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Abstract This paper focuses on the unsupervised domain
adaptation of transferring the knowledge from the source
domain to the target domain in the context of semantic seg-
mentation. Existing approaches usually regard the pseudo
label as the ground truth to fully exploit the unlabeled target-
domain data. Yet the pseudo labels of the target-domain data
are usually predicted by the model trained on the source do-
main. Thus, the generated labels inevitably contain the in-
correct prediction due to the discrepancy between the train-
ing domain and the test domain, which could be transferred
to the final adapted model and largely compromises the train-
ing process.

To overcome the problem, this paper proposes to explic-
itly estimate the prediction uncertainty during training to
rectify the pseudo label learning for unsupervised semantic
segmentation adaptation. Given the input image, the model
outputs the semantic segmentation prediction as well as the
uncertainty of the prediction. Specifically, we model the un-
certainty via the prediction variance and involve the uncer-
tainty into the optimization objective. To verify the effec-
tiveness of the proposed method, we evaluate the proposed
method on two prevalent synthetic-to-real semantic segmen-
tation benchmarks, i.e., GTAS — Cityscapes and SYNTHIA
— Cityscapes, as well as one cross-city benchmark, i.e.,
Cityscapes — Oxford RobotCar. We demonstrate through
extensive experiments that the proposed approach (1) dy-
namically sets different confidence thresholds according to
the prediction variance, (2) rectifies the learning from noisy
pseudo labels, and (3) achieves significant improvements
over the conventional pseudo label learning and yields com-
petitive performance on all three benchmarks.
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1 Introduction

Deep neural networks (DNNs) have been widely adopted
in the field of semantic segmentation, yielding the state-of-
the-art performance [ s ].
However, recent works show that DNNs are limited in the
scalability to the unseen environments, e.g., the testing data
collected in rainy days [ ,

]. One straightforward idea is to annotate
more training data of the target environment and then re-
train the segmentation model. However, semantic segmen-
tation task usually demands dense annotations and it is un-
affordable to manually annotate the pixel-wise label for col-
lected data in new environments. To address the challenge,
the researchers, therefore, resort to unsupervised semantic
segmentation adaption, which takes one step closer to real-
world practice. In unsupervised semantic segmentation adap-
tation, two datasets collected in different environments are
considered: a labeled source-domain dataset where category
labels are provided for every pixel, and an unlabeled target-
domain dataset where only provides the collected data with-
out annotations. Compared with the annotated data in the
target domain, the unlabeled data is usually easy to collect.
Semantic segmentation adaptation aims at leveraging the la-
beled source-domain data as well as the unlabeled target-
domain data to adapt the well-trained model to the target
environment.

The main challenge of semantic segmentation adaption
is the discrepancy of data distribution between the source
domain and the target domain. There are two lines of meth-
ods for semantic segmentation adaptation. On one hand, sev-
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eral existing works focus on the domain alignment by mini-
mizing the distribution discrepancy in different levels, such
as pixel level [ s s
], feature level [ s

s s ] and semantic
level [ , , 1.
Despite great success, this line of work is sub-optimal. Be-
cause the alignment objective drives the model to learn the
shared knowledge between domains but ignores the domain-
specific knowledge. The domain-specific knowledge is one
of the keys to the final target, i.e., the model adapted to the
target domain. On the other hand, some researchers focus on
learning the domain-specific knowledge of the target domain
by fully exploiting the unlabeled target-domain data [

, s ]. Specifically,
this line of methods usually adopts the two-stage pipeline,
which is similar to the traditional semi-supervised frame-
work [ ]. The first step is to predict pseudo la-
bels by the knowledge learned from the labeled data, e.g.,
the model trained on the source domain. The second step
is to minimize the cross-entropy loss on the pseudo labels
of the unlabeled target-domain data. In the training process,
pseudo labels are usually regarded as accurate annotations
to optimize the model.

However, one inherent problem exists in the pseudo la-
bel based scene adaptation approaches. Pseudo labels usu-
ally suffer from the noise caused by the model trained on dif-
ferent data distribution (see Figure 1). The noisy label could
compromise the subsequent learning. Although some exist-
ing works [ , ] have proposed
to manually set the threshold to neglect the low-confidence
pseudo labels, it is still challenging in several aspects: First,
the value of the threshold is hard to be determined for differ-
ent target domain. It depends on the similarity of the source
domain and target domain, which is hard to estimate in ad-
vance. Second, the value of the threshold is also hard to be
determined for different categories. For example, the objec-
tives, such as traffic signs, have rarely appeared in the source
domain. The overall confidence score for the rare category is
relatively low. The high threshold may ignore the informa-
tion of rare categories. Third, the threshold is also related to
the location of the pixel. For example, the pixel in the center
of objectives, such as cars, is relatively easy to predict, while
the pixel on the objective edge usually faces ambiguous pre-
dictions. It reflects that the threshold should not only con-
sider the confidence score but also the location of the pixel.
In summary, every pixel in the segmentation map needs to
be treated differently. The fixed threshold is hard to match
the demand.

To address the mentioned challenges, we propose one
simple and effective method for semantic segmentation adap-
tion via modeling uncertainty, which could provide the pixel-
wise threshold for the input image automatically. Without

introducing extra parameters or modules, we formulate the
uncertainty as the prediction variance. The prediction vari-
ance reflects the model uncertainty towards the prediction in
a bootstrapping manner. Meanwhile, we explicitly involve
the variance into the optimization objective, called variance
regularization, which works as an automatic threshold and
is compatible with the standard cross-entropy loss. The au-
tomatic threshold rectifies the learning from noisy labels
and ensures the training in a coherent manner. Therefore,
the proposed method could effectively exploit the domain-
specific information offered by pseudo labels and takes ad-
vantage of the unlabeled target-domain data.
In a nutshell, our contributions are as follows:

— To our knowledge, we are among the first attempts to
exploit the uncertainty estimation and enable the auto-
matic threshold to learn from noisy pseudo labels. This
is in contrast to most existing domain adaptation meth-
ods that directly utilize noisy pseudo labels or manually
set the confidence threshold.

