned in the
same direction.

B Precision-Dependence of n̄

To estimate the precision dependence of n̄, defined in Eq.
(44), we need to estimate the precision dependence of the
term

∥∥∑nz,b
j=1 μ(X(z), y j )

∥∥
2 used in the approximation Eq.

(47) for the concentration of the fixel posterior.
We make the assumption that the posterior means of the

fibers entering some voxel z, and belonging to the same bun-
dle b, are effectively distributed according to the same FvM
with concentration β:

μ(X(z), y j ) ∼ pFvM(κ = β), (48)

so that we can approximate the norm of their empirical sum
with the norm of their expectation:

∥∥
nz,b∑

j=1

μ(X(z), y j )
∥∥
2 = W (β)nz,b. (49)

Moreover, we introduce the free parameter λ to arrive at
the phenomenological approximation

n̄β = W (β/λ)n̄. (50)

C DWI Feature Representations

In this section, we provide some details about commonly
used feature representationsX f ofDWImeasurements.More
details can be found in introductory texts, e.g. by Alexander
(2006).

The diffusion tensor (DT) is arguably the most popular
feature representation (Basser et al. 1994) for DWI measure-
ments I . It is essentially a Gaussian model of the diffusion
signal:

f (gn | Dr) = I0 exp
(−bgTn Drgn

)
(51)

where Dr is the positive definite, symmetric 3× 3 diffusion
tensor at location r, b an experimental constant, and I0 the
unattenuated reference intensity.

The DT representation compresses the DWI signal at
each voxel from N directions to the three orthogonal princi-
pal directions ε1, ε2, ε3 of Dr, and their respective positive
eigenvalues λ1 > λ2 > λ3. 6. If we condense these features
into one vector, we have that XDT : V → R

6.
The fractional anisotropy (FA) of D is given by

FA =
√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ21 + λ22 + λ23)
. (52)

While the DT representation proves to be fairly robust,
it can not properly account for complex fiber configurations,
which require amulti-modal representation of directions. For
this purpose, an angular expansion in terms of spherical har-
monic functions Ylm is commonly used. This representation
is also referred to as fiber orientation distribution (FOD):

f (gn | {Dlm
r }) =

∞∑

l=0

l∑

m=−l
Dlm
r Ylm(gn). (53)

Due to the inversion symmetry of the DWI signal, the odd
coefficients l = 1, 3, 5, . . . are zero. If we retain coefficients
up to l = 4, we have XFOD : V → R

15; r �→ {Dlm
r }.

6 For notational simplicity, we suppressed the location dependence r
of the eigensystem.
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Fig. 22 Case study of a voxel representing a fiber crossing (β/β15◦ = 1.58).

Fig. 23 Log-likelihood log ptrkβ (yin | X(r), yin) for low precision β

(red), and high precision (blue). The inset FOD (gray dumbells, center)
illustrates the fixed input data X(r). The polar angle θ controls the
orientation of yin = Rθ ex .

D The Tractometer Evaluation

In the first step of the evaluation, the Tractometer tool identi-
fies fibers which connect correct pairs of ground-truth ROIs
(VC), fibers which connect incorrect pairs of ROIs (IC), and
such that don’t connect any pair of ROIs (NC).

Next, IC fibers which are shorter than 35 mm, are also
assigned to NC. The VC, IC, and NC metrics simply report
the relative size of each set. Furthermore, the sets of VC and
ICfibers are clustered independently into bundles of coherent
fibers. The number of IC bundles constitutes the IB metric.

In contrast, the identified VC bundles are matched to
the 25 ground-truth bundles, and the VB metric reports the
number of successful matches. To obtain the bundle fidelity
metrics, the identifiedvalid bundles are converted to volumet-

ric binary masks, which are compared to the corresponding
ground-truth bundle masks.

The OL metric reports the relative intersection between
the predicted bundle mask B, and the corresponding ground-
truth bundle mask B̂, i.e. OL = |B ∩ B̂|/|B̂|. Similarly, the
OR metric reports the relative bundle overreach, i.e. OR =
|B \ B̂|/|B̂|. Lastly, the F1 metric is simply the harmonic
mean of OL, and 1-OR.

E FvM-Functions for d = 3

In reference to Eq. (4), we provide the explicit formulas for
the first moment norm, and entropy of the FvM distribution
in three dimensions:

C(κ) = κ/(4π sinh κ) . (54a)

W (κ) = coth (κ)− 1

κ
. (54b)

H(κ) = 1− κ coth (κ)− logC(κ) . (54c)

F Case Study: Fiber Crossing

In addition to theunimodal case studyof theEntrackposterior
in Fig. 13, we show a bimodal case study in Figs. 22 and 23.

G ISMRM: CST Bundle Masks

We illustrate volumetricmasks of the left CSTon the ISMRM
phantom in Fig. 24.
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Fig. 24 Bundle-mask analysis of the left CST. The ground-truth mask
(yellow) is shown in the first row, together with overlays of the predicted
voxel mask (purple), and its overreach (red). In the center of the second
row, we illustrate the streamlines, which the predicted mask is based

on. The third row contains overlays of the overreach with the overlap
(green), and the predicted mask with its underreach (blue). Underreach
refers to voxels covered by the ground-truth bundle, but not by the
predicted bundle. The precision is β/β15◦ = 1.58.
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