— Without introducing extra parameters or modules, we
formulate the uncertainty as the prediction variance. Specif-
ically, we introduce a new regularization term, variance
regularization, which is compatible with the standard cross-
entropy loss. The variance regularization works as the
automatic threshold, and rectifies the learning from noisy
pseudo labels.

— We verity the proposed method on two synthetic-to-real
benchmarks and one cross-city benchmark. The proposed
method has achieved significant improvements over the
conventional pseudo label learning, yielding competitive
performance to existing methods.

2 Related work
2.1 Semantic Segmentation Adaptation

The main challenge in unsupervised domain adaptation is
different data distribution between the source domain and
the target domain [ s R

s , ]. To deal
with the challenge, some pioneering works [

, ] propose to transfer the visual style
of the source-domain data to the target domain. In this way,
the model could be trained on the labeled data with the tar-
get style. Similarly, some recent works leverage Adversarial
Domain Adaptation [ ,

, ] to transfer the source-domain im-
ages or features to multiple domains and intend to learn the
domain-invariant features [ , ].
Furthermore, some works focus on the alignment among the
middle activation of neural networks. Luo et al. [

s ] utilize the attention mechanism to
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Fig. 1: Samples of the noisy pseudo labels on Cityscapes [Cordts et al., 2016]. We leverage the widely-used baseline
model [Tsai et al., 2018] to generate pseudo labels. Despite the large area of correct prediction, the pseudo labels still
suffer from the data distribution biases, and inevitably contains incorrect predictions. (Best viewed in color)

refine the feature alignment. Instead of modifying the visual
appearance, the alignment between the high-level semantic
features also attracts a lot of attention. Tsai et al. [Tsai et al.,
2018, Tsai et al., 2019] propose to utilize the discriminator to
demand the similar semantic outputs between two domains.
In summary, this line of methods focuses on the alignment,
learning the shared knowledge between the source and tar-
get domains. However, the domain-specific information is
usually ignored, which is one of the keys to the adaptation
in the target environment. Therefore, in this paper, we resort
to another line of methods, which is based on pseudo label
learning.

2.2 Pseudo label learning

Another line of semantic segmentation adaptation approaches
utilizes the pseudo label to adapt the model to target domain
[Zou et al., 2018, Zou et al., 2019, Zheng and Yang, 2020].
The main idea is close to the conventional semi-supervised
learning approach, entropy minimization, which is first pro-
posed to leverage the unlabeled data [Grandvalet and Ben-
gio, 2005]. Entropy minimization encourages the model to
give the prediction with a higher confidence score. In prac-
tice, Reed et al. [Reed et al., 2014] propose bootstrapping
via entropy minimization and show the effectiveness on the
object detection and emotion recognition. Furthermore, Lee
etal. [Lee, 2013] exploit the trained model to predict pseudo
labels for the unlabeled data, and then fine-tune the model
as supervised learning methods to fully leverage the unla-

beled data. Recently, Pan er al. [Pan et al., 2019] utilize
the pseudo label learning to minimize the distribution of
target-domain data with the source-domain prototypes. For
unsupervised semantic segmentation, Zou et al. [Zou et al.,
2019,Zou et al., 2018] introduce the pseudo label strategy to
the semantic segmentation adaptation and provide one com-
prehensive analysis on the regularization terms. In a similar
spirit, Zheng et al. [Zheng and Yang, 2020] also apply the
pseudo label to learn the domain-specific features, yielding
competitive results. However, one inherent weakness of the
pseudo label learning is that the pseudo label usually con-
tains noisy predictions. Despite the fact that most pseudo
labels are correct, wrong labels also exist, which could com-
promise the subsequent training. If the model is fine-tuned
on the noisy label, the error would also be transferred to the
adapted model. Different from existing works, we do not
treat the pseudo labels equally and intend to rectify the learn-
ing from noisy labels. The proposed method explicitly pre-
dict the uncertainty of pseudo labels, when fine-tuning the
model. The uncertainty could be regarded as an automatic
threshold to adjust the learning from noisy labels.

2.3 Co-training

Co-training is a semi-supervised learning method, which de-
mands two classifiers to learn complementary information
[Blum and Mitchell, 1998]. Some domain adaptation works
also explore a similar learning strategy. [Saito et al., 2018,
Luo et al., 2019b] explicitly maximizes the discrepancy of
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two classifiers by introducing one extra loss, i.e., the Lgq,
in [ ] and the Lweight in [ 1
to obtain complementary classifiers. [ ] min-
imizes the feature discrepancy via adversarial training. Sim-
ilarly, [ ] apply the classifier discrepancy on
the discriminator loss to stabilize the training. In contrast,
the proposed method enables the classifier discrepancy in
nature, since we deploy two classifiers on different interme-
diate layers. We do not introduce such loss to encourage the
classifier discrepancy. Otherwise, every pseudo label will be
high-uncertainty. For instance, if the two classifiers output
one identical category prediction, we will not punish the net-
work. In contrast, [ ] will punish the classi-
fiers for enabling adversarial training. Besides, [

s ] still use conventional segmentation
loss and do not deal with noisy labels, when the proposed
method uses the classifier discrepancy to rectify the pseudo
label learning on segmentation.

2.4 Uncertainty Estimation

To address the noise, existing works have explored the un-
certainty estimation from different aspects, such as the input
data, the annotation and the model weights. In this work, we
focus on the annotation uncertainty. Our target is to learn
a model that could predict whether the annotation is cor-
rect, and learn from noisy pseudo labels. Among existing
works, Bayesian networks are widely used to predict the
uncertainty of weights in the network [

]. In a similar spirit, Kendall et al. [

] apply the Bayesian theory to the prediction of com-
puter vision tasks, and intend to provide not only the pre-
diction results but also the confidence of the prediction. Fur-
ther, Yu et al. [ ] explicitly model the uncer-
tainty via an extra auxiliary branch, and involve the random
noise into training. The model could explicitly estimate the
feature mean as well as the prediction variance. Inspired by
the above-mentioned works, we propose to leverage the pre-
diction variance to formulate the uncertainty. There are two
fundamental differences between previous works and ours:
(1) We do not introduce extra modules or parameters to sim-
ulate the noise. Instead, we leverage the prediction discrep-
ancy within the segmentation model. (2) We explicitly in-
volve the uncertainty into the training target and adopt the
adaptive method to learn the pixel-wise uncertainty map au-
tomatically. The proposed method does not need manually
setting the threshold to enforce the pseudo label learning.

3 Methodology

In Section 3.1, we first provide the problem definition and
denotations. We then revisit the conventional domain adap-

tion method based on the pseudo label and discuss the limi-
tation of the pseudo label learning (see Section 3.2). To deal
with the mentioned limitations, we propose to leverage the
uncertainty estimation. In particular, we formulate the un-
certainty as the prediction variance and provide one brief
definition in Section 3.3, followed by the proposed variance
regularization, which is compatible with the standard cross-
entropy loss in Section 3.4. Besides, the implementation de-
tails are provided in Section 3.5.

3.1 Problem Definition

Given the labeled dataset X, = {z}}, from the source
domain and the unlabeled dataset X; = {xt}N from the
target domain, semantic segmentation adaptation intends to
learn the projection function F', which maps the input im-
age X to the semantic segmentation Y. M and N denote
the number of the labeled data and the unlabeled data. The
source-domain semantic segmentation label Y, = {y¢}},
is provided for every labeled data of the source domain X,
while the target-domain label Y; = {yt} __, remains un-
known during the training. The aim of unsupervised do-
main adaptation is to estimate the model parameter 6, which
could minimize the prediction bias on the target-domain in-
puts:

= E[F(«]|6:) — pl], (1)

where p; is the ground-truth class probability of target data.
Ideally, p} is one-hot vector and the maximum value of p;
is 1. The ground-truth label y/ = arg maxp?. In contrast,

F(27|0,) is the predicted probability distribution of /. When
we minimize the prediction bias in Equation 1, the discrep-
ancy between predicted results and the ground-truth proba-
bility is minimized.

Bias(p:)

3.2 Pseudo Label Learning Revisit

Pseudo label learning is to leverage the pseudo label to learn
from the unlabeled data. The common practice contains two
stages. The first stage is to generate the pseudo label for
the unlabeled target-domain training data. The pseudo labels
could be obtained via the model trained on source-domain
data: §/ = argmax F(z|6,). We note that 0, is the model
parameters learned from the source-domain training data.
Therefore, the pseudo labels g;, are not accurate in nature
due to dlfferent data distribution between X, and X;. We
denote p] as the one-hot vector of yi If the class index ¢
equals to 77, p! (¢) = 1 else p}(c) = 0. The second stage of
pseudo learning is to minimize the prediction bias. We could
formulate the bias as the similar style of Equation 1:

— b1l +Elp — pi]- 2

Bias(p;) = E[F(]]6,)
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Fig. 2: Illustration of the two-classifier model based on
Deeplab-v2 [Chen et al., 2017], which adopts ResNet-101
[He et al., 2016a] as backbone. We follow the previous
works [Zhao et al., 2017, Tsai et al., 2018, Tsai et al.,
2019, Luo et al., 2019a, Luo et al., 2019b, Zheng and Yang,
2020] to add an auxiliary classifier with the similar structure
as the primary classifier. The auxiliary classifier takes the ac-
tivation of the shallow layer res4b22 as the input, while the
primary classifier leverages that of res5c. The ASPP module
denotes Atrous Spatial Pyramid Pooling layer [Chen et al.,
2017], and the fc layer denotes the fully-connected layer.
The original goal of two-classifier model is to evade the
problem of gradient vanishing and help the training. In this
work, we take one step further to leverage the prediction dis-
crepancy of two classifiers as the uncertainty estimation.

The first term is the difference between the prediction and

the pseudo label, while the second term is the error between

the pseudo label and the ground-truth label. When fine-tuning
the model in the second stage, we fix the pseudo label. There-
fore, the second term is one constant. Existing methods usu-

ally optimize the first term as the pretext task. It equals to

considering the pseudo labels p; as true labels. Existing meth-
ods train the model parameter #; to minimize the bias be-

tween the prediction and pseudo labels. In practice, the cross-
entropy loss is usually adopted [Zou et al., 2018, Zou et al.,

2019, Zheng and Yang, 2020]. The objective could be for-

mulated as:

Lee = E[—p] log F(«}|6,)]. 3)

Discussion. There are two advantages of pseudo label learn-
ing : First, the model is only trained on the target-domain
data. The training data distribution is close to the testing
data distribution, minoring the input distribution discrep-
ancy. Second, despite the domain discrepancy, most pseudo
labels are correct. Theoretically, the fine-tuned model could
arrive the competitive performance with the fully-supervised
model. However, one inherent problem exists that the pseudo
label inevitably contains noise. The wrong annotations are
transferred from the source model to the final model. Noisy
pseudo label could largely compromise the training.

3.3 Uncertainty Estimation

To address the label noise, we model the uncertainty of the
pseudo label via the prediction variance. Intuitively, we could
formulate the variance of the prediction as:

Var(p:) = E[(F(x]]6:) — p})?]. 4)

Since p; remains unknown, one naive way is to utilize the
pseudo label p; to replace the p;. The variance could be ap-
proximated as:

Var(pe) ~ E[(F(«]16:) — 5)?]. ®)

However, in Equation 2, we have pushed F(z7|6;) to p.
When optimizing the prediction bias, the variance in Equa-
tion 5 will also be minimized. It could not reflect the real
prediction variance during training. In this paper, therefore,
we adopt another approximation as:

Var(pt) ~ E[(F(xglet) - Faum(xﬂet))z]» (6)

where F,.(z:|0;) denotes the auxiliary classifier output of
the segmentation model. As shown in Figure 2, we adopt the
widely-used two-classifier model, which contains one pri-
mary classifier as well as one auxiliary classifier. We note
that the extra auxiliary classifier could be viewed as a free
lunch since most segmentation models, including PSPNet
[Zhao et al., 2017] and the modified DeepLab-v2 in [Tsai
et al., 2018, Tsai et al., 2019, Luo et al., 2019a, Zheng and
Yang, 2020], contain the auxiliary classifier to solve the gra-
dient vanish problem [He et al., 2016b] and help the train-
ing. In this paper, we further leverage the auxiliary classi-
fier to estimate the variance. In practice, we utilize the KL-
divergence of two classifier predictions as the variance:

F(]]0,)
Faux(xiwt)

If two classifiers provide two different class predictions, the
approximated variance will obtain one large value. It reflects
the uncertainty of the model on the prediction. Besides, it is
worthy to note that the proposed variance in Equation 7 is
independent with the pseudo label p;.

Discussion: What leads to the discrepancy of the primary
classifier and the auxiliary classifier? First of all, the main
reason is different receptive fields. As shown in Figure 2, the
auxiliary classifier is located at the relatively shallow layer,
when the primary classifier learns from the deeper layer. The
input activation is different between two classifiers, leading
to the prediction difference. Second, the two classifiers have
not been trained on the target-domain data. Therefore, both
classifiers may have different biases to the target-domain
data. Third, we apply the dropout function [Srivastava et al.,
2014] to two classifiers, which also could lead to the differ-
ent prediction during training. The prediction discrepancy
helps us to estimate the uncertainty.

Dy = E[F(](6;) log( ), @)
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Algorithm 1 Training Procedure of the Proposed Method

Require: The target domain dataset X; = {mi } é\’zl; The generated
pseudo label Y; = {77 J A
Require: The source-domain parameter 0; The iteration number 7.
1: Initialize 6; = 05,
2: for iteration = 1to T do
3: Input z7 to F(-|6:), extract the prediction of two classifiers,
calculate the prediction variance according to Equation 7:
F(x10:)
Fauz (2710:)
4: We fix the prediction variance, and calculate the original cross-
entropy loss according to Equation 2, where p? is the one-hot vec-
tor of the pseudo label ¢ :

Lee = E[—p] log F(«]16)]. )

Dyt = E[F(2]16) log( ))- ®)

5: We combine the prediction variance with the conventional ob-
jective to obtain the rectified objective. Update the 6; according to
Equation 12:

Lrect - E[exp{kal}Lce + Dkl] (10)

: end for
7: return 0.

[*)}

3.4 Variance Regularization

In this paper, we propose the variance regularization term to
rectify the learning from noisy labels. It leverages the ap-
proximated variance introduced in Section 3.3. The rectified
objective could be formulated as:

1
Lycet = E[WBias(pt) + Var(p:)] 11

It is worthy to note that we do not intend to minimize the
prediction bias under all conditions. If the prediction vari-
ance has received one large value, we will not punish the
prediction bias Bias(p;). Meanwhile, to prevent that the
model predicts the large variance all the time, as a trade-off,
we introduce the regularization term via adding Var(p;).
Besides, since Var(p:) could be zero, it may lead to the
problem of dividing by zero. To stabilize the training, we
adopt the policy in [Kendall and Gal, 2017] that replace
1/Var as exp(—Var). Therefore, the loss term could be
rewritten with the approximated terms as:

Lrect = E[e-rp{_Dkl}Lce + Dkl]~ (12)

The training procedure of the proposed method is summa-
rized in Algorithm 1. In practice, we utilize the parameter
0 learned in the source-domain dataset to initialize the 6.
In every iteration, we calculate the prediction variance as
well as the cross-entropy loss for the given inputs. We utilize
the L.t to update the 6;. The training cost of the rectified
objective approximately equals to the conventional pseudo
label learning, since no extra modules are introduced.

Discussion: What are the advantages of the proposed vari-
ance regularization? First, the proposed variance regular-
ization does not introduce extra parameters or modules to

(a) Segmentation Results
(Primary Classifier)

Primary Classifier =

(c) Variance Visualization

Calculate

Variance

(b) Segmentation Results
(Auxiliary Classifier)

f) Noisy Label I
: - | .

Fig. 3: Illustration of the prediction variance between two
classifiers, i.e., the primary classifier and the auxiliary clas-
sifier. The areas, where have ambiguous predictions, obtain
large value of the prediction variance. Meanwhile, we could
observe that the high-variance area has considerable over-
laps with the noise in the pseudo label. (Best viewed in
color)

Z =

it =

model the uncertainty. Different from [Yu et al., 2019], we

do not explicitly introduce the Gaussian noise or extra branches.

Instead, we leverage the prediction variance of the model it-
self. Second, the proposed variance regularization has good
scalability. If the variance equals to zero, the optimization
loss degrades to the objective of the conventional pseudo
learning and the model will focus on minimizing the pre-
diction bias only. In contrast, when the value of variance is
high, the model is prone to neglect the bias and skip am-
biguous pseudo labels; Third, the proposed variance regu-
larization has the same shape of the prediction, and could
works as the pixel-wise threshold of the pseudo label. As
shown in Figure 3, we could observe that the noise usually
exists in the area with high variance. The proposed rectified
loss assigns different thresholds to different areas. For exam-
ple, for the location with coherent predictions, the variance
regularization drives the model trust pseudo labels. For the
area with ambiguous predictions, the variance regularization
drives the model to neglect pseudo labels. Different from
existing works that set the unified threshold for all training
samples, the proposed pseudo label could provide more ac-
curate and adaptive threshold for every pixel.

3.5 Implementation

Network Architecture. In this work, we utilize the widely-
used Deeplab-v2 [Chen et al., 2017] as the baseline model,
which adopts the ResNet-101 [He et al., 2016a] as the back-
bone model. We follow most existing works [Tsai et al.,
2018, Tsai et al., 2019, Luo et al., 2019a, Luo et al., 2019b,
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Datasets GTAS5 | SYNTHIA | Cityscapes | Oxford RobotCar
#Train 24,966 9,400 2,975 894

#Test - - 500 271
#Category 19 16 19 9
Synthetic v v X X

Table 1: List of categories and number of images in four
datasets, i.e., GTAS [ 1, SYNTHIA [

], Cityscapes [ ] and Oxford
RobotCar [ ].

] to add one auxiliary classifier. The
auxiliary classifier has similar structure with the primary

4 Experiment
4.1 Datasets and Evaluation Metric

Datasets. To simplify, we denote the test setting as A —
B, where A represents the labeled source domain and B de-
notes the unlabeled target domain. We evaluate the proposed
method on two widely-used synthetic-to-real benchmarks:
ie., GTAS | ]—Cityscapes [

]and SYNTHIAS [ ]—Cityscapes [

]. Both source dataset, i.e., GTAS and SYNTHIA
are the synthetic datasets, and the corresponding annotation
is easy to obtain. Specifically, the GTAS dataset is collected
from a video game, which contains 24, 966 images for train-

classifier, including one Atrous Spatial Pyramid Pooling (ASPP) ing. The SYNTHIA dataset is rendered from a virtual city

module [ ] and one fully-connected layer.
The auxiliary classifier is added after the res4b22 layer. We
also insert the dropout layer [ ] before
the fully-connected layer, and the dropout rate is 0.1.

Pseudo Label. To verify the effectiveness of the proposed
method, we deploy two existing methods, i.e., AdaptSegNet
[ ] and MRNet [ ], to
generate the pseudo labels of the target-domain dataset.

— AdaptSegNet [ ] is one widely-adopted
baseline model, which utilize the adversarial training to
align the semantic outputs.

— MRNet [ ] is one recent work, which
leverages the memory module to regularize the model
training, especially for the target-domain data.

Specifically, MRNet arrives superior performance to Adapt-
SegNet in terms of mloU on three benchmarks. Therefore,
if not specific, we adopt the pseudo label generated by the
stronger baseline, i.e., MRNet. It is worth mentioning that
we do not use source-domain training data. In practice,
we fine-tune the model only on the target-domain train-
ing data with pseudo labels.

Training Details. The input image is resized to 1280 x 640
with scale jittering from [0.8,1.2], and then we randomly
crop 512 x 256 for training. Horizontal flipping is applied
with the possibility of 50%. We train the model with mini-
batch size of 9, and the parameters of batch normalization
layers are also fine-tuned. The learning rate is set to 0.0001.
Following [ , )

], we deploy the ploy learning rate policy by mul-
tiplying the factor (1 — —*#<--—)0-9 The total iteration is
set as 100k iterations and we adopt the early-stop strategy.
We stop the training after 50k iterations. When inference,
we follow [ ] to combine the output of

and comes with pixel-level segmentation annotations, con-
taining 9, 400 training images. The realistic dataset, Cityscapes,
collect street-view scenes from 50 different cities, which
contains 2,975 training images and 500 images for valida-
tion. Besides, we also evaluate the performance on the cross-
city benchmark, i.e., Cityscapes [ ]—Oxford
RobotCar [ ]. We utilize the annota-
tion of Cityscapes training images in this setting. The Ox-
ford RobotCar dataset serves as the unlabeled target domain,
containing 894 training images and 271 validation images.
We note that this setting is challenging in different weather
conditions. Oxford RobotCar is collected in the rainy days,
while the Cityscapes dataset is mostly collected in the sunny
days. The differences between datasets are listed in Table 1.
Evaluation Metric. We report pre-class IoU and mean loU
over all classes. For SYNTHIA — Cityscapes, due the lim-
ited annotated classes in the source dataset, we report the
results based on 13 categories as well as 16 categories with
three small-scale categories. For Cityscapes — Oxford Robot-
Car, we follow the setting in [ ] and report 9
pre-class IoU as well as the mloU accuracy.

4.2 Comparisons with state-of-the-art methods

Synthetic-to-real. We compare the proposed method with
other recent semantic segmentation adaptation methods that
have reported the results or can be re-implemented by us on
three benchmarks. For a fair comparison, we mainly com-
pare the results based on the same network structure, i.e.,
DeepLabv2. The competitive methods cover a wide range
of approaches and could be roughly categorised according to

the usage of pseudo label: AdaptSegNet [ 1,
SIBAN [ ],CLAN [ ], APODA
[ ] and PatchAlign [ ] do not

leverage the pseudo labels and focus on aligning the distri-

both classifier as the final result. Output = arg max(F (wg |6;)+bution between the source domain and the target domain;

0.5Fuz(x116,)). Our implementation is based on Pytorch

[ I

CBST [ ], MRKLD [ ], and
our implemented MRNet+Pseudo are based on the pseudo
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Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike | mloU

Source 758 168 772 125 21.0 255 30.1 20.1 813 24.6 703 538 264 499 172 259 65 253 360 | 36.6
AdaptSegNet [ 1| 8.5 360 799 234 233 239 352 148 834 333 756 585 276 737 325 354 39 30.1 281 | 424
SIBAN [ 1 885 354 795 263 243 285 325 183 812 400 765 581 258 826 303 344 34 216 215 | 426
CLAN [ ] 870 271 796 273 233 283 355 242 836 274 742 586 280 762 331 367 6.7 319 314 | 432
APODA [ ] 856 328 79.0 295 255 268 346 199 837 406 779 592 283 846 346 492 8.0 326 396 | 459
PatchAlign [ ] 923 519 821 292 251 245 338 330 824 328 822 586 272 843 334 463 22 29.5 323 | 465
AdvEnt [ 1 894 331 81.0 266 268 272 335 247 839 367 788 587 305 848 385 445 1.7 316 324 | 455
Source - - - - - - - - - - - - - - - - - - - 29.2

FCAN [ ] - - - - - - - - - - - - - - - - - - - 46.6
Source 713 192 69.1 184 10.0 357 273 68 79.6 248 721 576 195 555 155 151 117 211 120 | 338

CBST [ 1 918 535 805 327 21.0 340 289 204 839 342 809 531 240 827 303 359 160 259 428 | 459
MRKLD [ ] 910 554 80.0 337 214 373 329 245 850 341 808 577 246 841 278 30.1 269 260 423 | 471
Source 51.1 183 758 188 168 347 363 272 80.0 233 649 592 193 746 267 138 0.1 324 340 | 372

MRNet [ 1| 8.1 239 822 195 201 335 422 391 853 337 764 602 337 860 361 433 59 228 308 | 455
MRNet+Pseudo 90.5 350 846 343 240 36.8 441 427 845 33.6 825 63.1 344 858 329 382 20 27.1 41.8 | 483
MRNet+Ours 904 312 851 369 256 375 488 485 853 348 811 644 368 863 349 522 17 290 446 | 503

Table 2: Quantitative results on GTAS — Cityscapes. We present pre-class loU and mloU. The best accuracy in every column
is in bold.

Method Road SW Build Wall* Fence* Pole* TL TS Veg. Sky PR Rider Car Bus Motor Bike | mloU* | mloU
Source 556 238 74.6 — — - 6.1 12.1 748 79.0 553 19.1 39.6 233 137 250 | 386 -
SIBAN [ ] 825 240 794 - - — 165 127 792 828 583 180 793 253 17.6 259 | 463 —
PatchAlign [ 1 824 380 78.6 8.7 0.6 260 39 111 755 846 535 216 714 326 193 317 | 465 40.0
AdaptSegNet [ 1| 843 427 775 — - - 47 70 779 825 543 210 723 322 189 323 | 467 —
CLAN [ 1 813 37.0 80.1 — - - 16.1 137 782 815 534 212 730 329 226 307 | 478 -
CCM [ 1 79.6 364 806 133 0.3 255 224 149 818 774 568 259 807 453 299 520 | 529 45.2
APODA [ ] 864 413 793 — — — 226 173 803 816 569 210 84.1 491 246 457 | 53.1 —
AdvEnt [ ] 856 422 797 8.7 0.4 259 54 81 804 841 579 238 733 364 142 33.0| 48.0 41.2
Source 643 213 731 24 1.1 314 70 277 631 676 422 199 731 153 105 389 | 403 349
CBST [ ] 680 299 763 108 1.4 339 228 295 776 783 606 283 816 235 188 39.8 | 489 42.6
MRKLD [ ] 677 322 739 107 1.6 374 222 312 808 805 60.8 291 828 250 194 453 | 50.1 43.8
Source 440 193 709 8.7 0.8 282 161 167 798 814 578 192 469 172 120 438 | 404 352
MRNet [ 1] 82.0 365 804 4.2 04 337 18.0 134 81.1 808 613 21.7 844 324 148 457 | 502 432
MRNet+Pseudo 83.1 382 817 9.3 1.0 351 303 199 82.0 801 628 21.1 844 378 245 533 | 538 46.5
MRNet+Ours 87.6 419 831 147 1.7 362 313 199 81.6 806 63.0 21.8 862 407 236 53.1 | 549 47.9

Table 3: Quantitative results on SYNTHIA — Cityscapes. We present pre-class IoU, mloU and mIoU*. mloU and mloU*
are averaged over 16 and 13 categories, respectively. The best accuracy in every column is in bold.

2w . Eg achieving this result; (3) Meanwhile, we could observe that

E 5 L g > .
Method E 22 5 8 z 8 2 flaw the proposed method outperforms the source-domain model,
Source 792 493 731 556 373 36.1 540 813 497 | 619 / 1 1 -
AdaptSegNet [ 1 1951 640 757 613 355 639 581 846 570 69.5 Le., MRNet (455% mIOU)’ Wthh prOVIdeS the pSCUdO la
PatchAlign [ 1 944 635 820 613 360 764 610 865 58.6| 72.0 1 1 -
Pl e bel, 4.8 rpIoU. It verifies the effectiveness of the pseudo la
MRNet+Pseudo 95.1 725 870 722 374 879 634 905 589 | 739 bel learmng that push the model to be confident about the
MRNet+Ours 959 737 874 728 43.1 88.6 61.7 89.6 57.0 | 744

prediction. If most pseudo labels are correct, the pseudo la-
Table 4: Quantitative results on the cross-city benchmark:  bel learning could effectively boost the target-domain per-
Cityscapes — Oxford RobotCar. The best accuracy in every  formance. (4) The proposed method also surpasses the other
column is in bold. domain alignment method by a relatively large margin. For
example, the modified AdaptSegNet, i.e., PatchAlign [

], leverages the patch-level information, yielding
label learning to fully exploit the unlabeled target-domain 46.5%, which is inferior to ours. (5) Without using the prior
data. knowledge, the proposed method is also superior to other
pseudo label learning works, i.e., CBST [ ]
and MRKLD [ ]. CBST [ ]
introduces the location knowledge, e.g., sky is always in the
upper bound of the image. In this work, we do not apply
such prior knowledge, but we note that the prior knowledge
is compatible with our method.

First of all, we consider the widely-used GTAS — Cityscapes
benchmark. Table 2 shows that: (1) The proposed method
arrives the state-of-the-art results 50.3% mloU, which sur-
passes other methods. Besides, the proposed method also
yields the competitive performance in terms of the pre-class
IoU. (2) Comparing to our baseline, i.e., MRNet+Pseudo

(48.3% mloU), which adopts the conventional pseudo learn- We observe a similar result on SYNTHIA — Cityscapes
ing, the proposed method (50.3% mloU) gains +2.0% mIoU  (see Table 3). Following the setting in [ ,

improvement. It verifies the effectiveness of the proposed ], we include the mlIoU results of 13 categories
method in rectifying the learning from the noisy pseudo la-  as well as 16 categories, which also calculate IoU of other

bel. The variance regularization plays an important role in  three small-scale objectives, i.e., Wall, Fence and Pole. The



Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation 9

proposed method has achieved 47.9 mloU of 16 categories
and 54.9 mIoU” of 13 categories. Comparing to the baseline,
MRNet+Pseudo, we yield +1.4% mlIoU and +1.1% mloU*
improvement. Meanwhile, the proposed method also outper-
forms the second best method, i.e., APODA [

1, 1.8% mlIoU*.
Cross-city. We further evaluate the proposed method on the
cross-city benchmark, i.e., Cityscapes — Oxford RobotCar.
Both of the source-domain and target-domain datasets are
collected in the real-world scenario. We follow the settings
in [ ] to report IoU of the shared 9 categories
between the two datasets. As shown in Table 4, the proposed
method arrives 74.4% mloU. Comparing to the baseline,
i.e., MRNet+Pseudo (73.9%), the improvement (+0.5%) on
the cross-city benchmark is relatively limited. Therefore, the
baseline, MRNet+Pseudo, also could obtain competitive re-
sults by directly utilizing all pseudo labels. Besides, it is
worthy to note that the proposed method has arrived the 6
of 9 best pre-class ToU accuracy, and achieved +5.7% on
the class of traffic sign, which is a small-scale objective.
Visualization. As shown in Figure 4, we provide the qual-
itative results of the semantic segmentation adaptation on
all three benchmarks. Comparing to the source model, the
pseudo label learning could significantly improve the perfor-
mance. Besides, in contrast with the baseline method with
conventional pseudo label learning, we observe that the pro-
posed variance regularization has better scalability to small-
scale objectives, such as traffic signs and poles. It is because
that the noisy pseudo label usually contains the error of pre-
dicting the rare category to the common category, i.e., large-
scale objectives. The proposed method rectifies the learning
from such mistakes, yielding more reasonable segmentation
prediction.

4.3 Further Evaluations

Variance Regularization vs. Handcrafted Threshold. The

proposed variance regularization is free from setting the thresh-

old. To verify the effectiveness of the variance regulariza-
tion, we also compare the conventional pseudo label learn-
ing with different thresholds. As shown in Table 5, the pro-
posed regularization arrives the superior performance to the
hand-crafted threshold. It is due to that the variance regular-
ization could be viewed as a dynamic threshold, providing
different thresholds for different pixels in the same image.
For the coherent predictions, the model is prone to learning
the pseudo label and maximizing the impact of such labels.
For the incoherent results, the model is prone to neglecting
the pseudo label automatically and minimizing the negative
effect of noisy labels. The best handcrafted threshold is to
neglect the label with the prediction score < 0.90, yield-
ing 48.4% mloU. In contrast, the proposed method achieves
50.3% mlIoU with +1.9% increment.

Methods Threshold mloU
MRNet [ ] - 45.5
Pseudo Learning > 0.99 45.5
Pseudo Learning > 0.95 47.2
Pseudo Learning > 0.90 48.4
Pseudo Learning > 0.80 48.1
Pseudo Learning > 0.70 48.2
Pseudo Learning > 0.00 48.3
Ours - 50.3

Table 5: Variance Regularization vs. Handcrafted Threshold.
The proposed method is free from hand-crafted threshold.
‘> k’ denotes that we only utilize the label confidence > k
to train the model. We report the mIoU accuracy on GTAS
— Cityscapes.

Methods Pseudo Label mloU
AdaptSegNet [ ] - 42.4
Pseudo Learning AdaptSegNet 46.8
Ours AdaptSegNet 47.4
MRNet [ ] - 45.5
Pseudo Learning MRNet 48.3
Ours MRNet 50.3

Table 6: Ablation study of the impact of different pseudo
labels. The model name in the ‘Pseudo Label‘ column de-
notes that we deploy the pseudo label generated by the cor-
responding model.

Dropout Rate mloU
Pseudo Learning 48.3
droprate = 0 49.6
droprate = 0.1 50.3
droprate = 0.3 50.1
droprate = 0.5 50.1
droprate = 0.7 50.0

Table 7: Ablation study of dropout rate on GTAS —
Cityscapes.

Could the proposed method work on the pseudo label
generated by other models (e.g., with more noise)? To
verify the scalability of the proposed method, we adopt the
AdaptSegNet [ ] to generate pseudo labels.
AdaptSegNet is inferior to MRNet in terms of the mIoU on
GTAS5 — Cityscapes. As shown in Table 6, the proposed
method still could learn from the label generated by Adapt-
SegNet, improving the performance from 42.4% to 47.4%.
Meanwhile, the proposed method is also superior to the base-
line method with the conventional pseudo learning (46.8%
mloU).

Training Convergence. As shown in Figure 6, the conven-
tional pseudo label learning (orange line) is prone to over-
fit all pseudo labels, including the noisy label. Therefore,
the training loss converges to zero. In contrast, the proposed
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Fig. 4: Qualitative results of semantic segmentation adaptation on GTAS — Cityscapes, SYNTHIA — Cityscapes and
Cityscapes — Oxford RobotCar. We show the original target image, the ground-truth segmentation, the output of the source
model, i.e., MRNet, and the baseline, i.e., MRNet+Pseudo. Our results are in the right column. (Best viewed in color).

Methods Right-prediction ‘Wrong-prediction Uncertainty
Certainty Certainty Gap
MC-dropout 0.5 0.9945 0.9733 0.0212
MC-dropout 0.7 0.9870 0.9396 0.0474
MC-dropout 0.9 0.9486 0.8118 0.1368
Ours 0.9767 0.8410 0.1357
Ours + dropout 0.5 0.9673 0.8065 0.1608

Table 8: Comparison with Monte Carlo Dropout.

Distance Functions mloU
E[(F(2710¢) — Faux (2710¢))?] 49.6
E[Faua(21]0:) log(Pa2lril%0))) 494
E[F(z]|0;) log( —Zi1%)_y) 50.3

Fuue(2]16,)

Table 9: Ablation study of distance functions on GTAS —

Cityscapes.

« B mloU
1.0 0.0 49.3
0.0 1.0 47.8
1.0 1.0 50.1
1.0 0.5 50.3

Table 10: Sensitivity of inference weighting.

method (blue line) also converges, but does not force the loss
to be zero. It is because that we provide the variance regu-
larization term, which could punish the wrong prediction for
the uncertain pseudo labels with flexibility.

Effect of Dropout. The proposed method is not very sen-
sitive to the dropout rate. As shown in Table 7, we could
observe two points: 1) The dropout function is not the main
reason for variance of the predictions. Without dropout func-
tion (p = 0), the proposed method still could achieve 49.6%
mloU, which is better than the conventional pseudo label
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Ground Truth

Our Prediction

Prediction Variance Prediction Confidence

Fig. 5: Qualitative results of the discrepancy between the prediction variance and the prediction confidence. We could ob-
serve that the prediction variance used in this work has more overlaps with the ambiguous predictions, while the prediction
confidence usually focuses on the edge of the two different classes. (Best viewed in color).

Training Loss

ququququququququququququququququququququququ
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Fig. 6: The training loss of the proposed method and the
pseudo label learning. The pseudo label learning is prone to
over-fit all pseudo label, and the training loss converges to
zero. In contrast, the proposed method would converge to
one non-zero constant while training.

learning. 2) With a propose dropout rate, the proposed method
could generally achieve better results around 50% mloU.

Uncertainty of High-confidence Predictions. We analyze
the variance of high-confidence predictions on Cityscape.
Specifically, we calculate the average uncertainty of right-
assigned and wrong-assigned prediction with a confidence
score> 0.95. Here we use the metric exp{—Dy,;} in Equa-
tion 12 to report the variance value. The high value means
low uncertainty. The average variance of right-assigned high-
confidence labels is 0.9901, when the average variance of
wrong-assigned high-confidence labels is 0.9332. We could
see one significant variance gap between the right-assigned
labels and wrong-assigned labels, even if they all achieve a
high confidence score. The result verifies that the variance
value could reflect the difference between wrong-assigned
labels and right-assigned labels.

Comparison with Monte Carlo Dropout. Monte Carlo Dropout

(MC-Dropout) [Gal and Ghahramani, 2016] activates the
dropout function when inference to obtain various predic-
tions. Here we compare the ability of representing the un-
certainty of the proposed method and MC-Dropout. For a
fair comparison, we just replace the prediction of the aux
classifier with the main classifier Fy,.,, with MC dropout
rate of {0.5,0.7,0.9}.

F(]16,)

Dyne = E[F(16;) log(————2—
t Farop(@]0:)

)] 13)

Since the prediction score could not reflect the ground-truth
uncertainty, we introduce one new metric called uncertainty
gap as indicator. Uncertainty gap is the variance difference
of right predictions and wrong predictions. Generally, we
hope that the right prediction obtains low uncertainty value,
while the wrong prediction obtains high uncertainty value.
In practice, we use the exp(—D) to keep the value in [0,1].
As shown in Table 8, the proposed method obtains 0.1357
variance gap, which is competitive to MC-dropout with 0.9
drop rate. The proposed method is also complementary to
MC-dropout. The proposed method with MC-dropout could
further boost the uncertainty gap. Meanwhile, it is worth
noting that the proposed method directly leverages the vari-
ance of both main and auxiliary classifiers without multiple
inferences, which can largely save the test time.

Effect of Distance Functions. In fact, KL-divergence is an
alternative option for variance calculation. We could swap
the main and aux classifiers to calculate the distance or use
mean-square error (MSE). Here we add one experiment to
compare common distance functions (see Table 9). First, we
could observe that the model is not very sensitive to the dis-
tance metric, since the performances are close. Second, the
KL-divergence used in Method is slightly better than swap-
ping the predictions and MSE distance.
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Effect of Inference Weighting. Inference weighting is one
practical trick to combine the predictions of both main and

auxiliary classifiers. Generally, the main classifier could achieve

better performance, so we give the prediction of the main
classifier a larger weight of & = 1 and assign S = 0.5 to the

Gal and Ghahramani, 2016. Gal, Y. and Ghahramani, Z. (2016).
Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In /CML.

Ganin and Lempitsky, 2015. Ganin, Y. and Lempitsky, V. (2015). Un-
supervised domain adaptation by backpropagation. In /ICML.

Grandvalet and Bengio, 2005. Grandvalet, Y. and Bengio, Y. (2005).

prediction of auxiliary classifier. Output = arg max( a F( ch |9 t) +Semi-supervised learning by entropy minimization. In NeurIPS.

BF uz(x116;)). This trick could slightly improve the final
performance. Here we provide the ablation study on the sen-
sitivity of inference weighting in Table 10. If we only deploy
the main classifier (& = 1, 8 = 0), the model could achieve
49.3% mloU accuracy. When we combine the prediction of
two classifiers, the performance could be improved about
1.0% mloU.

Uncertainty Visualization. As a by-product, we also could
estimate the prediction uncertainty when inference. We pro-
vide the visualization results to show the difference between
the uncertainty estimation and the confidence score. As shown
in Figure 5, we observe that the model is prone to provide the
low confidence score of the boundary pixels, which does not
provide the effective cue to the ambiguous prediction. In-
stead, the proposed prediction variance reflects the label un-
certainty, and the highlight area in prediction variance map
has lots of overlaps with the wrong prediction.

5 Conclusion

We identify the challenge of pseudo label learning in adap-
tive semantic segmentation and present a simple and effec-
tive method to estimate the prediction uncertainty during
training. We also involve the uncertainty into the optimiza-
tion objective as the variance regularization to rectify the
training. The regularization helps the model learn from the
noisy label, without introducing extra parameters or mod-
ules. As a result, we achieve the competitive performance
on three benchmarks, including two synthetic-to-real bench-
marks and one cross-city benchmark. In the future, we will
continue to investigate the usage of uncertainty and the ap-
plications to other related tasks, e.g., medical imaging.
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